/**************************************************************************************************/ /** \defgroup compiler_conntrol_gr Compiler Control \brief Compiler agnostic \#define symbols for generic C/C++ source code \details The CMSIS-Core provides the header file cmsis_compiler.h with consistent \#define symbols for generate C or C++ source files that should be compiler agnostic. Each CMSIS compliant compiler should support the functionality described in this section. The header file cmsis_compiler.h is also included by each \ref device_h_pg so that these definitions are available. @{ */ /** \def __ARM_ARCH_6M__ \brief Set to 1 when generating code for Armv6-M (Cortex-M0, Cortex-M1) \details The \#define __ARM_ARCH_6M__ is set to 1 when generating code for the Armv6-M architecture. This architecture is for example used by the Cortex-M0, Cortex-M0+, and Cortex-M1 processor. */ #define __ARM_ARCH_6M__ /** \def __ARM_ARCH_7M__ \brief Set to 1 when generating code for Armv7-M (Cortex-M3) \details The \#define __ARM_ARCH_7M__ is set to 1 when generating code for the Armv7-M architecture. This architecture is for example used by the Cortex-M3 processor. */ #define __ARM_ARCH_7M__ /** \def __ARM_ARCH_7EM__ \brief Set to 1 when generating code for Armv7-M (Cortex-M4) with FPU \details The \#define __ARM_ARCH_7EM__ is set to 1 when generating code for the Armv7-M architecture with floating point extension. This architecture is for example used by the Cortex-M4 processor with FPU */ #define __ARM_ARCH_7EM__ /** \cond (ARMv8M) */ /** \def __ARM_ARCH_8M_BASE__ \brief Set to 1 when generating code for Armv8-M Baseline \details The \#define __ARM_ARCH_8M_BASE__ is set to 1 when generating code for the Armv8-M architecture baseline variant. */ #define __ARM_ARCH_8M_BASE__ /** \def __ARM_ARCH_8M_MAIN__ \brief Set to 1 when generating code for Armv8-M Mainline \details The \#define __ARM_ARCH_8M_MAIN__ is set to 1 when generating code for the Armv8-M architecture mainline variant. */ #define __ARM_ARCH_8M_MAIN__ /** \endcond */ /**************************************************************************************************/ /** \def __ASM \brief Pass information from the compiler to the assembler. \details The \b __ASM keyword can declare or define an embedded assembly function or incorporate inline assembly into a function (shown in the code example below). Code Example: \code // Reverse bit order of value __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value) { uint32_t result; __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); return(result); } \endcode */ #define __ASM /**************************************************************************************************/ /** \def __INLINE \brief Recommend that function should be inlined by the compiler. \details Inline functions offer a trade-off between code size and performance. By default, the compiler decides during optimization whether to inline code or not. The \b __INLINE attribute gives the compiler an hint to inline this function. Still, the compiler may decide not to inline the function. As the function is global an callable function is also generated. Code Example: \code const uint32_t led_mask[] = {1U << 4, 1U << 5, 1U << 6, 1U << 7}; /*------------------------------------------------------------------------------ Switch on LEDs *------------------------------------------------------------------------------*/ __INLINE static void LED_On (uint32_t led) { PTD->PCOR = led_mask[led]; } \endcode */ #define __INLINE /**************************************************************************************************/ /** \def __STATIC_INLINE \brief Define a static function that may be inlined by the compiler. \details Defines a static function that may be inlined by the compiler. If the compiler generates inline code for all calls to this functions, no additional function implementation is generated which may further optimize space. Code Example: \code \\ Get Interrupt Vector __STATIC_INLINE uint32_t NVIC_GetVector(IRQn_Type IRQn) { uint32_t *vectors = (uint32_t *)SCB->VTOR; return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET]; } \endcode */ #define __STATIC_INLINE /**************************************************************************************************/ /** \def __STATIC_FORCEINLINE \brief Define a static function that should be always inlined by the compiler. \details Defines a static function that should be always inlined by the compiler. \note For compilers that do not allow to force function inlining, the macro maps to \ref __STATIC_INLINE. Code Example: \code \\ Get Interrupt Vector __STATIC_FORCEINLINE uint32_t NVIC_GetVector(IRQn_Type IRQn) { uint32_t *vectors = (uint32_t *)SCB->VTOR; return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET]; } \endcode */ #define __STATIC_FORCEINLINE /**************************************************************************************************/ /** \def __NO_RETURN \brief Inform the compiler that a function does not return. \details Informs the compiler that the function does not return. The compiler can then perform optimizations by removing code that is never reached. Code Example: \code // OS idle demon (running when no other thread is ready to run). __NO_RETURN void os_idle_demon (void); \endcode */ #define __NO_RETURN /**************************************************************************************************/ /** \def __RESTRICT \brief restrict pointer qualifier to enable additional optimizations. \details The __RESTRICT keyword corresponds to the \b restrict pointer qualifier that has been introduced in C99. __RESTRICT is a hint to the compiler that enables additional optimizations. It specifies that for the lifetime of the pointer, only the pointer itself or a value directly derived from it (such as pointer + 1) is used to access the object. The compiler may therefore ignore potential pointer aliasing effects and perform additional optimizations. \note For compilers that do not support the restrict keyword, __RESTRICT is defined as an empty macro and a warning is issued. Code Example: \code __STATIC_INLINE void ARM_MPU_OrderedMemcpy (volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len) { uint32_t i; for (i = 0U; i < len; ++i) { dst[i] = src[i]; // Since src is restrict, the compiler can assume that dst and src are not overlapping may load multiple values at a time } } \endcode */ #define __RESTRICT /**************************************************************************************************/ /** \def __USED \brief Inform that a variable shall be retained in executable image. \details Definitions tagged with \b __USED in the source code should be not removed by the linker when detected as unused. Code Example: \code /* Export following variables for debugging */ __USED uint32_t const CMSIS_RTOS_API_Version = osCMSIS; __USED uint32_t const CMSIS_RTOS_RTX_Version = osCMSIS_RTX; __USED uint32_t const os_clockrate = OS_TICK; __USED uint32_t const os_timernum = 0; \endcode */ #define __USED /**************************************************************************************************/ /** \def __WEAK \brief Export a function or variable weakly to allow overwrites. \details Functions defined with \b __WEAK export their symbols weakly. A weakly defined function behaves like a normally defined function unless a non-weakly defined function of the same name is linked into the same image. If both a non-weakly defined function and a weakly defined function exist in the same image then all calls to the function resolve to call the non-weak function. Functions declared with \b __WEAK and then defined without \b __WEAK behave as non-weak functions. Code Example: \code __WEAK void SystemInit(void) { SystemCoreSetup(); SystemCoreClockSetup(); } \endcode */ #define __WEAK /**************************************************************************************************/ /** \def __PACKED \brief Request smallest possible alignment. \details Specifies that a type must have the smallest possible alignment. Code Example: \code struct foo { uint8_t u8; uint32_t u32[2] __PACKED; }; \endcode */ #define __PACKED /**************************************************************************************************/ /** \def __PACKED_STRUCT \brief Request smallest possible alignment for a structure. \details Specifies that a structure must have the smallest possible alignment. Code Example: \code __PACKED_STRUCT foo { uint8_t u8; uint32_t u32; uint16_t u16; }; \endcode */ #define __PACKED_STRUCT /**************************************************************************************************/ /** \def __UNALIGNED_UINT32 \brief Pointer for unaligned access of a uint32_t variable. \deprecated Do not use this macro. It has been superseded by \ref __UNALIGNED_UINT32_READ, \ref __UNALIGNED_UINT32_WRITE and will be removed in the future. \details Defines a pointer to a uint32_t from an address that does not need to be aligned. This can then be used in read/write operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm processor core and compiler settings. Code Example: \code uint32_t val32; void test (uint8_t *ptr) { __UNALIGNED_UINT32(ptr) = val32; } \endcode */ #define __UNALIGNED_UINT32 /**************************************************************************************************/ /** \def __UNALIGNED_UINT16_READ \brief Pointer for unaligned read of a uint16_t variable. \details Defines a pointer to a uint16_t from an address that does not need to be aligned. This can then be used in read operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm processor core and compiler settings. Code Example: \code uint16_t val16; void test (uint8_t *ptr) { val16 = __UNALIGNED_UINT16_READ(ptr); } \endcode */ #define __UNALIGNED_UINT16_READ /**************************************************************************************************/ /** \def __UNALIGNED_UINT16_WRITE \brief Pointer for unaligned write of a uint16_t variable. \details Defines a pointer to a uint16_t from an address that does not need to be aligned. This can then be used in write operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm processor core and compiler settings. Code Example: \code uint16_t val16 = 0U; void test (uint8_t *ptr) { __UNALIGNED_UINT16_WRITE(ptr, val16); } \endcode */ #define __UNALIGNED_UINT16_WRITE /**************************************************************************************************/ /** \def __UNALIGNED_UINT32_READ \brief Pointer for unaligned read of a uint32_t variable. \details Defines a pointer to a uint32_t from an address that does not need to be aligned. This can then be used in read operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm processor core and compiler settings. Code Example: \code uint32_t val32; void test (uint8_t *ptr) { val32 = __UNALIGNED_UINT32_READ(ptr); } \endcode */ #define __UNALIGNED_UINT32_READ /**************************************************************************************************/ /** \def __UNALIGNED_UINT32_WRITE \brief Pointer for unaligned write of a uint32_t variable. \details Defines a pointer to a uint32_t from an address that does not need to be aligned. This can then be used in write operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm processor core and compiler settings. Code Example: \code uint32_t val32 = 0U; void test (uint8_t *ptr) { __UNALIGNED_UINT32_WRITE(ptr, val32); } \endcode */ #define __UNALIGNED_UINT32_WRITE /**************************************************************************************************/ /** \def __ALIGNED \brief Minimum alignment for a variable. \details Specifies a minimum alignment for a variable or structure field, measured in bytes. Code Example: \code uint32_t stack_space[0x100] __ALIGNED(8); // 8-byte alignment required \endcode */ #define __ALIGNED /** @} */ /** end of compiler_conntrol_gr **/