/** \page Using_pg Using CMSIS in Embedded Applications \details To use the CMSIS-CORE the following files are added to the embedded application: - \ref startup_s_pg with reset handler and exception vectors. - \ref system_c_pg with general device configuration (i.e. for clock and BUS setup). - \ref device_h_pg gives access to processor core and all peripherals. \note The files \ref startup_s_pg and \ref system_c_pg may require application specific adaptations and therefore should be copied into the application project folder prior configuration. The \ref device_h_pg is included in all source files that need device access and can be stored on a central include folder that is generic for all projects. The \ref startup_s_pg is executed after reset and calls \ref SystemInit. After the system initialization control is transferred to the C/C++ run-time library which performs initialization and calls the \b main function in the user code. In addition the \ref startup_s_pg contains all exception and interrupt vectors and implements a default function for every interrupt. It may also contain stack and heap configurations for the user application. The \ref system_c_pg performs the setup for the processor clock. The variable \ref SystemCoreClock indicates the CPU clock speed. \ref system_init_gr describes the minimum feature set. In addition the file may contain functions for the memory BUS setup and clock re-configuration. The \ref device_h_pg is the central include file that the application programmer is using in the C source code. It provides the following features: - \ref peripheral_gr provides a standardized register layout for all peripherals. Optionally functions for device-specific peripherals may be available. - \ref NVIC_gr can be accessed with standardized symbols and functions for the Nested Interrupt Vector Controller (NVIC) are provided. - \ref intrinsic_CPU_gr allow to access special instructions, for example for activating sleep mode or the NOP instruction. - \ref intrinsic_SIMD_gr provide access to the DSP-oriented instructions. - \ref SysTick_gr function to configure and start a periodic timer interrupt. - \ref ITM_Debug_gr are functions that allow printf-style I/O via the CoreSight Debug Unit and ITM communication. \image html "CMSIS_CORE_Files_user.png" "CMSIS-CORE User Files" The CMSIS-CORE are device specific. In addition, the \ref startup_s_pg is also compiler vendor specific. The various compiler vendor tool chains may provide folders that contain the CMSIS files for each supported device. For example, the following files are provided in MDK-ARM to support the STM32F10x Connectivity Line device variants:
File Description
".\ARM\Startup\ST\STM32F10x\startup_stm32f10x_cl.s" \ref startup_s_pg for the STM32F10x Connectivity Line device variants.
".\ARM\Startup\ST\STM32F10x\system_stmf10x.c" \ref system_c_pg for the STM32F10x device families.
".\ARM\INC\ST\STM32F10x\stm32f10x.h" \ref device_h_pg for the STM32F10x device families.
".\ARM\INC\ST\STM32F10x\system_stm32f10x.h" \ref system_Device_h_sec for the STM32F10x device families.
\note The silicon vendors create these device-specific CMSIS-CORE files based on \ref Templates_pg provide by ARM. Thereafter, the functions described under \b Reference can be used in the application. \b Examples - \subpage Using_CMSIS is a simple example that shows the usage of the CMSIS layer. - \subpage Using_VTOR_pg shows how to remap the interrupt vector table. - \subpage Using_ARM_pg explains how to use CMSIS-CORE for ARM processors. \page Using_CMSIS Basic CMSIS Example A typical example for using the CMSIS layer is provided below. The example is based on a STM32F10x Device. \code #include // File name depends on device used uint32_t volatile msTicks; // Counter for millisecond Interval void SysTick_Handler (void) { // SysTick Interrupt Handler msTicks++; // Increment Counter } void WaitForTick (void) { uint32_t curTicks; curTicks = msTicks; // Save Current SysTick Value while (msTicks == curTicks) { // Wait for next SysTick Interrupt __WFE (); // Power-Down until next Event/Interrupt } } void TIM1_UP_IRQHandler (void) { // Timer Interrupt Handler ; // Add user code here } void timer1_init(int frequency) { // Set up Timer (device specific) NVIC_SetPriority (TIM1_UP_IRQn, 1); // Set Timer priority NVIC_EnableIRQ (TIM1_UP_IRQn); // Enable Timer Interrupt } void Device_Initialization (void) { // Configure & Initialize MCU if (SysTick_Config (SystemCoreClock / 1000)) { // SysTick 1mSec : // Handle Error } timer1_init (); // setup device-specific timer } // The processor clock is initialized by CMSIS startup + system file void main (void) { // user application starts here Device_Initialization (); // Configure & Initialize MCU while (1) { // Endless Loop (the Super-Loop) __disable_irq (); // Disable all interrupts Get_InputValues (); // Read Values __enable_irq (); // Enable all interrupts Calculation_Response (); // Calculate Results Output_Response (); // Output Results WaitForTick (); // Synchronize to SysTick Timer } } \endcode \page Using_VTOR_pg Using Interrupt Vector Remap Most Cortex-M processors provide VTOR register for remapping interrupt vectors. The following example shows a typical use case where the interrupt vectors are copied to RAM and the SysTick_Handler is replaced. \code #include "ARMCM3.h" // Device header /* externals from startup_ARMCM3.s */ extern uint32_t __Vectors[]; /* vector table ROM */ #define VECTORTABLE_SIZE (256) /* size Cortex-M3 vector table */ #define VECTORTABLE_ALIGNMENT (0x100ul) /* 16 Cortex + 32 ARMCM3 = 48 words */ /* next power of 2 = 256 */ /* new vector table in RAM */ uint32_t vectorTable_RAM[VECTORTABLE_SIZE] __attribute__(( aligned (VECTORTABLE_ALIGNMENT) )); /*---------------------------------------------------------------------------- SysTick_Handler *----------------------------------------------------------------------------*/ volatile uint32_t msTicks = 0; /* counts 1ms timeTicks */ void SysTick_Handler(void) { msTicks++; /* increment counter */ } /*---------------------------------------------------------------------------- SysTick_Handler (RAM) *----------------------------------------------------------------------------*/ volatile uint32_t msTicks_RAM = 0; /* counts 1ms timeTicks */ void SysTick_Handler_RAM(void) { msTicks_RAM++; /* increment counter */ } /*---------------------------------------------------------------------------- MAIN function *----------------------------------------------------------------------------*/ int main (void) { uint32_t i; for (i = 0; i < VECTORTABLE_SIZE; i++) { vectorTable_RAM[i] = __Vectors[i]; /* copy vector table to RAM */ } /* replace SysTick Handler */ vectorTable_RAM[SysTick_IRQn + 16] = (uint32_t)SysTick_Handler_RAM; /* relocate vector table */ __disable_irq(); SCB->VTOR = (uint32_t)&vectorTable_RAM; __DSB(); __enable_irq(); SystemCoreClockUpdate(); /* Get Core Clock Frequency */ SysTick_Config(SystemCoreClock / 1000ul); /* Setup SysTick Timer for 1 msec */ while(1); } \endcode \page Using_ARM_pg Using CMSIS with generic ARM Processors ARM provides CMSIS-CORE files for the supported ARM Processors and for various compiler vendors. These files can be used when standard ARM processors should be used in a project. The table below lists the folder and device names of the ARM processors.
Folder Processor Description
".\Device\ARM\ARMCM0" Cortex-M0 Contains \b Include and \b Source template files configured for the Cortex-M0 processor. The device name is ARMCM0 and the name of the \ref device_h_pg is .
".\Device\ARM\ARMCM0plus" Cortex-M0+ Contains \b Include and \b Source template files configured for the Cortex-M0+ processor. The device name is ARMCM0plus and the name of the \ref device_h_pg is .
".\Device\ARM\ARMCM3" Cortex-M3 Contains \b Include and \b Source template files configured for the Cortex-M3 processor. The device name is ARMCM3 and the name of the \ref device_h_pg is .
".\Device\ARM\ARMCM4" Cortex-M4 Contains \b Include and \b Source template files configured for the Cortex-M4 processor. The device name is ARMCM4 and the name of the \ref device_h_pg is .
".\Device\ARM\ARMCM7" Cortex-M7 Contains \b Include and \b Source template files configured for the Cortex-M7 processor. The device name is ARMCM7 and the name of the \ref device_h_pg is .
".\Device\ARM\ARMSC000" SecurCore SC000 Contains \b Include and \b Source template files configured for the SecurCore SC000 processor. The device name is ARMSC000 and the name of the \ref device_h_pg is .
".\Device\ARM\ARMSC300" SecurCore SC300 Contains \b Include and \b Source template files configured for the SecurCore SC300 processor. The device name is ARMSC300 and the name of the \ref device_h_pg is .
\section Using_ARM_Lib_sec Create generic Libraries with CMSIS The CMSIS Processor and Core Peripheral files allow also to create generic libraries. The \b CMSIS-DSP Libraries are an example for such a generic library. To build a generic Library set the define \b __CMSIS_GENERIC and include the relevant core_.h CMSIS CPU & Core Access header file for the processor. The define __CMSIS_GENERIC disables device-dependent features such as the SysTick timer and the Interrupt System. Refer to \ref core_config_sect for a list of the available core_.h header files. \b Example: The following code section shows the usage of the core_<cpu>.h header files to build a generic library for Cortex-M0, Cortex-M3, Cortex-M4, or Cortex-M7. To select the processor, the source code uses the define \b CORTEX_M7, \b CORTEX_M4, \b CORTEX_M3, \b CORTEX_M0, or \b CORTEX_M0PLUS. By using this header file, the source code can access the functions for \ref Core_Register_gr, \ref intrinsic_CPU_gr, \ref intrinsic_SIMD_gr, and \ref ITM_Debug_gr. \code #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ #if defined (CORTEX_M7) #include "core_cm7.h" #if defined (CORTEX_M4) #include "core_cm4.h" #elif defined (CORTEX_M3) #include "core_cm3.h" #elif defined (CORTEX_M0) #include "core_cm0.h" #elif defined (CORTEX_M0PLUS) #include "core_cm0plus.h" #else #error "Processor not specified or unsupported." #endif \endcode */