/**************************************************************************//** * @file cmsis_gcc.h * @brief CMSIS compiler specific macros, functions, instructions * @version V1.00 * @date 06. Jul 2017 ******************************************************************************/ /* * Copyright (c) 2009-2017 ARM Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __CMSIS_GCC_H #define __CMSIS_GCC_H /* ignore some GCC warnings */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-conversion" #pragma GCC diagnostic ignored "-Wconversion" #pragma GCC diagnostic ignored "-Wunused-parameter" /* Fallback for __has_builtin */ #ifndef __has_builtin #define __has_builtin(x) (0) #endif /* CMSIS compiler specific defines */ #ifndef __ASM #define __ASM asm #endif #ifndef __INLINE #define __INLINE inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static inline #endif #ifndef __NO_RETURN #define __NO_RETURN __attribute__((noreturn)) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) #endif #ifndef __UNALIGNED_UINT16_WRITE #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" /* lint -esym(9058, T_UINT16_WRITE) disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */ __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" /* lint -esym(9058, T_UINT16_READ) disable MISRA 2012 Rule 2.4 for T_UINT16_READ */ __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" /* lint -esym(9058, T_UINT32_WRITE) disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */ __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif /* ########################### Core Function Access ########################### */ /** \brief Get FPSCR \details Returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FPSCR(void) { #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #if __has_builtin(__builtin_arm_get_fpscr) || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2) /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */ return __builtin_arm_get_fpscr(); #else uint32_t result; __ASM volatile ("VMRS %0, fpscr" : "=r" (result) ); return(result); #endif #else return(0U); #endif } /** \brief Set FPSCR \details Assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ __attribute__((always_inline)) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) { #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #if __has_builtin(__builtin_arm_set_fpscr) || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2) /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */ __builtin_arm_set_fpscr(fpscr); #else __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory"); #endif #else (void)fpscr; #endif } /* ########################## Core Instruction Access ######################### */ /** \brief No Operation */ #define __NOP __builtin_arm_nop /** \brief Wait For Interrupt */ #define __WFI __builtin_arm_wfi /** \brief Wait For Event */ #define __WFE __builtin_arm_wfe /** \brief Send Event */ #define __SEV __builtin_arm_sev /** \brief Instruction Synchronization Barrier \details Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ __attribute__((always_inline)) __STATIC_INLINE void __ISB(void) { __ASM volatile ("isb 0xF":::"memory"); } /** \brief Data Synchronization Barrier \details Acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ __attribute__((always_inline)) __STATIC_INLINE void __DSB(void) { __ASM volatile ("dsb 0xF":::"memory"); } /** \brief Data Memory Barrier \details Ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ __attribute__((always_inline)) __STATIC_INLINE void __DMB(void) { __ASM volatile ("dmb 0xF":::"memory"); } /** \brief Reverse byte order (32 bit) \details Reverses the byte order in integer value. \param [in] value Value to reverse \return Reversed value */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value) { #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) return __builtin_bswap32(value); #else uint32_t result; __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); #endif } /** \brief Reverse byte order (16 bit) \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".rev16_text"))) __STATIC_INLINE uint32_t __REV16(uint32_t value) { uint32_t result; __ASM volatile("rev16 %0, %1" : "=r" (result) : "r" (value)); return result; } #endif /** \brief Reverse byte order in signed short value \details Reverses the byte order in a signed short value with sign extension to integer. \param [in] value Value to reverse \return Reversed value */ __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value) { #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) return (short)__builtin_bswap16(value); #else int32_t result; __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); #endif } /** \brief Rotate Right in unsigned value (32 bit) \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] op1 Value to rotate \param [in] op2 Number of Bits to rotate \return Rotated value */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2) { return (op1 >> op2) | (op1 << (32U - op2)); } /** \brief Breakpoint \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __ASM volatile ("bkpt "#value) /** \brief Reverse bit order of value \details Reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) { uint32_t result; #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); #else int32_t s = (4 /*sizeof(v)*/ * 8) - 1; /* extra shift needed at end */ result = value; /* r will be reversed bits of v; first get LSB of v */ for (value >>= 1U; value; value >>= 1U) { result <<= 1U; result |= value & 1U; s--; } result <<= s; /* shift when v's highest bits are zero */ #endif return(result); } /** \brief Count leading zeros \param [in] value Value to count the leading zeros \return number of leading zeros in value */ #define __CLZ __builtin_clz /** \brief LDR Exclusive (8 bit) \details Executes a exclusive LDR instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr) { uint32_t result; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); #else /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not accepted by assembler. So has to use following less efficient pattern. */ __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); #endif return ((uint8_t) result); /* Add explicit type cast here */ } /** \brief LDR Exclusive (16 bit) \details Executes a exclusive LDR instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr) { uint32_t result; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); #else /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not accepted by assembler. So has to use following less efficient pattern. */ __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); #endif return ((uint16_t) result); /* Add explicit type cast here */ } /** \brief LDR Exclusive (32 bit) \details Executes a exclusive LDR instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr) { uint32_t result; __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); return(result); } /** \brief STR Exclusive (8 bit) \details Executes a exclusive STR instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) { uint32_t result; __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); return(result); } /** \brief STR Exclusive (16 bit) \details Executes a exclusive STR instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) { uint32_t result; __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); return(result); } /** \brief STR Exclusive (32 bit) \details Executes a exclusive STR instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) { uint32_t result; __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); return(result); } /** \brief Remove the exclusive lock \details Removes the exclusive lock which is created by LDREX. */ __attribute__((always_inline)) __STATIC_INLINE void __CLREX(void) { __ASM volatile ("clrex" ::: "memory"); } /** \brief Get CPSR Register \return CPSR Register value */ __STATIC_INLINE uint32_t __get_CPSR(void) { uint32_t result; __ASM volatile("MRS %0, cpsr" : "=r" (result) ); return(result); } /** \brief Set CPSR Register \param [in] cpsr CPSR value to set */ __STATIC_INLINE void __set_CPSR(uint32_t cpsr) { __ASM volatile ("MSR cpsr, %0" : : "r" (cpsr) : "memory"); } /** \brief Get Mode \return Processor Mode */ __STATIC_INLINE uint32_t __get_mode(void) { return (__get_CPSR() & 0x1FU); } /** \brief Set Mode \param [in] mode Mode value to set */ __STATIC_INLINE void __set_mode(uint32_t mode) { __ASM volatile("MSR cpsr_c, %0" : : "r" (mode) : "memory"); } /** \brief Set Stack Pointer \param [in] stack Stack Pointer value to set */ __STATIC_INLINE void __set_SP(uint32_t stack) { __ASM volatile("MOV sp, %0" : : "r" (stack) : "memory"); } /** \brief Set USR/SYS Stack Pointer \param [in] topOfProcStack USR/SYS Stack Pointer value to set */ __STATIC_INLINE void __set_SP_usr(uint32_t topOfProcStack) { __ASM volatile( ".preserve8 \n" "BIC r0, r0, #7 \n" // ensure stack is 8-byte aligned "MRS r1, cpsr \n" "CPS #0x1F \n" // no effect in USR mode "MOV sp, r0 \n" "MSR cpsr_c, r1 \n" // no effect in USR mode "ISB" ); } /** \brief Get FPEXC \return Floating Point Exception Control register value */ __STATIC_INLINE uint32_t __get_FPEXC(void) { #if (__FPU_PRESENT == 1) uint32_t result; __ASM volatile("MRS %0, fpexc" : "=r" (result) ); return(result); #else return(0); #endif } /** \brief Set FPEXC \param [in] fpexc Floating Point Exception Control value to set */ __STATIC_INLINE void __set_FPEXC(uint32_t fpexc) { #if (__FPU_PRESENT == 1) __ASM volatile ("MSR fpexc, %0" : : "r" (fpexc) : "memory"); #endif } /** \brief Get ACTLR \return Auxiliary Control register value */ __STATIC_INLINE uint32_t __get_ACTLR(void) { uint32_t result; __ASM volatile("MRS %0, actlr" : "=r" (result) ); return(result); } /** \brief Set ACTLR \param [in] actlr Auxiliary Control value to set */ __STATIC_INLINE void __set_ACTLR(uint32_t actlr) { __ASM volatile ("MSR fpexc, %0" : : "r" (actlr) : "memory"); } /** \brief Get CPACR \return Coprocessor Access Control register value */ __STATIC_INLINE uint32_t __get_CPACR(void) { uint32_t result; __ASM volatile("MRC p15, 0, %0, c1, c0, 2" : "=r"(result)); return result; } /** \brief Set CPACR \param [in] cpacr Coprocessor Access Control value to set */ __STATIC_INLINE void __set_CPACR(uint32_t cpacr) { __ASM volatile("MCR p15, 0, %0, c1, c0, 2" : : "r"(cpacr) : "memory"); } /** \brief Get CBAR \return Configuration Base Address register value */ __STATIC_INLINE uint32_t __get_CBAR() { uint32_t result; __ASM volatile("MRC p15, 4, %0, c15, c0, 0" : "=r"(result)); return result; } /** \brief Get TTBR0 This function returns the value of the Translation Table Base Register 0. \return Translation Table Base Register 0 value */ __STATIC_INLINE uint32_t __get_TTBR0() { uint32_t result; __ASM volatile("MRC p15, 0, %0, c2, c0, 0" : "=r"(result)); return result; } /** \brief Set TTBR0 This function assigns the given value to the Translation Table Base Register 0. \param [in] ttbr0 Translation Table Base Register 0 value to set */ __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) { __ASM volatile("MCR p15, 0, %0, c2, c0, 0" : : "r"(ttbr0) : "memory"); } /** \brief Get DACR This function returns the value of the Domain Access Control Register. \return Domain Access Control Register value */ __STATIC_INLINE uint32_t __get_DACR() { uint32_t result; __ASM volatile("MRC p15, 0, %0, c3, c0, 0" : "=r"(result)); return result; } /** \brief Set DACR This function assigns the given value to the Domain Access Control Register. \param [in] dacr Domain Access Control Register value to set */ __STATIC_INLINE void __set_DACR(uint32_t dacr) { __ASM volatile("MCR p15, 0, %0, c3, c0, 0" : : "r"(dacr) : "memory"); } /** \brief Set SCTLR This function assigns the given value to the System Control Register. \param [in] sctlr System Control Register value to set */ __STATIC_INLINE void __set_SCTLR(uint32_t sctlr) { __ASM volatile("MCR p15, 0, %0, c1, c0, 0" : : "r"(sctlr) : "memory"); } /** \brief Get SCTLR \return System Control Register value */ __STATIC_INLINE uint32_t __get_SCTLR() { uint32_t result; __ASM volatile("MRC p15, 0, %0, c1, c0, 0" : "=r"(result)); return result; } /** \brief Set ACTRL \param [in] actrl Auxiliary Control Register value to set */ __STATIC_INLINE void __set_ACTRL(uint32_t actrl) { __ASM volatile("MCR p15, 0, %0, c1, c0, 1" : : "r"(actrl) : "memory"); } /** \brief Get ACTRL \return Auxiliary Control Register value */ __STATIC_INLINE uint32_t __get_ACTRL(void) { uint32_t result; __ASM volatile("MRC p15, 0, %0, c1, c0, 1" : "=r"(result)); return result; } /** \brief Get MPIDR This function returns the value of the Multiprocessor Affinity Register. \return Multiprocessor Affinity Register value */ __STATIC_INLINE uint32_t __get_MPIDR(void) { uint32_t result; __ASM volatile("MRC p15, 0, %0, c0, c0, 5" : "=r"(result)); return result; } /** \brief Get VBAR This function returns the value of the Vector Base Address Register. \return Vector Base Address Register */ __STATIC_INLINE uint32_t __get_VBAR(void) { uint32_t result; __ASM volatile("MRC p15, 0, %0, c12, c0, 0" : "=r"(result)); return result; } /** \brief Set VBAR This function assigns the given value to the Vector Base Address Register. \param [in] vbar Vector Base Address Register value to set */ __STATIC_INLINE void __set_VBAR(uint32_t vbar) { __ASM volatile("MCR p15, 0, %0, c12, c0, 1" : : "r"(vbar) : "memory"); } /** \brief Set CNTFRQ This function assigns the given value to PL1 Physical Timer Counter Frequency Register (CNTFRQ). \param [in] value CNTFRQ Register value to set */ __STATIC_INLINE void __set_CNTFRQ(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c14, c0, 0" : : "r"(value) : "memory"); } /** \brief Set CNTP_TVAL This function assigns the given value to PL1 Physical Timer Value Register (CNTP_TVAL). \param [in] value CNTP_TVAL Register value to set */ __STATIC_INLINE void __set_CNTP_TVAL(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c14, c2, 0" : : "r"(value) : "memory"); } /** \brief Get CNTP_TVAL This function returns the value of the PL1 Physical Timer Value Register (CNTP_TVAL). \return CNTP_TVAL Register value */ __STATIC_INLINE uint32_t __get_CNTP_TVAL() { uint32_t result; __ASM volatile("MRC p15, 0, %0, c14, c2, 0" : "=r"(result)); return result; } /** \brief Set CNTP_CTL This function assigns the given value to PL1 Physical Timer Control Register (CNTP_CTL). \param [in] value CNTP_CTL Register value to set */ __STATIC_INLINE void __set_CNTP_CTL(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c14, c2, 1" : : "r"(value) : "memory"); } /** \brief Set TLBIALL TLB Invalidate All */ __STATIC_INLINE void __set_TLBIALL(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c8, c7, 0" : : "r"(value) : "memory"); } /** \brief Set BPIALL. Branch Predictor Invalidate All */ __STATIC_INLINE void __set_BPIALL(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c7, c5, 6" : : "r"(value) : "memory"); } /** \brief Set ICIALLU Instruction Cache Invalidate All */ __STATIC_INLINE void __set_ICIALLU(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c7, c5, 0" : : "r"(value) : "memory"); } /** \brief Set DCCMVAC Data cache clean */ __STATIC_INLINE void __set_DCCMVAC(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c7, c10, 1" : : "r"(value) : "memory"); } /** \brief Set DCIMVAC Data cache invalidate */ __STATIC_INLINE void __set_DCIMVAC(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c7, c6, 1" : : "r"(value) : "memory"); } /** \brief Set DCCIMVAC Data cache clean and invalidate */ __STATIC_INLINE void __set_DCCIMVAC(uint32_t value) { __ASM volatile("MCR p15, 0, %0, c7, c14, 1" : : "r"(value) : "memory"); } /** \brief Set CCSIDR */ __STATIC_INLINE void __set_CCSIDR(uint32_t value) { __ASM volatile("MCR p15, 2, %0, c0, c0, 0" : : "r"(value) : "memory"); } /** \brief Get CCSIDR \return CCSIDR Register value */ __STATIC_INLINE uint32_t __get_CCSIDR() { uint32_t result; __ASM volatile("MRC p15, 1, %0, c0, c0, 0" : "=r"(result)); return result; } /** \brief Get CLIDR \return CLIDR Register value */ __STATIC_INLINE uint32_t __get_CLIDR() { uint32_t result; __ASM volatile("MRC p15, 1, %0, c0, c0, 1" : "=r"(result)); return result; } __STATIC_INLINE int32_t log2_up(uint32_t n) { int32_t log = -1; uint32_t t = n; while(t) { log++; t >>=1; } /* if n not power of 2 -> round up*/ if ( n & (n - 1) ) log++; return log; } __STATIC_INLINE void __L1C_MaintainDCacheSetWay(uint32_t level, uint32_t maint) { register volatile uint32_t Dummy; register volatile uint32_t ccsidr; uint32_t num_sets; uint32_t num_ways; uint32_t shift_way; uint32_t log2_linesize; uint32_t log2_num_ways; Dummy = level << 1; /* set csselr, select ccsidr register */ __set_CCSIDR(Dummy); /* get current ccsidr register */ ccsidr = __get_CCSIDR(); num_sets = ((ccsidr & 0x0FFFE000) >> 13) + 1; num_ways = ((ccsidr & 0x00001FF8) >> 3) + 1; log2_linesize = (ccsidr & 0x00000007) + 2 + 2; log2_num_ways = log2_up(num_ways); shift_way = 32 - log2_num_ways; for(int way = num_ways-1; way >= 0; way--) { for(int set = num_sets-1; set >= 0; set--) { Dummy = (level << 1) | (set << log2_linesize) | (way << shift_way); switch (maint) { case 0: __ASM volatile("MCR p15, 0, %0, c7, c6, 2" : : "r"(Dummy) : "memory"); // DCISW. Invalidate by Set/Way break; case 1: __ASM volatile("MCR p15, 0, %0, c7, c10, 2" : : "r"(Dummy) : "memory"); // DCCSW. Clean by Set/Way break; default: __ASM volatile("MCR p15, 0, %0, c7, c14, 2" : : "r"(Dummy) : "memory"); // DCCISW. Clean and Invalidate by Set/Way break; } } } __DMB(); } /** \brief Clean and Invalidate the entire data or unified cache Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency */ __STATIC_INLINE void __L1C_CleanInvalidateCache(uint32_t op) { register volatile uint32_t clidr; uint32_t cache_type; clidr = __get_CLIDR(); for(uint32_t i = 0; i<7; i++) { cache_type = (clidr >> i*3) & 0x7UL; if ((cache_type >= 2) && (cache_type <= 4)) { __L1C_MaintainDCacheSetWay(i, op); } } } /** \brief Enable Floating Point Unit Critical section, called from undef handler, so systick is disabled */ __STATIC_INLINE void __FPU_Enable(void) { __ASM volatile( //Permit access to VFP/NEON, registers by modifying CPACR " MRC p15,0,R1,c1,c0,2 \n" " ORR R1,R1,#0x00F00000 \n" " MCR p15,0,R1,c1,c0,2 \n" //Ensure that subsequent instructions occur in the context of VFP/NEON access permitted " ISB \n" //Enable VFP/NEON " VMRS R1,FPEXC \n" " ORR R1,R1,#0x40000000 \n" " VMSR FPEXC,R1 \n" //Initialise VFP/NEON registers to 0 " MOV R2,#0 \n" #if TARGET_FEATURE_EXTENSION_REGISTER_COUNT >= 16 //Initialise D16 registers to 0 " VMOV D0, R2,R2 \n" " VMOV D1, R2,R2 \n" " VMOV D2, R2,R2 \n" " VMOV D3, R2,R2 \n" " VMOV D4, R2,R2 \n" " VMOV D5, R2,R2 \n" " VMOV D6, R2,R2 \n" " VMOV D7, R2,R2 \n" " VMOV D8, R2,R2 \n" " VMOV D9, R2,R2 \n" " VMOV D10,R2,R2 \n" " VMOV D11,R2,R2 \n" " VMOV D12,R2,R2 \n" " VMOV D13,R2,R2 \n" " VMOV D14,R2,R2 \n" " VMOV D15,R2,R2 \n" #endif #if TARGET_FEATURE_EXTENSION_REGISTER_COUNT == 32 //Initialise D32 registers to 0 " VMOV D16,R2,R2 \n" " VMOV D17,R2,R2 \n" " VMOV D18,R2,R2 \n" " VMOV D19,R2,R2 \n" " VMOV D20,R2,R2 \n" " VMOV D21,R2,R2 \n" " VMOV D22,R2,R2 \n" " VMOV D23,R2,R2 \n" " VMOV D24,R2,R2 \n" " VMOV D25,R2,R2 \n" " VMOV D26,R2,R2 \n" " VMOV D27,R2,R2 \n" " VMOV D28,R2,R2 \n" " VMOV D29,R2,R2 \n" " VMOV D30,R2,R2 \n" " VMOV D31,R2,R2 \n" #endif ); // Initialise FPSCR to a known state // Mask off all bits that do not have to be preserved. Non-preserved bits can/should be zero. __set_FPSCR(__get_FPSCR() & 0x00086060u); } #pragma GCC diagnostic pop #endif /* __CMSIS_GCC_H */