2 * FreeRTOS Kernel V11.2.0
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 * SPDX-License-Identifier: MIT
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
32 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
33 * all the API functions to use the MPU wrappers. That should only be done when
34 * task.h is included from an application file. */
35 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
41 #if ( configUSE_CO_ROUTINES == 1 )
45 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
46 * for the header files above, but not in this file, in order to generate the
47 * correct privileged Vs unprivileged linkage and placement. */
48 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
51 /* Constants used with the cRxLock and cTxLock structure members. */
52 #define queueUNLOCKED ( ( int8_t ) -1 )
53 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
54 #define queueINT8_MAX ( ( int8_t ) 127 )
56 /* When the Queue_t structure is used to represent a base queue its pcHead and
57 * pcTail members are used as pointers into the queue storage area. When the
58 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
59 * not necessary, and the pcHead pointer is set to NULL to indicate that the
60 * structure instead holds a pointer to the mutex holder (if any). Map alternative
61 * names to the pcHead and structure member to ensure the readability of the code
62 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
63 * a union as their usage is mutually exclusive dependent on what the queue is
65 #define uxQueueType pcHead
66 #define queueQUEUE_IS_MUTEX NULL
68 typedef struct QueuePointers
70 int8_t * pcTail; /**< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
71 int8_t * pcReadFrom; /**< Points to the last place that a queued item was read from when the structure is used as a queue. */
74 typedef struct SemaphoreData
76 TaskHandle_t xMutexHolder; /**< The handle of the task that holds the mutex. */
77 UBaseType_t uxRecursiveCallCount; /**< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
80 /* Semaphores do not actually store or copy data, so have an item size of
82 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
83 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
85 #if ( configUSE_PREEMPTION == 0 )
87 /* If the cooperative scheduler is being used then a yield should not be
88 * performed just because a higher priority task has been woken. */
89 #define queueYIELD_IF_USING_PREEMPTION()
91 #if ( configNUMBER_OF_CORES == 1 )
92 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
93 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
94 #define queueYIELD_IF_USING_PREEMPTION() vTaskYieldWithinAPI()
95 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
99 * Definition of the queue used by the scheduler.
100 * Items are queued by copy, not reference. See the following link for the
101 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
103 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
105 int8_t * pcHead; /**< Points to the beginning of the queue storage area. */
106 int8_t * pcWriteTo; /**< Points to the free next place in the storage area. */
110 QueuePointers_t xQueue; /**< Data required exclusively when this structure is used as a queue. */
111 SemaphoreData_t xSemaphore; /**< Data required exclusively when this structure is used as a semaphore. */
114 List_t xTasksWaitingToSend; /**< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
115 List_t xTasksWaitingToReceive; /**< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
117 volatile UBaseType_t uxMessagesWaiting; /**< The number of items currently in the queue. */
118 UBaseType_t uxLength; /**< The length of the queue defined as the number of items it will hold, not the number of bytes. */
119 UBaseType_t uxItemSize; /**< The size of each items that the queue will hold. */
121 volatile int8_t cRxLock; /**< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
122 volatile int8_t cTxLock; /**< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
124 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
125 uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
128 #if ( configUSE_QUEUE_SETS == 1 )
129 struct QueueDefinition * pxQueueSetContainer;
132 #if ( configUSE_TRACE_FACILITY == 1 )
133 UBaseType_t uxQueueNumber;
138 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
139 * name below to enable the use of older kernel aware debuggers. */
140 typedef xQUEUE Queue_t;
142 /*-----------------------------------------------------------*/
145 * The queue registry is just a means for kernel aware debuggers to locate
146 * queue structures. It has no other purpose so is an optional component.
148 #if ( configQUEUE_REGISTRY_SIZE > 0 )
150 /* The type stored within the queue registry array. This allows a name
151 * to be assigned to each queue making kernel aware debugging a little
152 * more user friendly. */
153 typedef struct QUEUE_REGISTRY_ITEM
155 const char * pcQueueName;
156 QueueHandle_t xHandle;
157 } xQueueRegistryItem;
159 /* The old xQueueRegistryItem name is maintained above then typedefed to the
160 * new xQueueRegistryItem name below to enable the use of older kernel aware
162 typedef xQueueRegistryItem QueueRegistryItem_t;
164 /* The queue registry is simply an array of QueueRegistryItem_t structures.
165 * The pcQueueName member of a structure being NULL is indicative of the
166 * array position being vacant. */
168 /* MISRA Ref 8.4.2 [Declaration shall be visible] */
169 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
170 /* coverity[misra_c_2012_rule_8_4_violation] */
171 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
173 #endif /* configQUEUE_REGISTRY_SIZE */
176 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
177 * prevent an ISR from adding or removing items to the queue, but does prevent
178 * an ISR from removing tasks from the queue event lists. If an ISR finds a
179 * queue is locked it will instead increment the appropriate queue lock count
180 * to indicate that a task may require unblocking. When the queue in unlocked
181 * these lock counts are inspected, and the appropriate action taken.
183 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
186 * Uses a critical section to determine if there is any data in a queue.
188 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
190 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
193 * Uses a critical section to determine if there is any space in a queue.
195 * @return pdTRUE if there is no space, otherwise pdFALSE;
197 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
200 * Copies an item into the queue, either at the front of the queue or the
203 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
204 const void * pvItemToQueue,
205 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
208 * Copies an item out of a queue.
210 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
211 void * const pvBuffer ) PRIVILEGED_FUNCTION;
213 #if ( configUSE_QUEUE_SETS == 1 )
216 * Checks to see if a queue is a member of a queue set, and if so, notifies
217 * the queue set that the queue contains data.
219 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
223 * Called after a Queue_t structure has been allocated either statically or
224 * dynamically to fill in the structure's members.
226 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
227 const UBaseType_t uxItemSize,
228 uint8_t * pucQueueStorage,
229 const uint8_t ucQueueType,
230 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
233 * Mutexes are a special type of queue. When a mutex is created, first the
234 * queue is created, then prvInitialiseMutex() is called to configure the queue
237 #if ( configUSE_MUTEXES == 1 )
238 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
241 #if ( configUSE_MUTEXES == 1 )
244 * If a task waiting for a mutex causes the mutex holder to inherit a
245 * priority, but the waiting task times out, then the holder should
246 * disinherit the priority - but only down to the highest priority of any
247 * other tasks that are waiting for the same mutex. This function returns
250 static UBaseType_t prvGetHighestPriorityOfWaitToReceiveList( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
252 /*-----------------------------------------------------------*/
255 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
256 * accessing the queue event lists.
258 #define prvLockQueue( pxQueue ) \
259 taskENTER_CRITICAL(); \
261 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
263 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
265 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
267 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
273 * Macro to increment cTxLock member of the queue data structure. It is
274 * capped at the number of tasks in the system as we cannot unblock more
275 * tasks than the number of tasks in the system.
277 #define prvIncrementQueueTxLock( pxQueue, cTxLock ) \
279 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
280 if( ( UBaseType_t ) ( cTxLock ) < uxNumberOfTasks ) \
282 configASSERT( ( cTxLock ) != queueINT8_MAX ); \
283 ( pxQueue )->cTxLock = ( int8_t ) ( ( cTxLock ) + ( int8_t ) 1 ); \
288 * Macro to increment cRxLock member of the queue data structure. It is
289 * capped at the number of tasks in the system as we cannot unblock more
290 * tasks than the number of tasks in the system.
292 #define prvIncrementQueueRxLock( pxQueue, cRxLock ) \
294 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
295 if( ( UBaseType_t ) ( cRxLock ) < uxNumberOfTasks ) \
297 configASSERT( ( cRxLock ) != queueINT8_MAX ); \
298 ( pxQueue )->cRxLock = ( int8_t ) ( ( cRxLock ) + ( int8_t ) 1 ); \
301 /*-----------------------------------------------------------*/
303 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
304 BaseType_t xNewQueue )
306 BaseType_t xReturn = pdPASS;
307 Queue_t * const pxQueue = xQueue;
309 traceENTER_xQueueGenericReset( xQueue, xNewQueue );
311 configASSERT( pxQueue );
313 if( ( pxQueue != NULL ) &&
314 ( pxQueue->uxLength >= 1U ) &&
315 /* Check for multiplication overflow. */
316 ( ( SIZE_MAX / pxQueue->uxLength ) >= pxQueue->uxItemSize ) )
318 taskENTER_CRITICAL();
320 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize );
321 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
322 pxQueue->pcWriteTo = pxQueue->pcHead;
323 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize );
324 pxQueue->cRxLock = queueUNLOCKED;
325 pxQueue->cTxLock = queueUNLOCKED;
327 if( xNewQueue == pdFALSE )
329 /* If there are tasks blocked waiting to read from the queue, then
330 * the tasks will remain blocked as after this function exits the queue
331 * will still be empty. If there are tasks blocked waiting to write to
332 * the queue, then one should be unblocked as after this function exits
333 * it will be possible to write to it. */
334 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
336 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
338 queueYIELD_IF_USING_PREEMPTION();
342 mtCOVERAGE_TEST_MARKER();
347 mtCOVERAGE_TEST_MARKER();
352 /* Ensure the event queues start in the correct state. */
353 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
354 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
364 configASSERT( xReturn != pdFAIL );
366 /* A value is returned for calling semantic consistency with previous
368 traceRETURN_xQueueGenericReset( xReturn );
372 /*-----------------------------------------------------------*/
374 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
376 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
377 const UBaseType_t uxItemSize,
378 uint8_t * pucQueueStorage,
379 StaticQueue_t * pxStaticQueue,
380 const uint8_t ucQueueType )
382 Queue_t * pxNewQueue = NULL;
384 traceENTER_xQueueGenericCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxStaticQueue, ucQueueType );
386 /* The StaticQueue_t structure and the queue storage area must be
388 configASSERT( pxStaticQueue );
390 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
391 ( pxStaticQueue != NULL ) &&
393 /* A queue storage area should be provided if the item size is not 0, and
394 * should not be provided if the item size is 0. */
395 ( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0U ) ) ) &&
396 ( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0U ) ) ) )
398 #if ( configASSERT_DEFINED == 1 )
400 /* Sanity check that the size of the structure used to declare a
401 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
402 * the real queue and semaphore structures. */
403 volatile size_t xSize = sizeof( StaticQueue_t );
405 /* This assertion cannot be branch covered in unit tests */
406 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
407 ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not defined. */
409 #endif /* configASSERT_DEFINED */
411 /* The address of a statically allocated queue was passed in, use it.
412 * The address of a statically allocated storage area was also passed in
413 * but is already set. */
414 /* MISRA Ref 11.3.1 [Misaligned access] */
415 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
416 /* coverity[misra_c_2012_rule_11_3_violation] */
417 pxNewQueue = ( Queue_t * ) pxStaticQueue;
419 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
421 /* Queues can be allocated either statically or dynamically, so
422 * note this queue was allocated statically in case the queue is
424 pxNewQueue->ucStaticallyAllocated = pdTRUE;
426 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
428 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
432 configASSERT( pxNewQueue );
433 mtCOVERAGE_TEST_MARKER();
436 traceRETURN_xQueueGenericCreateStatic( pxNewQueue );
441 #endif /* configSUPPORT_STATIC_ALLOCATION */
442 /*-----------------------------------------------------------*/
444 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
446 BaseType_t xQueueGenericGetStaticBuffers( QueueHandle_t xQueue,
447 uint8_t ** ppucQueueStorage,
448 StaticQueue_t ** ppxStaticQueue )
451 Queue_t * const pxQueue = xQueue;
453 traceENTER_xQueueGenericGetStaticBuffers( xQueue, ppucQueueStorage, ppxStaticQueue );
455 configASSERT( pxQueue );
456 configASSERT( ppxStaticQueue );
458 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
460 /* Check if the queue was statically allocated. */
461 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdTRUE )
463 if( ppucQueueStorage != NULL )
465 *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead;
468 /* MISRA Ref 11.3.1 [Misaligned access] */
469 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
470 /* coverity[misra_c_2012_rule_11_3_violation] */
471 *ppxStaticQueue = ( StaticQueue_t * ) pxQueue;
479 #else /* configSUPPORT_DYNAMIC_ALLOCATION */
481 /* Queue must have been statically allocated. */
482 if( ppucQueueStorage != NULL )
484 *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead;
487 *ppxStaticQueue = ( StaticQueue_t * ) pxQueue;
490 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
492 traceRETURN_xQueueGenericGetStaticBuffers( xReturn );
497 #endif /* configSUPPORT_STATIC_ALLOCATION */
498 /*-----------------------------------------------------------*/
500 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
502 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
503 const UBaseType_t uxItemSize,
504 const uint8_t ucQueueType )
506 Queue_t * pxNewQueue = NULL;
507 size_t xQueueSizeInBytes;
508 uint8_t * pucQueueStorage;
510 traceENTER_xQueueGenericCreate( uxQueueLength, uxItemSize, ucQueueType );
512 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
513 /* Check for multiplication overflow. */
514 ( ( SIZE_MAX / uxQueueLength ) >= uxItemSize ) &&
515 /* Check for addition overflow. */
516 /* MISRA Ref 14.3.1 [Configuration dependent invariant] */
517 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-143. */
518 /* coverity[misra_c_2012_rule_14_3_violation] */
519 ( ( SIZE_MAX - sizeof( Queue_t ) ) >= ( size_t ) ( ( size_t ) uxQueueLength * ( size_t ) uxItemSize ) ) )
521 /* Allocate enough space to hold the maximum number of items that
522 * can be in the queue at any time. It is valid for uxItemSize to be
523 * zero in the case the queue is used as a semaphore. */
524 xQueueSizeInBytes = ( size_t ) ( ( size_t ) uxQueueLength * ( size_t ) uxItemSize );
526 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
527 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
528 /* coverity[misra_c_2012_rule_11_5_violation] */
529 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes );
531 if( pxNewQueue != NULL )
533 /* Jump past the queue structure to find the location of the queue
535 pucQueueStorage = ( uint8_t * ) pxNewQueue;
536 pucQueueStorage += sizeof( Queue_t );
538 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
540 /* Queues can be created either statically or dynamically, so
541 * note this task was created dynamically in case it is later
543 pxNewQueue->ucStaticallyAllocated = pdFALSE;
545 #endif /* configSUPPORT_STATIC_ALLOCATION */
547 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
551 traceQUEUE_CREATE_FAILED( ucQueueType );
552 mtCOVERAGE_TEST_MARKER();
557 configASSERT( pxNewQueue );
558 mtCOVERAGE_TEST_MARKER();
561 traceRETURN_xQueueGenericCreate( pxNewQueue );
566 #endif /* configSUPPORT_STATIC_ALLOCATION */
567 /*-----------------------------------------------------------*/
569 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
570 const UBaseType_t uxItemSize,
571 uint8_t * pucQueueStorage,
572 const uint8_t ucQueueType,
573 Queue_t * pxNewQueue )
575 /* Remove compiler warnings about unused parameters should
576 * configUSE_TRACE_FACILITY not be set to 1. */
577 ( void ) ucQueueType;
579 if( uxItemSize == ( UBaseType_t ) 0 )
581 /* No RAM was allocated for the queue storage area, but PC head cannot
582 * be set to NULL because NULL is used as a key to say the queue is used as
583 * a mutex. Therefore just set pcHead to point to the queue as a benign
584 * value that is known to be within the memory map. */
585 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
589 /* Set the head to the start of the queue storage area. */
590 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
593 /* Initialise the queue members as described where the queue type is
595 pxNewQueue->uxLength = uxQueueLength;
596 pxNewQueue->uxItemSize = uxItemSize;
597 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
599 #if ( configUSE_TRACE_FACILITY == 1 )
601 pxNewQueue->ucQueueType = ucQueueType;
603 #endif /* configUSE_TRACE_FACILITY */
605 #if ( configUSE_QUEUE_SETS == 1 )
607 pxNewQueue->pxQueueSetContainer = NULL;
609 #endif /* configUSE_QUEUE_SETS */
611 traceQUEUE_CREATE( pxNewQueue );
613 /*-----------------------------------------------------------*/
615 #if ( configUSE_MUTEXES == 1 )
617 static void prvInitialiseMutex( Queue_t * pxNewQueue )
619 if( pxNewQueue != NULL )
621 /* The queue create function will set all the queue structure members
622 * correctly for a generic queue, but this function is creating a
623 * mutex. Overwrite those members that need to be set differently -
624 * in particular the information required for priority inheritance. */
625 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
626 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
628 /* In case this is a recursive mutex. */
629 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
631 traceCREATE_MUTEX( pxNewQueue );
633 /* Start with the semaphore in the expected state. */
634 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
638 traceCREATE_MUTEX_FAILED();
642 #endif /* configUSE_MUTEXES */
643 /*-----------------------------------------------------------*/
645 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
647 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
649 QueueHandle_t xNewQueue;
650 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
652 traceENTER_xQueueCreateMutex( ucQueueType );
654 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
655 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
657 traceRETURN_xQueueCreateMutex( xNewQueue );
662 #endif /* configUSE_MUTEXES */
663 /*-----------------------------------------------------------*/
665 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
667 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
668 StaticQueue_t * pxStaticQueue )
670 QueueHandle_t xNewQueue;
671 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
673 traceENTER_xQueueCreateMutexStatic( ucQueueType, pxStaticQueue );
675 /* Prevent compiler warnings about unused parameters if
676 * configUSE_TRACE_FACILITY does not equal 1. */
677 ( void ) ucQueueType;
679 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
680 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
682 traceRETURN_xQueueCreateMutexStatic( xNewQueue );
687 #endif /* configUSE_MUTEXES */
688 /*-----------------------------------------------------------*/
690 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
692 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
694 TaskHandle_t pxReturn;
695 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
697 traceENTER_xQueueGetMutexHolder( xSemaphore );
699 configASSERT( xSemaphore );
701 /* This function is called by xSemaphoreGetMutexHolder(), and should not
702 * be called directly. Note: This is a good way of determining if the
703 * calling task is the mutex holder, but not a good way of determining the
704 * identity of the mutex holder, as the holder may change between the
705 * following critical section exiting and the function returning. */
706 taskENTER_CRITICAL();
708 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
710 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
719 traceRETURN_xQueueGetMutexHolder( pxReturn );
724 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
725 /*-----------------------------------------------------------*/
727 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
729 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
731 TaskHandle_t pxReturn;
733 traceENTER_xQueueGetMutexHolderFromISR( xSemaphore );
735 configASSERT( xSemaphore );
737 /* Mutexes cannot be used in interrupt service routines, so the mutex
738 * holder should not change in an ISR, and therefore a critical section is
739 * not required here. */
740 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
742 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
749 traceRETURN_xQueueGetMutexHolderFromISR( pxReturn );
754 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
755 /*-----------------------------------------------------------*/
757 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
759 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
762 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
764 traceENTER_xQueueGiveMutexRecursive( xMutex );
766 configASSERT( pxMutex );
768 /* If this is the task that holds the mutex then xMutexHolder will not
769 * change outside of this task. If this task does not hold the mutex then
770 * pxMutexHolder can never coincidentally equal the tasks handle, and as
771 * this is the only condition we are interested in it does not matter if
772 * pxMutexHolder is accessed simultaneously by another task. Therefore no
773 * mutual exclusion is required to test the pxMutexHolder variable. */
774 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
776 traceGIVE_MUTEX_RECURSIVE( pxMutex );
778 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
779 * the task handle, therefore no underflow check is required. Also,
780 * uxRecursiveCallCount is only modified by the mutex holder, and as
781 * there can only be one, no mutual exclusion is required to modify the
782 * uxRecursiveCallCount member. */
783 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
785 /* Has the recursive call count unwound to 0? */
786 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
788 /* Return the mutex. This will automatically unblock any other
789 * task that might be waiting to access the mutex. */
790 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
794 mtCOVERAGE_TEST_MARKER();
801 /* The mutex cannot be given because the calling task is not the
805 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
808 traceRETURN_xQueueGiveMutexRecursive( xReturn );
813 #endif /* configUSE_RECURSIVE_MUTEXES */
814 /*-----------------------------------------------------------*/
816 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
818 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
819 TickType_t xTicksToWait )
822 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
824 traceENTER_xQueueTakeMutexRecursive( xMutex, xTicksToWait );
826 configASSERT( pxMutex );
828 /* Comments regarding mutual exclusion as per those within
829 * xQueueGiveMutexRecursive(). */
831 traceTAKE_MUTEX_RECURSIVE( pxMutex );
833 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
835 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
840 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
842 /* pdPASS will only be returned if the mutex was successfully
843 * obtained. The calling task may have entered the Blocked state
844 * before reaching here. */
845 if( xReturn != pdFAIL )
847 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
851 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
855 traceRETURN_xQueueTakeMutexRecursive( xReturn );
860 #endif /* configUSE_RECURSIVE_MUTEXES */
861 /*-----------------------------------------------------------*/
863 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
865 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
866 const UBaseType_t uxInitialCount,
867 StaticQueue_t * pxStaticQueue )
869 QueueHandle_t xHandle = NULL;
871 traceENTER_xQueueCreateCountingSemaphoreStatic( uxMaxCount, uxInitialCount, pxStaticQueue );
873 if( ( uxMaxCount != 0U ) &&
874 ( uxInitialCount <= uxMaxCount ) )
876 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
878 if( xHandle != NULL )
880 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
882 traceCREATE_COUNTING_SEMAPHORE();
886 traceCREATE_COUNTING_SEMAPHORE_FAILED();
891 configASSERT( xHandle );
892 mtCOVERAGE_TEST_MARKER();
895 traceRETURN_xQueueCreateCountingSemaphoreStatic( xHandle );
900 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
901 /*-----------------------------------------------------------*/
903 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
905 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
906 const UBaseType_t uxInitialCount )
908 QueueHandle_t xHandle = NULL;
910 traceENTER_xQueueCreateCountingSemaphore( uxMaxCount, uxInitialCount );
912 if( ( uxMaxCount != 0U ) &&
913 ( uxInitialCount <= uxMaxCount ) )
915 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
917 if( xHandle != NULL )
919 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
921 traceCREATE_COUNTING_SEMAPHORE();
925 traceCREATE_COUNTING_SEMAPHORE_FAILED();
930 configASSERT( xHandle );
931 mtCOVERAGE_TEST_MARKER();
934 traceRETURN_xQueueCreateCountingSemaphore( xHandle );
939 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
940 /*-----------------------------------------------------------*/
942 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
943 const void * const pvItemToQueue,
944 TickType_t xTicksToWait,
945 const BaseType_t xCopyPosition )
947 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
949 Queue_t * const pxQueue = xQueue;
951 traceENTER_xQueueGenericSend( xQueue, pvItemToQueue, xTicksToWait, xCopyPosition );
953 configASSERT( pxQueue );
954 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
955 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
956 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
958 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
964 taskENTER_CRITICAL();
966 /* Is there room on the queue now? The running task must be the
967 * highest priority task wanting to access the queue. If the head item
968 * in the queue is to be overwritten then it does not matter if the
970 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
972 traceQUEUE_SEND( pxQueue );
974 #if ( configUSE_QUEUE_SETS == 1 )
976 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
978 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
980 if( pxQueue->pxQueueSetContainer != NULL )
982 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
984 /* Do not notify the queue set as an existing item
985 * was overwritten in the queue so the number of items
986 * in the queue has not changed. */
987 mtCOVERAGE_TEST_MARKER();
989 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
991 /* The queue is a member of a queue set, and posting
992 * to the queue set caused a higher priority task to
993 * unblock. A context switch is required. */
994 queueYIELD_IF_USING_PREEMPTION();
998 mtCOVERAGE_TEST_MARKER();
1003 /* If there was a task waiting for data to arrive on the
1004 * queue then unblock it now. */
1005 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1007 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1009 /* The unblocked task has a priority higher than
1010 * our own so yield immediately. Yes it is ok to
1011 * do this from within the critical section - the
1012 * kernel takes care of that. */
1013 queueYIELD_IF_USING_PREEMPTION();
1017 mtCOVERAGE_TEST_MARKER();
1020 else if( xYieldRequired != pdFALSE )
1022 /* This path is a special case that will only get
1023 * executed if the task was holding multiple mutexes
1024 * and the mutexes were given back in an order that is
1025 * different to that in which they were taken. */
1026 queueYIELD_IF_USING_PREEMPTION();
1030 mtCOVERAGE_TEST_MARKER();
1034 #else /* configUSE_QUEUE_SETS */
1036 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
1038 /* If there was a task waiting for data to arrive on the
1039 * queue then unblock it now. */
1040 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1042 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1044 /* The unblocked task has a priority higher than
1045 * our own so yield immediately. Yes it is ok to do
1046 * this from within the critical section - the kernel
1047 * takes care of that. */
1048 queueYIELD_IF_USING_PREEMPTION();
1052 mtCOVERAGE_TEST_MARKER();
1055 else if( xYieldRequired != pdFALSE )
1057 /* This path is a special case that will only get
1058 * executed if the task was holding multiple mutexes and
1059 * the mutexes were given back in an order that is
1060 * different to that in which they were taken. */
1061 queueYIELD_IF_USING_PREEMPTION();
1065 mtCOVERAGE_TEST_MARKER();
1068 #endif /* configUSE_QUEUE_SETS */
1070 taskEXIT_CRITICAL();
1072 traceRETURN_xQueueGenericSend( pdPASS );
1078 if( xTicksToWait == ( TickType_t ) 0 )
1080 /* The queue was full and no block time is specified (or
1081 * the block time has expired) so leave now. */
1082 taskEXIT_CRITICAL();
1084 /* Return to the original privilege level before exiting
1086 traceQUEUE_SEND_FAILED( pxQueue );
1087 traceRETURN_xQueueGenericSend( errQUEUE_FULL );
1089 return errQUEUE_FULL;
1091 else if( xEntryTimeSet == pdFALSE )
1093 /* The queue was full and a block time was specified so
1094 * configure the timeout structure. */
1095 vTaskInternalSetTimeOutState( &xTimeOut );
1096 xEntryTimeSet = pdTRUE;
1100 /* Entry time was already set. */
1101 mtCOVERAGE_TEST_MARKER();
1105 taskEXIT_CRITICAL();
1107 /* Interrupts and other tasks can send to and receive from the queue
1108 * now the critical section has been exited. */
1111 prvLockQueue( pxQueue );
1113 /* Update the timeout state to see if it has expired yet. */
1114 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1116 if( prvIsQueueFull( pxQueue ) != pdFALSE )
1118 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
1119 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
1121 /* Unlocking the queue means queue events can effect the
1122 * event list. It is possible that interrupts occurring now
1123 * remove this task from the event list again - but as the
1124 * scheduler is suspended the task will go onto the pending
1125 * ready list instead of the actual ready list. */
1126 prvUnlockQueue( pxQueue );
1128 /* Resuming the scheduler will move tasks from the pending
1129 * ready list into the ready list - so it is feasible that this
1130 * task is already in the ready list before it yields - in which
1131 * case the yield will not cause a context switch unless there
1132 * is also a higher priority task in the pending ready list. */
1133 if( xTaskResumeAll() == pdFALSE )
1135 taskYIELD_WITHIN_API();
1141 prvUnlockQueue( pxQueue );
1142 ( void ) xTaskResumeAll();
1147 /* The timeout has expired. */
1148 prvUnlockQueue( pxQueue );
1149 ( void ) xTaskResumeAll();
1151 traceQUEUE_SEND_FAILED( pxQueue );
1152 traceRETURN_xQueueGenericSend( errQUEUE_FULL );
1154 return errQUEUE_FULL;
1158 /*-----------------------------------------------------------*/
1160 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
1161 const void * const pvItemToQueue,
1162 BaseType_t * const pxHigherPriorityTaskWoken,
1163 const BaseType_t xCopyPosition )
1166 UBaseType_t uxSavedInterruptStatus;
1167 Queue_t * const pxQueue = xQueue;
1169 traceENTER_xQueueGenericSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken, xCopyPosition );
1171 configASSERT( pxQueue );
1172 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
1173 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
1175 /* RTOS ports that support interrupt nesting have the concept of a maximum
1176 * system call (or maximum API call) interrupt priority. Interrupts that are
1177 * above the maximum system call priority are kept permanently enabled, even
1178 * when the RTOS kernel is in a critical section, but cannot make any calls to
1179 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1180 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1181 * failure if a FreeRTOS API function is called from an interrupt that has been
1182 * assigned a priority above the configured maximum system call priority.
1183 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1184 * that have been assigned a priority at or (logically) below the maximum
1185 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1186 * safe API to ensure interrupt entry is as fast and as simple as possible.
1187 * More information (albeit Cortex-M specific) is provided on the following
1188 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1189 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1191 /* Similar to xQueueGenericSend, except without blocking if there is no room
1192 * in the queue. Also don't directly wake a task that was blocked on a queue
1193 * read, instead return a flag to say whether a context switch is required or
1194 * not (i.e. has a task with a higher priority than us been woken by this
1196 /* MISRA Ref 4.7.1 [Return value shall be checked] */
1197 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
1198 /* coverity[misra_c_2012_directive_4_7_violation] */
1199 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
1201 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
1203 const int8_t cTxLock = pxQueue->cTxLock;
1204 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
1206 traceQUEUE_SEND_FROM_ISR( pxQueue );
1208 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
1209 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
1210 * in a task disinheriting a priority and prvCopyDataToQueue() can be
1211 * called here even though the disinherit function does not check if
1212 * the scheduler is suspended before accessing the ready lists. */
1213 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
1215 /* The event list is not altered if the queue is locked. This will
1216 * be done when the queue is unlocked later. */
1217 if( cTxLock == queueUNLOCKED )
1219 #if ( configUSE_QUEUE_SETS == 1 )
1221 if( pxQueue->pxQueueSetContainer != NULL )
1223 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
1225 /* Do not notify the queue set as an existing item
1226 * was overwritten in the queue so the number of items
1227 * in the queue has not changed. */
1228 mtCOVERAGE_TEST_MARKER();
1230 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
1232 /* The queue is a member of a queue set, and posting
1233 * to the queue set caused a higher priority task to
1234 * unblock. A context switch is required. */
1235 if( pxHigherPriorityTaskWoken != NULL )
1237 *pxHigherPriorityTaskWoken = pdTRUE;
1241 mtCOVERAGE_TEST_MARKER();
1246 mtCOVERAGE_TEST_MARKER();
1251 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1253 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1255 /* The task waiting has a higher priority so
1256 * record that a context switch is required. */
1257 if( pxHigherPriorityTaskWoken != NULL )
1259 *pxHigherPriorityTaskWoken = pdTRUE;
1263 mtCOVERAGE_TEST_MARKER();
1268 mtCOVERAGE_TEST_MARKER();
1273 mtCOVERAGE_TEST_MARKER();
1277 #else /* configUSE_QUEUE_SETS */
1279 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1281 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1283 /* The task waiting has a higher priority so record that a
1284 * context switch is required. */
1285 if( pxHigherPriorityTaskWoken != NULL )
1287 *pxHigherPriorityTaskWoken = pdTRUE;
1291 mtCOVERAGE_TEST_MARKER();
1296 mtCOVERAGE_TEST_MARKER();
1301 mtCOVERAGE_TEST_MARKER();
1304 /* Not used in this path. */
1305 ( void ) uxPreviousMessagesWaiting;
1307 #endif /* configUSE_QUEUE_SETS */
1311 /* Increment the lock count so the task that unlocks the queue
1312 * knows that data was posted while it was locked. */
1313 prvIncrementQueueTxLock( pxQueue, cTxLock );
1320 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1321 xReturn = errQUEUE_FULL;
1324 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
1326 traceRETURN_xQueueGenericSendFromISR( xReturn );
1330 /*-----------------------------------------------------------*/
1332 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
1333 BaseType_t * const pxHigherPriorityTaskWoken )
1336 UBaseType_t uxSavedInterruptStatus;
1337 Queue_t * const pxQueue = xQueue;
1339 traceENTER_xQueueGiveFromISR( xQueue, pxHigherPriorityTaskWoken );
1341 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
1342 * item size is 0. Don't directly wake a task that was blocked on a queue
1343 * read, instead return a flag to say whether a context switch is required or
1344 * not (i.e. has a task with a higher priority than us been woken by this
1347 configASSERT( pxQueue );
1349 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
1350 * if the item size is not 0. */
1351 configASSERT( pxQueue->uxItemSize == 0 );
1353 /* Normally a mutex would not be given from an interrupt, especially if
1354 * there is a mutex holder, as priority inheritance makes no sense for an
1355 * interrupts, only tasks. */
1356 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
1358 /* RTOS ports that support interrupt nesting have the concept of a maximum
1359 * system call (or maximum API call) interrupt priority. Interrupts that are
1360 * above the maximum system call priority are kept permanently enabled, even
1361 * when the RTOS kernel is in a critical section, but cannot make any calls to
1362 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1363 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1364 * failure if a FreeRTOS API function is called from an interrupt that has been
1365 * assigned a priority above the configured maximum system call priority.
1366 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1367 * that have been assigned a priority at or (logically) below the maximum
1368 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1369 * safe API to ensure interrupt entry is as fast and as simple as possible.
1370 * More information (albeit Cortex-M specific) is provided on the following
1371 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1372 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1374 /* MISRA Ref 4.7.1 [Return value shall be checked] */
1375 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
1376 /* coverity[misra_c_2012_directive_4_7_violation] */
1377 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
1379 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1381 /* When the queue is used to implement a semaphore no data is ever
1382 * moved through the queue but it is still valid to see if the queue 'has
1384 if( uxMessagesWaiting < pxQueue->uxLength )
1386 const int8_t cTxLock = pxQueue->cTxLock;
1388 traceQUEUE_SEND_FROM_ISR( pxQueue );
1390 /* A task can only have an inherited priority if it is a mutex
1391 * holder - and if there is a mutex holder then the mutex cannot be
1392 * given from an ISR. As this is the ISR version of the function it
1393 * can be assumed there is no mutex holder and no need to determine if
1394 * priority disinheritance is needed. Simply increase the count of
1395 * messages (semaphores) available. */
1396 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting + ( UBaseType_t ) 1 );
1398 /* The event list is not altered if the queue is locked. This will
1399 * be done when the queue is unlocked later. */
1400 if( cTxLock == queueUNLOCKED )
1402 #if ( configUSE_QUEUE_SETS == 1 )
1404 if( pxQueue->pxQueueSetContainer != NULL )
1406 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
1408 /* The semaphore is a member of a queue set, and
1409 * posting to the queue set caused a higher priority
1410 * task to unblock. A context switch is required. */
1411 if( pxHigherPriorityTaskWoken != NULL )
1413 *pxHigherPriorityTaskWoken = pdTRUE;
1417 mtCOVERAGE_TEST_MARKER();
1422 mtCOVERAGE_TEST_MARKER();
1427 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1429 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1431 /* The task waiting has a higher priority so
1432 * record that a context switch is required. */
1433 if( pxHigherPriorityTaskWoken != NULL )
1435 *pxHigherPriorityTaskWoken = pdTRUE;
1439 mtCOVERAGE_TEST_MARKER();
1444 mtCOVERAGE_TEST_MARKER();
1449 mtCOVERAGE_TEST_MARKER();
1453 #else /* configUSE_QUEUE_SETS */
1455 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1457 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1459 /* The task waiting has a higher priority so record that a
1460 * context switch is required. */
1461 if( pxHigherPriorityTaskWoken != NULL )
1463 *pxHigherPriorityTaskWoken = pdTRUE;
1467 mtCOVERAGE_TEST_MARKER();
1472 mtCOVERAGE_TEST_MARKER();
1477 mtCOVERAGE_TEST_MARKER();
1480 #endif /* configUSE_QUEUE_SETS */
1484 /* Increment the lock count so the task that unlocks the queue
1485 * knows that data was posted while it was locked. */
1486 prvIncrementQueueTxLock( pxQueue, cTxLock );
1493 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1494 xReturn = errQUEUE_FULL;
1497 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
1499 traceRETURN_xQueueGiveFromISR( xReturn );
1503 /*-----------------------------------------------------------*/
1505 BaseType_t xQueueReceive( QueueHandle_t xQueue,
1506 void * const pvBuffer,
1507 TickType_t xTicksToWait )
1509 BaseType_t xEntryTimeSet = pdFALSE;
1511 Queue_t * const pxQueue = xQueue;
1513 traceENTER_xQueueReceive( xQueue, pvBuffer, xTicksToWait );
1515 /* Check the pointer is not NULL. */
1516 configASSERT( ( pxQueue ) );
1518 /* The buffer into which data is received can only be NULL if the data size
1519 * is zero (so no data is copied into the buffer). */
1520 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1522 /* Cannot block if the scheduler is suspended. */
1523 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1525 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1531 taskENTER_CRITICAL();
1533 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1535 /* Is there data in the queue now? To be running the calling task
1536 * must be the highest priority task wanting to access the queue. */
1537 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1539 /* Data available, remove one item. */
1540 prvCopyDataFromQueue( pxQueue, pvBuffer );
1541 traceQUEUE_RECEIVE( pxQueue );
1542 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting - ( UBaseType_t ) 1 );
1544 /* There is now space in the queue, were any tasks waiting to
1545 * post to the queue? If so, unblock the highest priority waiting
1547 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1549 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1551 queueYIELD_IF_USING_PREEMPTION();
1555 mtCOVERAGE_TEST_MARKER();
1560 mtCOVERAGE_TEST_MARKER();
1563 taskEXIT_CRITICAL();
1565 traceRETURN_xQueueReceive( pdPASS );
1571 if( xTicksToWait == ( TickType_t ) 0 )
1573 /* The queue was empty and no block time is specified (or
1574 * the block time has expired) so leave now. */
1575 taskEXIT_CRITICAL();
1577 traceQUEUE_RECEIVE_FAILED( pxQueue );
1578 traceRETURN_xQueueReceive( errQUEUE_EMPTY );
1580 return errQUEUE_EMPTY;
1582 else if( xEntryTimeSet == pdFALSE )
1584 /* The queue was empty and a block time was specified so
1585 * configure the timeout structure. */
1586 vTaskInternalSetTimeOutState( &xTimeOut );
1587 xEntryTimeSet = pdTRUE;
1591 /* Entry time was already set. */
1592 mtCOVERAGE_TEST_MARKER();
1596 taskEXIT_CRITICAL();
1598 /* Interrupts and other tasks can send to and receive from the queue
1599 * now the critical section has been exited. */
1602 prvLockQueue( pxQueue );
1604 /* Update the timeout state to see if it has expired yet. */
1605 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1607 /* The timeout has not expired. If the queue is still empty place
1608 * the task on the list of tasks waiting to receive from the queue. */
1609 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1611 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1612 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1613 prvUnlockQueue( pxQueue );
1615 if( xTaskResumeAll() == pdFALSE )
1617 taskYIELD_WITHIN_API();
1621 mtCOVERAGE_TEST_MARKER();
1626 /* The queue contains data again. Loop back to try and read the
1628 prvUnlockQueue( pxQueue );
1629 ( void ) xTaskResumeAll();
1634 /* Timed out. If there is no data in the queue exit, otherwise loop
1635 * back and attempt to read the data. */
1636 prvUnlockQueue( pxQueue );
1637 ( void ) xTaskResumeAll();
1639 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1641 traceQUEUE_RECEIVE_FAILED( pxQueue );
1642 traceRETURN_xQueueReceive( errQUEUE_EMPTY );
1644 return errQUEUE_EMPTY;
1648 mtCOVERAGE_TEST_MARKER();
1653 /*-----------------------------------------------------------*/
1655 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
1656 TickType_t xTicksToWait )
1658 BaseType_t xEntryTimeSet = pdFALSE;
1660 Queue_t * const pxQueue = xQueue;
1662 #if ( configUSE_MUTEXES == 1 )
1663 BaseType_t xInheritanceOccurred = pdFALSE;
1666 traceENTER_xQueueSemaphoreTake( xQueue, xTicksToWait );
1668 /* Check the queue pointer is not NULL. */
1669 configASSERT( ( pxQueue ) );
1671 /* Check this really is a semaphore, in which case the item size will be
1673 configASSERT( pxQueue->uxItemSize == 0 );
1675 /* Cannot block if the scheduler is suspended. */
1676 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1678 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1684 taskENTER_CRITICAL();
1686 /* Semaphores are queues with an item size of 0, and where the
1687 * number of messages in the queue is the semaphore's count value. */
1688 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
1690 /* Is there data in the queue now? To be running the calling task
1691 * must be the highest priority task wanting to access the queue. */
1692 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
1694 traceQUEUE_RECEIVE( pxQueue );
1696 /* Semaphores are queues with a data size of zero and where the
1697 * messages waiting is the semaphore's count. Reduce the count. */
1698 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxSemaphoreCount - ( UBaseType_t ) 1 );
1700 #if ( configUSE_MUTEXES == 1 )
1702 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1704 /* Record the information required to implement
1705 * priority inheritance should it become necessary. */
1706 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
1710 mtCOVERAGE_TEST_MARKER();
1713 #endif /* configUSE_MUTEXES */
1715 /* Check to see if other tasks are blocked waiting to give the
1716 * semaphore, and if so, unblock the highest priority such task. */
1717 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1719 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1721 queueYIELD_IF_USING_PREEMPTION();
1725 mtCOVERAGE_TEST_MARKER();
1730 mtCOVERAGE_TEST_MARKER();
1733 taskEXIT_CRITICAL();
1735 traceRETURN_xQueueSemaphoreTake( pdPASS );
1741 if( xTicksToWait == ( TickType_t ) 0 )
1743 /* The semaphore count was 0 and no block time is specified
1744 * (or the block time has expired) so exit now. */
1745 taskEXIT_CRITICAL();
1747 traceQUEUE_RECEIVE_FAILED( pxQueue );
1748 traceRETURN_xQueueSemaphoreTake( errQUEUE_EMPTY );
1750 return errQUEUE_EMPTY;
1752 else if( xEntryTimeSet == pdFALSE )
1754 /* The semaphore count was 0 and a block time was specified
1755 * so configure the timeout structure ready to block. */
1756 vTaskInternalSetTimeOutState( &xTimeOut );
1757 xEntryTimeSet = pdTRUE;
1761 /* Entry time was already set. */
1762 mtCOVERAGE_TEST_MARKER();
1766 taskEXIT_CRITICAL();
1768 /* Interrupts and other tasks can give to and take from the semaphore
1769 * now the critical section has been exited. */
1772 prvLockQueue( pxQueue );
1774 /* Update the timeout state to see if it has expired yet. */
1775 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1777 /* A block time is specified and not expired. If the semaphore
1778 * count is 0 then enter the Blocked state to wait for a semaphore to
1779 * become available. As semaphores are implemented with queues the
1780 * queue being empty is equivalent to the semaphore count being 0. */
1781 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1783 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1785 #if ( configUSE_MUTEXES == 1 )
1787 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1789 taskENTER_CRITICAL();
1791 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
1793 taskEXIT_CRITICAL();
1797 mtCOVERAGE_TEST_MARKER();
1800 #endif /* if ( configUSE_MUTEXES == 1 ) */
1802 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1803 prvUnlockQueue( pxQueue );
1805 if( xTaskResumeAll() == pdFALSE )
1807 taskYIELD_WITHIN_API();
1811 mtCOVERAGE_TEST_MARKER();
1816 /* There was no timeout and the semaphore count was not 0, so
1817 * attempt to take the semaphore again. */
1818 prvUnlockQueue( pxQueue );
1819 ( void ) xTaskResumeAll();
1825 prvUnlockQueue( pxQueue );
1826 ( void ) xTaskResumeAll();
1828 /* If the semaphore count is 0 exit now as the timeout has
1829 * expired. Otherwise return to attempt to take the semaphore that is
1830 * known to be available. As semaphores are implemented by queues the
1831 * queue being empty is equivalent to the semaphore count being 0. */
1832 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1834 #if ( configUSE_MUTEXES == 1 )
1836 /* xInheritanceOccurred could only have be set if
1837 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
1838 * test the mutex type again to check it is actually a mutex. */
1839 if( xInheritanceOccurred != pdFALSE )
1841 taskENTER_CRITICAL();
1843 UBaseType_t uxHighestWaitingPriority;
1845 /* This task blocking on the mutex caused another
1846 * task to inherit this task's priority. Now this task
1847 * has timed out the priority should be disinherited
1848 * again, but only as low as the next highest priority
1849 * task that is waiting for the same mutex. */
1850 uxHighestWaitingPriority = prvGetHighestPriorityOfWaitToReceiveList( pxQueue );
1852 /* vTaskPriorityDisinheritAfterTimeout uses the uxHighestWaitingPriority
1853 * parameter to index pxReadyTasksLists when adding the task holding
1854 * mutex to the ready list for its new priority. Coverity thinks that
1855 * it can result in out-of-bounds access which is not true because
1856 * uxHighestWaitingPriority, as returned by prvGetHighestPriorityOfWaitToReceiveList,
1857 * is capped at ( configMAX_PRIORITIES - 1 ). */
1858 /* coverity[overrun] */
1859 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
1861 taskEXIT_CRITICAL();
1864 #endif /* configUSE_MUTEXES */
1866 traceQUEUE_RECEIVE_FAILED( pxQueue );
1867 traceRETURN_xQueueSemaphoreTake( errQUEUE_EMPTY );
1869 return errQUEUE_EMPTY;
1873 mtCOVERAGE_TEST_MARKER();
1878 /*-----------------------------------------------------------*/
1880 BaseType_t xQueuePeek( QueueHandle_t xQueue,
1881 void * const pvBuffer,
1882 TickType_t xTicksToWait )
1884 BaseType_t xEntryTimeSet = pdFALSE;
1886 int8_t * pcOriginalReadPosition;
1887 Queue_t * const pxQueue = xQueue;
1889 traceENTER_xQueuePeek( xQueue, pvBuffer, xTicksToWait );
1891 /* Check the pointer is not NULL. */
1892 configASSERT( ( pxQueue ) );
1894 /* The buffer into which data is received can only be NULL if the data size
1895 * is zero (so no data is copied into the buffer. */
1896 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1898 /* Cannot block if the scheduler is suspended. */
1899 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1901 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1907 taskENTER_CRITICAL();
1909 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1911 /* Is there data in the queue now? To be running the calling task
1912 * must be the highest priority task wanting to access the queue. */
1913 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1915 /* Remember the read position so it can be reset after the data
1916 * is read from the queue as this function is only peeking the
1917 * data, not removing it. */
1918 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
1920 prvCopyDataFromQueue( pxQueue, pvBuffer );
1921 traceQUEUE_PEEK( pxQueue );
1923 /* The data is not being removed, so reset the read pointer. */
1924 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
1926 /* The data is being left in the queue, so see if there are
1927 * any other tasks waiting for the data. */
1928 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1930 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1932 /* The task waiting has a higher priority than this task. */
1933 queueYIELD_IF_USING_PREEMPTION();
1937 mtCOVERAGE_TEST_MARKER();
1942 mtCOVERAGE_TEST_MARKER();
1945 taskEXIT_CRITICAL();
1947 traceRETURN_xQueuePeek( pdPASS );
1953 if( xTicksToWait == ( TickType_t ) 0 )
1955 /* The queue was empty and no block time is specified (or
1956 * the block time has expired) so leave now. */
1957 taskEXIT_CRITICAL();
1959 traceQUEUE_PEEK_FAILED( pxQueue );
1960 traceRETURN_xQueuePeek( errQUEUE_EMPTY );
1962 return errQUEUE_EMPTY;
1964 else if( xEntryTimeSet == pdFALSE )
1966 /* The queue was empty and a block time was specified so
1967 * configure the timeout structure ready to enter the blocked
1969 vTaskInternalSetTimeOutState( &xTimeOut );
1970 xEntryTimeSet = pdTRUE;
1974 /* Entry time was already set. */
1975 mtCOVERAGE_TEST_MARKER();
1979 taskEXIT_CRITICAL();
1981 /* Interrupts and other tasks can send to and receive from the queue
1982 * now that the critical section has been exited. */
1985 prvLockQueue( pxQueue );
1987 /* Update the timeout state to see if it has expired yet. */
1988 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1990 /* Timeout has not expired yet, check to see if there is data in the
1991 * queue now, and if not enter the Blocked state to wait for data. */
1992 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1994 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
1995 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1996 prvUnlockQueue( pxQueue );
1998 if( xTaskResumeAll() == pdFALSE )
2000 taskYIELD_WITHIN_API();
2004 mtCOVERAGE_TEST_MARKER();
2009 /* There is data in the queue now, so don't enter the blocked
2010 * state, instead return to try and obtain the data. */
2011 prvUnlockQueue( pxQueue );
2012 ( void ) xTaskResumeAll();
2017 /* The timeout has expired. If there is still no data in the queue
2018 * exit, otherwise go back and try to read the data again. */
2019 prvUnlockQueue( pxQueue );
2020 ( void ) xTaskResumeAll();
2022 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
2024 traceQUEUE_PEEK_FAILED( pxQueue );
2025 traceRETURN_xQueuePeek( errQUEUE_EMPTY );
2027 return errQUEUE_EMPTY;
2031 mtCOVERAGE_TEST_MARKER();
2036 /*-----------------------------------------------------------*/
2038 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
2039 void * const pvBuffer,
2040 BaseType_t * const pxHigherPriorityTaskWoken )
2043 UBaseType_t uxSavedInterruptStatus;
2044 Queue_t * const pxQueue = xQueue;
2046 traceENTER_xQueueReceiveFromISR( xQueue, pvBuffer, pxHigherPriorityTaskWoken );
2048 configASSERT( pxQueue );
2049 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
2051 /* RTOS ports that support interrupt nesting have the concept of a maximum
2052 * system call (or maximum API call) interrupt priority. Interrupts that are
2053 * above the maximum system call priority are kept permanently enabled, even
2054 * when the RTOS kernel is in a critical section, but cannot make any calls to
2055 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2056 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2057 * failure if a FreeRTOS API function is called from an interrupt that has been
2058 * assigned a priority above the configured maximum system call priority.
2059 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2060 * that have been assigned a priority at or (logically) below the maximum
2061 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2062 * safe API to ensure interrupt entry is as fast and as simple as possible.
2063 * More information (albeit Cortex-M specific) is provided on the following
2064 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2065 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2067 /* MISRA Ref 4.7.1 [Return value shall be checked] */
2068 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
2069 /* coverity[misra_c_2012_directive_4_7_violation] */
2070 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2072 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
2074 /* Cannot block in an ISR, so check there is data available. */
2075 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
2077 const int8_t cRxLock = pxQueue->cRxLock;
2079 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
2081 prvCopyDataFromQueue( pxQueue, pvBuffer );
2082 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting - ( UBaseType_t ) 1 );
2084 /* If the queue is locked the event list will not be modified.
2085 * Instead update the lock count so the task that unlocks the queue
2086 * will know that an ISR has removed data while the queue was
2088 if( cRxLock == queueUNLOCKED )
2090 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2092 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2094 /* The task waiting has a higher priority than us so
2095 * force a context switch. */
2096 if( pxHigherPriorityTaskWoken != NULL )
2098 *pxHigherPriorityTaskWoken = pdTRUE;
2102 mtCOVERAGE_TEST_MARKER();
2107 mtCOVERAGE_TEST_MARKER();
2112 mtCOVERAGE_TEST_MARKER();
2117 /* Increment the lock count so the task that unlocks the queue
2118 * knows that data was removed while it was locked. */
2119 prvIncrementQueueRxLock( pxQueue, cRxLock );
2127 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
2130 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2132 traceRETURN_xQueueReceiveFromISR( xReturn );
2136 /*-----------------------------------------------------------*/
2138 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
2139 void * const pvBuffer )
2142 UBaseType_t uxSavedInterruptStatus;
2143 int8_t * pcOriginalReadPosition;
2144 Queue_t * const pxQueue = xQueue;
2146 traceENTER_xQueuePeekFromISR( xQueue, pvBuffer );
2148 configASSERT( pxQueue );
2149 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
2150 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
2152 /* RTOS ports that support interrupt nesting have the concept of a maximum
2153 * system call (or maximum API call) interrupt priority. Interrupts that are
2154 * above the maximum system call priority are kept permanently enabled, even
2155 * when the RTOS kernel is in a critical section, but cannot make any calls to
2156 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2157 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2158 * failure if a FreeRTOS API function is called from an interrupt that has been
2159 * assigned a priority above the configured maximum system call priority.
2160 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2161 * that have been assigned a priority at or (logically) below the maximum
2162 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2163 * safe API to ensure interrupt entry is as fast and as simple as possible.
2164 * More information (albeit Cortex-M specific) is provided on the following
2165 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2166 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2168 /* MISRA Ref 4.7.1 [Return value shall be checked] */
2169 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
2170 /* coverity[misra_c_2012_directive_4_7_violation] */
2171 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2173 /* Cannot block in an ISR, so check there is data available. */
2174 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2176 traceQUEUE_PEEK_FROM_ISR( pxQueue );
2178 /* Remember the read position so it can be reset as nothing is
2179 * actually being removed from the queue. */
2180 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
2181 prvCopyDataFromQueue( pxQueue, pvBuffer );
2182 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
2189 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
2192 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2194 traceRETURN_xQueuePeekFromISR( xReturn );
2198 /*-----------------------------------------------------------*/
2200 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
2202 UBaseType_t uxReturn;
2204 traceENTER_uxQueueMessagesWaiting( xQueue );
2206 configASSERT( xQueue );
2208 portBASE_TYPE_ENTER_CRITICAL();
2210 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
2212 portBASE_TYPE_EXIT_CRITICAL();
2214 traceRETURN_uxQueueMessagesWaiting( uxReturn );
2218 /*-----------------------------------------------------------*/
2220 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
2222 UBaseType_t uxReturn;
2223 Queue_t * const pxQueue = xQueue;
2225 traceENTER_uxQueueSpacesAvailable( xQueue );
2227 configASSERT( pxQueue );
2229 portBASE_TYPE_ENTER_CRITICAL();
2231 uxReturn = ( UBaseType_t ) ( pxQueue->uxLength - pxQueue->uxMessagesWaiting );
2233 portBASE_TYPE_EXIT_CRITICAL();
2235 traceRETURN_uxQueueSpacesAvailable( uxReturn );
2239 /*-----------------------------------------------------------*/
2241 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
2243 UBaseType_t uxReturn;
2244 Queue_t * const pxQueue = xQueue;
2246 traceENTER_uxQueueMessagesWaitingFromISR( xQueue );
2248 configASSERT( pxQueue );
2249 uxReturn = pxQueue->uxMessagesWaiting;
2251 traceRETURN_uxQueueMessagesWaitingFromISR( uxReturn );
2255 /*-----------------------------------------------------------*/
2257 void vQueueDelete( QueueHandle_t xQueue )
2259 Queue_t * const pxQueue = xQueue;
2261 traceENTER_vQueueDelete( xQueue );
2263 configASSERT( pxQueue );
2264 traceQUEUE_DELETE( pxQueue );
2266 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2268 vQueueUnregisterQueue( pxQueue );
2272 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
2274 /* The queue can only have been allocated dynamically - free it
2276 vPortFree( pxQueue );
2278 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
2280 /* The queue could have been allocated statically or dynamically, so
2281 * check before attempting to free the memory. */
2282 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
2284 vPortFree( pxQueue );
2288 mtCOVERAGE_TEST_MARKER();
2291 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
2293 /* The queue must have been statically allocated, so is not going to be
2294 * deleted. Avoid compiler warnings about the unused parameter. */
2297 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
2299 traceRETURN_vQueueDelete();
2301 /*-----------------------------------------------------------*/
2303 #if ( configUSE_TRACE_FACILITY == 1 )
2305 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
2307 traceENTER_uxQueueGetQueueNumber( xQueue );
2309 traceRETURN_uxQueueGetQueueNumber( ( ( Queue_t * ) xQueue )->uxQueueNumber );
2311 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
2314 #endif /* configUSE_TRACE_FACILITY */
2315 /*-----------------------------------------------------------*/
2317 #if ( configUSE_TRACE_FACILITY == 1 )
2319 void vQueueSetQueueNumber( QueueHandle_t xQueue,
2320 UBaseType_t uxQueueNumber )
2322 traceENTER_vQueueSetQueueNumber( xQueue, uxQueueNumber );
2324 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
2326 traceRETURN_vQueueSetQueueNumber();
2329 #endif /* configUSE_TRACE_FACILITY */
2330 /*-----------------------------------------------------------*/
2332 #if ( configUSE_TRACE_FACILITY == 1 )
2334 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
2336 traceENTER_ucQueueGetQueueType( xQueue );
2338 traceRETURN_ucQueueGetQueueType( ( ( Queue_t * ) xQueue )->ucQueueType );
2340 return ( ( Queue_t * ) xQueue )->ucQueueType;
2343 #endif /* configUSE_TRACE_FACILITY */
2344 /*-----------------------------------------------------------*/
2346 UBaseType_t uxQueueGetQueueItemSize( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */
2348 traceENTER_uxQueueGetQueueItemSize( xQueue );
2350 traceRETURN_uxQueueGetQueueItemSize( ( ( Queue_t * ) xQueue )->uxItemSize );
2352 return ( ( Queue_t * ) xQueue )->uxItemSize;
2354 /*-----------------------------------------------------------*/
2356 UBaseType_t uxQueueGetQueueLength( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */
2358 traceENTER_uxQueueGetQueueLength( xQueue );
2360 traceRETURN_uxQueueGetQueueLength( ( ( Queue_t * ) xQueue )->uxLength );
2362 return ( ( Queue_t * ) xQueue )->uxLength;
2364 /*-----------------------------------------------------------*/
2366 #if ( configUSE_MUTEXES == 1 )
2368 static UBaseType_t prvGetHighestPriorityOfWaitToReceiveList( const Queue_t * const pxQueue )
2370 UBaseType_t uxHighestPriorityOfWaitingTasks;
2372 /* If a task waiting for a mutex causes the mutex holder to inherit a
2373 * priority, but the waiting task times out, then the holder should
2374 * disinherit the priority - but only down to the highest priority of any
2375 * other tasks that are waiting for the same mutex. For this purpose,
2376 * return the priority of the highest priority task that is waiting for the
2378 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
2380 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) ( ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) ) );
2384 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
2387 return uxHighestPriorityOfWaitingTasks;
2390 #endif /* configUSE_MUTEXES */
2391 /*-----------------------------------------------------------*/
2393 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
2394 const void * pvItemToQueue,
2395 const BaseType_t xPosition )
2397 BaseType_t xReturn = pdFALSE;
2398 UBaseType_t uxMessagesWaiting;
2400 /* This function is called from a critical section. */
2402 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
2404 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
2406 #if ( configUSE_MUTEXES == 1 )
2408 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
2410 /* The mutex is no longer being held. */
2411 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
2412 pxQueue->u.xSemaphore.xMutexHolder = NULL;
2416 mtCOVERAGE_TEST_MARKER();
2419 #endif /* configUSE_MUTEXES */
2421 else if( xPosition == queueSEND_TO_BACK )
2423 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize );
2424 pxQueue->pcWriteTo += pxQueue->uxItemSize;
2426 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail )
2428 pxQueue->pcWriteTo = pxQueue->pcHead;
2432 mtCOVERAGE_TEST_MARKER();
2437 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize );
2438 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
2440 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead )
2442 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
2446 mtCOVERAGE_TEST_MARKER();
2449 if( xPosition == queueOVERWRITE )
2451 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
2453 /* An item is not being added but overwritten, so subtract
2454 * one from the recorded number of items in the queue so when
2455 * one is added again below the number of recorded items remains
2457 --uxMessagesWaiting;
2461 mtCOVERAGE_TEST_MARKER();
2466 mtCOVERAGE_TEST_MARKER();
2470 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting + ( UBaseType_t ) 1 );
2474 /*-----------------------------------------------------------*/
2476 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
2477 void * const pvBuffer )
2479 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
2481 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2483 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2485 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2489 mtCOVERAGE_TEST_MARKER();
2492 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize );
2495 /*-----------------------------------------------------------*/
2497 static void prvUnlockQueue( Queue_t * const pxQueue )
2499 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
2501 /* The lock counts contains the number of extra data items placed or
2502 * removed from the queue while the queue was locked. When a queue is
2503 * locked items can be added or removed, but the event lists cannot be
2505 taskENTER_CRITICAL();
2507 int8_t cTxLock = pxQueue->cTxLock;
2509 /* See if data was added to the queue while it was locked. */
2510 while( cTxLock > queueLOCKED_UNMODIFIED )
2512 /* Data was posted while the queue was locked. Are any tasks
2513 * blocked waiting for data to become available? */
2514 #if ( configUSE_QUEUE_SETS == 1 )
2516 if( pxQueue->pxQueueSetContainer != NULL )
2518 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
2520 /* The queue is a member of a queue set, and posting to
2521 * the queue set caused a higher priority task to unblock.
2522 * A context switch is required. */
2527 mtCOVERAGE_TEST_MARKER();
2532 /* Tasks that are removed from the event list will get
2533 * added to the pending ready list as the scheduler is still
2535 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2537 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2539 /* The task waiting has a higher priority so record that a
2540 * context switch is required. */
2545 mtCOVERAGE_TEST_MARKER();
2554 #else /* configUSE_QUEUE_SETS */
2556 /* Tasks that are removed from the event list will get added to
2557 * the pending ready list as the scheduler is still suspended. */
2558 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2560 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2562 /* The task waiting has a higher priority so record that
2563 * a context switch is required. */
2568 mtCOVERAGE_TEST_MARKER();
2576 #endif /* configUSE_QUEUE_SETS */
2581 pxQueue->cTxLock = queueUNLOCKED;
2583 taskEXIT_CRITICAL();
2585 /* Do the same for the Rx lock. */
2586 taskENTER_CRITICAL();
2588 int8_t cRxLock = pxQueue->cRxLock;
2590 while( cRxLock > queueLOCKED_UNMODIFIED )
2592 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2594 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2600 mtCOVERAGE_TEST_MARKER();
2611 pxQueue->cRxLock = queueUNLOCKED;
2613 taskEXIT_CRITICAL();
2615 /*-----------------------------------------------------------*/
2617 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
2621 taskENTER_CRITICAL();
2623 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2632 taskEXIT_CRITICAL();
2636 /*-----------------------------------------------------------*/
2638 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
2641 Queue_t * const pxQueue = xQueue;
2643 traceENTER_xQueueIsQueueEmptyFromISR( xQueue );
2645 configASSERT( pxQueue );
2647 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2656 traceRETURN_xQueueIsQueueEmptyFromISR( xReturn );
2660 /*-----------------------------------------------------------*/
2662 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
2666 taskENTER_CRITICAL();
2668 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2677 taskEXIT_CRITICAL();
2681 /*-----------------------------------------------------------*/
2683 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
2686 Queue_t * const pxQueue = xQueue;
2688 traceENTER_xQueueIsQueueFullFromISR( xQueue );
2690 configASSERT( pxQueue );
2692 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2701 traceRETURN_xQueueIsQueueFullFromISR( xReturn );
2705 /*-----------------------------------------------------------*/
2707 #if ( configUSE_CO_ROUTINES == 1 )
2709 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
2710 const void * pvItemToQueue,
2711 TickType_t xTicksToWait )
2714 Queue_t * const pxQueue = xQueue;
2716 traceENTER_xQueueCRSend( xQueue, pvItemToQueue, xTicksToWait );
2718 /* If the queue is already full we may have to block. A critical section
2719 * is required to prevent an interrupt removing something from the queue
2720 * between the check to see if the queue is full and blocking on the queue. */
2721 portDISABLE_INTERRUPTS();
2723 if( prvIsQueueFull( pxQueue ) != pdFALSE )
2725 /* The queue is full - do we want to block or just leave without
2727 if( xTicksToWait > ( TickType_t ) 0 )
2729 /* As this is called from a coroutine we cannot block directly, but
2730 * return indicating that we need to block. */
2731 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
2732 portENABLE_INTERRUPTS();
2733 return errQUEUE_BLOCKED;
2737 portENABLE_INTERRUPTS();
2738 return errQUEUE_FULL;
2742 portENABLE_INTERRUPTS();
2744 portDISABLE_INTERRUPTS();
2746 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2748 /* There is room in the queue, copy the data into the queue. */
2749 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2752 /* Were any co-routines waiting for data to become available? */
2753 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2755 /* In this instance the co-routine could be placed directly
2756 * into the ready list as we are within a critical section.
2757 * Instead the same pending ready list mechanism is used as if
2758 * the event were caused from within an interrupt. */
2759 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2761 /* The co-routine waiting has a higher priority so record
2762 * that a yield might be appropriate. */
2763 xReturn = errQUEUE_YIELD;
2767 mtCOVERAGE_TEST_MARKER();
2772 mtCOVERAGE_TEST_MARKER();
2777 xReturn = errQUEUE_FULL;
2780 portENABLE_INTERRUPTS();
2782 traceRETURN_xQueueCRSend( xReturn );
2787 #endif /* configUSE_CO_ROUTINES */
2788 /*-----------------------------------------------------------*/
2790 #if ( configUSE_CO_ROUTINES == 1 )
2792 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
2794 TickType_t xTicksToWait )
2797 Queue_t * const pxQueue = xQueue;
2799 traceENTER_xQueueCRReceive( xQueue, pvBuffer, xTicksToWait );
2801 /* If the queue is already empty we may have to block. A critical section
2802 * is required to prevent an interrupt adding something to the queue
2803 * between the check to see if the queue is empty and blocking on the queue. */
2804 portDISABLE_INTERRUPTS();
2806 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2808 /* There are no messages in the queue, do we want to block or just
2809 * leave with nothing? */
2810 if( xTicksToWait > ( TickType_t ) 0 )
2812 /* As this is a co-routine we cannot block directly, but return
2813 * indicating that we need to block. */
2814 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
2815 portENABLE_INTERRUPTS();
2816 return errQUEUE_BLOCKED;
2820 portENABLE_INTERRUPTS();
2821 return errQUEUE_FULL;
2826 mtCOVERAGE_TEST_MARKER();
2829 portENABLE_INTERRUPTS();
2831 portDISABLE_INTERRUPTS();
2833 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2835 /* Data is available from the queue. */
2836 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2838 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2840 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2844 mtCOVERAGE_TEST_MARKER();
2847 --( pxQueue->uxMessagesWaiting );
2848 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2852 /* Were any co-routines waiting for space to become available? */
2853 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2855 /* In this instance the co-routine could be placed directly
2856 * into the ready list as we are within a critical section.
2857 * Instead the same pending ready list mechanism is used as if
2858 * the event were caused from within an interrupt. */
2859 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2861 xReturn = errQUEUE_YIELD;
2865 mtCOVERAGE_TEST_MARKER();
2870 mtCOVERAGE_TEST_MARKER();
2878 portENABLE_INTERRUPTS();
2880 traceRETURN_xQueueCRReceive( xReturn );
2885 #endif /* configUSE_CO_ROUTINES */
2886 /*-----------------------------------------------------------*/
2888 #if ( configUSE_CO_ROUTINES == 1 )
2890 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
2891 const void * pvItemToQueue,
2892 BaseType_t xCoRoutinePreviouslyWoken )
2894 Queue_t * const pxQueue = xQueue;
2896 traceENTER_xQueueCRSendFromISR( xQueue, pvItemToQueue, xCoRoutinePreviouslyWoken );
2898 /* Cannot block within an ISR so if there is no space on the queue then
2899 * exit without doing anything. */
2900 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2902 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2904 /* We only want to wake one co-routine per ISR, so check that a
2905 * co-routine has not already been woken. */
2906 if( xCoRoutinePreviouslyWoken == pdFALSE )
2908 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2910 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2916 mtCOVERAGE_TEST_MARKER();
2921 mtCOVERAGE_TEST_MARKER();
2926 mtCOVERAGE_TEST_MARKER();
2931 mtCOVERAGE_TEST_MARKER();
2934 traceRETURN_xQueueCRSendFromISR( xCoRoutinePreviouslyWoken );
2936 return xCoRoutinePreviouslyWoken;
2939 #endif /* configUSE_CO_ROUTINES */
2940 /*-----------------------------------------------------------*/
2942 #if ( configUSE_CO_ROUTINES == 1 )
2944 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
2946 BaseType_t * pxCoRoutineWoken )
2949 Queue_t * const pxQueue = xQueue;
2951 traceENTER_xQueueCRReceiveFromISR( xQueue, pvBuffer, pxCoRoutineWoken );
2953 /* We cannot block from an ISR, so check there is data available. If
2954 * not then just leave without doing anything. */
2955 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2957 /* Copy the data from the queue. */
2958 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2960 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2962 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2966 mtCOVERAGE_TEST_MARKER();
2969 --( pxQueue->uxMessagesWaiting );
2970 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2972 if( ( *pxCoRoutineWoken ) == pdFALSE )
2974 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2976 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2978 *pxCoRoutineWoken = pdTRUE;
2982 mtCOVERAGE_TEST_MARKER();
2987 mtCOVERAGE_TEST_MARKER();
2992 mtCOVERAGE_TEST_MARKER();
3002 traceRETURN_xQueueCRReceiveFromISR( xReturn );
3007 #endif /* configUSE_CO_ROUTINES */
3008 /*-----------------------------------------------------------*/
3010 #if ( configQUEUE_REGISTRY_SIZE > 0 )
3012 void vQueueAddToRegistry( QueueHandle_t xQueue,
3013 const char * pcQueueName )
3016 QueueRegistryItem_t * pxEntryToWrite = NULL;
3018 traceENTER_vQueueAddToRegistry( xQueue, pcQueueName );
3020 configASSERT( xQueue );
3022 if( pcQueueName != NULL )
3024 /* See if there is an empty space in the registry. A NULL name denotes
3026 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3028 /* Replace an existing entry if the queue is already in the registry. */
3029 if( xQueue == xQueueRegistry[ ux ].xHandle )
3031 pxEntryToWrite = &( xQueueRegistry[ ux ] );
3034 /* Otherwise, store in the next empty location */
3035 else if( ( pxEntryToWrite == NULL ) && ( xQueueRegistry[ ux ].pcQueueName == NULL ) )
3037 pxEntryToWrite = &( xQueueRegistry[ ux ] );
3041 mtCOVERAGE_TEST_MARKER();
3046 if( pxEntryToWrite != NULL )
3048 /* Store the information on this queue. */
3049 pxEntryToWrite->pcQueueName = pcQueueName;
3050 pxEntryToWrite->xHandle = xQueue;
3052 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
3055 traceRETURN_vQueueAddToRegistry();
3058 #endif /* configQUEUE_REGISTRY_SIZE */
3059 /*-----------------------------------------------------------*/
3061 #if ( configQUEUE_REGISTRY_SIZE > 0 )
3063 const char * pcQueueGetName( QueueHandle_t xQueue )
3066 const char * pcReturn = NULL;
3068 traceENTER_pcQueueGetName( xQueue );
3070 configASSERT( xQueue );
3072 /* Note there is nothing here to protect against another task adding or
3073 * removing entries from the registry while it is being searched. */
3075 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3077 if( xQueueRegistry[ ux ].xHandle == xQueue )
3079 pcReturn = xQueueRegistry[ ux ].pcQueueName;
3084 mtCOVERAGE_TEST_MARKER();
3088 traceRETURN_pcQueueGetName( pcReturn );
3093 #endif /* configQUEUE_REGISTRY_SIZE */
3094 /*-----------------------------------------------------------*/
3096 #if ( configQUEUE_REGISTRY_SIZE > 0 )
3098 void vQueueUnregisterQueue( QueueHandle_t xQueue )
3102 traceENTER_vQueueUnregisterQueue( xQueue );
3104 configASSERT( xQueue );
3106 /* See if the handle of the queue being unregistered in actually in the
3108 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3110 if( xQueueRegistry[ ux ].xHandle == xQueue )
3112 /* Set the name to NULL to show that this slot if free again. */
3113 xQueueRegistry[ ux ].pcQueueName = NULL;
3115 /* Set the handle to NULL to ensure the same queue handle cannot
3116 * appear in the registry twice if it is added, removed, then
3118 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
3123 mtCOVERAGE_TEST_MARKER();
3127 traceRETURN_vQueueUnregisterQueue();
3130 #endif /* configQUEUE_REGISTRY_SIZE */
3131 /*-----------------------------------------------------------*/
3133 #if ( configUSE_TIMERS == 1 )
3135 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
3136 TickType_t xTicksToWait,
3137 const BaseType_t xWaitIndefinitely )
3139 Queue_t * const pxQueue = xQueue;
3141 traceENTER_vQueueWaitForMessageRestricted( xQueue, xTicksToWait, xWaitIndefinitely );
3143 /* This function should not be called by application code hence the
3144 * 'Restricted' in its name. It is not part of the public API. It is
3145 * designed for use by kernel code, and has special calling requirements.
3146 * It can result in vListInsert() being called on a list that can only
3147 * possibly ever have one item in it, so the list will be fast, but even
3148 * so it should be called with the scheduler locked and not from a critical
3151 /* Only do anything if there are no messages in the queue. This function
3152 * will not actually cause the task to block, just place it on a blocked
3153 * list. It will not block until the scheduler is unlocked - at which
3154 * time a yield will be performed. If an item is added to the queue while
3155 * the queue is locked, and the calling task blocks on the queue, then the
3156 * calling task will be immediately unblocked when the queue is unlocked. */
3157 prvLockQueue( pxQueue );
3159 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
3161 /* There is nothing in the queue, block for the specified period. */
3162 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
3166 mtCOVERAGE_TEST_MARKER();
3169 prvUnlockQueue( pxQueue );
3171 traceRETURN_vQueueWaitForMessageRestricted();
3174 #endif /* configUSE_TIMERS */
3175 /*-----------------------------------------------------------*/
3177 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
3179 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
3181 QueueSetHandle_t pxQueue;
3183 traceENTER_xQueueCreateSet( uxEventQueueLength );
3185 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
3187 traceRETURN_xQueueCreateSet( pxQueue );
3192 #endif /* #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
3193 /*-----------------------------------------------------------*/
3195 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
3197 QueueSetHandle_t xQueueCreateSetStatic( const UBaseType_t uxEventQueueLength,
3198 uint8_t * pucQueueStorage,
3199 StaticQueue_t * pxStaticQueue )
3201 QueueSetHandle_t pxQueue;
3203 traceENTER_xQueueCreateSetStatic( uxEventQueueLength );
3205 pxQueue = xQueueGenericCreateStatic( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), pucQueueStorage, pxStaticQueue, queueQUEUE_TYPE_SET );
3207 traceRETURN_xQueueCreateSetStatic( pxQueue );
3212 #endif /* #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
3213 /*-----------------------------------------------------------*/
3215 #if ( configUSE_QUEUE_SETS == 1 )
3217 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
3218 QueueSetHandle_t xQueueSet )
3222 traceENTER_xQueueAddToSet( xQueueOrSemaphore, xQueueSet );
3224 taskENTER_CRITICAL();
3226 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
3228 /* Cannot add a queue/semaphore to more than one queue set. */
3231 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
3233 /* Cannot add a queue/semaphore to a queue set if there are already
3234 * items in the queue/semaphore. */
3239 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
3243 taskEXIT_CRITICAL();
3245 traceRETURN_xQueueAddToSet( xReturn );
3250 #endif /* configUSE_QUEUE_SETS */
3251 /*-----------------------------------------------------------*/
3253 #if ( configUSE_QUEUE_SETS == 1 )
3255 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
3256 QueueSetHandle_t xQueueSet )
3259 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
3261 traceENTER_xQueueRemoveFromSet( xQueueOrSemaphore, xQueueSet );
3263 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
3265 /* The queue was not a member of the set. */
3268 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
3270 /* It is dangerous to remove a queue from a set when the queue is
3271 * not empty because the queue set will still hold pending events for
3277 taskENTER_CRITICAL();
3279 /* The queue is no longer contained in the set. */
3280 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
3282 taskEXIT_CRITICAL();
3286 traceRETURN_xQueueRemoveFromSet( xReturn );
3291 #endif /* configUSE_QUEUE_SETS */
3292 /*-----------------------------------------------------------*/
3294 #if ( configUSE_QUEUE_SETS == 1 )
3296 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
3297 TickType_t const xTicksToWait )
3299 QueueSetMemberHandle_t xReturn = NULL;
3301 traceENTER_xQueueSelectFromSet( xQueueSet, xTicksToWait );
3303 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait );
3305 traceRETURN_xQueueSelectFromSet( xReturn );
3310 #endif /* configUSE_QUEUE_SETS */
3311 /*-----------------------------------------------------------*/
3313 #if ( configUSE_QUEUE_SETS == 1 )
3315 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
3317 QueueSetMemberHandle_t xReturn = NULL;
3319 traceENTER_xQueueSelectFromSetFromISR( xQueueSet );
3321 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL );
3323 traceRETURN_xQueueSelectFromSetFromISR( xReturn );
3328 #endif /* configUSE_QUEUE_SETS */
3329 /*-----------------------------------------------------------*/
3331 #if ( configUSE_QUEUE_SETS == 1 )
3333 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
3335 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
3336 BaseType_t xReturn = pdFALSE;
3338 /* This function must be called form a critical section. */
3340 /* The following line is not reachable in unit tests because every call
3341 * to prvNotifyQueueSetContainer is preceded by a check that
3342 * pxQueueSetContainer != NULL */
3343 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
3344 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
3346 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
3348 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
3350 traceQUEUE_SET_SEND( pxQueueSetContainer );
3352 /* The data copied is the handle of the queue that contains data. */
3353 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
3355 if( cTxLock == queueUNLOCKED )
3357 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
3359 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
3361 /* The task waiting has a higher priority. */
3366 mtCOVERAGE_TEST_MARKER();
3371 mtCOVERAGE_TEST_MARKER();
3376 prvIncrementQueueTxLock( pxQueueSetContainer, cTxLock );
3381 mtCOVERAGE_TEST_MARKER();
3387 #endif /* configUSE_QUEUE_SETS */