1 /**************************************************************************//**
2 * @file cmsis_armcc.txt
3 * @brief CMSIS compiler specific macros, functions, instructions
6 ******************************************************************************/
7 /* CMSIS compiler control architecture macros */
9 \defgroup comp_cntrl_gr Compiler Control
10 \brief Compiler agnostic \#define symbols for generic C/C++ source code
12 The CMSIS-Core provides the header file \b cmsis_compiler.h with consistent \#define symbols to generate C or C++ source files that should be compiler agnostic.
13 Each CMSIS compliant compiler should support the functionality described in this section.
23 \brief Set to 1 when generating code for ARMv7-A (Cortex-A7)
25 The \b \#define __ARM_ARCH_7A__ is set to 1 when generating code for the ARMv7-A architecture. This architecture is for example used by the Cortex-A7 processor.
30 \brief Pass information from the compiler to the assembler.
32 The \b __ASM keyword can declare or define an embedded assembly function or incorporate inline assembly into a function
33 (shown in the code example below).
37 // Reverse bit order of value
39 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
43 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
51 \brief Recommend that function should be inlined by the compiler.
53 Inline functions offer a trade-off between code size and performance. By default, the compiler decides during optimization whether to
54 inline code or not. The \b __INLINE attribute gives the compiler an hint to inline this function.
55 Still, the compiler may decide not to inline the function. As the function is global an callable function is also generated.
59 const uint32_t led_mask[] = {1U << 4, 1U << 5, 1U << 6, 1U << 7};
61 //------------------------------------------------------------------------------
63 //------------------------------------------------------------------------------
64 __INLINE static void LED_On (uint32_t led) {
66 PTD->PCOR = led_mask[led];
73 \brief Define a static function should be inlined by the compiler.
75 Defines a static function that may be inlined by the compiler. If the compiler generates inline code for
76 all calls to this functions, no additional function implementation is generated which may further optimize space.
84 \todo Daniel: Need input to this
89 \brief Inform the compiler that a function does not return.
91 Informs the compiler that the function does not return. The compiler can then perform optimizations by
92 removing code that is never reached.
96 // OS idle demon (running when no other thread is ready to run).
98 __NO_RETURN void os_idle_demon (void);
104 \brief Inform that a variable shall be retained in executable image.
106 Definitions tagged with \b __USED in the source code should be not removed by the linker when detected as unused.
108 <b> Code Example:</b>
110 // Export following variables for debugging
111 __USED uint32_t const CMSIS_RTOS_API_Version = osCMSIS;
112 __USED uint32_t const CMSIS_RTOS_RTX_Version = osCMSIS_RTX;
113 __USED uint32_t const os_clockrate = OS_TICK;
114 __USED uint32_t const os_timernum = 0;
116 \todo Daniel: verify example
121 \brief Export a function or variable weakly to allow overwrites.
123 Functions defined with \b __WEAK export their symbols weakly. A function defined weak behaves like a normal defined
124 function unless a non-weak function with the same name is linked into the same image. If both a non-weak
125 function and a weak defined function exist in the same image, then all calls to the function resolve to the non-weak
128 Functions declared with \b __WEAK and then defined without \b __WEAK behave as non-weak functions.
130 <b> Code Example:</b>
132 __WEAK void SystemInit(void)
135 SystemCoreClockSetup();
141 \def __UNALIGNED_UINT32(x)
142 \brief Pointer for unaligned access of a uint32_t variable.
144 Defines a pointer to a uint32_t from an address that does not need to be aligned. This can then be used in read/write
145 operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying ARM
146 processor core and compiler settings.
148 <b> Code Example:</b>
152 void test (uint8_t *ptr) {
153 __UNALIGNED_UINT32(ptr) = val32;
160 \brief Minimum alignment for a variable.
162 Specifies a minimum alignment for a variable or structure field, measured in bytes.
164 <b> Code Example:</b>
166 uint32_t stack_space[0x100] __ALIGNED(8); // 8-byte alignment required
172 \brief Request smallest possible alignment.
174 Specifies that a type must have the smallest possible alignment.
176 <b> Code Example:</b>
180 uint32_t u32[2] __PACKED;
188 /* end group comp_cntrl_gr */
190 /* ########################### Core Function Access ########################### */
192 \defgroup core_reg_func_gr Core Register Access
193 \brief Functions to access the Cortex-A core registers
198 \fn __STATIC_INLINE uint32_t __get_FPSCR(void)
200 Returns the current value of the Floating Point Status/Control register.
202 \fn __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
204 Assigns the given value to the Floating Point Status/Control register.
206 \fn __STATIC_INLINE uint32_t __get_CPSR(void)
208 This function returns the content of the CPSR Register.
210 \fn __STATIC_INLINE void __set_SP(uint32_t stack)
212 This function assigns the given value to the current stack pointer.
214 \fn __STATIC_ASM void __set_PSP(uint32_t topOfProcStack)
216 This function assigns the given value to the USR/SYS Stack Pointer (PSP).
218 \fn __STATIC_ASM void __set_CPS_USR(void)
220 This function changes the processor state to User Mode
222 \fn __STATIC_INLINE uint32_t __get_FPEXC(void)
224 This function returns the current value of the Floating Point Exception Control register.
226 \fn __STATIC_INLINE void __set_FPEXC(uint32_t fpexc)
228 This function assigns the given value to the Floating Point Exception Control register.
230 \fn __STATIC_INLINE uint32_t __get_CPACR(void)
232 This function returns the current value of the Coprocessor Access Control register.
234 \fn __STATIC_INLINE void __set_CPACR(uint32_t cpacr)
236 This function assigns the given value to the Coprocessor Access Control register.
238 \fn __STATIC_INLINE uint32_t __get_CBAR()
240 This function returns the value of the Configuration Base Address register.
242 \fn __STATIC_INLINE uint32_t __get_TTBR0()
244 This function returns the value of the Translation Table Base Register 0.
246 \fn __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0)
248 This function assigns the given value to the Translation Table Base Register 0.
250 \fn __STATIC_INLINE uint32_t __get_DACR()
252 This function returns the value of the Domain Access Control Register.
254 \fn __STATIC_INLINE void __set_DACR(uint32_t dacr)
256 This function assigns the given value to the Domain Access Control Register.
258 \fn __STATIC_INLINE void __set_SCTLR(uint32_t sctlr)
260 This function assigns the given value to the System Control Register.
262 \fn __STATIC_INLINE uint32_t __get_SCTLR()
264 This function returns the value of the System Control Register.
266 \fn __STATIC_INLINE void __set_ACTRL(uint32_t actrl)
268 This function assigns the given value to the Auxiliary Control Register.
270 \fn __STATIC_INLINE uint32_t __get_ACTRL(void)
272 This function returns the value of the Auxiliary Control Register.
274 \fn __STATIC_INLINE uint32_t __get_MPIDR(void)
276 This function returns the value of the Multiprocessor Affinity Register.
278 \fn __STATIC_INLINE uint32_t __get_VBAR(void)
280 This function returns the value of the Vector Base Address Register.
282 \fn __STATIC_INLINE void __set_VBAR(uint32_t vbar)
284 This function assigns the given value to the Vector Base Address Register.
286 \fn __STATIC_INLINE void __set_CNTP_TVAL(uint32_t value)
288 This function assigns the given value to PL1 Physical Timer Value Register (CNTP_TVAL).
290 \fn __STATIC_INLINE uint32_t __get_CNTP_TVAL()
292 This function returns the value of the PL1 Physical Timer Value Register (CNTP_TVAL).
294 \fn __STATIC_INLINE void __set_CNTP_CTL(uint32_t value)
296 This function assigns the given value to PL1 Physical Timer Control Register (CNTP_CTL).
298 \fn __STATIC_INLINE void __set_TLBIALL(uint32_t value)
301 \fn __STATIC_INLINE void __set_BPIALL(uint32_t value)
303 Branch Predictor Invalidate All
305 \fn __STATIC_INLINE void __set_ICIALLU(uint32_t value)
307 Instruction Cache Invalidate All
309 \fn __STATIC_INLINE void __set_DCCMVAC(uint32_t value)
313 \fn __STATIC_INLINE void __set_DCIMVAC(uint32_t value)
315 Data cache invalidate
317 \fn __STATIC_INLINE void __set_DCCIMVAC(uint32_t value)
319 Data cache clean and invalidate
324 /* end group core_reg_func_gr */
326 /* ########################## Core Instruction Access ######################### */
328 \defgroup CMSIS_Core_InstructionInterface Intrinsic Functions for CPU Instructions
329 \brief Functions that generate specific Cortex-A CPU Instructions
335 \details No Operation does nothing. This instruction can be used for code alignment purposes.
339 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
342 \details Wait For Event is a hint instruction that permits the processor to enter
345 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
348 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
349 so that all instructions following the ISB are fetched from cache or memory,
350 after the instruction has been completed.
353 \details Acts as a special kind of Data Memory Barrier.
354 It completes when all explicit memory accesses before this instruction complete.
357 \details Ensures the apparent order of the explicit memory operations before
358 and after the instruction, without ensuring their completion.
362 \details Reverses the byte order in integer value.
366 \details Reverses the byte order in two unsigned short values.
368 /* leave definition here */
369 _STATIC_INLINE __ASM uint32_t __REV16(uint32_t value);
372 \details Reverses the byte order in a signed short value with sign extension to integer.
374 /* leave definition here */
375 \fn __STATIC_INLINE __ASM int32_t __REVSH(int32_t value);
379 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
382 \details Causes the processor to enter Debug state.
383 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
386 \fn __STATIC_INLINE uint32_t __RBIT(uint32_t value)
388 Reverses the bit order of the given value.
392 Counts the number of leading zeros of a data value.
396 /* end of group CMSIS_Core_InstructionInterface */