1 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
2 // ==== Semaphore Management ====
4 \addtogroup CMSIS_RTOS_SemaphoreMgmt Semaphores
6 \brief Access shared resources simultaneously from different threads.
8 Semaphores are used to manage and protect access to shared resources. Semaphores are very similar to
9 \ref CMSIS_RTOS_MutexMgmt "Mutexes". Whereas a Mutex permits just one thread to access a shared resource at a
10 time, a semaphore can be used to permit a fixed number of threads/ISRs to access a pool of shared resources. Using
11 semaphores, access to a group of identical peripherals can be managed (for example multiple DMA channels).
13 \image html "Semaphore.png" "CMSIS-RTOS Semaphore"
15 A semaphore object should be initialized to the maximum number of available tokens. This number of available resources is
16 specified as parameter of the \ref osSemaphoreNew function. Each time a semaphore token is obtained with \ref osSemaphoreAcquire
17 (in \em available state), the semaphore count is decremented. When the semaphore count is 0 (i.e. \em depleted state), no
18 more semaphore tokens can be obtained. The thread/ISR that tries to obtain the semaphore token needs to wait until the next
19 token is free. Semaphores are released with \ref osSemaphoreRelease incrementing the semaphore count.
21 \image html "semaphore_states.png" "CMSIS-RTOS Semaphore States"
23 \note The functions \ref osSemaphoreAcquire, \ref osSemaphoreGetCount, and \ref osSemaphoreRelease can be called from
24 \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines".
28 Due to their flexibility, semaphores cover a wide range of synchronizing applications. At the same time, they are perhaps the
29 most challenging RTOS object to understand. The following explains a use case for semaphores, taken from the book
30 <a href="https://greenteapress.com/wp/semaphores/" target="_blank">The Little Book Of Semaphores</a> by Allen B. Downey which
31 is available for free download.
33 <b>Non-binary Semaphore (Multiplex)</b>
35 A multiplex limits the number of threads that can access a critical section of code. For example, this could be a function
36 accessing DMA resources which can only support a limited number of calls.
38 To allow multiple threads to run the function, initialize a semaphore to the maximum number of threads that can be allowed.
39 The number of tokens in the semaphore represents the number of additional threads that may enter. If this number is zero,
40 then the next thread trying to access the function will have to wait until one of the other threads exits and releases its
41 token. When all threads have exited the token number is back to n. The following example shows the code for one of the
42 threads that might access the resource:
45 osSemaphoreId_t multiplex_id;
47 void thread_n (void) {
49 multiplex_id = osSemaphoreNew(3U, 3U, NULL);
51 osSemaphoreAcquire(multiplex_id, osWaitForever);
53 osSemaphoreRelease(multiplex_id);
58 <b>Producer/Consumer Semaphore</b>
60 The producer-consumer problem can be solved using two semaphores.
62 A first semaphore (\token{empty_id}) counts down the available (empty) buffers, i.e.
63 the producer thread can wait for available buffer slots by acquiring from this one.
65 A second semaphore (\token{filled_id}) counts up the used (filled) buffers, i.e.
66 the consumer thread can wait for available data by acquiring from this one.
68 It is crucial for the correct behaviour that the threads acquire and release on both
69 semaphores in the given sequence. According to this example one can have multiple
70 producer and/or consumer threads running concurrently.
73 #define BUFFER_SIZE 10U
75 osSemaphoreId_t empty_id = osSemaphoreNew(BUFFER_SIZE, BUFFER_SIZE, NULL);
76 osSemaphoreId_t filled_id = osSemaphoreNew(BUFFER_SIZE, 0U, NULL);
78 void producer_thread (void) {
80 osSemaphoreAcquire(empty_id, osWaitForever);
82 osSemaphoreRelease(filled_id);
86 void consumer_thread (void) {
89 osSemaphoreAcquire(filled_id, osWaitForever);
91 osSemaphoreRelease(empty_id);
99 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
101 \typedef osSemaphoreId_t
104 - \ref osSemaphoreNew
108 \struct osSemaphoreAttr_t
110 Specifies the following attributes for the \ref osSemaphoreNew function.
113 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
115 \fn osSemaphoreId_t osSemaphoreNew (uint32_t max_count, uint32_t initial_count, const osSemaphoreAttr_t *attr)
117 The function \b osSemaphoreNew creates and initializes a semaphore object that is used to manage access to shared resources
118 and returns the pointer to the semaphore object identifier or \token{NULL} in case of an error. It can be safely called
119 before the RTOS is started (call to \ref osKernelStart), but not before it is initialized (call to \ref osKernelInitialize).
121 The parameter \em max_count specifies the maximum number of available tokens. A \em max_count value of 1 creates a binary
124 The parameter \em initial_count sets the initial number of available tokens.
126 The parameter \em attr specifies additional semaphore attributes. Default attributes will be used if set to \token{NULL}.
128 \note This function \b cannot be called from \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines".
132 #include "cmsis_os2.h" // CMSIS RTOS header file
134 osSemaphoreId_t sid_Semaphore; // semaphore id
136 osThreadId_t tid_Thread_Semaphore; // thread id
138 void Thread_Semaphore (void *argument); // thread function
140 int Init_Semaphore (void) {
142 sid_Semaphore = osSemaphoreNew(2U, 2U, NULL);
143 if (sid_Semaphore == NULL) {
144 ; // Semaphore object not created, handle failure
147 tid_Thread_Semaphore = osThreadNew(Thread_Semaphore, NULL, NULL);
148 if (tid_Thread_Semaphore == NULL) {
155 void Thread_Semaphore (void *argument) {
159 ; // Insert thread code here...
161 val = osSemaphoreAcquire(sid_Semaphore, 10U); // wait for max. 10 ticks for semaphore token to get available
164 ; // Use protected code here...
165 osSemaphoreRelease(sid_Semaphore); // return a token back to a semaphore
167 case osErrorResource:
169 case osErrorParameter:
175 osThreadYield(); // suspend thread
181 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
183 \fn const char *osSemaphoreGetName (osSemaphoreId_t semaphore_id)
185 The function \b osSemaphoreGetName returns the pointer to the name string of the semaphore identified by parameter \a
186 semaphore_id or \token{NULL} in case of an error.
188 \note This function may be called from \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines".
191 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
193 \fn osStatus_t osSemaphoreAcquire (osSemaphoreId_t semaphore_id, uint32_t timeout)
195 The blocking function \b osSemaphoreAcquire waits until a token of the semaphore object specified by parameter
196 \a semaphore_id becomes available. If a token is available, the function instantly returns and decrements the token count.
198 The parameter \a timeout specifies how long the system waits to acquire the token. While the system waits, the thread
199 that is calling this function is put into the \ref ThreadStates "BLOCKED" state. The parameter \ref CMSIS_RTOS_TimeOutValue
200 "timeout" can have the following values:
201 - when \a timeout is \token{0}, the function returns instantly (i.e. try semantics).
202 - when \a timeout is set to \b osWaitForever the function will wait for an infinite time until the semaphore becomes
203 available (i.e. wait semantics).
204 - all other values specify a time in kernel ticks for a timeout (i.e. timed-wait semantics).
206 Possible \ref osStatus_t return values:
207 - \em osOK: the token has been obtained and the token count decremented.
208 - \em osErrorTimeout: the token could not be obtained in the given time.
209 - \em osErrorResource: the token could not be obtained when no \a timeout was specified.
210 - \em osErrorParameter: the parameter \a semaphore_id is \token{NULL} or invalid.
211 - \em osErrorSafetyClass: the calling thread safety class is lower than the safety class of the specified semaphore.
213 \note May be called from \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines" if the parameter \a timeout is set to
218 Refer to \ref osSemaphoreNew.
221 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
223 \fn osStatus_t osSemaphoreRelease (osSemaphoreId_t semaphore_id)
225 The function \b osSemaphoreRelease releases a token of the semaphore object specified by parameter \a semaphore_id. Tokens
226 can only be released up to the maximum count specified at creation time, see \ref osSemaphoreNew. Other threads that
227 currently wait for a token of this semaphore object will be put into the \ref ThreadStates "READY" state.
229 Possible \ref osStatus_t return values:
230 - \em osOK: the token has been released and the count incremented.
231 - \em osErrorResource: the token could not be released (maximum token count has been reached).
232 - \em osErrorParameter: the parameter \a semaphore_id is \token{NULL} or invalid.
233 - \em osErrorSafetyClass: the calling thread safety class is lower than the safety class of the specified semaphore.
235 \note This function may be called from \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines".
239 Refer to \ref osSemaphoreNew.
242 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
244 \fn uint32_t osSemaphoreGetCount (osSemaphoreId_t semaphore_id)
246 The function \b osSemaphoreGetCount returns the number of available tokens of the semaphore object specified by parameter
247 \a semaphore_id. In case of an error it returns \token{0}.
249 \note This function may be called from \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines".
252 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
254 \fn osStatus_t osSemaphoreDelete (osSemaphoreId_t semaphore_id)
256 The function \b osSemaphoreDelete deletes a semaphore object specified by parameter \a semaphore_id. It releases internal
257 memory obtained for semaphore handling. After this call, the \a semaphore_id is no longer valid and cannot be used. The
258 semaphore may be created again using the function \ref osSemaphoreNew.
260 Possible \ref osStatus_t return values:
261 - \em osOK: the semaphore object has been deleted.
262 - \em osErrorParameter: the parameter \a semaphore_id is \token{NULL} or invalid.
263 - \em osErrorResource: the semaphore is in an invalid state.
264 - \em osErrorISR: \b osSemaphoreDelete cannot be called from interrupt service routines.
265 - \em osErrorSafetyClass: the calling thread safety class is lower than the safety class of the specified semaphore.
267 \note This function \b cannot be called from \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines".
271 // these struct members must stay outside the group to avoid double entries in documentation
273 \var osSemaphoreAttr_t::attr_bits
275 Reserved for future use (must be set to '0' for future compatibility).
277 \var osSemaphoreAttr_t::cb_mem
279 Pointer to a memory for the semaphore control block object. Refer to \ref CMSIS_RTOS_MemoryMgmt_Manual for more information.
281 Default: \token{NULL} to use \ref CMSIS_RTOS_MemoryMgmt_Automatic for the semaphore control block.
283 \var osSemaphoreAttr_t::cb_size
285 The size (in bytes) of memory block passed with \ref cb_mem. Required value depends on the underlying kernel implementation.
287 Default: \token{0} as the default is no memory provided with \ref cb_mem.
289 \var osSemaphoreAttr_t::name
291 Pointer to a constant string with a human readable name (displayed during debugging) of the semaphore object.
293 Default: \token{NULL} no name specified.