1 /**************************************************************************//**
\r
3 * @brief CMSIS Cortex-M Core Function/Instruction Header File
\r
5 * @date 16. June 2016
\r
6 ******************************************************************************/
\r
8 * Copyright (c) 2009-2016 ARM Limited. All rights reserved.
\r
10 * SPDX-License-Identifier: Apache-2.0
\r
12 * Licensed under the Apache License, Version 2.0 (the License); you may
\r
13 * not use this file except in compliance with the License.
\r
14 * You may obtain a copy of the License at
\r
16 * http://www.apache.org/licenses/LICENSE-2.0
\r
18 * Unless required by applicable law or agreed to in writing, software
\r
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
\r
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
\r
21 * See the License for the specific language governing permissions and
\r
22 * limitations under the License.
\r
25 #ifndef __CMSIS_GCC_H
\r
26 #define __CMSIS_GCC_H
\r
28 /* ignore some GCC warnings */
\r
29 #if defined ( __GNUC__ )
\r
30 #pragma GCC diagnostic push
\r
31 #pragma GCC diagnostic ignored "-Wsign-conversion"
\r
32 #pragma GCC diagnostic ignored "-Wconversion"
\r
33 #pragma GCC diagnostic ignored "-Wunused-parameter"
\r
37 /* ########################### Core Function Access ########################### */
\r
38 /** \ingroup CMSIS_Core_FunctionInterface
\r
39 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
\r
44 \brief Enable IRQ Interrupts
\r
45 \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
\r
46 Can only be executed in Privileged modes.
\r
48 __attribute__((always_inline)) __STATIC_INLINE void __enable_irq(void)
\r
50 __ASM volatile ("cpsie i" : : : "memory");
\r
55 \brief Disable IRQ Interrupts
\r
56 \details Disables IRQ interrupts by setting the I-bit in the CPSR.
\r
57 Can only be executed in Privileged modes.
\r
59 __attribute__((always_inline)) __STATIC_INLINE void __disable_irq(void)
\r
61 __ASM volatile ("cpsid i" : : : "memory");
\r
66 \brief Get Control Register
\r
67 \details Returns the content of the Control Register.
\r
68 \return Control Register value
\r
70 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_CONTROL(void)
\r
74 __ASM volatile ("MRS %0, control" : "=r" (result) );
\r
80 \brief Set Control Register
\r
81 \details Writes the given value to the Control Register.
\r
82 \param [in] control Control Register value to set
\r
84 __attribute__((always_inline)) __STATIC_INLINE void __set_CONTROL(uint32_t control)
\r
86 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
\r
91 \brief Get IPSR Register
\r
92 \details Returns the content of the IPSR Register.
\r
93 \return IPSR Register value
\r
95 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_IPSR(void)
\r
99 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
\r
105 \brief Get APSR Register
\r
106 \details Returns the content of the APSR Register.
\r
107 \return APSR Register value
\r
109 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_APSR(void)
\r
113 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
\r
119 \brief Get xPSR Register
\r
120 \details Returns the content of the xPSR Register.
\r
121 \return xPSR Register value
\r
123 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_xPSR(void)
\r
127 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
\r
133 \brief Get Process Stack Pointer
\r
134 \details Returns the current value of the Process Stack Pointer (PSP).
\r
135 \return PSP Register value
\r
137 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSP(void)
\r
139 register uint32_t result;
\r
141 __ASM volatile ("MRS %0, psp" : "=r" (result) );
\r
147 \brief Set Process Stack Pointer
\r
148 \details Assigns the given value to the Process Stack Pointer (PSP).
\r
149 \param [in] topOfProcStack Process Stack Pointer value to set
\r
151 __attribute__((always_inline)) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
\r
153 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : "sp");
\r
158 \brief Get Main Stack Pointer
\r
159 \details Returns the current value of the Main Stack Pointer (MSP).
\r
160 \return MSP Register value
\r
162 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSP(void)
\r
164 register uint32_t result;
\r
166 __ASM volatile ("MRS %0, msp" : "=r" (result) );
\r
172 \brief Set Main Stack Pointer
\r
173 \details Assigns the given value to the Main Stack Pointer (MSP).
\r
174 \param [in] topOfMainStack Main Stack Pointer value to set
\r
176 __attribute__((always_inline)) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
\r
178 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : "sp");
\r
183 \brief Get Priority Mask
\r
184 \details Returns the current state of the priority mask bit from the Priority Mask Register.
\r
185 \return Priority Mask value
\r
187 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PRIMASK(void)
\r
191 __ASM volatile ("MRS %0, primask" : "=r" (result) );
\r
197 \brief Set Priority Mask
\r
198 \details Assigns the given value to the Priority Mask Register.
\r
199 \param [in] priMask Priority Mask
\r
201 __attribute__((always_inline)) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
\r
203 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
\r
207 #if ((defined (__CORTEX_M ) && (__CORTEX_M >= 3U)) || \
\r
208 (defined (__CORTEX_SC) && (__CORTEX_SC >= 300U)) )
\r
212 \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
\r
213 Can only be executed in Privileged modes.
\r
215 __attribute__((always_inline)) __STATIC_INLINE void __enable_fault_irq(void)
\r
217 __ASM volatile ("cpsie f" : : : "memory");
\r
223 \details Disables FIQ interrupts by setting the F-bit in the CPSR.
\r
224 Can only be executed in Privileged modes.
\r
226 __attribute__((always_inline)) __STATIC_INLINE void __disable_fault_irq(void)
\r
228 __ASM volatile ("cpsid f" : : : "memory");
\r
233 \brief Get Base Priority
\r
234 \details Returns the current value of the Base Priority register.
\r
235 \return Base Priority register value
\r
237 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_BASEPRI(void)
\r
241 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
\r
247 \brief Set Base Priority
\r
248 \details Assigns the given value to the Base Priority register.
\r
249 \param [in] basePri Base Priority value to set
\r
251 __attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
\r
253 __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
\r
258 \brief Set Base Priority with condition
\r
259 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
\r
260 or the new value increases the BASEPRI priority level.
\r
261 \param [in] basePri Base Priority value to set
\r
263 __attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)
\r
265 __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");
\r
270 \brief Get Fault Mask
\r
271 \details Returns the current value of the Fault Mask register.
\r
272 \return Fault Mask register value
\r
274 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
\r
278 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
\r
284 \brief Set Fault Mask
\r
285 \details Assigns the given value to the Fault Mask register.
\r
286 \param [in] faultMask Fault Mask value to set
\r
288 __attribute__((always_inline)) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
\r
290 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
\r
293 #endif /* ((defined (__CORTEX_M ) && (__CORTEX_M >= 3U)) || \
\r
294 (defined (__CORTEX_SC) && (__CORTEX_SC >= 300U)) ) */
\r
297 #if (defined (__CORTEX_M) && (__CORTEX_M >= 4U))
\r
301 \details Returns the current value of the Floating Point Status/Control register.
\r
302 \return Floating Point Status/Control register value
\r
304 __attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FPSCR(void)
\r
306 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
\r
307 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
\r
310 __ASM volatile (""); /* Empty asm statement works as a scheduling barrier */
\r
311 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
\r
312 __ASM volatile ("");
\r
322 \details Assigns the given value to the Floating Point Status/Control register.
\r
323 \param [in] fpscr Floating Point Status/Control value to set
\r
325 __attribute__((always_inline)) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
\r
327 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
\r
328 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
\r
329 __ASM volatile (""); /* Empty asm statement works as a scheduling barrier */
\r
330 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
\r
331 __ASM volatile ("");
\r
335 #endif /* (defined (__CORTEX_M) && (__CORTEX_M >= 4U)) */
\r
339 /*@} end of CMSIS_Core_RegAccFunctions */
\r
342 /* ########################## Core Instruction Access ######################### */
\r
343 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
\r
344 Access to dedicated instructions
\r
348 /* Define macros for porting to both thumb1 and thumb2.
\r
349 * For thumb1, use low register (r0-r7), specified by constraint "l"
\r
350 * Otherwise, use general registers, specified by constraint "r" */
\r
351 #if defined (__thumb__) && !defined (__thumb2__)
\r
352 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
\r
353 #define __CMSIS_GCC_USE_REG(r) "l" (r)
\r
355 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
\r
356 #define __CMSIS_GCC_USE_REG(r) "r" (r)
\r
360 \brief No Operation
\r
361 \details No Operation does nothing. This instruction can be used for code alignment purposes.
\r
363 //__attribute__((always_inline)) __STATIC_INLINE void __NOP(void)
\r
365 // __ASM volatile ("nop");
\r
367 #define __NOP() __ASM volatile ("nop") /* This implementation generates debug information */
\r
370 \brief Wait For Interrupt
\r
371 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
\r
373 //__attribute__((always_inline)) __STATIC_INLINE void __WFI(void)
\r
375 // __ASM volatile ("wfi");
\r
377 #define __WFI() __ASM volatile ("wfi") /* This implementation generates debug information */
\r
381 \brief Wait For Event
\r
382 \details Wait For Event is a hint instruction that permits the processor to enter
\r
383 a low-power state until one of a number of events occurs.
\r
385 //__attribute__((always_inline)) __STATIC_INLINE void __WFE(void)
\r
387 // __ASM volatile ("wfe");
\r
389 #define __WFE() __ASM volatile ("wfe") /* This implementation generates debug information */
\r
394 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
\r
396 //__attribute__((always_inline)) __STATIC_INLINE void __SEV(void)
\r
398 // __ASM volatile ("sev");
\r
400 #define __SEV() __ASM volatile ("sev") /* This implementation generates debug information */
\r
404 \brief Instruction Synchronization Barrier
\r
405 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
\r
406 so that all instructions following the ISB are fetched from cache or memory,
\r
407 after the instruction has been completed.
\r
409 __attribute__((always_inline)) __STATIC_INLINE void __ISB(void)
\r
411 __ASM volatile ("isb 0xF":::"memory");
\r
416 \brief Data Synchronization Barrier
\r
417 \details Acts as a special kind of Data Memory Barrier.
\r
418 It completes when all explicit memory accesses before this instruction complete.
\r
420 __attribute__((always_inline)) __STATIC_INLINE void __DSB(void)
\r
422 __ASM volatile ("dsb 0xF":::"memory");
\r
427 \brief Data Memory Barrier
\r
428 \details Ensures the apparent order of the explicit memory operations before
\r
429 and after the instruction, without ensuring their completion.
\r
431 __attribute__((always_inline)) __STATIC_INLINE void __DMB(void)
\r
433 __ASM volatile ("dmb 0xF":::"memory");
\r
438 \brief Reverse byte order (32 bit)
\r
439 \details Reverses the byte order in integer value.
\r
440 \param [in] value Value to reverse
\r
441 \return Reversed value
\r
443 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value)
\r
445 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
\r
446 return __builtin_bswap32(value);
\r
450 __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
\r
457 \brief Reverse byte order (16 bit)
\r
458 \details Reverses the byte order in two unsigned short values.
\r
459 \param [in] value Value to reverse
\r
460 \return Reversed value
\r
462 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
\r
466 __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
\r
472 \brief Reverse byte order in signed short value
\r
473 \details Reverses the byte order in a signed short value with sign extension to integer.
\r
474 \param [in] value Value to reverse
\r
475 \return Reversed value
\r
477 __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
\r
479 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
\r
480 return (short)__builtin_bswap16(value);
\r
484 __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
\r
491 \brief Rotate Right in unsigned value (32 bit)
\r
492 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\r
493 \param [in] op1 Value to rotate
\r
494 \param [in] op2 Number of Bits to rotate
\r
495 \return Rotated value
\r
497 __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
\r
499 return (op1 >> op2) | (op1 << (32U - op2));
\r
505 \details Causes the processor to enter Debug state.
\r
506 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\r
507 \param [in] value is ignored by the processor.
\r
508 If required, a debugger can use it to store additional information about the breakpoint.
\r
510 #define __BKPT(value) __ASM volatile ("bkpt "#value)
\r
514 \brief Reverse bit order of value
\r
515 \details Reverses the bit order of the given value.
\r
516 \param [in] value Value to reverse
\r
517 \return Reversed value
\r
519 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
\r
523 #if ((defined (__CORTEX_M ) && (__CORTEX_M >= 3U)) || \
\r
524 (defined (__CORTEX_SC) && (__CORTEX_SC >= 300U)) )
\r
525 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
\r
527 int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
\r
529 result = value; /* r will be reversed bits of v; first get LSB of v */
\r
530 for (value >>= 1U; value; value >>= 1U)
\r
533 result |= value & 1U;
\r
536 result <<= s; /* shift when v's highest bits are zero */
\r
543 \brief Count leading zeros
\r
544 \details Counts the number of leading zeros of a data value.
\r
545 \param [in] value Value to count the leading zeros
\r
546 \return number of leading zeros in value
\r
548 #define __CLZ __builtin_clz
\r
551 #if ((defined (__CORTEX_M ) && (__CORTEX_M >= 3U)) || \
\r
552 (defined (__CORTEX_SC) && (__CORTEX_SC >= 300U)) )
\r
555 \brief LDR Exclusive (8 bit)
\r
556 \details Executes a exclusive LDR instruction for 8 bit value.
\r
557 \param [in] ptr Pointer to data
\r
558 \return value of type uint8_t at (*ptr)
\r
560 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
\r
564 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
\r
565 __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
\r
567 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
\r
568 accepted by assembler. So has to use following less efficient pattern.
\r
570 __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
\r
572 return ((uint8_t) result); /* Add explicit type cast here */
\r
577 \brief LDR Exclusive (16 bit)
\r
578 \details Executes a exclusive LDR instruction for 16 bit values.
\r
579 \param [in] ptr Pointer to data
\r
580 \return value of type uint16_t at (*ptr)
\r
582 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
\r
586 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
\r
587 __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
\r
589 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
\r
590 accepted by assembler. So has to use following less efficient pattern.
\r
592 __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
\r
594 return ((uint16_t) result); /* Add explicit type cast here */
\r
599 \brief LDR Exclusive (32 bit)
\r
600 \details Executes a exclusive LDR instruction for 32 bit values.
\r
601 \param [in] ptr Pointer to data
\r
602 \return value of type uint32_t at (*ptr)
\r
604 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
\r
608 __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
\r
614 \brief STR Exclusive (8 bit)
\r
615 \details Executes a exclusive STR instruction for 8 bit values.
\r
616 \param [in] value Value to store
\r
617 \param [in] ptr Pointer to location
\r
618 \return 0 Function succeeded
\r
619 \return 1 Function failed
\r
621 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
\r
625 __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
\r
631 \brief STR Exclusive (16 bit)
\r
632 \details Executes a exclusive STR instruction for 16 bit values.
\r
633 \param [in] value Value to store
\r
634 \param [in] ptr Pointer to location
\r
635 \return 0 Function succeeded
\r
636 \return 1 Function failed
\r
638 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
\r
642 __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
\r
648 \brief STR Exclusive (32 bit)
\r
649 \details Executes a exclusive STR instruction for 32 bit values.
\r
650 \param [in] value Value to store
\r
651 \param [in] ptr Pointer to location
\r
652 \return 0 Function succeeded
\r
653 \return 1 Function failed
\r
655 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
\r
659 __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
\r
665 \brief Remove the exclusive lock
\r
666 \details Removes the exclusive lock which is created by LDREX.
\r
668 __attribute__((always_inline)) __STATIC_INLINE void __CLREX(void)
\r
670 __ASM volatile ("clrex" ::: "memory");
\r
675 \brief Signed Saturate
\r
676 \details Saturates a signed value.
\r
677 \param [in] value Value to be saturated
\r
678 \param [in] sat Bit position to saturate to (1..32)
\r
679 \return Saturated value
\r
681 #define __SSAT(ARG1,ARG2) \
\r
683 int32_t __RES, __ARG1 = (ARG1); \
\r
684 __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
\r
690 \brief Unsigned Saturate
\r
691 \details Saturates an unsigned value.
\r
692 \param [in] value Value to be saturated
\r
693 \param [in] sat Bit position to saturate to (0..31)
\r
694 \return Saturated value
\r
696 #define __USAT(ARG1,ARG2) \
\r
698 uint32_t __RES, __ARG1 = (ARG1); \
\r
699 __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
\r
705 \brief Rotate Right with Extend (32 bit)
\r
706 \details Moves each bit of a bitstring right by one bit.
\r
707 The carry input is shifted in at the left end of the bitstring.
\r
708 \param [in] value Value to rotate
\r
709 \return Rotated value
\r
711 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
\r
715 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
\r
721 \brief LDRT Unprivileged (8 bit)
\r
722 \details Executes a Unprivileged LDRT instruction for 8 bit value.
\r
723 \param [in] ptr Pointer to data
\r
724 \return value of type uint8_t at (*ptr)
\r
726 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *ptr)
\r
730 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
\r
731 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
\r
733 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
\r
734 accepted by assembler. So has to use following less efficient pattern.
\r
736 __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
\r
738 return ((uint8_t) result); /* Add explicit type cast here */
\r
743 \brief LDRT Unprivileged (16 bit)
\r
744 \details Executes a Unprivileged LDRT instruction for 16 bit values.
\r
745 \param [in] ptr Pointer to data
\r
746 \return value of type uint16_t at (*ptr)
\r
748 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *ptr)
\r
752 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
\r
753 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
\r
755 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
\r
756 accepted by assembler. So has to use following less efficient pattern.
\r
758 __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
\r
760 return ((uint16_t) result); /* Add explicit type cast here */
\r
765 \brief LDRT Unprivileged (32 bit)
\r
766 \details Executes a Unprivileged LDRT instruction for 32 bit values.
\r
767 \param [in] ptr Pointer to data
\r
768 \return value of type uint32_t at (*ptr)
\r
770 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *ptr)
\r
774 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
\r
780 \brief STRT Unprivileged (8 bit)
\r
781 \details Executes a Unprivileged STRT instruction for 8 bit values.
\r
782 \param [in] value Value to store
\r
783 \param [in] ptr Pointer to location
\r
785 __attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
\r
787 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
\r
792 \brief STRT Unprivileged (16 bit)
\r
793 \details Executes a Unprivileged STRT instruction for 16 bit values.
\r
794 \param [in] value Value to store
\r
795 \param [in] ptr Pointer to location
\r
797 __attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
\r
799 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
\r
804 \brief STRT Unprivileged (32 bit)
\r
805 \details Executes a Unprivileged STRT instruction for 32 bit values.
\r
806 \param [in] value Value to store
\r
807 \param [in] ptr Pointer to location
\r
809 __attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
\r
811 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
\r
814 #endif /* ((defined (__CORTEX_M ) && (__CORTEX_M >= 3U)) || \
\r
815 (defined (__CORTEX_SC) && (__CORTEX_SC >= 300U)) ) */
\r
817 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
\r
820 /* ################### Compiler specific Intrinsics ########################### */
\r
821 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
\r
822 Access to dedicated SIMD instructions
\r
826 #if (defined (__CORTEX_M) && (__CORTEX_M >= 4U))
\r
828 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
\r
832 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
836 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
\r
840 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
844 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
\r
848 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
852 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
\r
856 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
860 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
\r
864 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
868 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
\r
872 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
877 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
\r
881 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
885 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
\r
889 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
893 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
\r
897 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
901 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
\r
905 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
909 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
\r
913 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
917 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
\r
921 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
926 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
\r
930 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
934 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
\r
938 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
942 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
\r
946 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
950 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
\r
954 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
958 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
\r
962 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
966 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
\r
970 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
974 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
\r
978 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
982 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
\r
986 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
990 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
\r
994 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
998 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
\r
1002 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1006 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
\r
1010 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1014 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
\r
1018 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1022 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
\r
1026 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1030 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
\r
1034 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1038 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
\r
1042 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1046 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
\r
1050 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1054 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
\r
1058 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1062 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
\r
1066 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1070 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
\r
1074 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1078 __attribute__((always_inline)) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
\r
1082 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1086 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
\r
1090 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1094 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
\r
1098 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1102 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
\r
1106 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1110 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
\r
1114 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1118 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
\r
1122 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1126 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
\r
1130 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
\r
1134 #define __SSAT16(ARG1,ARG2) \
\r
1136 int32_t __RES, __ARG1 = (ARG1); \
\r
1137 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
\r
1141 #define __USAT16(ARG1,ARG2) \
\r
1143 uint32_t __RES, __ARG1 = (ARG1); \
\r
1144 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
\r
1148 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
\r
1152 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
\r
1156 __attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
\r
1160 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1164 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
\r
1168 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
\r
1172 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
\r
1176 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1180 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
\r
1184 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1188 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
\r
1192 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1196 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
\r
1200 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
\r
1204 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
\r
1208 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
\r
1212 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
\r
1220 #ifndef __ARMEB__ /* Little endian */
\r
1221 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
\r
1222 #else /* Big endian */
\r
1223 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
\r
1229 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
\r
1237 #ifndef __ARMEB__ /* Little endian */
\r
1238 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
\r
1239 #else /* Big endian */
\r
1240 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
\r
1246 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
\r
1250 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1254 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
\r
1258 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1262 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
\r
1266 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
\r
1270 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
\r
1274 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
\r
1278 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
\r
1286 #ifndef __ARMEB__ /* Little endian */
\r
1287 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
\r
1288 #else /* Big endian */
\r
1289 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
\r
1295 __attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
\r
1303 #ifndef __ARMEB__ /* Little endian */
\r
1304 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
\r
1305 #else /* Big endian */
\r
1306 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
\r
1312 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
\r
1316 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1320 __attribute__((always_inline)) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2)
\r
1324 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1328 __attribute__((always_inline)) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2)
\r
1332 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
\r
1336 #define __PKHBT(ARG1,ARG2,ARG3) \
\r
1338 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
\r
1339 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
\r
1343 #define __PKHTB(ARG1,ARG2,ARG3) \
\r
1345 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
\r
1347 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
\r
1349 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
\r
1353 __attribute__((always_inline)) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
\r
1357 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
\r
1361 #endif /* (defined (__CORTEX_M) && (__CORTEX_M >= 4U)) */
\r
1362 /*@} end of group CMSIS_SIMD_intrinsics */
\r
1365 #if defined ( __GNUC__ )
\r
1366 #pragma GCC diagnostic pop
\r
1369 #endif /* __CMSIS_GCC_H */
\r