2 \page using_pg Using CMSIS in Embedded Applications
7 To use the CMSIS-Core (Cortex-M) the following files are added to the embedded application:
8 - \ref startup_s_pg with reset handler and exception vectors.
9 - \ref system_c_pg with general device configuration (i.e. for clock and BUS setup).
10 - \ref device_h_pg gives access to processor core and all peripherals.
12 \note The files \ref startup_s_pg and \ref system_c_pg may require application specific adaptations and therefore should be copied
13 into the application project folder prior configuration. The \ref device_h_pg is included in all source files that need device access
14 and can be stored on a central include folder that is generic for all projects.
16 The \ref startup_s_pg is executed after reset and calls \ref SystemInit. After the system initialization control is transferred to the C/C++ run-time
17 library which performs initialization and calls the \b main function in the user code. In addition the \ref startup_s_pg contains all exception and
18 interrupt vectors and implements a default function for every interrupt. It may also contain stack and heap configurations for the user application.
20 The \ref system_c_pg performs the setup for the processor clock. The variable \ref SystemCoreClock indicates the CPU clock speed.
21 \ref system_init_gr describes the minimum feature set. In addition the file may contain functions for the memory BUS setup and clock re-configuration.
23 The \ref device_h_pg is the central include file that the application programmer is using in the C source code. It provides the following features:
24 - \ref peripheral_gr provides a standardized register layout for all peripherals. Optionally functions for device-specific peripherals may be available.
25 - \ref NVIC_gr can be accessed with standardized symbols and functions for the Nested Interrupt Vector Controller (NVIC) are provided.
26 - \ref intrinsic_CPU_gr allow to access special instructions, for example for activating sleep mode or the NOP instruction.
27 - \ref intrinsic_SIMD_gr provide access to the DSP-oriented instructions.
28 - \ref SysTick_gr function to configure and start a periodic timer interrupt.
29 - \ref ITM_Debug_gr are functions that allow printf-style I/O via the CoreSight Debug Unit and ITM communication.
31 CMSIS-Pack provides the <b>\#define CMSIS_header_file</b> in <a href="../../Pack/html/pdsc_components_pg.html#RTE_Components_h"><b>RTE_Components.h</b></a> which gives you access to this <b><i>device</i>.h</b> file.
33 \image html "CMSIS_CORE_Files_user.png" "CMSIS-Core (Cortex-M) User Files"
35 The CMSIS-Core (Cortex-M) are device specific. In addition, the \ref startup_s_pg is also compiler vendor specific.
36 The various compiler vendor tool chains may provide folders that contain the CMSIS files for each supported device.
39 For example, the following files are provided in MDK to support the STM32F10x Connectivity Line device variants:
41 <table class="cmtable">
47 <td>".\ARM\Startup\ST\STM32F10x\startup_stm32f10x_cl.s"</td>
48 <td>\ref startup_s_pg for the STM32F10x Connectivity Line device variants.</td>
51 <td>".\ARM\Startup\ST\STM32F10x\system_stmf10x.c"</td>
52 <td>\ref system_c_pg for the STM32F10x device families.</td>
55 <td>".\ARM\INC\ST\STM32F10x\stm32f10x.h"</td>
56 <td>\ref device_h_pg for the STM32F10x device families.</td>
59 <td>".\ARM\INC\ST\STM32F10x\system_stm32f10x.h"</td>
60 <td>\ref system_Device_h_sec for the STM32F10x device families.</td>
65 \note The silicon vendors create these device-specific CMSIS-Core (Cortex-M) files based on \ref templates_pg provide by Arm.
67 Thereafter, the functions described under <a href="Modules.html">\b Reference </a> can be used in the application.
70 - \subpage using_CMSIS is a simple example that shows the usage of the CMSIS layer.
71 - \subpage using_VTOR_pg shows how to remap the interrupt vector table.
72 - \subpage using_ARM_pg explains how to use CMSIS-Core (Cortex-M) for Arm processors.
75 \page using_CMSIS Basic CMSIS Example
77 A typical example for using the CMSIS layer is provided below. The example is based on a STM32F10x Device.
80 #include <stm32f10x.h> // File name depends on device used
82 uint32_t volatile msTicks; // Counter for millisecond Interval
84 void SysTick_Handler (void) { // SysTick Interrupt Handler
85 msTicks++; // Increment Counter
88 void WaitForTick (void) {
91 curTicks = msTicks; // Save Current SysTick Value
92 while (msTicks == curTicks) { // Wait for next SysTick Interrupt
93 __WFE (); // Power-Down until next Event/Interrupt
97 void TIM1_UP_IRQHandler (void) { // Timer Interrupt Handler
98 ; // Add user code here
101 void timer1_init(int frequency) { // Set up Timer (device specific)
102 NVIC_SetPriority (TIM1_UP_IRQn, 1); // Set Timer priority
103 NVIC_EnableIRQ (TIM1_UP_IRQn); // Enable Timer Interrupt
107 void Device_Initialization (void) { // Configure & Initialize MCU
108 if (SysTick_Config (SystemCoreClock / 1000)) { // SysTick 1mSec
111 timer1_init (); // setup device-specific timer
115 // The processor clock is initialized by CMSIS startup + system file
116 void main (void) { // user application starts here
117 Device_Initialization (); // Configure & Initialize MCU
118 while (1) { // Endless Loop (the Super-Loop)
119 __disable_irq (); // Disable all interrupts
120 Get_InputValues (); // Read Values
121 __enable_irq (); // Enable all interrupts
122 Calculation_Response (); // Calculate Results
123 Output_Response (); // Output Results
124 WaitForTick (); // Synchronize to SysTick Timer
129 CMSIS-Pack provides the <b>\#define CMSIS_header_file</b> in <a href="../../Pack/html/pdsc_components_pg.html#RTE_Components_h"><b>RTE_Components.h</b></a> which gives you access to the <b><i>device</i>.h</b> file
130 of a project. This allows you to generate generic software components that use the device selected in a project.
133 #include "RTE_Components.h" // include information about project configuration
134 #include CMSIS_device_header // include <device>.h file
137 \page using_VTOR_pg Using Interrupt Vector Remap
139 Most Cortex-M processors provide VTOR register for remapping interrupt vectors. The following example shows
140 a typical use case where the interrupt vectors are copied to RAM and the SysTick_Handler is replaced.
143 #include "ARMCM3.h" // Device header
145 /* externals from startup_ARMCM3.s */
146 extern uint32_t __Vectors[]; /* vector table ROM */
148 #define VECTORTABLE_SIZE (256) /* size Cortex-M3 vector table */
149 #define VECTORTABLE_ALIGNMENT (0x100ul) /* 16 Cortex + 32 ARMCM3 = 48 words */
150 /* next power of 2 = 256 */
152 /* new vector table in RAM */
153 uint32_t vectorTable_RAM[VECTORTABLE_SIZE] __attribute__(( aligned (VECTORTABLE_ALIGNMENT) ));
155 /*----------------------------------------------------------------------------
157 *----------------------------------------------------------------------------*/
158 volatile uint32_t msTicks = 0; /* counts 1ms timeTicks */
159 void SysTick_Handler(void) {
160 msTicks++; /* increment counter */
163 /*----------------------------------------------------------------------------
164 SysTick_Handler (RAM)
165 *----------------------------------------------------------------------------*/
166 volatile uint32_t msTicks_RAM = 0; /* counts 1ms timeTicks */
167 void SysTick_Handler_RAM(void) {
168 msTicks_RAM++; /* increment counter */
171 /*----------------------------------------------------------------------------
173 *----------------------------------------------------------------------------*/
177 for (i = 0; i < VECTORTABLE_SIZE; i++) {
178 vectorTable_RAM[i] = __Vectors[i]; /* copy vector table to RAM */
180 /* replace SysTick Handler */
181 vectorTable_RAM[SysTick_IRQn + 16] = (uint32_t)SysTick_Handler_RAM;
183 /* relocate vector table */
185 SCB->VTOR = (uint32_t)&vectorTable_RAM;
189 SystemCoreClockUpdate(); /* Get Core Clock Frequency */
190 SysTick_Config(SystemCoreClock / 1000ul); /* Setup SysTick Timer for 1 msec */
197 \page using_ARM_pg Using CMSIS with generic Arm Processors
199 Arm provides CMSIS-Core (Cortex-M) files for the supported Arm Processors and for various compiler vendors.
200 These files can be used when standard Arm processors should be used in a project.
201 The table below lists the folder and device names of the Arm processors.
203 <table class="cmtable">
210 <td>".\Device\ARM\ARMCM0"</td>
212 <td>Contains \b Include and \b Source template files configured for the Cortex-M0 processor.
213 The device name is ARMCM0 and the name of the \ref device_h_pg is <ARMCM0.h>.
217 <td>".\Device\ARM\ARMCM0plus"</td>
219 <td>Contains \b Include and \b Source template files configured for the Cortex-M0+ processor.
220 The device name is ARMCM0plus and the name of the \ref device_h_pg is <ARMCM0plus.h>.
224 <td>".\Device\ARM\ARMCM3"</td>
226 <td>Contains \b Include and \b Source template files configured for the Cortex-M3 processor.
227 The device name is ARMCM3 and the name of the \ref device_h_pg is <ARMCM3.h>.
231 <td>".\Device\ARM\ARMCM4"</td>
233 <td>Contains \b Include and \b Source template files configured for the Cortex-M4 processor.
234 The device name is ARMCM4 and the name of the \ref device_h_pg is <ARMCM4.h>.
238 <td>".\Device\ARM\ARMCM7"</td>
240 <td>Contains \b Include and \b Source template files configured for the Cortex-M7 processor.
241 The device name is ARMCM7 and the name of the \ref device_h_pg is <ARMCM7.h>.
246 <td>".\Device\ARM\ARMSC000"</td>
247 <td>SecurCore SC000</td>
248 <td>Contains \b Include and \b Source template files configured for the SecurCore SC000 processor.
249 The device name is ARMSC000 and the name of the \ref device_h_pg is <ARMSC000.h>.
253 <td>".\Device\ARM\ARMSC300"</td>
254 <td>SecurCore SC300</td>
255 <td>Contains \b Include and \b Source template files configured for the SecurCore SC300 processor.
256 The device name is ARMSC300 and the name of the \ref device_h_pg is <ARMSC300.h>.
263 CMSIS-Pack provides the <b>\#define CMSIS_header_file</b> in <a href="../../Pack/html/pdsc_components_pg.html#RTE_Components_h"><b>RTE_Components.h</b></a> which gives you access to the <b><i>device</i>.h</b> file
264 of a project. This allows you to generate generic software components that adjust to the device settings.
267 \section using_ARM_Lib_sec Create generic Libraries with CMSIS
269 The CMSIS Processor and Core Peripheral files allow also to create generic libraries.
270 The <a href="../../DSP/html/index.html">\b CMSIS-DSP </a> Libraries are an example for such a generic library.
272 To build a generic Library set the define \b __CMSIS_GENERIC and include the relevant <b>core_<cpu>.h</b> CMSIS CPU & Core Access header file for the processor.
273 The define <b>__CMSIS_GENERIC</b> disables device-dependent features such as the <b>SysTick</b> timer and the <b>Interrupt System</b>.
274 Refer to \ref core_config_sect for a list of the available <b>core_<cpu>.h</b> header files.
278 The following code section shows the usage of the <b>core_<cpu>.h</b> header files to build a generic library for Cortex-M0, Cortex-M3, Cortex-M4, or Cortex-M7. To
279 select the processor, the source code uses the define \b CORTEX_M7, \b CORTEX_M4, \b CORTEX_M3, \b CORTEX_M0, or \b CORTEX_M0PLUS. One of these defines needs to be provided
280 on the compiler command line. By using this header file, the source code can access the functions for \ref Core_Register_gr, \ref intrinsic_CPU_gr, \ref intrinsic_SIMD_gr,
281 and \ref ITM_Debug_gr.
284 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
286 #if defined (CORTEX_M7)
287 #include "core_cm7.h"
288 #elif defined (CORTEX_M4)
289 #include "core_cm4.h"
290 #elif defined (CORTEX_M3)
291 #include "core_cm3.h"
292 #elif defined (CORTEX_M0)
293 #include "core_cm0.h"
294 #elif defined (CORTEX_M0PLUS)
295 #include "core_cm0plus.h"
297 #error "Processor not specified or unsupported."