2 \page genRTOS2IF Generic RTOS Interface
4 CMSIS-RTOS2 is a generic API that is agnostic of the underlying RTOS kernel. Application programmers call CMSIS-RTOS2 API
5 functions in the user code to ensure maximum portability from one RTOS to another. Middleware using CMSIS-RTOS2 API takes
6 advantages of this approach by avoiding unnecessary porting efforts.
8 \image html "API_Structure.png" "CMSIS-RTOS API Structure"
10 A typical CMSIS-RTOS2 API implementation interfaces to an existing real-time kernel. The CMSIS-RTOS2 API provides the
11 following attributes and functionalities:
12 - Function names, identifiers, and parameters are descriptive and easy to understand. The functions are powerful and
13 flexible which reduces the number of functions exposed to the user.
14 - \ref CMSIS_RTOS_ThreadMgmt allows you to define, create, and control threads.
15 - Interrupt Service Routines (ISR) can \ref CMSIS_RTOS_ISR_Calls "call some CMSIS-RTOS functions". When a CMSIS-RTOS
16 function cannot be called from an ISR context, it rejects the invocation and returns an error code.
17 - Three different event types support communication between multiple threads and/or ISR:
18 - \ref CMSIS_RTOS_ThreadFlagsMgmt "Thread Flags": may be used to indicate specific conditions to a thread.
19 - \ref CMSIS_RTOS_EventFlags "Event Flags": may be used to indicate events to a thread or ISR.
20 - \ref CMSIS_RTOS_Message "Messages": can be sent to a thread or an ISR. Messages are buffered in a queue.
21 - \ref CMSIS_RTOS_MutexMgmt and \ref CMSIS_RTOS_SemaphoreMgmt are incorporated.
22 - CPU time can be scheduled with the following functionalities:
23 - A \a timeout parameter is incorporated in many CMSIS-RTOS functions to avoid system lockup. When a timeout is specified,
24 the system waits until a resource is available or an event occurs. While waiting, other threads are scheduled.
25 - The \ref osDelay and \ref osDelayUntil functions put a thread into the \b WAITING state for a specified period of time.
26 - The \ref osThreadYield provides co-operative thread switching and passes execution to another thread of the same
28 - \ref CMSIS_RTOS_TimerMgmt functions are used to trigger the execution of functions.
30 The CMSIS-RTOS2 API is designed to optionally incorporate multi-processor systems and/or access protection via the Cortex-M
31 Memory Protection Unit (MPU).
33 In some RTOS implementations threads may execute on different processors, thus \b message queues may reside in shared memory
36 The CMSIS-RTOS2 API encourages the software industry to evolve existing RTOS implementations. RTOS implementations can be
37 different and optimized in various aspects towards the Cortex-M processors. Optional features may be for example
38 - Support of the Cortex-M Memory Protection Unit (MPU).
39 - Support of multi-processor systems.
40 - Support of a DMA controller.
41 - Deterministic context switching.
42 - Round-robin context switching.
43 - Deadlock avoidance, for example with priority inversion.
44 - Zero interrupt latency by using Armv7-M instructions LDREX and STREX.
46 \section cmsis_os2_h cmsis_os2.h header file
48 The file \b %cmsis_os2.h is a standard header file that interfaces to every CMSIS-RTOS2 compliant real-time operating
49 systems (RTOS). Each implementation is provided the same \b cmsis_os2.h which defines the interface to the \ref rtos_api2.
51 Using the \b cmsis_os2.h along with dynamic object allocation allows to create source code or libraries that require no
52 modifications when using on a different CMSIS-RTOS2 implementation.
54 \section usingOS2 Using a CMSIS-RTOS2 Implementation
56 A CMSIS-RTOS2 component may be provided as library or source code (the picture below shows a library).
57 A CMSIS-based application is extended with RTOS functionality by adding a CMSIS-RTOS2 component (and typically some configuration files).
58 The \ref cmsis_os2_h gives access to RTOS API functions and is the only interface header required when dynamic object allocation is used.
59 This enables portable application that works with every RTOS kernel event without re-compilation of the source code when the kernel is
62 Static object allocation requires access to RTOS object control block definitions. An implementation specific header file (<i>rtos</i>.h in
63 the picture below) provides access to such definitions. The section For RTX v5 these definitions are provided in the header file %rtx_os.h that contains this definitions for RTX v5.
66 \image html "CMSIS_RTOS_Files.png" "CMSIS-RTOS File Structure"
68 Once the files are added to a project, the user can start working with the CMSIS-RTOS functions. A code example is provided
73 /*----------------------------------------------------------------------------
74 * CMSIS-RTOS 'main' function template
75 *---------------------------------------------------------------------------*/
77 #include "RTE_Components.h"
78 #include CMSIS_device_header
79 #include "cmsis_os2.h"
81 /*----------------------------------------------------------------------------
82 * Application main thread
83 *---------------------------------------------------------------------------*/
84 void app_main (void *argument) {
92 // System Initialization
93 SystemCoreClockUpdate();
96 osKernelInitialize(); // Initialize CMSIS-RTOS
97 osThreadNew(app_main, NULL, NULL); // Create application main thread
98 osKernelStart(); // Start thread execution
107 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
109 \page rtx5_impl RTX v5 Implementation
111 Keil RTX version 5 (RTX5) implements the CMSIS-RTOS2 as a native RTOS interface for Arm Cortex-M processor-based devices.
112 A translation layer to CMSIS-RTOS API v1 is provided. Therefore, RTX5 can be used in applications that where previously based
113 on RTX version 4 and CMSIS-RTOS version 1 with minimal effort.
115 The following sections provide further details:
116 - \subpage cre_rtx_proj explains how to setup an RTX v5 project in Keil MDK.
117 - \subpage theory_of_operation provides general information about the operation of CMSIS-RTOS RTX v5.
118 - \subpage config_rtx5 describes configuration parameters of CMSIS-RTOS RTX v5.
120 - \subpage creating_RTX5_LIB explains how to build your own CMSIS-RTOS RTX v5 library.
122 - \subpage rtos2_tutorial is an introduction into the usage of Keil RTX5 based on real-life examples.
123 - \subpage technicalData5 lists hardware, software, and resource requirements, supplied files, and supported tool chains.
124 - \subpage misraCompliance5 describes the violations to the MISRA standard.
127 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
129 \page cre_rtx_proj Create an RTX5 Project
132 FuSa RTX5 installation and project setup are explained in \ref fusa_rtx_installation.
137 The steps to create a microcontroller application using RTX5 are:
138 - Create a new project and select a microcontroller device.
139 - In the Manage Run-Time Environment window, select <b>CMSIS\::CORE</b> and <b>CMSIS\::RTOS2 (API)\::Keil RTX5</b>. You can
140 choose to either add RTX as a library (Variant: \b Library) or to add the full source code (Variant: \b Source - required
141 if using the <a href="https://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html" target="_blank"><b>Event Recorder</b></a>):
143 \image html manage_rte_output.png
145 - If the <b>Validation Output</b> requires other components to be present, try to use the \b Resolve button.
146 - Click \b OK. In the \b Project window, you will see the files that have been automatically added to you project, such as
147 \b %RTX_Config.h, \b %RTX_Config.c, the library or the source code files, as well as the system and startup files:
149 \image html project_window.png
151 - If using the Variant: \b Source as stated above, you have to assure to use at least C99 compiler mode (Project Options -> C/C++ -> C99 Mode).
152 - You can add template files to the project by right-clicking on <b>Source Group 1</b> and selecting
153 <b>Add New Item to 'Source Group 1'</b>. In the new window, click on <b>User Code Template</b>. On the right-hand side
154 you will see all available template files for CMSIS-RTOS RTX:
156 \image html add_item.png
158 - \ref config_rtx5 "Configure" RTX5 to the application's needs using the \b %RTX_Config.h file.
162 \if ARMCA \section cre_rtx_cortexa Additional requirements for RTX on Cortex-A
164 Cortex-A based microcontrollers are less unified with respect to the interrupt and timer implementations used compared to
165 M-class devices. Thus RTX requires additional components when an A-class device is used, namely
166 <a href="../../Core_A/html/group__irq__ctrl__gr.html"><b>IRQ Controller (API)</b></a> and \ref CMSIS_RTOS_TickAPI "OS Tick (API)"
169 \image html manage_rte_cortex-a.png
171 The default implementations provided along with CMSIS are
172 - Arm <a href="../../Core_A/html/group__GIC__functions.html">Generic Interrupt Controller (GIC)</a>
173 - Arm Cortex-A5, Cortex-A9 <a href="../../Core_A/html/group__PTM__timer__functions.html">Private Timer (PTIM)</a>
174 - Arm Cortex-A7 <a href="../../Core_A/html/group__PL1__timer__functions.html">Generic Physical Timer (GTIM)</a>
176 For devices not implementing GIC, PTIM nor GTIM please refer to the according device family pack and select the
177 proper implementations.
181 \section cre_UsingIRQs Using Interrupts on Cortex-M
183 On Cortex-M processors, the RTX5 kernel uses the following interrupt exceptions. The table below also lists the
184 priorities that must be assigned to these interrupts.
186 Handler | Priority | Interrupt/Exception
187 :-------|:---------|:----------------------------
188 SysTick | lowest | Kernel system timer interrupt to generate periodic timer ticks
189 PendSV | lowest | PendSV (request for system-level service) when calling certain RTX functions from \b Handler mode
190 SVC | lowest+1 | Supervisor Call used to enter the RTOS kernel from \b Thread mode
192 Other device interrupts can be used without limitation. For Arm Cortex-M3/M4/M7 \if ARMv8M /M23/M33/M35P \endif processors, interrupts are never disabled by RTX Kernel.
194 <b>Usage of interrupt priority grouping</b>
195 - The interrupt priority grouping should be configured using the CMSIS-Core function NVIC_SetPriorityGrouping before calling the function
196 \ref osKernelStart(). The RTX kernel uses the priority group value to setup the priority for SysTick and PendSV interrupts.
197 - The RTX kernel sets the priority for the interrupts/exceptions listed in above table and uses the lowest two priority levels.
198 - Do not change the priority used by the RTX kernel. If this cannot be avoided, ensure that the preempt priority of
199 SysTick/PendSV is lower than SVC.
200 - Permitted priority group values are 0 to 6. The priority group value 7 will cause RTX to fail as there is only one priority level available.
201 - The <b>main stack</b> is used to run the RTX functionality. It is therefore required to configure sufficient stack for the RTX kernel execution.
205 osKernelInitialize(); // initialize RTX
206 NVIC_SetPriorityGrouping (3); // setup priority grouping
207 tread_id = osThreadNew(tread_func, NULL, NULL); // create some threads
208 osKernelStart (); // start RTX kernel
211 \section cre_rtx_proj_specifics Add support for RTX specific functions
212 If you require some of the \ref rtx5_specific "RTX specific functions" in your application code, \#include the
213 \ref rtx_os_h "header file rtx_os.h". This enables \ref lowPower "low-power" and \ref TickLess "tick-less" operation modes.
215 \section cre_rtx_proj_er Add Event Recorder Visibility
218 RTX5 interfaces to the <a href="https://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html" target="_blank"><b>Event Recorder</b></a>
219 to provide event information which helps you to understand and analyze the operation.
221 - To use the Event Recorder together with RTX5, select the software component <b>Compiler:Event Recorder</b>.
222 - Select the \b Source variant of the software component <b>CMSIS:RTOS2 (API):Keil RTX5</b>.
224 \image html event_recorder_rte.png "Component selection for Event Recorder"
226 - Enable the related settings under \ref evtrecConfig.
227 - Build the application code and download it to the debug hardware.
229 Once the target application generates event information, it can be viewed in the µVision debugger using the \b Event \b Recorder.
233 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
235 \page theory_of_operation Theory of Operation
237 Many aspects of the kernel are configurable and the configuration options are mentioned where applicable.
239 \section SystemStartup System Startup
241 Since main is no longer a thread RTX5 does not interfere with the system startup until main is reached.
242 Once the execution reaches \c main() there is a recommended order to initialize the hardware and start the kernel. This is
243 also reflected in the user code template file "CMSIS-RTOS2 'main' function" supplied with the RTX5 component.
245 Your application's \c main() should implement at least the following in the given order:
246 -# Initialization and configuration of hardware including peripherals, memory, pins, clocks and the interrupt system.
247 -# Update the system core clock using the respective
248 <a href=../../Core/html/group__system__init__gr.html>CMSIS-Core (Cortex-M)</a> \if ARMCA or <a href=../../Core_A/html/group__system__init__gr.html>CMSIS-Core (Cortex-A)</a> \endif function.
249 -# Initialize the CMSIS-RTOS kernel using \ref osKernelInitialize.
250 -# Optionally, create one thread (for example \c app_main), which is used as a main thread using \ref osThreadNew. This
251 thread should take care of creating and starting objects, once it is run by the scheduler. Alternatively, threads can be
252 created in \c main() directly.
253 -# Start the RTOS scheduler using \ref osKernelStart which also configures the system tick timer and initializes RTOS
254 specific interrupts. This function does not return in case of successful execution. Therefore, any application code after
255 \b osKernelStart will not be executed.
258 - Modifying priorities and groupings in the NVIC by the application after the above sequence is not recommended.
259 - Before executing \ref osKernelStart, only the functions \ref osKernelGetInfo, \ref osKernelGetState, and object creation
260 functions (osXxxNew) may be called.
265 RTX5 implements a low-latency preemptive scheduler. Major parts of RTX5 are executed in handler mode such as
266 - \ref SysTick_Handler used for time-based scheduling.
267 - \ref SVC_Handler used for lock-based scheduling.
268 - \ref PendSV_Handler used for interrupt-based scheduling.
270 In order to be low-latency with respect to ISR execution those system exceptions are configured to use the
271 lowest priority groups available. The priorities are configured such that no preemption happens between them. Thus
272 no interrupt critical sections (i.e. interrupt locks) are needed to protect the scheduler.
274 \image html scheduling.png "Thread scheduling and interrupt execution"
276 The scheduler combines priority and round-robin based context switches. The example depicted in the image above contains
277 four threads (1, 2, 3, and 4). Threads 1 and 2 share the same priority, thread 3 has a higher one and thread 4 the highest
278 (\ref osThreadAttr_t::priority). As long as threads 3 and 4 are blocked the scheduler switches between thread 1 and 2 on
279 a time-slice basis (round-robin). The time-slice for round-robin scheduling can be configured, see Round-Robin Timeout in \ref systemConfig.
281 Thread 2 unblocks thread 3 by an arbitrary RTOS-call (executed in \ref CMSIS_RTOS_svcFunctions "SVC" handler mode) at time
282 index 2. The scheduler switches to thread 3 immediately because thread 3 has the highest priority. Thread 4 is still blocked.
284 At time index 4 an interrupt (ISR) occurs and preempts the SysTick_Handler. RTX does not add any latency to the interrupt
285 service execution. The ISR routine uses an RTOS-call that unblocks thread 4. Instead of switching to thread 4 immediately
286 the PendSV flag is set to defer the context switching. The PendSV_Handler is executed right after the SysTick_Handler returns
287 and the deferred context switch to thread 4 is carried out. As soon as highest priority thread 4 blocks again by using
288 a blocking RTOS-call execution is switched back to thread 3 immediately during time index 5.
290 At time index 5 thread 3 uses a blocking RTOS-call as well. Thus the scheduler switches back to thread 2 for time index 6.
291 At time index 7 the scheduler uses the round-robin mechanism to switch to thread 1 and so on.
293 \section MemoryAllocation Memory Allocation
295 RTX5 objects (thread, mutex, semaphore, timer, message queue, thread and event flags, as well as memory pool) require
296 dedicated RAM memory. Objects can be created using os<i>Object</i>New() calls and deleted using os<i>Object</i>Delete()
297 calls. The related object memory needs to be available during the lifetime of the object.
299 RTX5 offers three different memory allocation methods for objects:
300 - \ref GlobalMemoryPool uses a single global memory pool for all objects. It is easy to configure, but may have
301 the disadvantage for memory fragmentation when objects with different sizes are created and destroyed.
302 - \ref ObjectMemoryPool uses a fixed-size memory pool for each object type. The method is time deterministic
303 and avoids memory fragmentation.
304 - \ref StaticObjectMemory reserves memory during compile time and completely avoids that a system can be out of memory.
305 This is typically a required for some safety critical systems.
307 It possible to intermix all the memory allocation methods in the same application.
309 \subsection GlobalMemoryPool Global Memory Pool
311 The global memory pool allocates all objects from a memory area. This method of memory allocation is the default
312 configuration setting of RTX5.
314 \image html MemAllocGlob.png "Global Memory Pool for all objects"
316 When the memory pool does not provide sufficient memory, the creation of the object fails and the related
317 os<i>Object</i>New() function returns \token{NULL}.
319 Enabled in \ref systemConfig.
321 \subsection ObjectMemoryPool Object-specific Memory Pools
323 Object-specific memory pools avoids memory fragmentation with a dedicated fixed-size memory management for each object type.
324 This type of memory pools are fully time deterministic, which means that object creation and destruction takes always the
325 same fixed amount of time. As a fixed-size memory pool is specific to an object type, the handling of out-of-memory
326 situations is simplified.
328 \image html MemAllocSpec.png "One memory pool per object type"
330 Object-specific memory pools are selectively enabled for each object type, e.g: mutex or thread using the RTX configuration
332 - Enabled in \ref threadConfig for thread objects.
333 - Enabled in \ref timerConfig for timer objects.
334 - Enabled in \ref eventFlagsConfig for event objects.
335 - Enabled in \ref mutexConfig for mutex objects.
336 - Enabled in \ref semaphoreConfig for semaphore.
337 - Enabled in \ref memPoolConfig for memory pools.
338 - Enabled in \ref msgQueueConfig for message objects.
340 When the memory pool does not provide sufficient memory, the creation of the object fails and the related
341 os<i>Object</i>New() function returns \token{NULL}.
343 \subsection StaticObjectMemory Static Object Memory
344 In contrast to the dynamic memory allocations, the static memory allocation requires compile-time allocation of object memory.
346 \image html MemAllocStat.png "Statically allocated memory for all objects"
348 Static memory allocation can be achieved by providing user-defined memory using attributes at object creation,
349 see \ref CMSIS_RTOS_MemoryMgmt_Manual. Please take special note of the following restrictions:
351 Memory type | Requirements
352 ---------------------------------------------|-------------------------------------------------------------------------------
353 Control Block (osXxxAttr_t::cb_mem) | 4-Byte alignment. Size defined by \ref osRtxThreadCbSize, \ref osRtxTimerCbSize, \ref osRtxEventFlagsCbSize, \ref osRtxMutexCbSize, \ref osRtxSemaphoreCbSize, \ref osRtxMemoryPoolCbSize, \ref osRtxMessageQueueCbSize.
354 Thread Stack (osThreadAttr_t::stack_mem) | 8-Byte alignment. Size is application specific, i.e. amount of stack variables and frames.
355 Memory Pool (osMemoryPoolAttr_t::mp_mem) | 4-Byte alignment. Size calculated with \ref osRtxMemoryPoolMemSize.
356 Message Queue (osMessageQueueAttr_t::mq_mem) | 4-Byte alignment. Size calculated with \ref osRtxMessageQueueMemSize.
359 In order to allow RTX5 aware debugging, i.e. Component Viewer, to recognize control blocks these
360 needs to be placed in individual memory sections, i.e. using `__attribute__((section(...)))`.
362 RTX Object | Linker Section
363 --------------|------------------------
364 Thread | `.bss.os.thread.cb`
365 Timer | `.bss.os.timer.cb`
366 Event Flags | `.bss.os.evflags.cb`
367 Mutex | `.bss.os.mutex.cb`
368 Semaphore | `.bss.os.semaphore.cb`
369 Memory Pool | `.bss.os.mempool.cb`
370 Message Queue | `.bss.os.msgqueue.cb`
372 It must be assured that these sections are placed into contiguous memory. This can fail,
373 i.e. sections end up being split over multiple memory segments, when assigning compilation
374 units to memory segments, manually.
376 The following code example shows how to create an OS object using static memory.
378 <b> Code Example:</b>
380 /*----------------------------------------------------------------------------
381 * CMSIS-RTOS 'main' function template
382 *---------------------------------------------------------------------------*/
384 #include "RTE_Components.h"
385 #include CMSIS_device_header
386 #include "cmsis_os2.h"
388 //include rtx_os.h for types of RTX objects
391 //The thread function instanced in this example
392 void worker(void *arg)
401 // Define objects that are statically allocated for worker thread 1
402 __attribute__((section(".bss.os.thread.cb")))
403 osRtxThread_t worker_thread_tcb_1;
405 // Reserve two areas for the stacks of worker thread 1
406 // uint64_t makes sure the memory alignment is 8
407 uint64_t worker_thread_stk_1[64];
409 // Define the attributes which are used for thread creation
410 // Optional const saves RAM memory and includes the values in periodic ROM tests
411 const osThreadAttr_t worker_attr_1 = {
414 &worker_thread_tcb_1,
415 sizeof(worker_thread_tcb_1),
416 &worker_thread_stk_1[0],
417 sizeof(worker_thread_stk_1),
418 osPriorityAboveNormal,
422 // Define ID object for thread
425 /*----------------------------------------------------------------------------
426 * Application main thread
427 *---------------------------------------------------------------------------*/
428 void app_main (void *argument) {
429 uint32_t param = NULL;
431 // Create an instance of the worker thread with static resources (TCB and stack)
432 th1 = osThreadNew(worker, ¶m, &worker_attr_1);
438 // System Initialization
439 SystemCoreClockUpdate();
442 osKernelInitialize(); // Initialize CMSIS-RTOS
443 osThreadNew(app_main, NULL, NULL); // Create application main thread
444 osKernelStart(); // Start thread execution
450 \section ThreadStack Thread Stack Management
452 For Cortex-M processors without floating point unit the thread context requires 64 bytes on the local stack.
454 \note For Cortex-M4/M7 with FP the thread context requires 200 bytes on the local stack. For these devices the default stack
455 space should be increased to a minimum of 300 bytes.
457 Each thread is provided with a separate stack that holds the thread context and stack space for automatic variables and
458 return addresses for function call nesting. The stack sizes of RTX threads are flexibly configurable as explained in the
459 section \ref threadConfig. RTX offers a configurable checking for stack overflows and stack utilization.
462 \section lowPower Low-Power Operation
464 The system thread \b osRtxIdleThread can be use to switch the system into a low-power mode. The easiest form to enter a
465 low-power mode is the execution of the \c __WFE function that puts the processor into a sleep mode where it waits for an
470 #include "RTE_Components.h"
471 #include CMSIS_device_header /* Device definitions */
473 void osRtxIdleThread (void) {
474 /* The idle demon is a system thread, running when no other thread is */
478 __WFE(); /* Enter sleep mode */
484 \c __WFE() is not available in every Cortex-M implementation. Check device manuals for availability.
487 \section kernelTimer RTX Kernel Timer Tick
489 RTX uses the generic \ref CMSIS_RTOS_TickAPI to configure and control its periodic Kernel Tick.
491 To use an alternative timer as the Kernel Tick Timer one simply needs to implement a custom version
492 of the \ref CMSIS_RTOS_TickAPI.
494 \note The OS Tick implementation provided must assure that the used timer interrupt uses the same (low) priority group
495 as the service interrupts, i.e. interrupts used by RTX must not preempt each other. Refer to the \ref Scheduler section
498 \subsection TickLess Tick-less Low-Power Operation
500 RTX5 provides extension for tick-less operation which is useful for applications that use extensively low-power modes where
501 the SysTick timer is also disabled. To provide a time-tick in such power-saving modes, a wake-up timer is used to
502 derive timer intervals. The CMSIS-RTOS2 functions \ref osKernelSuspend and \ref osKernelResume control the tick-less
505 Using this functions allows the RTX5 thread scheduler to stop the periodic kernel tick interrupt. When all active threads
506 are suspended, the system enters power-down and calculates how long it can stay in this power-down mode. In the power-down
507 mode the processor and peripherals can be switched off. Only a wake-up timer must remain powered, because this timer is
508 responsible to wake-up the system after the power-down period expires.
510 The tick-less operation is controlled from the \b osRtxIdleThread thread. The wake-up timeout value is set before the system
511 enters the power-down mode. The function \ref osKernelSuspend calculates the wake-up timeout measured in RTX Timer Ticks;
512 this value is used to setup the wake-up timer that runs during the power-down mode of the system.
514 Once the system resumes operation (either by a wake-up time out or other interrupts) the RTX5 thread scheduler is started
515 with the function \ref osKernelResume. The parameter \a sleep_time specifies the time (in RTX Timer Ticks) that the system
516 was in power-down mode.
520 #include "msp.h" // Device header
522 /*----------------------------------------------------------------------------
523 * MSP432 Low-Power Extension Functions
524 *---------------------------------------------------------------------------*/
525 static void MSP432_LP_Entry(void) {
526 /* Enable PCM rude mode, which allows to device to enter LPM3 without waiting for peripherals */
527 PCM->CTL1 = PCM_CTL1_KEY_VAL | PCM_CTL1_FORCE_LPM_ENTRY;
528 /* Enable all SRAM bank retentions prior to going to LPM3 */
529 SYSCTL->SRAM_BANKRET |= SYSCTL_SRAM_BANKRET_BNK7_RET;
530 __enable_interrupt();
531 NVIC_EnableIRQ(RTC_C_IRQn);
532 /* Do not wake up on exit from ISR */
533 SCB->SCR |= SCB_SCR_SLEEPONEXIT_Msk;
534 /* Setting the sleep deep bit */
535 SCB->SCR |= (SCB_SCR_SLEEPDEEP_Msk);
538 static volatile unsigned int tc;
539 static volatile unsigned int tc_wakeup;
541 void RTC_C_IRQHandler(void)
543 if (tc++ > tc_wakeup)
545 SCB->SCR &= ~SCB_SCR_SLEEPONEXIT_Msk;
546 NVIC_DisableIRQ(RTC_C_IRQn);
547 NVIC_ClearPendingIRQ(RTC_C_IRQn);
550 if (RTC_C->PS0CTL & RTC_C_PS0CTL_RT0PSIFG)
552 RTC_C->CTL0 = RTC_C_KEY_VAL; // Unlock RTC key protected registers
553 RTC_C->PS0CTL &= ~RTC_C_PS0CTL_RT0PSIFG;
555 SCB->SCR |= (SCB_SCR_SLEEPDEEP_Msk);
559 uint32_t g_enable_sleep = 0;
561 void osRtxIdleThread (void) {
564 tc_wakeup = osKernelSuspend();
565 /* Is there some time to sleep? */
568 /* Enter the low power state */
572 /* Adjust the kernel ticks with the amount of ticks slept */
579 \c __WFE() is not available in every Arm Cortex-M implementation. Check device manuals for availability.
580 The alternative using \c __WFI() has other issues, please take note of https://www.keil.com/support/docs/3591.htm as well.
582 \section rtx_os_h RTX5 Header File
584 Every implementation of the CMSIS-RTOS2 API can bring its own additional features. RTX5 adds a couple of
585 \ref rtx5_specific "functions" for the idle more, for error notifications, and special system timer functions. It also is
586 using macros for control block and memory sizes.
588 If you require some of the RTX specific functions in your application code, \#include the header file \b %rtx_os.h:
593 \section CMSIS_RTOS_TimeOutValue Timeout Value
595 Timeout values are an argument to several \b osXxx functions to allow time for resolving a request. A timeout value of \b 0
596 means that the RTOS does not wait and the function returns instantly, even when no resource is available. A timeout value of
597 \ref osWaitForever means that the RTOS waits infinitely until a resource becomes available. Or one forces the thread to resume
598 using \ref osThreadResume which is discouraged.
600 The timeout value specifies the number of timer ticks until the time delay elapses. The value is an upper bound and
601 depends on the actual time elapsed since the last timer tick.
604 - timeout value \b 0 : the system does not wait, even when no resource is available the RTOS function returns instantly.
605 - timeout value \b 1 : the system waits until the next timer tick occurs; depending on the previous timer tick, it may be a
606 very short wait time.
607 - timeout value \b 2 : actual wait time is between 1 and 2 timer ticks.
608 - timeout value \ref osWaitForever : system waits infinite until a resource becomes available.
610 \image html TimerValues.png "Example of timeout using osDelay()"
613 \section CMSIS_RTOS_ISR_Calls Calls from Interrupt Service Routines
615 The following CMSIS-RTOS2 functions can be called from threads and Interrupt Service Routines (ISR):
616 - \ref osKernelGetInfo, \ref osKernelGetState,
617 \ref osKernelGetTickCount, \ref osKernelGetTickFreq, \ref osKernelGetSysTimerCount, \ref osKernelGetSysTimerFreq
618 - \ref osThreadGetId, \ref osThreadFlagsSet
619 - \ref osEventFlagsSet, \ref osEventFlagsClear, \ref osEventFlagsGet, \ref osEventFlagsWait
620 - \ref osSemaphoreAcquire, \ref osSemaphoreRelease, \ref osSemaphoreGetCount
621 - \ref osMemoryPoolAlloc, \ref osMemoryPoolFree, \ref osMemoryPoolGetCapacity, \ref osMemoryPoolGetBlockSize,
622 \ref osMemoryPoolGetCount, \ref osMemoryPoolGetSpace
623 - \ref osMessageQueuePut, \ref osMessageQueueGet, \ref osMessageQueueGetCapacity, \ref osMessageQueueGetMsgSize,
624 \ref osMessageQueueGetCount, \ref osMessageQueueGetSpace
626 Functions that cannot be called from an ISR are verifying the interrupt status and return the status code \b osErrorISR, in
627 case they are called from an ISR context. In some implementations, this condition might be caught using the HARD_FAULT
630 \section CMSIS_RTOS_svcFunctions SVC Functions
632 Supervisor Calls (SVC) are exceptions targeted at software and operating systems for generating system function calls. They
633 are sometimes called software interrupts. For example, instead of allowing user programs to directly access hardware, an
634 operating system may provide access to hardware through an SVC. So when a user program wants to use certain hardware, it
635 generates the exception using SVC instructions. The software exception handler in the operating system executes and provides
636 the requested service to the user application. In this way, access to hardware is under the control of the OS, which can
637 provide a more robust system by preventing the user applications from directly accessing the hardware.
639 SVCs can also make software more portable because the user application does not need to know the programming details of the
640 underlying hardware. The user program will only need to know the application programming interface (API) function ID and
641 parameters; the actual hardware-level programming is handled by device drivers.
643 SVCs run in \b privileged \b handler mode of the Arm Cortex-M core. SVC functions accept arguments and can return values.
644 The functions are used in the same way as other functions; however, they are executed indirectly through the SVC instruction.
645 When executing SVC instructions, the controller changes to the privileged handler mode.
647 Interrupts are \b not \b disabled in this mode. To protect SVC functions from interrupts, you need to include the
648 disable/enable intrinsic functions \c __disable_irq() and \c __enable_irq() in your code.
650 You can use SVC functions to access \b protected \b peripherals, for example, to configure NVIC and interrupts.
651 This is required if you run threads in unprivileged (protected) mode and you need to change interrupts from the within the
654 To implement SVC functions in your Keil RTX5 project, you need to:
655 -# Add the SVC User Table file \b svc_user.c to your project folder and include it into your project. This file is available
656 as a user code template.
657 -# Write a function implementation. Example:
659 uint32_t svc_atomic_inc32 (uint32_t *mem) {
660 // A protected function to increment a counter.
671 -# Add the function to the SVC function table in the \b svc_user.c module:
673 void * const osRtxUserSVC[1+USER_SVC_COUNT] = {
674 (void *)USER_SVC_COUNT,
675 (void *)svc_atomic_inc32,
678 -# Increment the number of user SVC functions:
680 #define USER_SVC_COUNT 1 // Number of user SVC functions
682 -# Declare a function wrapper to be called by the user to execute the SVC call.\n
683 \b Code \b Example (Arm Compiler 6)
685 __STATIC_FORCEINLINE uint32_t atomic_inc32 (uint32_t *mem) {
686 register uint32_t val;
689 "svc 1" : "=l" (val) : "l" (mem) : "cc", "memory"
695 \b Code \b Example (Arm Compiler 5 using \c __svc(x) attribute)
697 uint32_t atomic_inc32 (uint32_t *mem) __svc(1);
701 - The SVC function \token{0} is \b reserved for the Keil RTX5 kernel.
702 - Do not leave gaps when numbering SVC functions. They must occupy a \b continuous range of numbers starting from 1.
703 - SVC functions can still be interrupted.
706 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
708 \page config_rtx5 Configure RTX v5
710 The file "RTX_Config.h" defines the configuration parameters of CMSIS-RTOS RTX and must be part of every project that is
711 using the CMSIS-RTOS RTX kernel. The configuration options are explained in detail in the following sections:
712 - \ref systemConfig covers system-wide settings for the global memory pool, tick frequency, ISR event buffer and round-robin thread switching.
713 - \ref threadConfig provides several parameters to configure the \ref CMSIS_RTOS_ThreadMgmt functions.
714 - \ref timerConfig provides several parameters to configure the \ref CMSIS_RTOS_TimerMgmt functions.
715 - \ref eventFlagsConfig provides several parameters to configure the \ref CMSIS_RTOS_EventFlags functions.
716 - \ref mutexConfig provides several parameters to configure the \ref CMSIS_RTOS_MutexMgmt functions.
717 - \ref semaphoreConfig provides several parameters to configure the \ref CMSIS_RTOS_SemaphoreMgmt functions.
718 - \ref memPoolConfig provides several parameters to configure the \ref CMSIS_RTOS_PoolMgmt functions.
719 - \ref msgQueueConfig provides several parameters to configure the \ref CMSIS_RTOS_Message functions.
720 - \ref evtrecConfig provides several parameters to configure RTX for usage with <a href="https://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html" target="_blank"><b>Event Recorder</b></a>.
722 The file "RTX_Config.c" contains default implementations of the functions \ref osRtxIdleThread and \ref osRtxErrorNotify. Both functions
723 can simply be overwritten with a customized behavior by redefining them as part of the user code.
725 The configuration file uses <b>Configuration Wizard Annotations</b>. Refer to <b>Pack - Configuration Wizard Annotations</b> for details.
726 Depending on the development tool, the annotations might lead to a more user-friendly graphical representation of the
727 settings. The picture below shows the µVision \b Configuration \b Wizard view in MDK:
729 \image html config_wizard.png "RTX_Config.h in Configuration Wizard View"
731 Alternatively one can provide configuration options using the compiler command line.
733 For example one can customize the used tick frequency to 100us by (overwriting) the configuration using
735 cc -DOS_TICK_FREQ=100
738 \section systemConfig System Configuration
740 The system configuration covers system-wide settings for the global memory pool, tick frequency, ISR event buffer and
741 round-robin thread switching.
743 <b>System Configuration Options</b>
744 \image html config_wizard_system.png "RTX_Config.h: System Configuration"
746 Name | \#define | Description
747 ---------------------------------------|--------------------------|----------------------------------------------------------------
748 Global Dynamic Memory size [bytes] | \c OS_DYNAMIC_MEM_SIZE | Defines the combined global dynamic memory size for the \ref GlobalMemoryPool. Default value is \token{32768}. Value range is \token{[0-1073741824]} bytes, in multiples of \token{8} bytes.
749 Kernel Tick Frequency (Hz) | \c OS_TICK_FREQ | Defines base time unit for delays and timeouts in Hz. Default: 1000Hz = 1ms period.
750 Round-Robin Thread switching | \c OS_ROBIN_ENABLE | Enables Round-Robin Thread switching.
751 Round-Robin Timeout | \c OS_ROBIN_TIMEOUT | Defines how long a thread will execute before a thread switch. Default value is \token{5}. Value range is \token{[1-1000]}.
752 ISR FIFO Queue | \c OS_ISR_FIFO_QUEUE | RTOS Functions called from ISR store requests to this buffer. Default value is \token{16 entries}. Value range is \token{[4-256]} entries in multiples of \token{4}.
753 Object Memory usage counters | \c OS_OBJ_MEM_USAGE | Enables object memory usage counters to evaluate the maximum memory pool requirements individually for each RTOS object type.
755 \subsection systemConfig_glob_mem Global dynamic memory
756 Refer to \ref GlobalMemoryPool.
759 \subsection systemConfig_rr Round-Robin Thread Switching
761 RTX5 may be configured to use round-robin multitasking thread switching. Round-robin allows quasi-parallel execution of
762 several threads of the \a same priority. Threads are not really executed concurrently, but are scheduled where the available
763 CPU time is divided into time slices and RTX5 assigns a time slice to each thread. Because the time slice is typically short
764 (only a few milliseconds), it appears as though threads execute simultaneously.
766 Round-robin thread switching functions as follows:
767 - the tick is preloaded with the timeout value when a thread switch occurs
768 - the tick is decremented (if not already zero) each system tick if the same thread is still executing
769 - when the tick reaches 0 it indicates that a timeout has occurred. If there is another thread ready with the \a same
770 priority, then the system switches to that thread and the tick is preloaded with timeout again.
772 In other words, threads execute for the duration of their time slice (unless a thread's time slice is given up). Then, RTX
773 switches to the next thread that is in \b READY state and has the same priority. If no other thread with the same priority is
774 ready to run, the current running thread resumes it execution.
776 \note When switching to higher priority threads, the round-robin timeout value is reset.
778 Round-Robin multitasking is controlled with the <b>\#define OS_ROBIN_ENABLE</b>. The time slice period is configured (in RTX
779 timer ticks) with the <b>\#define OS_ROBIN_TIMEOUT</b>.
782 \subsection systemConfig_isr_fifo ISR FIFO Queue
783 The RTX functions (\ref CMSIS_RTOS_ISR_Calls), when called from and interrupt handler, store the request type and optional
784 parameter to the ISR FIFO queue buffer to be processed later, after the interrupt handler exits.
786 The scheduler is activated immediately after the IRQ handler has finished its execution to process the requests stored to the
787 FIFO queue buffer. The required size of this buffer depends on the number of functions that are called within the interrupt
788 handler. An insufficient queue size will be caught by \b osRtxErrorNotify with error code \b osRtxErrorISRQueueOverflow.
791 \subsection systemConfig_usage_counters Object Memory Usage Counters
793 Object memory usage counters help to evaluate the maximum memory pool requirements for each object type, just like stack
794 watermarking does for threads. The initial setup starts with a global memory pool for all object types. Consecutive runs of
795 the application with object memory usage counters enabled, help to introduce object specific memory pools for each object
796 type. Normally, this is required for applications that require a functional safety certification as global memory pools are
797 not allowed in this case.
800 \section threadConfig Thread Configuration
802 The RTX5 provides several parameters to configure the \ref CMSIS_RTOS_ThreadMgmt functions.
804 <b>Thread Configuration Options</b>
805 \image html config_wizard_threads.png "RTX_Config.h: Thread Configuration"
808 Option | \#define | Description
809 :--------------------------------------------------------------------------|:-------------------------------|:---------------------------------------------------------------
810 Object specific Memory allocation | \c OS_THREAD_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
811 Number of user Threads | \c OS_THREAD_NUM | Defines maximum number of user threads that can be active at the same time. Applies to user threads with system provided memory for control blocks. Default value is \token{1}. Value range is \token{[1-1000]}.
812 Number of user Threads with default Stack size | \c OS_THREAD_DEF_STACK_NUM | Defines maximum number of user threads with default stack size and applies to user threads with \token{0} stack size specified. Value range is \token{[0-1000]}.
813 Total Stack size [bytes] for user Threads with user-provided Stack size | \c OS_THREAD_USER_STACK_SIZE | Defines the combined stack size for user threads with user-provided stack size. Default value is \token{0}. Value range is \token{[0-1073741824]} Bytes, in multiples of \token{8}.
814 Default Thread Stack size [bytes] | \c OS_STACK_SIZE | Defines stack size for threads with zero stack size specified. Default value is \token{3072}. Value range is \token{[96-1073741824]} Bytes, in multiples of \token{8}.
815 Idle Thread Stack size [bytes] | \c OS_IDLE_THREAD_STACK_SIZE | Defines stack size for Idle thread. Default value is \token{512}. Value range is \token{[72-1073741824]} bytes, in multiples of \token{8}.
816 Idle Thread TrustZone Module ID | \c OS_IDLE_THREAD_TZ_MOD_ID | Defines the \ref osThreadAttr_t::tz_module "TrustZone Module ID" the Idle Thread shall use. This needs to be set to a non-zero value if the Idle Thread need to call secure functions. Default value is \token{0}.
817 Stack overrun checking | \c OS_STACK_CHECK | Enable stack overrun checks at thread switch.
818 Stack usage watermark | \c OS_STACK_WATERMARK | Initialize thread stack with watermark pattern for analyzing stack usage. Enabling this option increases significantly the execution time of thread creation.
819 Processor mode for Thread execution | \c OS_PRIVILEGE_MODE | Controls the processor mode. Default value is \token{Privileged} mode. Value range is \token{[0=Unprivileged; 1=Privileged]} mode.
821 \subsection threadConfig_countstack Configuration of Thread Count and Stack Space
823 The RTX5 kernel uses a separate stack space for each thread and provides two methods for defining the stack requirements:
824 - <b>Static allocation</b>: when \ref osThreadAttr_t::stack_mem and \ref osThreadAttr_t::stack_size specify a memory area
825 which is used for the thread stack. \b Attention: The stack memory provided must be 64-bit aligned, i.e. by using uint64_t for declaration.
826 - <b>Dynamic allocation</b>: when \ref osThreadAttr_t is NULL or \ref osThreadAttr_t::stack_mem is NULL, the system
827 allocates the stack memory from:
828 - Object-specific Memory Pool (default Stack size) when "Object specific Memory allocation" is enabled and "Number of
829 user Threads with default Stack size" is not \token{0} and \ref osThreadAttr_t::stack_size is \token{0} (or
830 \ref osThreadAttr_t is NULL).
831 - Object-specific Memory Pool (user-provided Stack size) when "Object specific Memory allocation" is enabled and "Total
832 Stack size for user..." is not \token{0} and \ref osThreadAttr_t::stack_size is not \token{0}.
833 - Global Memory Pool when "Object specific Memory allocation" is disabled or (\ref osThreadAttr_t::stack_size is not
834 \token{0} and "Total Stack size for user..." is \token{0}) or (\ref osThreadAttr_t::stack_size is \token{0} and
835 "Number of user Threads with default Stack size" is \token{0}).
837 \ref osThreadAttr_t is a parameter of the function \ref osThreadNew.
840 Before the RTX kernel is started by the \ref osKernelStart() function, the main stack defined in startup_<i>device</i>.s is
841 used. The main stack is also used for:
842 - user application calls to RTX functions in \b thread \b mode using SVC calls
843 - interrupt/exception handlers.
845 \subsection threadConfig_ovfcheck Stack Overflow Checking
846 RTX5 implements a software stack overflow checking that traps stack overruns. Stack is used for return addresses and
847 automatic variables. Extensive usage or incorrect stack configuration may cause a stack overflow. Software stack overflow
848 checking is controlled with the define \c OS_STACK_CHECK.
850 If a stack overflow is detected, the function \ref osRtxErrorNotify with error code \ref osRtxErrorStackUnderflow is called. By
851 default, this function is implemented as an endless loop and will practically stop code execution.
853 \subsection threadConfig_watermark Stack Usage Watermark
854 RTX5 initializes thread stack with a watermark pattern (0xCC) when a thread is created. This allows the debugger to determine
855 the maximum stack usage for each thread. It is typically used during development but removed from the final application.
856 Stack usage watermark is controlled with the define \c OS_STACK_WATERMARK.
858 Enabling this option significantly increases the execution time of \ref osThreadNew (depends on thread stack size).
860 \subsection threadConfig_procmode Processor Mode for Thread Execution
861 RTX5 allows to execute threads in unprivileged or privileged processor mode. The processor mode is controlled with the
862 define \c OS_PRIVILEGE_MODE.
864 In \b unprivileged processor mode, the application software:
865 - has limited access to the MSR and MRS instructions, and cannot use the CPS instruction.
866 - cannot access the system timer, NVIC, or system control block.
867 - might have restricted access to memory or peripherals.
869 In \b privileged processor mode, the application software can use all the instructions and has access to all resources.
872 \section timerConfig Timer Configuration
874 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_TimerMgmt functions.
876 <b>Timer Configuration Options</b>
877 \image html config_wizard_timer.png "RTX_Config.h: Timer Configuration"
879 Name | \#define | Description
880 ---------------------------------------|--------------------------------|----------------------------------------------------------------
881 Object specific Memory allocation | \c OS_TIMER_OBJ_MEM | Enables object specific memory allocation.
882 Number of Timer objects | \c OS_TIMER_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
883 Timer Thread Priority | \c OS_TIMER_THREAD_PRIO | Defines priority for timer thread. Default value is \token{40}. Value range is \token{[8-48]}, in multiples of \token{8}. The numbers have the following priority correlation: \token{8=Low}; \token{16=Below Normal}; \token{24=Normal}; \token{32=Above Normal}; \token{40=High}; \token{48=Realtime}
884 Timer Thread Stack size [bytes] | \c OS_TIMER_THREAD_STACK_SIZE | Defines stack size for Timer thread. May be set to 0 when timers are not used. Default value is \token{512}. Value range is \token{[0-1073741824]}, in multiples of \token{8}.
885 Timer Thread TrustZone Module ID | \c OS_TIMER_THREAD_TZ_MOD_ID | Defines the \ref osThreadAttr_t::tz_module "TrustZone Module ID" the Timer Thread shall use. This needs to be set to a non-zero value if any Timer Callbacks need to call secure functions. Default value is \token{0}.
886 Timer Callback Queue entries | \c OS_TIMER_CB_QUEUE | Number of concurrent active timer callback functions. May be set to 0 when timers are not used. Default value is \token{4}. Value range is \token{[0-256]}.
888 \subsection timerConfig_obj Object-specific memory allocation
889 See \ref ObjectMemoryPool.
891 \subsection timerConfig_user User Timer Thread
892 The RTX5 function \b osRtxTimerThread executes callback functions when a time period expires. The priority of the timer
893 subsystem within the complete RTOS system is inherited from the priority of the \b osRtxTimerThread. This is configured by
894 \c OS_TIMER_THREAD_PRIO. Stack for callback functions is supplied by \b osRtxTimerThread. \c OS_TIMER_THREAD_STACK_SIZE must
895 satisfy the stack requirements of the callback function with the highest stack usage.
898 \section eventFlagsConfig Event Flags Configuration
900 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_EventFlags functions.
902 <b>Event Configuration Options</b>
903 \image html config_wizard_eventFlags.png "RTX_Config.h: Event Flags Configuration"
905 Name | \#define | Description
906 ---------------------------------------|--------------------------|----------------------------------------------------------------
907 Object specific Memory allocation | \c OS_EVFLAGS_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
908 Number of Event Flags objects | \c OS_EVFLAGS_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
910 \subsection eventFlagsConfig_obj Object-specific memory allocation
911 When object-specific memory is used, the pool size for all Event objects is specified by \c OS_EVFLAGS_NUM. Refer to
912 \ref ObjectMemoryPool.
915 \section mutexConfig Mutex Configuration
916 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_MutexMgmt functions.
918 <b>Mutex Configuration Options</b>
919 \image html config_wizard_mutex.png "RTX_Config.h: Mutex Configuration"
922 Name | \#define | Description
923 ---------------------------------------|--------------------------|----------------------------------------------------------------
924 Object specific Memory allocation | \c OS_MUTEX_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
925 Number of Mutex objects | \c OS_MUTEX_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
927 \subsection mutexConfig_obj Object-specific Memory Allocation
928 When object-specific memory is used, the pool size for all Mutex objects is specified by \c OS_MUTEX_NUM. Refer to
929 \ref ObjectMemoryPool.
932 \section semaphoreConfig Semaphore Configuration
934 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_SemaphoreMgmt functions.
936 <b>Semaphore Configuration Options</b>
937 \image html config_wizard_semaphore.png "RTX_Config.h: Semaphore Configuration"
940 Name | \#define | Description
941 ---------------------------------------|--------------------------|----------------------------------------------------------------
942 Object specific Memory allocation | \c OS_SEMAPHORE_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
943 Number of Semaphore objects | \c OS_SEMAPHORE_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
945 \subsection semaphoreConfig_obj Object-specific memory allocation
946 When Object-specific Memory is used, the pool size for all Semaphore objects is specified by \c OS_SEMAPHORE_NUM. Refer to
947 \ref ObjectMemoryPool.
950 \section memPoolConfig Memory Pool Configuration
952 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_PoolMgmt functions.
954 <b>Memory Pool Configuration Options</b>
955 \image html config_wizard_memPool.png "RTX_Config.h: Memory Pool Configuration"
957 Name | \#define | Description
958 ---------------------------------------|--------------------------|----------------------------------------------------------------
959 Object specific Memory allocation | \c OS_MEMPOOL_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
960 Number of Memory Pool objects | \c OS_MEMPOOL_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
961 Data Storage Memory size [bytes] | \c OS_MEMPOOL_DATA_SIZE | Defines the combined data storage memory size. Applies to objects with system provided memory for data storage. Default value is \token{0}. Value range is \token{[0-1073741824]}, in multiples of \token{8}.
963 \subsection memPoolConfig_obj Object-specific memory allocation
964 When object-specific memory is used, the number of pools for all MemoryPool objects is specified by \c OS_MEMPOOL_NUM. The
965 total storage size reserved for all pools is configured in \c OS_MEMPOOL_DATA_SIZE. Refer to \ref ObjectMemoryPool.
968 \section msgQueueConfig Message Queue Configuration
970 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_Message functions.
972 <b>MessageQueue Configuration Options</b>
973 \image html config_wizard_msgQueue.png "RTX_Config.h: Message Queue Configuration"
975 Name | \#define | Description
976 ---------------------------------------|--------------------------|----------------------------------------------------------------
977 Object specific Memory allocation | \c OS_MSGQUEUE_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
978 Number of Message Queue objects | \c OS_MSGQUEUE_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
979 Data Storage Memory size [bytes] | \c OS_MSGQUEUE_DATA_SIZE | Defines the combined data storage memory size. Applies to objects with system provided memory for data storage. Default value is \token{0}. Value range is \token{[0-1073741824]}, in multiples of \token{8}.
981 \subsection msgQueueConfig_obj Object-specific memory allocation
982 When Object-specific Memory is used, the number of queues for all Message Queue objects is specified by \c OS_MSGQUEUE_NUM.
983 The total storage size reserved for all queues is configured in \c OS_MSGQUEUE_DATA_SIZE. Refer to \ref ObjectMemoryPool.
986 \section evtrecConfig Event Recorder Configuration
988 This section describes the configuration settings for the <a href="https://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html" target="_blank">Event Recorder</a>
989 annotations. The usage requires the source variant of RTX5; refer to \ref cre_rtx_proj_er for more information.
991 \subsection evtrecConfigGlobIni Global Configuration
992 Initialize Event Recorder during the \ref osKernelInitialize and optionally start event recording.
994 \image html config_wizard_evtrecGlobIni.png "RTX_Config.h: Global Configuration"
998 Name | \#define | Description
999 ----------------------|-----------------|----------------------------------------------------------------
1000 Global Initialization | \c OS_EVR_INIT | Initialize Event Recorder during \ref osKernelInitialize.
1001 Start Recording | \c OS_EVR_START | Start event recording after initialization.
1004 - If <b>Global Initialization (\c OS_EVR_INIT)</b> is set, an explicit call to \c EventRecorderInitialize is not required.
1005 - If <b>Start Recording (\c OS_EVR_START)</b> is set, an explicit call to \c EventRecorderStart is not required. You may call the function \c EventRecorderStop to stop recording.
1008 <b>Global Event Filter Setup</b>
1010 These event filter settings are applied to all software component numbers, including MDK middleware and user components.
1012 \image html config_wizard_evtrecGlobEvtFiltSetup.png "RTX_Config.h: Global Event Filter Setup"
1016 Name | \#define | Description
1017 --------------------------|------------------|----------------------------------------------------------------
1018 Error events | \c OS_EVR_LEVEL | Enable error events.
1019 API function call events | \c OS_EVR_LEVEL | Enable API function call events.
1020 Operation events | \c OS_EVR_LEVEL | Enable operation events.
1021 Detailed operation events | \c OS_EVR_LEVEL | Enable detailed operation events.
1024 You may disable event recording for specific software components by calling the function \c EventRecorderDisable.
1026 <b>RTOS Event Filter Setup</b>
1028 These event filter settings are applied to specific RTX component groups with sub-options for:
1030 - API function call events
1032 - Detailed operation events
1034 The generation of events must be enabled as explained under \ref evtrecConfigEvtGen.
1037 \image html config_wizard_evtrecRTOSEvtFilterSetup.png "RTX_Config.h: RTOS Event Filter Setup"
1041 Name | \#define | Description
1042 ------------------|----------------------------|----------------------------------------------------------------
1043 Memory Management | \c OS_EVR_MEMORY_LEVEL | Recording level for Memory Management events.
1044 Kernel | \c OS_EVR_KERNEL_LEVEL | Recording level for Kernel events.
1045 Thread | \c OS_EVR_THREAD_LEVEL | Recording level for Thread events.
1046 Generic Wait | \c OS_EVR_WAIT_LEVEL | Recording level for Generic Wait events.
1047 Thread Flags | \c OS_EVR_THFLAGS_LEVEL | Recording level for Thread Flags events.
1048 Event Flags | \c OS_EVR_EVFLAGS_LEVEL | Recording level for Event Flags events.
1049 Timer | \c OS_EVR_TIMER_LEVEL | Recording level for Timer events.
1050 Mutex | \c OS_EVR_MUTEX_LEVEL | Recording level for Mutex events.
1051 Semaphore | \c OS_EVR_SEMAPHORE_LEVEL | Recording level for Semaphore events.
1052 Memory Pool | \c OS_EVR_MEMPOOL_LEVEL | Recording level for Memory Pool events.
1053 Message Queue | \c OS_EVR_MSGQUEUE_LEVEL | Recording level for Message Queue events.
1056 \subsection evtrecConfigEvtGen RTOS Event Generation
1058 Enable the event generation for specific RTX component groups. This requires the RTX source variant (refer to \ref cre_rtx_proj_er for more information).
1060 \image html config_wizard_evtrecGeneration.png "RTX_Config.h: Event generation configuration"
1064 Name | \#define | Description
1065 ------------------|--------------------------|----------------------------------------------------------------
1066 Memory Management | \c OS_EVR_MEMORY | Enables Memory Management events generation.
1067 Kernel | \c OS_EVR_KERNEL | Enables Kernel events generation.
1068 Thread | \c OS_EVR_THREAD | Enables Thread events generation.
1069 Generic Wait | \c OS_EVR_WAIT | Enables Generic Wait events generation.
1070 Thread Flags | \c OS_EVR_THFLAGS | Enables Thread Flags events generation.
1071 Event Flags | \c OS_EVR_EVFLAGS | Enables Event Flags events generation.
1072 Timer | \c OS_EVR_TIMER | Enables Timer events generation.
1073 Mutex | \c OS_EVR_MUTEX | Enables Mutex events generation.
1074 Semaphore | \c OS_EVR_SEMAPHORE | Enables Semaphore events generation.
1075 Memory Pool | \c OS_EVR_MEMPOOL | Enables Memory Pool events generation.
1076 Message Queue | \c OS_EVR_MSGQUEUE | Enables Message Queue events generation.
1079 If event generation for a component is disabled, the code that generates the related events is not included. Thus, \ref evtrecConfigGlobIni "filters" for this
1080 component will have no effect and the debugger is unable to display any events for the related component group.
1083 \subsection systemConfig_event_recording Manual event configuration
1085 To disable the generation of events for a specific RTX API call, use the following \#define settings (from <b>rtx_evr.h</b>) and add these manually
1086 to the <b>RTX_Config.h</b> file:
1088 \b Memory \b events \n
1089 \c EVR_RTX_MEMORY_INIT_DISABLE, \c EVR_RTX_MEMORY_ALLOC_DISABLE, \c EVR_RTX_MEMORY_FREE_DISABLE,
1090 \c EVR_RTX_MEMORY_BLOCK_INIT_DISABLE, \c EVR_RTX_MEMORY_BLOCK_ALLOC_DISABLE, \c EVR_RTX_MEMORY_BLOCK_FREE_DISABLE
1092 \b Kernel \b events \n
1093 \c EVR_RTX_KERNEL_ERROR_DISABLE, \c EVR_RTX_KERNEL_INITIALIZE_DISABLE, \c EVR_RTX_KERNEL_INITIALIZED_DISABLE,
1094 \c EVR_RTX_KERNEL_GET_INFO_DISABLE, \c EVR_RTX_KERNEL_INFO_RETRIEVED_DISABLE, \c EVR_RTX_KERNEL_GET_STATE_DISABLE,
1095 \c EVR_RTX_KERNEL_START_DISABLE, \c EVR_RTX_KERNEL_STARTED_DISABLE, \c EVR_RTX_KERNEL_LOCK_DISABLE,
1096 \c EVR_RTX_KERNEL_LOCKED_DISABLE, \c EVR_RTX_KERNEL_UNLOCK_DISABLE, \c EVR_RTX_KERNEL_UNLOCKED_DISABLE,
1097 \c EVR_RTX_KERNEL_RESTORE_LOCK_DISABLE, \c EVR_RTX_KERNEL_LOCK_RESTORED_DISABLE, \c EVR_RTX_KERNEL_SUSPEND_DISABLE,
1098 \c EVR_RTX_KERNEL_SUSPENDED_DISABLE, \c EVR_RTX_KERNEL_RESUME_DISABLE, \c EVR_RTX_KERNEL_RESUMED_DISABLE,
1099 \c EVR_RTX_KERNEL_GET_TICK_COUNT_DISABLE, \c EVR_RTX_KERNEL_GET_TICK_FREQ_DISABLE,
1100 \c EVR_RTX_KERNEL_GET_SYS_TIMER_COUNT_DISABLE, \c EVR_RTX_KERNEL_GET_SYS_TIMER_FREQ_DISABLE
1102 \b Thread \b events \n
1103 \c EVR_RTX_THREAD_ERROR_DISABLE, \c EVR_RTX_THREAD_NEW_DISABLE, \c EVR_RTX_THREAD_CREATED_DISABLE,
1104 \c EVR_RTX_THREAD_GET_NAME_DISABLE, \c EVR_RTX_THREAD_GET_ID_DISABLE, \c EVR_RTX_THREAD_GET_STATE_DISABLE,
1105 \c EVR_RTX_THREAD_GET_STACK_SIZE_DISABLE, \c EVR_RTX_THREAD_GET_STACK_SPACE_DISABLE, \c EVR_RTX_THREAD_SET_PRIORITY_DISABLE,
1106 \c EVR_RTX_THREAD_PRIORITY_UPDATED_DISABLE, \c EVR_RTX_THREAD_GET_PRIORITY_DISABLE, \c EVR_RTX_THREAD_YIELD_DISABLE,
1107 \c EVR_RTX_THREAD_SUSPEND_DISABLE, \c EVR_RTX_THREAD_SUSPENDED_DISABLE, \c EVR_RTX_THREAD_RESUME_DISABLE,
1108 \c EVR_RTX_THREAD_RESUMED_DISABLE, \c EVR_RTX_THREAD_DETACH_DISABLE, \c EVR_RTX_THREAD_DETACHED_DISABLE,
1109 \c EVR_RTX_THREAD_JOIN_DISABLE, \c EVR_RTX_THREAD_JOIN_PENDING_DISABLE, \c EVR_RTX_THREAD_JOINED_DISABLE,
1110 \c EVR_RTX_THREAD_BLOCKED_DISABLE, \c EVR_RTX_THREAD_UNBLOCKED_DISABLE, \c EVR_RTX_THREAD_PREEMPTED_DISABLE,
1111 \c EVR_RTX_THREAD_SWITCHED_DISABLE, \c EVR_RTX_THREAD_EXIT_DISABLE, \c EVR_RTX_THREAD_TERMINATE_DISABLE,
1112 \c EVR_RTX_THREAD_DESTROYED_DISABLE, \c EVR_RTX_THREAD_GET_COUNT_DISABLE, \c EVR_RTX_THREAD_ENUMERATE_DISABLE
1114 \b Generic \b wait \b events \n
1115 \c EVR_RTX_DELAY_ERROR_DISABLE, \c EVR_RTX_DELAY_DISABLE, \c EVR_RTX_DELAY_UNTIL_DISABLE,
1116 \c EVR_RTX_DELAY_STARTED_DISABLE, \c EVR_RTX_DELAY_UNTIL_STARTED_DISABLE, \c EVR_RTX_DELAY_COMPLETED_DISABLE
1118 \b Thread \b flag \b events \n
1119 \c EVR_RTX_THREAD_FLAGS_ERROR_DISABLE, \c EVR_RTX_THREAD_FLAGS_SET_DISABLE, \c EVR_RTX_THREAD_FLAGS_SET_DONE_DISABLE,
1120 \c EVR_RTX_THREAD_FLAGS_CLEAR_DISABLE, \c EVR_RTX_THREAD_FLAGS_CLEAR_DONE_DISABLE, \c EVR_RTX_THREAD_FLAGS_GET_DISABLE,
1121 \c EVR_RTX_THREAD_FLAGS_WAIT_DISABLE, \c EVR_RTX_THREAD_FLAGS_WAIT_PENDING_DISABLE, \c EVR_RTX_THREAD_FLAGS_WAIT_TIMEOUT_DISABLE,
1122 \c EVR_RTX_THREAD_FLAGS_WAIT_COMPLETED_DISABLE, \c EVR_RTX_THREAD_FLAGS_WAIT_NOT_COMPLETED_DISABLE
1124 \b Event \b flag \b events \n
1125 \c EVR_RTX_EVENT_FLAGS_ERROR_DISABLE, \c EVR_RTX_EVENT_FLAGS_NEW_DISABLE, \c EVR_RTX_EVENT_FLAGS_CREATED_DISABLE,
1126 \c EVR_RTX_EVENT_FLAGS_GET_NAME_DISABLE, \c EVR_RTX_EVENT_FLAGS_SET_DISABLE, \c EVR_RTX_EVENT_FLAGS_SET_DONE_DISABLE,
1127 \c EVR_RTX_EVENT_FLAGS_CLEAR_DISABLE, \c EVR_RTX_EVENT_FLAGS_CLEAR_DONE_DISABLE, \c EVR_RTX_EVENT_FLAGS_GET_DISABLE,
1128 \c EVR_RTX_EVENT_FLAGS_WAIT_DISABLE, \c EVR_RTX_EVENT_FLAGS_WAIT_PENDING_DISABLE,
1129 \c EVR_RTX_EVENT_FLAGS_WAIT_TIMEOUT_DISABLE, \c EVR_RTX_EVENT_FLAGS_WAIT_COMPLETED_DISABLE,
1130 \c EVR_RTX_EVENT_FLAGS_WAIT_NOT_COMPLETED_DISABLE, \c EVR_RTX_EVENT_FLAGS_DELETE_DISABLE,
1131 \c EVR_RTX_EVENT_FLAGS_DESTROYED_DISABLE
1133 \b Timer \b events \n
1134 \c EVR_RTX_TIMER_ERROR_DISABLE, \c EVR_RTX_TIMER_CALLBACK_DISABLE, \c EVR_RTX_TIMER_NEW_DISABLE,
1135 \c EVR_RTX_TIMER_CREATED_DISABLE, \c EVR_RTX_TIMER_GET_NAME_DISABLE, \c EVR_RTX_TIMER_START_DISABLE,
1136 \c EVR_RTX_TIMER_STARTED_DISABLE, \c EVR_RTX_TIMER_STOP_DISABLE, \c EVR_RTX_TIMER_STOPPED_DISABLE,
1137 \c EVR_RTX_TIMER_IS_RUNNING_DISABLE, \c EVR_RTX_TIMER_DELETE_DISABLE, \c EVR_RTX_TIMER_DESTROYED_DISABLE
1139 \b Mutex \b events \n
1140 \c EVR_RTX_MUTEX_ERROR_DISABLE, \c EVR_RTX_MUTEX_NEW_DISABLE, \c EVR_RTX_MUTEX_CREATED_DISABLE,
1141 \c EVR_RTX_MUTEX_GET_NAME_DISABLE, \c EVR_RTX_MUTEX_ACQUIRE_DISABLE, \c EVR_RTX_MUTEX_ACQUIRE_PENDING_DISABLE,
1142 \c EVR_RTX_MUTEX_ACQUIRE_TIMEOUT_DISABLE, \c EVR_RTX_MUTEX_ACQUIRED_DISABLE, \c EVR_RTX_MUTEX_NOT_ACQUIRED_DISABLE,
1143 \c EVR_RTX_MUTEX_RELEASE_DISABLE, \c EVR_RTX_MUTEX_RELEASED_DISABLE, \c EVR_RTX_MUTEX_GET_OWNER_DISABLE,
1144 \c EVR_RTX_MUTEX_DELETE_DISABLE, \c EVR_RTX_MUTEX_DESTROYED_DISABLE
1146 \b Semaphore \b events \n
1147 \c EVR_RTX_SEMAPHORE_ERROR_DISABLE, \c EVR_RTX_SEMAPHORE_NEW_DISABLE, \c EVR_RTX_SEMAPHORE_CREATED_DISABLE,
1148 \c EVR_RTX_SEMAPHORE_GET_NAME_DISABLE, \c EVR_RTX_SEMAPHORE_ACQUIRE_DISABLE, \c EVR_RTX_SEMAPHORE_ACQUIRE_PENDING_DISABLE,
1149 \c EVR_RTX_SEMAPHORE_ACQUIRE_TIMEOUT_DISABLE, \c EVR_RTX_SEMAPHORE_ACQUIRED_DISABLE,
1150 \c EVR_RTX_SEMAPHORE_NOT_ACQUIRED_DISABLE, \c EVR_RTX_SEMAPHORE_RELEASE_DISABLE, \c EVR_RTX_SEMAPHORE_RELEASED_DISABLE,
1151 \c EVR_RTX_SEMAPHORE_GET_COUNT_DISABLE, \c EVR_RTX_SEMAPHORE_DELETE_DISABLE, \c EVR_RTX_SEMAPHORE_DESTROYED_DISABLE
1153 \b Memory \b pool \b events \n
1154 \c EVR_RTX_MEMORY_POOL_ERROR_DISABLE, \c EVR_RTX_MEMORY_POOL_NEW_DISABLE, \c EVR_RTX_MEMORY_POOL_CREATED_DISABLE,
1155 \c EVR_RTX_MEMORY_POOL_GET_NAME_DISABLE, \c EVR_RTX_MEMORY_POOL_ALLOC_DISABLE, \c EVR_RTX_MEMORY_POOL_ALLOC_PENDING_DISABLE,
1156 \c EVR_RTX_MEMORY_POOL_ALLOC_TIMEOUT_DISABLE, \c EVR_RTX_MEMORY_POOL_ALLOCATED_DISABLE,
1157 \c EVR_RTX_MEMORY_POOL_ALLOC_FAILED_DISABLE, \c EVR_RTX_MEMORY_POOL_FREE_DISABLE, \c EVR_RTX_MEMORY_POOL_DEALLOCATED_DISABLE,
1158 \c EVR_RTX_MEMORY_POOL_FREE_FAILED_DISABLE, \c EVR_RTX_MEMORY_POOL_GET_CAPACITY_DISABLE,
1159 \c EVR_RTX_MEMORY_POOL_GET_BLOCK_SZIE_DISABLE, \c EVR_RTX_MEMORY_POOL_GET_COUNT_DISABLE,
1160 \c EVR_RTX_MEMORY_POOL_GET_SPACE_DISABLE, \c EVR_RTX_MEMORY_POOL_DELETE_DISABLE, \c EVR_RTX_MEMORY_POOL_DESTROYED_DISABLE
1162 \b Message \b queue \b events \n
1163 \c EVR_RTX_MESSAGE_QUEUE_ERROR_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_NEW_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_CREATED_DISABLE,
1164 \c EVR_RTX_MESSAGE_QUEUE_GET_NAME_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_PUT_DISABLE,
1165 \c EVR_RTX_MESSAGE_QUEUE_PUT_PENDING_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_PUT_TIMEOUT_DISABLE,
1166 \c EVR_RTX_MESSAGE_QUEUE_INSERT_PENDING_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_INSERTED_DISABLE,
1167 \c EVR_RTX_MESSAGE_QUEUE_NOT_INSERTED_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_GET_DISABLE,
1168 \c EVR_RTX_MESSAGE_QUEUE_GET_PENDING_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_GET_TIMEOUT_DISABLE,
1169 \c EVR_RTX_MESSAGE_QUEUE_RETRIEVED_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_NOT_RETRIEVED_DISABLE,
1170 \c EVR_RTX_MESSAGE_QUEUE_GET_CAPACITY_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_GET_MSG_SIZE_DISABLE,
1171 \c EVR_RTX_MESSAGE_QUEUE_GET_COUNT_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_GET_SPACE_DISABLE,
1172 \c EVR_RTX_MESSAGE_QUEUE_RESET_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_RESET_DONE_DISABLE,
1173 \c EVR_RTX_MESSAGE_QUEUE_DELETE_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_DESTROYED_DISABLE
1179 /* ========================================================================================================================== */
1182 \page creating_RTX5_LIB Building the RTX5 Library
1184 The CMSIS Pack contains a µVision project for building the complete set of RTX5 libraries. This project can also be used as
1185 a reference for building the RTX5 libraries using a tool-chain of your choice.
1187 -# Open the project \b RTX_CM.uvprojx from the pack folder <b>CMSIS/RTOS2/RTX/Library/ARM/MDK</b> in µVision.
1188 -# Select the project target that matches your device's processor core.
1189 \n The project provides target configuration for all supported Cortex-M targets supported by RTX5.
1190 -# You can find out about the required preprocessor defines in the dialogs <b>Options for Target - C/C++</b> and
1191 <b>Options for Target - Asm</b>. Note the need to use at least the C99 compiler mode when building RTX from source.
1192 -# From the <b>Project</b> window you find the list of source files required for a complete library build.
1193 -# Build the library of your choice using \b Project - \b Build \b Target (or press F7).
1195 \image html own_lib_projwin.png "Project with files for Armv8-M Mainline"
1201 /* ========================================================================================================================== */
1203 \page technicalData5 Technical Data
1205 The following section contains technical information about RTX v5.
1207 - \subpage pHardwareRequirements lists the resource requirements of the RTX v5 kernel along with hardware dependencies.
1208 - \subpage pStackRequirements lists the memory requirements for the main stack when running the RTX v5 kernel.
1209 - \subpage pControlBlockSizes provides memory size information for \ref StaticObjectMemory "object-specific control block memory allocation".
1210 - \subpage pDirectory_Files is an overview of the supplied files that belong to RTX v5
1211 - \subpage pToolchains details about the compiler support \ifnot FuSaRTS which includes ArmCC (MDK, DS-5), IAR EW-ARM, and GCC. \endif
1214 \page pHardwareRequirements Hardware Requirements
1216 The following section lists the hardware requirements for RTX v5 on the various supported target processors:
1218 \section tpProcessor Processor Requirements
1220 RTX assumes a fully functionable processor and uses the following hardware features. It does not implement any confidence test for processor validation which should be provided by an user-supplied software test library.
1223 \if ARMv8M \subsection tpCortexM0_M0P_M23 Cortex-M0/M0+/M23 target processor
1226 \ifnot ARMv8M \subsection tpCortexM0_M0P_M23 Cortex-M0/M0+ target processor
1229 Hardware Requirement | Description
1230 :--------------------------|:------------------------------------------------------
1231 SysTick timer | The SysTick timer generates the kernel tick interrupts and the interface is implemented in %os_systick.c using the \ref CMSIS_RTOS_TickAPI
1232 Exception Handler | RTX implements exception handlers for SVC, PendSV, and SysTick interrupt
1233 Core Registers | The processor status is read using the following core registers: CONTROL, IPSR, PRIMASK
1234 System Control Block (SBC) | To control and setup the processor exceptions including PendSV and SVC
1235 Interrupt Control | The CMSIS-Core functions __disable_irq and __enable_irq to control the interrupt system via the CPSR core register.
1237 The RTX implements interfaces to the processor hardware in following files:
1238 - <b>%irq_cm0.s</b> defines exception handlers for Cortex-M0/M0+
1240 - <b>%irq_armv8mbl_common.s</b> defines exception handlers for Cortex-M23
1242 - <b>%rtx_core_cm.h</b> defines processor specific helper functions and the interfaces to Core Registers and Core Peripherals.
1243 - <b>%os_tick.h</b> is the \ref CMSIS_RTOS_TickAPI that defines the interface functions to the SysTick timer.
1246 - The CMSIS-Core variable \c SystemCoreClock is used by RTX to configure the SysTick timer.
1248 \if ARMv8M \subsection tpCortexM3_M4_M7_M33_M35P Cortex-M3/M4/M7/M33/M35P target processor
1251 \ifnot ARMv8M \subsection tpCortexM3_M4_M7_M33_M35P Cortex-M3/M4/M7 target processor
1254 RTX assumes a fully function-able processor and uses the following hardware features:
1256 Hardware Item | Requirement Description
1257 :--------------------------|:------------------------------------------------------
1258 SysTick timer | The \b SysTick timer shall be available in the processor.
1259 System Exceptions | The RTX requires \b SVC, \b PendSV, and \b SysTick exceptions and implements corresponding exception handlers.
1260 Core Registers | The RTX uses \b CONTROL, \b IPSR , \b PRIMASK and \b BASEPRI core registers for reading processor status.
1261 System Control Block (SCB) | The RTX uses \b SCB registers to control and setup the processor system exceptions including PendSV and SVC.
1262 NVIC Interface | CMSIS-Core function \b NVIC_GetPriorityGrouping is used by the RTX to setup interrupt priorities.
1263 LDREX, STREX instructions | Exclusive access instructions \b LDREX and \b STREX are used to implement atomic execution without disabling interrupts.
1265 The interface files to the processor hardware are:
1266 - <b>%irq_cm3.s</b> defines exception handlers for Cortex-M3 and Cortex-M4/M7 without floating point unit.
1267 - <b>%irq_cm4f.s</b> defines exception handlers for Cortex-M4/M7 with floating point unit.
1269 - <b>%irq_armv8mml_common.s</b> defines exception handlers for Cortex-M33/M35P
1271 - <b>%rtx_core_cm.h</b> defines processor specific helper functions and the interfaces to Core Registers and Core Peripherals.
1272 - <b>%os_tick.h</b> is the \ref CMSIS_RTOS_TickAPI that defines the interface functions to the SysTick timer.
1275 - The CMSIS-Core variable \c SystemCoreClock is used by RTX to configure the SysTick timer.
1277 \if ARMCA \subsection tpCortexA5_A7_A9 Cortex-A5/A7/A9 target processor
1280 Hardware Requirement | Description
1281 :--------------------------|:------------------------------------------------------
1282 Timer Peripheral | An arbitrary timer peripheral generates the kernel tick interrupts. The interfaces for Cortex-A Generic Timer and Private Timer are implemented in %os_tick_gtim.c and %os_tick_ptim.c using the \ref CMSIS_RTOS_TickAPI
1283 Exception Handler | RTX implements exception handlers for SVC, IRQ, Data Abort, Prefetch Abort and Undefined Instruction interrupt.
1284 Core Registers | The processor status is read using the following core registers: CPSR, CPACR and FPSCR.
1285 LDREX, STREX instruction | Atomic execution avoids the requirement to disable interrupts and is implemented via exclusive access instructions.
1286 Interrupt Controller | An interrupt controller interface is required to setup and control Timer Peripheral interrupt. The interface for Arm GIC (Generic Interrupt Controller) is implemented in %irq_ctrl_gic.c using the <a class="el" href="../../Core_A/html/group__irq__ctrl__gr.html">IRQ Controller API</a>.
1288 The interface files to the processor hardware are:
1289 - <b>%irq_ca.s</b> defines SVC, IRQ, Data Abort, Prefetch Abort and Undefined Instruction exception handlers.
1290 - <b>%rtx_core_ca.h</b> defines processor specific helper functions and the interfaces to Core Registers and Core Peripherals.
1291 - <b>%os_tick.h</b> is the \ref CMSIS_RTOS_TickAPI that defines the interface functions to the timer peripheral.
1292 - <b>%irq_ctrl.h</b> is the <a class="el" href="../../Core_A/html/group__irq__ctrl__gr.html">IRQ Controller API</a> that defines the interface functions to the interrupt controller.
1295 - The CMSIS-Core variable \c SystemCoreClock is used by RTX to configure the timer peripheral.
1298 \section rMemory Memory Requirements
1299 RTX requires RAM memory that is accessible with contiguous linear addressing. When memory is split across multiple memory banks, some systems
1300 do not accept multiple load or store operations on this memory blocks.
1302 RTX does not implement any confidence test for memory validation. This should be implemented by an user-supplied software test library.
1305 \page pStackRequirements Stack Requirements
1307 Keil RTX v5 kernel functions are executed in handler mode (using PendSV/SysTick/SVC) and the tables below lists the maximum stack requirements for the Main Stack (MSP) that the user
1310 The stack for the \ref osKernelStart function is referred as "Startup" and RTX v5 uses 32 bytes (with Arm Compiler). However the user should also consider additional stack that
1311 might be allocated by the 'main' function of the embedded application. The following picture shows a worst-case memory allocation of the Main Stack.
1313 \image html "KernelStackUsage.png" "Main Stack usage of RTX v5 applications"
1315 The stack requirements depend on the compiler and the optimization level. RTX v5 supports event annotations and this configuration impacts also the stack requirement.
1318 <b>Arm Compiler ARMCC V6.10</b>: Main Stack requirements for PendSV/SysTick/SVC
1320 Optimization | RTX Kernel | RTX Kernel + Event Recorder
1321 :--------------------|:------------|:--------------------------------
1322 -O1 (Debug) | 152 bytes | 280 bytes
1323 -Os (Balanced) | 120 bytes | 256 bytes
1324 -Oz (Size) | 112 bytes | 248 bytes
1326 <b>Arm Compiler ARMCC V5.06</b>: Main Stack requirements for PendSV/SysTick/SVC
1328 Optimization | RTX Kernel | RTX Kernel + Event Recorder
1329 :--------------------|:------------|:--------------------------------
1330 -O0 (Debug) | 176 bytes | 360 bytes
1331 -O1 | 112 bytes | 248 bytes
1332 -O2 | 112 bytes | 256 bytes
1333 -O3 | 112 bytes | 248 bytes
1337 \page pControlBlockSizes Control Block Sizes
1339 Keil RTX v5 specific control block definitions (including sizes) as well as memory pool and message queue memory requirements
1340 are defined in the header file <b>rtx_os.h</b>:
1342 If you provide memory for the RTOS objects, you need to know the size that is required for each object control block.
1343 The memory of the control block is provided by the parameter \em attr of the related \em osXxxxNew function.
1344 The element \em cb_mem is the memory address, \em cb_size is the size of the control block memory.
1346 Refer to \ref StaticObjectMemory for more information.
1348 The following table lists the control block sizes:
1350 Category | Control Block Size Attribute | Size | \#define symbol
1351 :-----------------------------|:----------------------------------|:-----------|:--------------------
1352 \ref CMSIS_RTOS_ThreadMgmt | \ref osThreadAttr_t::cb_mem | 68 bytes | \ref osRtxThreadCbSize
1353 \ref CMSIS_RTOS_TimerMgmt | \ref osTimerAttr_t::cb_mem | 32 bytes | \ref osRtxTimerCbSize
1354 \ref CMSIS_RTOS_EventFlags | \ref osEventFlagsAttr_t::cb_mem | 16 bytes | \ref osRtxEventFlagsCbSize
1355 \ref CMSIS_RTOS_MutexMgmt | \ref osMutexAttr_t::cb_mem | 28 bytes | \ref osRtxMutexCbSize
1356 \ref CMSIS_RTOS_SemaphoreMgmt | \ref osSemaphoreAttr_t::cb_mem | 16 bytes | \ref osRtxSemaphoreCbSize
1357 \ref CMSIS_RTOS_PoolMgmt | \ref osMemoryPoolAttr_t::cb_mem | 36 bytes | \ref osRtxMemoryPoolCbSize
1358 \ref CMSIS_RTOS_Message | \ref osMessageQueueAttr_t::cb_mem | 52 bytes | \ref osRtxMessageQueueCbSize
1361 \page pDirectory_Files Directory Structure and File Overview
1363 The following section provides an overview of the directory structure and the files that are relevant for the user's for
1364 CMSIS-RTOS RTX v5. The following directory references start below the CMSIS pack installation path, for example
1365 ARM/CMSIS/<i>version</i>/CMSIS/RTOS2.
1367 \section Folders RTX v5 Directory Structure
1369 The CMSIS-RTOS RTX v5 is delivered in source code and several examples are provided.
1371 <table class="cmtable" summary="CMSIS-RTOS RTX Library Files">
1378 <td>Header files: \b %cmsis_os2.h for \ref rtos_api2 and \b %os_tick.h for \ref rtos_os_tick_api.</td>
1382 <td>Generic <b>OS tick</b> implementations for various processors based on \ref rtos_os_tick_api.</td>
1387 <td><a class="el" href="../../RTOS/html/index.html">CMSIS-RTOS API v1</a> template source and header file.</td>
1392 <td>Directory with RTX specific files and folders. Also contains the component viewer description file.</td>
1396 <td>CMSIS-RTOS RTX configuration files %RTX_Config.h and %RTX_Config.c.</td>
1400 <td>RTX/Examples</td>
1401 <td>Example projects that can be directly used in development tools.</td>
1405 <td>RTX/Include</td>
1406 <td>RTX v5 specific include files.</td>
1410 <td>RTX/Include1</td>
1411 <td>CMSIS-RTOS v1 API header file.</td>
1414 <td>RTX/Library</td>
1415 <td>Pre-built libraries (see next table for details).</td>
1420 <td>Source code that can be used with ARMCC and GCC.</td>
1423 <td>RTX/Template</td>
1424 <td>User code templates for creating application projects with CMSIS-RTOS RTX v5.</td>
1429 \section libFiles RTX v5 Library Files
1431 The CMSIS-RTOS RTX Library is available pre-compiled for ARMCC and GCC compilers and supports all Cortex-M
1432 processor variants in every configuration \if ARMv8M , including Arm Cortex-M23, Cortex-M33 and Cortex-M35P\endif.
1434 \ifnot FuSaRTS <table class="cmtable" summary="CMSIS-RTOS RTX Library Files">
1436 <th>Library File</th>
1437 <th>Processor Configuration</th>
1440 <td>Library/ARM/RTX_CM0.lib</td>
1441 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M0 and M1, little-endian.</td>
1444 <td>Library/ARM/RTX_CM3.lib</td>
1445 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M3, M4, and M7 without FPU, little-endian.</td>
1448 <td>Library/ARM/RTX_CM4F.lib</td>
1449 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M4 and M7 with FPU, little-endian.</td>
1453 <td>Library/ARM/RTX_V8MB.lib</td>
1454 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Baseline.</td>
1457 <td>Library/ARM/RTX_V8MBN.lib</td>
1458 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Baseline, non-secure.</td>
1461 <td>Library/ARM/RTX_V8MM.lib</td>
1462 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Mainline.</td>
1465 <td>Library/ARM/RTX_V8MMF.lib</td>
1466 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Mainline with FPU.</td>
1469 <td>Library/ARM/RTX_V8MMFN.lib</td>
1470 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Mainline with FPU, non-secure.</td>
1473 <td>Library/ARM/RTX_V8MMN.lib</td>
1474 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Mainline, non-secure.</td>
1479 <td>Library/GCC/libRTX_CM0.a</td>
1480 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Cortex-M0 and M1, little-endian.</td>
1483 <td>Library/GCC/libRTX_CM3.a</td>
1484 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Cortex-M3, M4, and M7 without FPU, little-endian.</td>
1487 <td>Library/GCC/libRTX_CM4F.a</td>
1488 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Cortex-M4 and M7 with FPU, little-endian.</td>
1493 <td>Library/GCC/libRTX_V8MB.a</td>
1494 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Baseline.</td>
1497 <td>Library/GCC/libRTX_V8MBN.a</td>
1498 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Baseline, non-secure.</td>
1501 <td>Library/GCC/libRTX_V8MM.a</td>
1502 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Mainline.</td>
1505 <td>Library/GCC/libRTX_V8MMF.a</td>
1506 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Mainline with FPU.</td>
1509 <td>Library/GCC/libRTX_V8MMFN.a</td>
1510 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Mainline with FPU, non-secure.</td>
1513 <td>Library/GCC/libRTX_V8MMN.a</td>
1514 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Mainline, non-secure.</td>
1524 \page pToolchains Supported Toolchains
1527 FuSa RTX5 RTOS is validated using the compiler version referenced in <a href="../../Safety/html/index.html#safety_product_overview_toolchain"><b>Tested and Verified Toolchains</b></a> section for the Arm FuSa Run-time System.
1532 Keil RTX5 is developed and tested using the common toolchains and development environments.
1534 \section technicalData_Toolchain_ARM Arm Compiler (Arm/Keil MDK, uVision5)
1536 RTX5 is initially developed and optimized using Arm Compiler and Arm/Keil MDK.
1537 The current release is tested with the following versions:
1539 <li>Arm Compiler 5.06 Update 6</li>
1540 <li>Arm Compiler 6.6.2 (Long Term Maintenance)</li>
1541 <li>Arm Compiler 6.9</li>
1542 <li>RTOS-aware debugging with uVision 5.24</li>
1546 \section technicalData_Toolchain_IAR IAR Embedded Workbench
1548 RTX5 has been ported to the IAR Embedded Workbench. The following releases are known to work:
1550 <li>IAR Embedded Workbench 7.7 (<a href="https://github.com/ARM-software/CMSIS_5/issues/201">community report</a>)</li>
1551 <li>IAR Embedded Workbench 7.80.4</li>
1552 <li><b>IAR Embedded Workbench 8.20.1</b></li>
1555 \section technicalData_Toolchain_GCC GNU Compiler Collection
1557 RTX5 has also been ported to support GCC, maintenance mainly relays on community contribution.
1558 Active development is currently tested with:
1560 <li>GNU Tools for Arm Embedded 6.3.1 20170620</li>
1567 /* ========================================================================================================================== */
1569 \page CodingRules Coding Rules
1572 CMSIS components use <a href="../../General/html/index.html#CodingRules"><b>general coding rules</b></a> across the various components.
1576 FuSa RTX RTOS uses <a href="../../Safety/html/index.html#CodingRules"><b>general coding rules</b></a>.
1579 The CMSIS-RTOS2 API is using the following <b>Namespace</b> prefixes:
1580 - <b>os</b> for all definitions and function names.
1581 - <b>os</b> with postfix <b>_t</b> for all typedefs.
1583 The CMSIS-RTOS2 RTX v5 implementation is using the following <b>Namespace</b> prefixes for public symbol definitions:
1584 - <b>osRtx</b> for all general definitions and function names that relate to the RTX kernel.
1585 - <b>osRtx</b> with postfix <b>_t</b> for all typedefs.
1586 - <b>OS_Tick_</b> for interface functions to the hardware system tick timer.
1587 - <b>EvrRtx</b> for event function annotations that interface to the Event Recorder.
1590 /* ========================================================================================================================== */
1592 \page misraCompliance5 MISRA C:2012 Compliance
1593 The RTX5 C source files use <b><a class=el href="http://www.misra.org.uk/" target="_blank">MISRA C:2012</a></b> guidelines as underlying coding standard.
1595 For MISRA validation, <b><a class=el href="http://www.gimpel.com/" target="_blank">PC-lint</a></b> V9.00L is used with configuration for Arm Compiler V6.9.
1596 The PC-Lint validation setup is part of the project file <b>.\\CMSIS\\RTOS2\\RTX\\Library\\ARM\\MDK\\RTX_CM.uvprojx</b> as shown below.
1597 Refer to <b><a class=el href="https://www.keil.com/support/man/docs/uv4/uv4_ut_pclint_validation.htm" target="_blank">Setup for PC-Lint</a></b> for more information.
1599 \image html "PC-Lint.png" "Running PC-Lint within MDK - uVision"
1601 The PC-Lint configuration uses the following Options under <b>Tools - PC-Lint Setup...</b>:
1602 - Config File: co-ARMCC-6.lnt (20-Mar-2017) with additional options:
1605 -esym(526,__builtin_*) -esym(628,__builtin_*)
1606 -sem(__builtin_clz, pure)
1607 +doffsetof(t,m)=((size_t)&((t*)0)->m) -emacro((413,923,9078),offsetof)
1608 -ecall(534,__disable_irq)
1610 - Included Project Information:
1611 - Enable: Add 'Include' paths
1612 - Enable: Add 'Software Packs' paths
1613 - Enable: Verify 'Software Packs' includes
1614 - Enable: Add 'Preprocessor' symbols
1615 - Enable: Add 'Define' symbols
1616 - MISRA Rules Setup and Configuration:
1617 - MISRQ_C_2012_Config.lnt; all rules enabled
1618 - includes definition file: au-misra3.lnt (12-Jun-2014)
1619 - Additional Lint Commands (for both single and multiple files):
1621 - emacro(835,osRtxConfigPrivilegedMode)
1624 The C source code is annotated with PC-Lint control comments to allows MISRA deviations.
1625 These deviations with the underlying design decisions are described in the following.
1630 The RTX source code has the following deviations from MISRA:
1645 All source code deviations are clearly marked and in summary these deviations affect the following MISRA rules:
1646 - [MISRA 2012 Directive 4.9, advisory]: A function should be used in preference to a function-like macro where yet are interchangeable
1647 - [MISRA 2012 Rule 1.3, required]: There shall be no occurrence of undefined or critical unspecified behavior
1648 - [MISRA 2012 Rule 10.3, required]: Expression assigned to a narrower or different essential type
1649 - [MISRA 2012 Rule 10.5, advisory]: Impermissible cast; cannot cast from 'essentially unsigned' to 'essentially enum\<i\>'
1650 - [MISRA 2012 Rule 11.1, required]: Conversions shall not be performed between a pointer to a function and any other type
1651 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1652 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1653 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1654 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1655 - [MISRA 2012 Rule 15.5, advisory]: A function should have a single point of exit at the end
1656 - [MISRA 2012 Rule 20.10, advisory]: The # and ## preprocessor operators should not be used
1658 In the following all deviations are described in detail.
1660 \section MISRA_1 [MISRA Note 1]: Return statements for parameter checking
1662 Return statements are used at the beginning of several functions to validate parameter values and object states.
1663 The function returns immediately without any side-effects and typically an error status is set. This structure
1664 keeps the source code better structured and easier to understand.
1666 This design decision implies the following MISRA deviation:
1667 - [MISRA 2012 Rule 15.5, advisory]: A function should have a single point of exit at the end
1669 All locations in the source code are marked with:
1671 //lint -e{904} "Return statement before end of function" [MISRA Note 1]
1675 \section MISRA_2 [MISRA Note 2]: Object identifiers are void pointers
1677 CMSIS-RTOS is independent of an underlying RTOS implementation. The object identifiers are therefore defined as void pointers to:
1678 - allow application programs that are agnostic from an underlying RTOS implementation.
1679 - avoid accidentally accesses an RTOS control block from an application program.
1681 This design decisions imply the following MISRA deviations:
1682 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1683 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1685 All locations in the source code are marked with:
1687 //lint -e{9079} -e{9087} "cast from pointer to void to pointer to object type" [MISRA Note 2]
1690 In the RTX5 implementation the required pointer conversions are implemented in the header file rtx_lib.h with the following inline functions:
1693 osRtxThread_t *osRtxThreadId (osThread_t thread_id);
1694 osRtxTimer_t *osRtxTimerId (osTimer_t timer_id);
1695 osRtxEventFlags_t *osRtxEventFlagsId (osEventFlags_t ef_id);
1696 osRtxMutex_t *osRtxMutexId (osMutex_t mutex_id);
1697 osRtxSemaphore_t *osRtxSemaphoreId (osSemaphore_t semaphore_id);
1698 osRtxMemoryPool_t *osRtxMemoryPoolId (osMemoryPoolId_t mp_id);
1699 osRtxMessageQueue_t *osRtxMessageQueueId(osMessageQueueId_t mq_id);
1702 \section MISRA_3 [MISRA Note 3]: Conversion to unified object control blocks
1704 RTX uses a unified object control block structure that contains common object members.
1705 The unified control blocks use a fixed layout at the beginning of the structure and starts always with an object identifier.
1706 This allows common object functions that receive a pointer to a unified object control block and reference only the
1707 pointer or the members in the fixed layout. Using common object functions and data (for example the ISR queue) reduces
1708 code complexity and keeps the source code better structured. Refer also to \ref MISRA_4
1710 This design decisions imply the following MISRA deviations:
1711 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1712 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1714 All locations in the source code are marked with:
1716 //lint -e{9079} -e{9087} "cast from pointer to void to pointer to object type" [MISRA Note 3]
1720 In the RTX5 implementation the required pointer conversions are implemented in the header file \em rtx_lib.h with the following inline function:
1723 osRtxObject_t *osRtxObject (void *object);
1727 \section MISRA_4 [MISRA Note 4]: Conversion from unified object control blocks
1729 RTX uses a unified object control block structure that contains common object members. Refer to \ref MISRA_3 for more information.
1730 To process specific control block data, pointer conversions are required.
1732 This design decisions imply the following MISRA deviations:
1733 - [MISRA 2012 Rule 1.3, required]: There shall be no occurrence of undefined or critical unspecified behavior
1734 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1735 In addition PC-Lint issues:
1736 - Info 826: Suspicious pointer-to-pointer conversion (area too small)
1738 All locations in the source code are marked with:
1740 //lint -e{740} -e{826} -e{9087} "cast from pointer to generic object to specific object" [MISRA Note 4]
1743 In the RTX5 source code the required pointer conversions are implemented in the header file \em rtx_lib.h with the following inline functions:
1746 osRtxThread_t *osRtxThreadObject (osRtxObject_t *object);
1747 osRtxTimer_t *osRtxTimerObject (osRtxObject_t *object);
1748 osRtxEventFlags_t *osRtxEventFlagsObject (osRtxObject_t *object);
1749 osRtxMutex_t *osRtxMutexObject (osRtxObject_t *object);
1750 osRtxSemaphore_t *osRtxSemaphoreObject (osRtxObject_t *object);
1751 osRtxMemoryPool_t *osRtxMemoryPoolObject (osRtxObject_t *object);
1752 osRtxMessageQueue_t *osRtxMessageQueueObject (osRtxObject_t *object);
1753 osRtxMessage_t *osRtxMessageObject (osRtxObject_t *object);
1756 \section MISRA_5 [MISRA Note 5]: Conversion to object types
1758 The RTX5 kernel has common memory management functions that use void pointers. These memory allocation functions return
1759 a void pointer which is correctly aligned for object types.
1761 This design decision implies the following MISRA deviations:
1762 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1764 All locations in the source code are marked with:
1766 //lint -e{9079} "conversion from pointer to void to pointer to other type" [MISRA Note 5]
1772 os_thread_t *thread;
1774 //lint -e{9079} "conversion from pointer to void to pointer to other type" [MISRA Note 5]
1775 thread = osRtxMemoryPoolAlloc(osRtxInfo.mpi.thread);
1780 \section MISRA_6 [MISRA Note 6]: Conversion from user provided storage
1782 CMSIS-RTOS2 and RTX5 support user provided storage for object control blocks, stack, and data storage.
1783 The API uses void pointers to define the location of this user provided storage. It is therefore
1784 required to cast the void pointer to underlying storage types. Alignment restrictions of user provided storage
1785 are checked before accessing memory. Refer also to \ref MISRA_7.
1787 This design decisions imply the following MISRA deviations:
1788 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1789 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1791 All locations in the source code are marked with:
1793 //lint -e{9079} "conversion from pointer to void to pointer to other type" [MISRA Note 6]
1798 static osTimerId_t svcRtxTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr) {
1803 //lint -e{9079} "conversion from pointer to void to pointer to other type" [MISRA Note 6]
1804 timer = attr->cb_mem;
1808 \section MISRA_7 [MISRA Note 7]: Check for proper pointer alignment
1810 RTX5 verifies the alignment of user provided storage for object control blocks, stack, and data storage.
1811 Refer also to \ref MISRA_6 for more information.
1813 This design decision implies the following MISRA deviations:
1814 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1815 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1817 All locations in the source code are marked with:
1819 //lint -e(923) -e(9078) "cast from pointer to unsigned int" [MISRA Note 7]
1824 static osThreadId_t svcRtxThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr) {
1828 if (stack_mem != NULL) {
1829 //lint -e(923) -e(9078) "cast from pointer to unsigned int" [MISRA Note 7]
1830 if ((((uint32_t)stack_mem & 7U) != 0U) || (stack_size == 0U)) {
1834 \section MISRA_8 [MISRA Note 8]: Memory allocation management
1836 RTX5 implements memory allocation functions which require pointer arithmetic to manage memory.
1837 The structure with the type \em mem_block_t that is used to menage memory allocation blocks is defined in \em rtx_memory.c
1839 This design decision implies the following MISRA deviations:
1840 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1841 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1843 All locations in the source code are marked with:
1845 //lint -e(923) -e(9078) "cast from pointer to unsigned int" [MISRA Note 8]
1848 The required pointer arithmetic is implemented in \em rtx_memory.c with the following function:
1850 __STATIC_INLINE mem_block_t *MemBlockPtr (void *mem, uint32_t offset) {
1854 //lint --e{923} --e{9078} "cast between pointer and unsigned int" [MISRA Note 8]
1855 addr = (uint32_t)mem + offset;
1856 ptr = (mem_block_t *)addr;
1862 \section MISRA_9 [MISRA Note 9]: Pointer conversions for register access
1864 The CMSIS-Core peripheral register blocks are accessed using a structure. The memory address of this structure
1865 is specified as unsigned integer number. Pointer conversions are required to access the specific registers.
1867 This design decision implies the following MISRA deviations:
1868 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1869 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1871 All locations in the source code are marked with:
1873 //lint -emacro((923,9078),SCB) "cast from unsigned long to pointer" [MISRA Note 9]
1879 #define SCS_BASE (0xE000E000UL)
1880 #define SCB ((SCB_Type *)SCB_BASE)
1881 typedef struct {...} SCB_Type;
1886 \section MISRA_10 [MISRA Note 10]: SVC calls use function-like macros
1888 RTX5 is using SVC (Service Calls) to switch between thread mode (for user code execution) and handler mode (for RTOS kernel execution).
1889 The SVC function call mechanism is implemented with assembly instructions to construct the code for SVC.
1890 The source code uses C macros and are designed as C function-like macros to generate parameter passing
1891 for variables depending on macro parameters. An alternative replacement code would be complex.
1892 The C macros use multiple '##' operators however it has been verified that the order of evaluation is irrelevant
1893 and result of macro expansion is always predictable.
1895 This design decision implies the following MISRA deviations:
1896 - [MISRA 2012 Directive 4.9, advisory]: A function should be used in preference to a function-like macro where yet are interchangeable
1897 - [MISRA 2012 Rule 1.3, required]: There shall be no occurrence of undefined or critical unspecified behavior
1898 - [MISRA 2012 Rule 20.10, advisory]: The # and ## preprocessor operators should not be used
1900 The relevant source code is in the file \em rtx_core_cm.h and is marked with:
1902 //lint -save -e9023 -e9024 -e9026 "Function-like macros using '#/##'" [MISRA Note 10]
1906 \section MISRA_11 [MISRA Note 11]: SVC calls use assembly code
1908 The SVC (Service Call) functions are constructed as a mix of C and inline assembly as it is required to access CPU registers
1909 for parameter passing. The function parameters are mapped to the CPU registers R0..R3 and SVC function number to
1910 CPU register R12 (or R7). For assembly inter-working the function parameters are casted to unsigned int values.
1912 The function return value after SVC call is mapped to the CPU register R0. Return value is casted from unsigned int
1913 to the target value.
1915 It has been verified that this method has no side-effects and is well defined.
1917 This design decision implies the following MISRA deviations:
1918 - [MISRA 2012 Rule 10.3, required]: Expression assigned to a narrower or different essential type
1919 - [MISRA 2012 Rule 10.5, advisory]: Impermissible cast; cannot cast from 'essentially unsigned' to 'essentially enum\<i\>'
1920 - [MISRA 2012 Rule 11.1, required]: Conversions shall not be performed between a pointer to a function and any other type
1921 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1922 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1924 SVC functions are marked as library modules and not processed by PC-lint. The relevant source code is marked with:
1926 //lint ++flb "Library Begin" [MISRA Note 11]
1928 //lint --flb "Library End"
1933 // Service Calls definitions
1934 //lint ++flb "Library Begin" [MISRA Note 11]
1935 SVC0_1(Delay, osStatus_t, uint32_t)
1936 SVC0_1(DelayUntil, osStatus_t, uint32_t)
1937 //lint --flb "Library End"
1940 PC-lint does not process ASM input/output operand lists and therefore falsely identifies issues:
1941 - Last value assigned to variable not used
1942 - Symbol not subsequently referenced
1943 \todo: what has been done to mitigate that?
1946 \section MISRA_12 [MISRA Note 12]: Usage of exclusive access instructions
1948 The RTX5 implementation uses the CPU instructions LDREX and STREX (when supported by the processor) to implement atomic operations.
1950 These atomic operations eliminate the requirement for interrupt lock-outs. The atomic operations are implemented using inline assembly.
1952 PC-lint cannot process assembler instructions including the input/output operand lists and therefore falsely identifies issues:
1953 - Symbol not initialized
1954 - Symbol not subsequently referenced
1955 - Symbol not referenced
1956 - Pointer parameter could be declared as pointing to const
1958 It has been verified that atomic operations have no side-effects and are well defined.
1960 The functions that implement atomic instructions are marked as library modules and not processed by PC-lint. The relevant source code is marked with:
1962 //lint ++flb "Library Begin" [MISRA Note 12]
1964 //lint --flb "Library End"
1968 \section MISRA_13 [MISRA Note 13]: Usage of Event Recorder
1970 The Event Recorder is a generic event logger and the related functions are called to record an event.
1971 The function parameters are 32-bit id, 32-bit values, pointer to void (data) and are recorded as 32-bit numbers.
1972 The parameters for the Event Recorder may require cast operations to unsigned int which however has no side-effects
1973 and is well defined.
1975 The return value indicates success or failure. There is no need to check the return value since no action is
1976 taken when an Event Recorder function fail. The EventID macro (part of external Event Recorder) constructs the
1977 ID based on input parameters which are shifted, masked with '&' and combined with '|'.
1978 Zero value input parameters are valid and cause zero used with '&' and '|'.
1980 The usage of the Event Recorder implies the following MISRA deviations:
1981 - [MISRA 2012 Rule 11.1, required]: Conversions shall not be performed between a pointer to a function and any other type
1982 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1983 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1984 In addition PC-Lint issues:
1985 - Info 835: A zero has been given as left argument to operator '&'
1986 - Info 845: The right argument to operator '|' is certain to be 0
1988 The functions that call the Event Recorder are in the module \em rtx_evr.c and the related PC-Lint messages are disabled with:
1990 //lint -e923 -e9074 -e9078 -emacro((835,845),EventID) [MISRA Note 13]
1995 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
1997 \page functionOverview Function Overview
1999 CMSIS-RTOS2 provides following API interfaces:
2000 - \subpage rtos_api2 is the C function interface that supports dynamic object creation \if ARMv8M and Armv8-M (Arm Cortex-M23,
2001 Cortex-M33 and Cortex-M35P) \endif.
2003 - <a class="el" href="../../RTOS/html/functionOverview.html">CMSIS-RTOS C API v1</a> is a C function API that is backward
2004 compatible with CMSIS-RTOS v1.
2005 - \subpage rtos_apicpp is a C++ class function API (future extension).
2007 It is possible to intermix the different API variants in the same application and even in the same C/C++ source module.
2008 However, the functions of the <a class="el" href="../../RTOS/html/functionOverview.html">CMSIS-RTOS C API v1</a> may be deprecated in future versions of CMSIS-RTOS.
2011 CMSIS-RTOS2 defines also a generic system timer interface that works across the supported Arm Cortex processors:
2012 - \subpage rtos_os_tick_api is the interface to a kernel system timer.
2015 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
2017 \page rtos_api2 CMSIS-RTOS C API v2
2019 Overview of all CMSIS-RTOS C API v2 functions that are implemented in the \subpage cmsis_os2_h.
2021 \section rtos_api2_basics Common Design Concepts
2023 All RTOS objects share a common design concept. The overall life-cycle of
2024 an object can be summarized as created -> in use -> destroyed.
2026 <b>Create Objects</b>
2028 An object is created by calling its `osXxxNew` function. The new function returns an identifier
2029 that can be used to operate with the new object. The actual state of an object is typically stored
2030 in an object specific control block. The memory layout (and size needed) for the control
2031 block is implementation specific. One should not make any specific assumptions about the control
2032 block. The control block layout might change and hence should be seen as an implementation
2035 In order to expose control about object specific options all `osXxxNew` functions provide an
2036 optional `attr` argument, which can be left as \token{NULL} by default. It takes a pointer to
2037 an object specific attribute structure, commonly containing the fields
2038 - `name` to attach a human readable name to the object for identification,
2039 - `attr_bits` to control object-specific options,
2040 - `cb_mem` to provide memory for the control block manually, and
2041 - `cb_size` to quantify the memory size provided for the control block.
2043 The `name` attribute is only used for object identification, e.g. using RTOS-aware debugging. The
2044 attached string is not used for any other purposes internally.
2046 The `cb_mem` and `cb_size` attributes can be used to provide memory for the control block manually
2047 instead of relying on the implementation internal memory allocation. One has to assure that the
2048 amount of memory pointed to by `cb_mem` is sufficient for the objects control block structure. If
2049 the size given as `cb_size` is not sufficient the `osXxxNew` function returns with an error, i.e.
2050 returning \token{NULL}. Furthermore providing control block memory manually is less portable. Thus
2051 one has to take care about implementation specific alignment and placement requirements for instance.
2052 Refer to \ref CMSIS_RTOS_MemoryMgmt for further details.
2056 After an object has been created successfully it can be used until it is destroyed. The actions
2057 defined for an object depends on its type. Commonly all the `osXxxDoSomething` access function
2058 require the reference to the object to work with as the first `xxx_id` parameter.
2060 The access function can be assumed to apply some sort of sanity checking on the id parameter. So
2061 that it is assured one cannot accidentally call an access function with a \token{NULL} object
2062 reference. Furthermore the concrete object type is verified, i.e. one cannot call access functions
2063 of one object type with a reference to another object type.
2065 All further parameter checks applied are either object and action specific or may even be implementation
2066 specific. Thus one should always check action function return values for `osErrorParameter` to assure the
2067 provided arguments were accepted.
2069 As a rule of thumb only non-blocking access function can be used from \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines" (ISR).
2070 This incorporates `osXxxWait` functions (and similar) limited to be called with parameter `timeout`
2071 set to \token{0}, i.e. usage of try-semantics.
2073 <b>Object Destruction</b>
2075 Objects that are not needed anymore can be destructed on demand to free the control block memory. Objects
2076 are not destructed implicitly. Thus one can assume an object id to be valid until `osXxxDelete` is called
2077 explicitly. The delete function finally frees the control block memory. In case of user provided control
2078 block memory, see above, the memory must be freed manually as well.
2080 The only exception one has to take care of are Threads which do not have an explicit `osThreadDelete` function.
2081 Threads can either be `detached` or `joinable`. Detached threads are automatically destroyed on termination,
2082 i.e. call to \ref osThreadTerminate or \ref osThreadExit or return from thread function. On the other hand joinable
2083 threads are kept alive until one explicitly calls \ref osThreadJoin.
2085 \section rtos_api2_functions Function Reference
2087 - \ref CMSIS_RTOS_KernelCtrl
2088 - \ref osKernelGetInfo : \copybrief osKernelGetInfo
2089 - \ref osKernelGetState : \copybrief osKernelGetState
2090 - \ref osKernelGetSysTimerCount : \copybrief osKernelGetSysTimerCount
2091 - \ref osKernelGetSysTimerFreq : \copybrief osKernelGetSysTimerFreq
2092 - \ref osKernelInitialize : \copybrief osKernelInitialize
2093 - \ref osKernelLock : \copybrief osKernelLock
2094 - \ref osKernelUnlock : \copybrief osKernelUnlock
2095 - \ref osKernelRestoreLock : \copybrief osKernelRestoreLock
2096 - \ref osKernelResume : \copybrief osKernelResume
2097 - \ref osKernelStart : \copybrief osKernelStart
2098 - \ref osKernelSuspend : \copybrief osKernelSuspend
2099 - \ref osKernelGetTickCount : \copybrief osKernelGetTickCount
2100 - \ref osKernelGetTickFreq : \copybrief osKernelGetTickFreq
2102 - \ref CMSIS_RTOS_ThreadMgmt
2103 - \ref osThreadDetach : \copybrief osThreadDetach
2104 - \ref osThreadEnumerate : \copybrief osThreadEnumerate
2105 - \ref osThreadExit : \copybrief osThreadExit
2106 - \ref osThreadGetCount : \copybrief osThreadGetCount
2107 - \ref osThreadGetId : \copybrief osThreadGetId
2108 - \ref osThreadGetName : \copybrief osThreadGetName
2109 - \ref osThreadGetPriority : \copybrief osThreadGetPriority
2110 - \ref osThreadGetStackSize : \copybrief osThreadGetStackSize
2111 - \ref osThreadGetStackSpace : \copybrief osThreadGetStackSpace
2112 - \ref osThreadGetState : \copybrief osThreadGetState
2113 - \ref osThreadJoin : \copybrief osThreadJoin
2114 - \ref osThreadNew : \copybrief osThreadNew
2115 - \ref osThreadResume : \copybrief osThreadResume
2116 - \ref osThreadSetPriority : \copybrief osThreadSetPriority
2117 - \ref osThreadSuspend : \copybrief osThreadSuspend
2118 - \ref osThreadTerminate : \copybrief osThreadTerminate
2119 - \ref osThreadYield : \copybrief osThreadYield
2121 - \ref CMSIS_RTOS_ThreadFlagsMgmt
2122 - \ref osThreadFlagsSet : \copybrief osThreadFlagsSet
2123 - \ref osThreadFlagsClear : \copybrief osThreadFlagsClear
2124 - \ref osThreadFlagsGet : \copybrief osThreadFlagsGet
2125 - \ref osThreadFlagsWait : \copybrief osThreadFlagsWait
2127 - \ref CMSIS_RTOS_EventFlags
2128 - \ref osEventFlagsGetName : \copybrief osEventFlagsGetName
2129 - \ref osEventFlagsNew : \copybrief osEventFlagsNew
2130 - \ref osEventFlagsDelete : \copybrief osEventFlagsDelete
2131 - \ref osEventFlagsSet : \copybrief osEventFlagsSet
2132 - \ref osEventFlagsClear : \copybrief osEventFlagsClear
2133 - \ref osEventFlagsGet : \copybrief osEventFlagsGet
2134 - \ref osEventFlagsWait : \copybrief osEventFlagsWait
2136 - \ref CMSIS_RTOS_Wait
2137 - \ref osDelay : \copybrief osDelay
2138 - \ref osDelayUntil : \copybrief osDelayUntil
2140 - \ref CMSIS_RTOS_TimerMgmt
2141 - \ref osTimerDelete : \copybrief osTimerDelete
2142 - \ref osTimerGetName : \copybrief osTimerGetName
2143 - \ref osTimerIsRunning : \copybrief osTimerIsRunning
2144 - \ref osTimerNew : \copybrief osTimerNew
2145 - \ref osTimerStart : \copybrief osTimerStart
2146 - \ref osTimerStop : \copybrief osTimerStop
2148 - \ref CMSIS_RTOS_MutexMgmt
2149 - \ref osMutexAcquire : \copybrief osMutexAcquire
2150 - \ref osMutexDelete : \copybrief osMutexDelete
2151 - \ref osMutexGetName : \copybrief osMutexGetName
2152 - \ref osMutexGetOwner : \copybrief osMutexGetOwner
2153 - \ref osMutexNew : \copybrief osMutexNew
2154 - \ref osMutexRelease : \copybrief osMutexRelease
2156 - \ref CMSIS_RTOS_SemaphoreMgmt
2157 - \ref osSemaphoreAcquire : \copybrief osSemaphoreAcquire
2158 - \ref osSemaphoreDelete : \copybrief osSemaphoreDelete
2159 - \ref osSemaphoreGetCount : \copybrief osSemaphoreGetCount
2160 - \ref osSemaphoreGetName : \copybrief osSemaphoreGetName
2161 - \ref osSemaphoreNew : \copybrief osSemaphoreNew
2162 - \ref osSemaphoreRelease : \copybrief osSemaphoreRelease
2164 - \ref CMSIS_RTOS_PoolMgmt
2165 - \ref osMemoryPoolAlloc : \copybrief osMemoryPoolAlloc
2166 - \ref osMemoryPoolDelete : \copybrief osMemoryPoolDelete
2167 - \ref osMemoryPoolFree : \copybrief osMemoryPoolFree
2168 - \ref osMemoryPoolGetBlockSize : \copybrief osMemoryPoolGetBlockSize
2169 - \ref osMemoryPoolGetCapacity : \copybrief osMemoryPoolGetCapacity
2170 - \ref osMemoryPoolGetCount : \copybrief osMemoryPoolGetCount
2171 - \ref osMemoryPoolGetName : \copybrief osMemoryPoolGetName
2172 - \ref osMemoryPoolGetSpace : \copybrief osMemoryPoolGetSpace
2173 - \ref osMemoryPoolNew : \copybrief osMemoryPoolNew
2175 - \ref CMSIS_RTOS_Message
2176 - \ref osMessageQueueDelete : \copybrief osMessageQueueDelete
2177 - \ref osMessageQueueGet : \copybrief osMessageQueueGet
2178 - \ref osMessageQueueGetCapacity : \copybrief osMessageQueueGetCapacity
2179 - \ref osMessageQueueGetCount : \copybrief osMessageQueueGetCount
2180 - \ref osMessageQueueGetMsgSize : \copybrief osMessageQueueGetMsgSize
2181 - \ref osMessageQueueGetName : \copybrief osMessageQueueGetName
2182 - \ref osMessageQueueGetSpace : \copybrief osMessageQueueGetSpace
2183 - \ref osMessageQueueNew : \copybrief osMessageQueueNew
2184 - \ref osMessageQueuePut : \copybrief osMessageQueuePut
2185 - \ref osMessageQueueReset : \copybrief osMessageQueueReset
2188 - \ref rtx5_specific
2189 - \ref osRtxErrorNotify : \copybrief osRtxErrorNotify
2190 - \ref osRtxIdleThread : \copybrief osRtxIdleThread
2192 The following CMSIS-RTOS C API v2 functions can be called from threads and \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines"
2194 - \ref osKernelGetInfo, \ref osKernelGetState,
2195 \ref osKernelGetTickCount, \ref osKernelGetTickFreq, \ref osKernelGetSysTimerCount, \ref osKernelGetSysTimerFreq
2196 - \ref osThreadGetId, \ref osThreadFlagsSet
2197 - \ref osEventFlagsSet, \ref osEventFlagsClear, \ref osEventFlagsGet, \ref osEventFlagsWait
2198 - \ref osSemaphoreAcquire, \ref osSemaphoreRelease, \ref osSemaphoreGetCount
2199 - \ref osMemoryPoolAlloc, \ref osMemoryPoolFree, \ref osMemoryPoolGetCapacity, \ref osMemoryPoolGetBlockSize,
2200 \ref osMemoryPoolGetCount, \ref osMemoryPoolGetSpace
2201 - \ref osMessageQueuePut, \ref osMessageQueueGet, \ref osMessageQueueGetCapacity, \ref osMessageQueueGetMsgSize,
2202 \ref osMessageQueueGetCount, \ref osMessageQueueGetSpace
2206 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
2209 \page rtos_apicpp CMSIS-RTOS C++ API
2211 A C++11/C++14 interface is planned for the future.
2215 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
2217 \page rtos_os_tick_api OS Tick API
2219 The CMSIS OS Tick API may be used by an RTOS implementation to be easily potable across the different Cortex-M and Cortex-A processors.
2220 It provides a generic interface to a kernel system tick timer and defines the following functions:
2222 - The Reference for \ref CMSIS_RTOS_TickAPI provides details about these functions:
2223 - \ref OS_Tick_Setup : \copybrief OS_Tick_Setup
2224 - \ref OS_Tick_Enable : \copybrief OS_Tick_Enable
2225 - \ref OS_Tick_Disable : \copybrief OS_Tick_Disable
2226 - \ref OS_Tick_AcknowledgeIRQ : \copybrief OS_Tick_AcknowledgeIRQ
2227 - \ref OS_Tick_GetIRQn : \copybrief OS_Tick_GetIRQn
2228 - \ref OS_Tick_GetClock : \copybrief OS_Tick_GetClock
2229 - \ref OS_Tick_GetInterval : \copybrief OS_Tick_GetInterval
2230 - \ref OS_Tick_GetCount : \copybrief OS_Tick_GetCount
2231 - \ref OS_Tick_GetOverflow : \copybrief OS_Tick_GetOverflow
2236 /* ======================================================================================================================== */
2237 // Group creation for Reference
2239 \addtogroup CMSIS_RTOS1 CMSIS-RTOS API v1
2240 \brief This section describes the CMSIS-RTOS API v1.
2242 The CMSIS-RTOS is a generic API layer that interfaces to an existing RTOS kernel.
2244 CMSIS-RTOS2 provides an translation layer for the
2245 <a class="el" href="../../RTOS/html/index.html">CMSIS-RTOS API v1</a> that simplifies migration.
2247 Refer to the <a class="el" href="../../RTOS/html/modules.html">Reference</a> guide of the CMSIS-RTOS API v1 for details.
2250 // Group creation for Reference
2252 \addtogroup CMSIS_RTOS CMSIS-RTOS API v2
2253 \brief C interface of \ref rtos_api2 defined in cmsis_os2.h
2255 The CMSIS-RTOS2 is a generic API layer that interfaces to an RTOS kernel.
2257 The complete API interface is defined in the \ref cmsis_os2_h. When using dynamic memory allocation for objects, source code
2258 or libraries require no modifications when using on a different CMSIS-RTOS2 implementation.
2260 Refer to \ref rtos_api2_basics for further details.
2264 \addtogroup CMSIS_RTOS_MemoryMgmt Memory Management
2266 \brief Information about memory management possibilities
2268 The \ref CMSIS_RTOS offers two options for memory management the user can choose. For object storage one can either use
2269 - \ref CMSIS_RTOS_MemoryMgmt_Automatic (fully portable), or
2270 - \ref CMSIS_RTOS_MemoryMgmt_Manual (implementation specific).
2272 In order to affect the memory allocation scheme all RTOS objects that can be created on request, i.e. those having a `osXxxNew`
2273 function, accept an optional `osXxxAttr_t attr` argument on creation. As a rule of thumb the object attributes at least have
2274 members to assign custom control block memory, i.e. `cb_mem` and `cb_size` members. By default, i.e. `attr` is `NULL`
2275 or `cb_mem` is `NULL`, \ref CMSIS_RTOS_MemoryMgmt_Automatic is used. Providing a pointer to user memory in `cb_mem` switches
2276 to \ref CMSIS_RTOS_MemoryMgmt_Manual.
2278 \note For detailed information about memory allocation strategies provided in RTX5 refer to \ref MemoryAllocation.
2280 \section CMSIS_RTOS_MemoryMgmt_Automatic Automatic Dynamic Allocation
2282 The automatic allocation is the default and viable for many use-cases. Moreover it is fully portable across different
2283 implementations of the \ref CMSIS_RTOS. The common drawback of dynamic memory allocation is the possibility of memory
2284 fragmentation and exhaustion. Given that all needed objects are created once upon system initialization and never
2285 deleted at runtime this class of runtime failures can be prevented, though.
2287 The actual allocation strategy used is implementation specific, i.e. whether global heap or preallocated memory pools are used.
2289 <b> Code Example:</b>
2291 #include "cmsis_os2.h" // implementation agnostic
2293 osMutexId_t mutex_id;
2294 osMutexId_t mutex2_id;
2296 const osMutexAttr_t Thread_Mutex_attr = {
2297 "myThreadMutex", // human readable mutex name
2298 osMutexRecursive | osMutexPrioInherit, // attr_bits
2299 NULL, // memory for control block (default)
2300 0U // size for control block (default)
2303 void CreateMutex (void) {
2304 mutex_id = osMutexNew(NULL); // use default values for all attributes
2305 mutex2_id = osMutexNew(&Thread_Mutex_attr); // use attributes from defined structure
2310 The Mutexes in this example are created using automatic memory allocation.
2312 \section CMSIS_RTOS_MemoryMgmt_Manual Manual User-defined Allocation
2314 One can get fine grained control over memory allocation by providing user-defined memory.
2315 The actual requirements such user-defined memory are implementation specific. Thus one
2316 needs to carefully refer to the size and alignment rules of the implementation used, e.g.
2317 for RTX see \ref StaticObjectMemory.
2319 <b> Code Example:</b>
2321 #include "rtx_os.h" // implementation specific
2323 osMutexId_t mutex_id;
2325 static osRtxMutex_t mutex_cb __attribute__((section(".bss.os.mutex.cb"))); // Placed on .bss.os.mutex.cb section for RTX5 aware debugging
2327 const osMutexAttr_t Thread_Mutex_attr = {
2328 "myThreadMutex", // human readable mutex name
2329 osMutexRecursive | osMutexPrioInherit, // attr_bits
2330 &mutex_cb, // memory for control block (user-defined)
2331 sizeof(mutex_cb) // size for control block (user-defined)
2334 void CreateMutex (void) {
2335 mutex_id = osMutexNew(&Thread_Mutex_attr); // use attributes from defined structure
2340 The above example uses user-defined memory for the mutex control block. Depending on the actual
2341 implementation used one needs to include the specific header file, `rtx_os.h` in this case.
2345 // Group creation for Reference
2347 \addtogroup CMSIS_RTOS CMSIS-RTOS API v2
2348 \brief C interface of \ref rtos_api2 defined in <b>%cmsis_os2.h</b>
2350 The CMSIS-RTOS2 is a generic API layer that interfaces to an RTOS kernel.
2352 The complete API interface is defined in the \ref cmsis_os2_h. When using dynamic memory allocation for objects, source code
2353 or libraries require no modifications when using on a different CMSIS-RTOS2 implementation.
2355 Refer to \ref rtos_api2_basics for further details.