1 /**************************************************************************//**
2 * @file cmsis_armcc.txt
3 * @brief CMSIS compiler specific macros, functions, instructions
6 ******************************************************************************/
7 /* CMSIS compiler control architecture macros */
9 \defgroup comp_cntrl_gr Compiler Control
10 \brief Compiler agnostic \#define symbols for generic C/C++ source code
12 The CMSIS-Core provides the header file \b cmsis_compiler.h with consistent \#define symbols to generate C or C++ source files that should be compiler agnostic.
13 Each CMSIS compliant compiler should support the functionality described in this section.
23 \brief Set to 1 when generating code for Armv7-A (Cortex-A7)
25 The \b \#define __ARM_ARCH_7A__ is set to 1 when generating code for the Armv7-A architecture. This architecture is for example used by the Cortex-A7 processor.
30 \brief Pass information from the compiler to the assembler.
32 The \b __ASM keyword can declare or define an embedded assembly function or incorporate inline assembly into a function
33 (shown in the code example below).
37 // Reverse bit order of value
39 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
43 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
51 \brief Recommend that function should be inlined by the compiler.
53 Inline functions offer a trade-off between code size and performance. By default, the compiler decides during optimization whether to
54 inline code or not. The \b __INLINE attribute gives the compiler an hint to inline this function.
55 Still, the compiler may decide not to inline the function. As the function is global an callable function is also generated.
59 const uint32_t led_mask[] = {1U << 4, 1U << 5, 1U << 6, 1U << 7};
61 //------------------------------------------------------------------------------
63 //------------------------------------------------------------------------------
64 __INLINE static void LED_On (uint32_t led) {
66 PTD->PCOR = led_mask[led];
73 \brief Define a static function should be inlined by the compiler.
75 Defines a static function that may be inlined by the compiler. If the compiler generates inline code for
76 all calls to this functions, no additional function implementation is generated which may further optimize space.
80 __STATIC_INLINE uint32_t GIC_GetPriority(IRQn_Type IRQn)
82 return((uint32_t)GICDistributor->D_IPRIORITYR[((uint32_t)(int32_t)IRQn)]);
87 /**************************************************************************************************/
89 \def __STATIC_FORCEINLINE
90 \brief Define a static function that should be always inlined by the compiler.
92 Defines a static function that should be always inlined by the compiler.
95 For compilers that do not allow to force function inlining, the macro maps to \ref __STATIC_INLINE.
99 \\ Get Interrupt Vector
100 __STATIC_FORCEINLINE uint32_t NVIC_GetVector(IRQn_Type IRQn)
102 uint32_t *vectors = (uint32_t *)SCB->VTOR;
103 return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
108 #define __STATIC_FORCEINLINE
112 \brief Inform the compiler that a function does not return.
114 Informs the compiler that the function does not return. The compiler can then perform optimizations by
115 removing code that is never reached.
117 <b> Code Example:</b>
119 // OS idle demon (running when no other thread is ready to run).
121 __NO_RETURN void os_idle_demon (void);
127 \brief Inform that a variable shall be retained in executable image.
129 Definitions tagged with \b __USED in the source code should be not removed by the linker when detected as unused.
131 <b> Code Example:</b>
133 // Export following variables for debugging
134 __USED uint32_t const CMSIS_RTOS_API_Version = osCMSIS;
135 __USED uint32_t const CMSIS_RTOS_RTX_Version = osCMSIS_RTX;
136 __USED uint32_t const os_clockrate = OS_TICK;
137 __USED uint32_t const os_timernum = 0;
143 \brief Export a function or variable weakly to allow overwrites.
145 Functions defined with \b __WEAK export their symbols weakly. A function defined weak behaves like a normal defined
146 function unless a non-weak function with the same name is linked into the same image. If both a non-weak
147 function and a weak defined function exist in the same image, then all calls to the function resolve to the non-weak
150 Functions declared with \b __WEAK and then defined without \b __WEAK behave as non-weak functions.
152 <b> Code Example:</b>
154 __WEAK void SystemInit(void)
157 SystemCoreClockSetup();
164 \brief Minimum alignment for a variable.
166 Specifies a minimum alignment for a variable or structure field, measured in bytes.
168 <b> Code Example:</b>
170 uint32_t stack_space[0x100] __ALIGNED(8); // 8-byte alignment required
176 \brief Request smallest possible alignment.
178 Specifies that a type must have the smallest possible alignment.
180 <b> Code Example:</b>
184 uint32_t u32[2] __PACKED;
188 /**************************************************************************************************/
191 \brief Request smallest possible alignment for a structure.
193 Specifies that a structure must have the smallest possible alignment.
195 <b> Code Example:</b>
197 __PACKED_STRUCT foo {
205 #define __PACKED_STRUCT
207 /**************************************************************************************************/
209 \def __UNALIGNED_UINT32
210 \brief Pointer for unaligned access of a uint32_t variable.
212 Do not use this macro.
213 It has been superseded by \ref __UNALIGNED_UINT32_READ, \ref __UNALIGNED_UINT32_WRITE and will be removed in the future.
215 Defines a pointer to a uint32_t from an address that does not need to be aligned. This can then be used in read/write
216 operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm
217 processor core and compiler settings.
219 <b> Code Example:</b>
223 void test (uint8_t *ptr) {
224 __UNALIGNED_UINT32(ptr) = val32;
229 #define __UNALIGNED_UINT32
231 /**************************************************************************************************/
233 \def __UNALIGNED_UINT16_READ
234 \brief Pointer for unaligned read of a uint16_t variable.
236 Defines a pointer to a uint16_t from an address that does not need to be aligned. This can then be used in read
237 operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm
238 processor core and compiler settings.
240 <b> Code Example:</b>
244 void test (uint8_t *ptr) {
245 val16 = __UNALIGNED_UINT16_READ(ptr);
250 #define __UNALIGNED_UINT16_READ
252 /**************************************************************************************************/
254 \def __UNALIGNED_UINT16_WRITE
255 \brief Pointer for unaligned write of a uint16_t variable.
257 Defines a pointer to a uint16_t from an address that does not need to be aligned. This can then be used in write
258 operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm
259 processor core and compiler settings.
261 <b> Code Example:</b>
265 void test (uint8_t *ptr) {
266 __UNALIGNED_UINT16_WRITE(ptr, val16);
271 #define __UNALIGNED_UINT16_WRITE
273 /**************************************************************************************************/
275 \def __UNALIGNED_UINT32_READ
276 \brief Pointer for unaligned read of a uint32_t variable.
278 Defines a pointer to a uint32_t from an address that does not need to be aligned. This can then be used in read
279 operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm
280 processor core and compiler settings.
282 <b> Code Example:</b>
286 void test (uint8_t *ptr) {
287 val32 = __UNALIGNED_UINT32_READ(ptr);
292 #define __UNALIGNED_UINT32_READ
294 /**************************************************************************************************/
296 \def __UNALIGNED_UINT32_WRITE
297 \brief Pointer for unaligned write of a uint32_t variable.
299 Defines a pointer to a uint32_t from an address that does not need to be aligned. This can then be used in write
300 operations. The compiler will generate the appropriate access (aligned or non-aligned) depending on the underlying Arm
301 processor core and compiler settings.
303 <b> Code Example:</b>
307 void test (uint8_t *ptr) {
308 __UNALIGNED_UINT32_WRITE(ptr, val32);
313 #define __UNALIGNED_UINT32_WRITE
318 /* end group comp_cntrl_gr */
320 /* ########################## Core Instruction Access ######################### */
322 \defgroup CMSIS_Core_InstructionInterface Intrinsic Functions
323 \brief Functions that generate specific Cortex-A CPU Instructions
329 \details No Operation does nothing. This instruction can be used for code alignment purposes.
333 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
336 \details Wait For Event is a hint instruction that permits the processor to enter
339 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
342 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
343 so that all instructions following the ISB are fetched from cache or memory,
344 after the instruction has been completed.
347 \details Acts as a special kind of Data Memory Barrier.
348 It completes when all explicit memory accesses before this instruction complete.
351 \details Ensures the apparent order of the explicit memory operations before
352 and after the instruction, without ensuring their completion.
355 \details Causes the processor to enter Debug state.
356 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
360 \brief Reverse byte order (32 bit)
361 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
362 \param [in] value Value to reverse
363 \return Reversed value
365 uint32_t __REV(uint32_t value);
368 \brief Reverse byte order (16 bit)
369 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
370 \param [in] value Value to reverse
371 \return Reversed value
373 uint16_t __REV16(uint16_t value);
376 \brief Reverse byte order (16 bit)
377 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
378 \param [in] value Value to reverse
379 \return Reversed value
381 int32_t __REVSH(int32_t value);
384 \brief Rotate Right in unsigned value (32 bit)
385 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
386 \param [in] op1 Value to rotate
387 \param [in] op2 Number of Bits to rotate
388 \return Rotated value
390 uint32_t __ROR(uint32_t op1, uint32_t op2);
393 \brief Reverse bit order of value
394 \details Reverses the bit order of the given value.
395 \param [in] value Value to reverse
396 \return Reversed value
398 uint32_t __RBIT(uint32_t value);
401 \brief Count leading zeros.
402 \details Counts the number of leading zeros of a data value.
403 \param [in] value Value to count the leading zeros
404 \return number of leading zeros in value
406 uint8_t __CLZ(uint32_t value);
409 /* end of group CMSIS_Core_InstructionInterface */