2 \page genRTOS2IF Generic RTOS Interface
4 CMSIS-RTOS2 is a generic API that is agnostic of the underlying RTOS kernel. Application programmers call CMSIS-RTOS2 API
5 functions in the user code to ensure maximum portability from one RTOS to another. Middleware using CMSIS-RTOS2 API takes
6 advantages of this approach by avoiding unnecessary porting efforts.
8 \image html "API_Structure.png" "CMSIS-RTOS API Structure"
10 A typical CMSIS-RTOS2 API implementation interfaces to an existing real-time kernel. The CMSIS-RTOS2 API provides the
11 following attributes and functionalities:
12 - Function names, identifiers, and parameters are descriptive and easy to understand. The functions are powerful and
13 flexible which reduces the number of functions exposed to the user.
14 - \ref CMSIS_RTOS_ThreadMgmt allows you to define, create, and control threads.
15 - Interrupt Service Routines (ISR) can \ref CMSIS_RTOS_ISR_Calls "call some CMSIS-RTOS functions". When a CMSIS-RTOS
16 function cannot be called from an ISR context, it rejects the invocation and returns an error code.
17 - Three different event types support communication between multiple threads and/or ISR:
18 - \ref CMSIS_RTOS_ThreadFlagsMgmt "Thread Flags": may be used to indicate specific conditions to a thread.
19 - \ref CMSIS_RTOS_EventFlags "Event Flags": may be used to indicate events to a thread or ISR.
20 - \ref CMSIS_RTOS_Message "Messages": can be sent to a thread or an ISR. Messages are buffered in a queue.
21 - \ref CMSIS_RTOS_MutexMgmt and \ref CMSIS_RTOS_SemaphoreMgmt are incorporated.
22 - CPU time can be scheduled with the following functionalities:
23 - A \a timeout parameter is incorporated in many CMSIS-RTOS functions to avoid system lockup. When a timeout is specified,
24 the system waits until a resource is available or an event occurs. While waiting, other threads are scheduled.
25 - The \ref osDelay and \ref osDelayUntil functions put a thread into the \b WAITING state for a specified period of time.
26 - The \ref osThreadYield provides co-operative thread switching and passes execution to another thread of the same
28 - \ref CMSIS_RTOS_TimerMgmt functions are used to trigger the execution of functions.
30 The CMSIS-RTOS2 API is designed to optionally incorporate multi-processor systems and/or access protection via the Cortex-M
31 Memory Protection Unit (MPU).
33 In some RTOS implementations threads may execute on different processors, thus \b message queues may reside in shared memory
36 The CMSIS-RTOS2 API encourages the software industry to evolve existing RTOS implementations. RTOS implementations can be
37 different and optimized in various aspects towards the Cortex-M processors. Optional features may be for example
38 - Support of the Cortex-M Memory Protection Unit (MPU).
39 - Support of multi-processor systems.
40 - Support of a DMA controller.
41 - Deterministic context switching.
42 - Round-robin context switching.
43 - Deadlock avoidance, for example with priority inversion.
44 - Zero interrupt latency by using Armv7-M instructions LDREX and STREX.
46 \section cmsis_os2_h cmsis_os2.h header file
48 The file \b %cmsis_os2.h is a standard header file that interfaces to every CMSIS-RTOS2 compliant real-time operating
49 systems (RTOS). Each implementation is provided the same \b cmsis_os2.h which defines the interface to the \ref rtos_api2.
51 Using the \b cmsis_os2.h along with dynamic object allocation allows to create source code or libraries that require no
52 modifications when using on a different CMSIS-RTOS2 implementation.
54 \section usingOS2 Using a CMSIS-RTOS2 Implementation
56 A CMSIS-RTOS2 component may be provided as library or source code (the picture below shows a library).
57 A CMSIS-based application is extended with RTOS functionality by adding a CMSIS-RTOS2 component (and typically some configuration files).
58 The \ref cmsis_os2_h gives access to RTOS API functions and is the only interface header required when dynamic object allocation is used.
59 This enables portable application that works with every RTOS kernel event without re-compilation of the source code when the kernel is
62 Static object allocation requires access to RTOS object control block definitions. An implementation specific header file (<i>rtos</i>.h in
63 the picture below) provides access to such definitions. The section For RTX v5 these definitions are provided in the header file %rtx_os.h that contains this definitions for RTX v5.
66 \image html "CMSIS_RTOS_Files.png" "CMSIS-RTOS File Structure"
68 Once the files are added to a project, the user can start working with the CMSIS-RTOS functions. A code example is provided
73 /*----------------------------------------------------------------------------
74 * CMSIS-RTOS 'main' function template
75 *---------------------------------------------------------------------------*/
77 #include "RTE_Components.h"
78 #include CMSIS_device_header
79 #include "cmsis_os2.h"
81 /*----------------------------------------------------------------------------
82 * Application main thread
83 *---------------------------------------------------------------------------*/
84 void app_main (void *argument) {
92 // System Initialization
93 SystemCoreClockUpdate();
94 #ifdef RTE_Compiler_EventRecorder
95 // Initialize and start Event Recorder
96 EventRecorderInitialize(EventRecordError, 1U);
100 osKernelInitialize(); // Initialize CMSIS-RTOS
101 osThreadNew(app_main, NULL, NULL); // Create application main thread
102 osKernelStart(); // Start thread execution
111 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
113 \page rtx5_impl RTX v5 Implementation
115 Keil RTX version 5 (RTX5) implements the CMSIS-RTOS2 as a native RTOS interface for Arm Cortex-M processor-based devices.
116 A translation layer to CMSIS-RTOS API v1 is provided. Therefore, RTX5 can be used in applications that where previously based
117 on RTX version 4 and CMSIS-RTOS version 1 with minimal effort.
119 The following sections provide further details:
120 - \subpage cre_rtx_proj explains how to setup an RTX v5 project in Keil MDK.
121 - \subpage theory_of_operation provides general information about the operation of CMSIS-RTOS RTX v5.
122 - \subpage config_rtx5 describes configuration parameters of CMSIS-RTOS RTX v5.
123 - \subpage creating_RTX5_LIB explains how to build your own CMSIS-RTOS RTX v5 library.
124 - \subpage technicalData5 lists hardware, software, and resource requirements, supplied files, and supported tool chains.
125 - \subpage misraCompliance5 describes the violations to the MISRA standard.
128 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
130 \page cre_rtx_proj Create an RTX5 Project
132 The steps to create a microcontroller application using RTX5 are:
133 - Create a new project and select a microcontroller device.
134 - In the Manage Run-Time Environment window, select <b>CMSIS\::CORE</b> and <b>CMSIS\::RTOS2 (API)\::Keil RTX5</b>. You can
135 choose to either add RTX as a library (Variant: \b Library) or to add the full source code (Variant: \b Source - required
136 if using the <a href="http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html" target="_blank"><b>Event Recorder</b></a>):
138 \image html manage_rte_output.png
140 - If the <b>Validation Output</b> requires other components to be present, try to use the \b Resolve button.
141 - Click \b OK. In the \b Project window, you will see the files that have been automatically added to you project, such as
142 \b %RTX_Config.h, \b %RTX_Config.c, the library or the source code files, as well as the system and startup files:
144 \image html project_window.png
146 - If using the Variant: \b Source as statet above, you have to assure to use at least C99 compiler mode (Project Options -> C/C++ -> C99 Mode).
147 - You can add template files to the project by right-clicking on <b>Source Group 1</b> and selecting
148 <b>Add New Item to 'Source Group 1'</b>. In the new window, click on <b>User Code Template</b>. On the right-hand side
149 you will see all available template files for CMSIS-RTOS RTX:
151 \image html add_item.png
153 - \ref config_rtx5 "Configure" RTX5 to the application's needs using the \b %RTX_Config.h file.
155 \section cre_rtx_cortexa Additional requirements for RTX on Cortex-A
157 Cortex-A based microcontrollers are less unified with respect to the interrupt and timer implementations used compared to
158 M-class devices. Thus RTX requires additional components when an A-class device is used, namely
159 <a href="../../Core_A/html/group__irq__ctrl__gr.html"><b>IRQ Controller (API)</b></a> and \ref CMSIS_RTOS_TickAPI "OS Tick (API)"
162 \image html manage_rte_cortex-a.png
164 The default implementations provided along with CMSIS are
165 - Arm <a href="../../Core_A/html/group__GIC__functions.html">Generic Interrupt Controller (GIC)</a>
166 - Arm Cortex-A5, Cortex-A9 <a href="../../Core_A/html/group__PTM__timer__functions.html">Private Timer (PTIM)</a>
167 - Arm Cortex-A7 <a href="../../Core_A/html/group__PL1__timer__functions.html">Generic Physical Timer (GTIM)</a>
169 For devices not implementing GIC, PTIM nor GTIM please refer to the according device family pack and select the
170 proper implementations.
172 \section cre_UsingIRQs Using Interrupts on Cortex-M
174 On Cortex-M processors, the RTX5 kernel uses the following interrupt exceptions. The table below also lists the
175 priorities that must be assigned to these interrupts.
177 Handler | Priority | Interrupt/Exception
178 :-------|:---------|:----------------------------
179 SysTick | lowest | Kernel system timer interrupt to generate periodic timer ticks
180 PendSV | lowest | PendSV (request for system-level service) when calling certain RTX functions from \b Handler mode
181 SCV | lowest+1 | Supervisor Call used to enter the RTOS kernel from \b Thread mode
183 Other device interrupts can be used without limitation. For Arm Cortex-M3/M4/M7/M23/M33 processors, interrupts are never disabled by RTX Kernel.
185 <b>Usage of interrupt priority grouping</b>
186 - The interrupt priority grouping should be configured using the CMSIS-Core function NVIC_SetPriorityGrouping before calling the function
187 \ref osKernelStart(). The RTX kernel uses the priority group value to setup the priority for SysTick and PendSV interrupts.
188 - The RTX kernel sets the priority for the interrupts/exceptions listed in above table and uses the lowest two priority levels.
189 - Do not change the priority used by the RTX kernel. If this cannot be avoided, ensure that the preempt priority of
190 SysTick/PendSV is lower than SVC.
191 - Permitted priority group values are 0 to 6. The priority group value 7 will cause RTX to fail as there is only one priority level available.
192 - The <b>main stack</b> is used to run the RTX functionality. It is therefore required to configure sufficient stack for the RTX kernel execution.
196 osKernelInitialize(); // initialize RTX
197 NVIC_SetPriorityGrouping (3); // setup priority grouping
198 tread_id = osThreadNew(tread_func, NULL, NULL); // create some threads
199 osKernelStart (); // start RTX kernel
202 \section cre_rtx_proj_specifics Add support for RTX specific functions
203 If you require some of the \ref rtx5_specific "RTX specific functions" in your application code, \#include the
204 \ref rtx_os_h "header file rtx_os.h". This enables \ref lowPower "low-power" and \ref TickLess "tick-less" operation modes.
206 \section cre_rtx_proj_er Add Event Recorder Visibility
208 RTX5 interfaces to the <a href="http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html" target="_blank"><b>Event Recorder</b></a>
209 to provide event information which helps you to understand and analyze the operation.
211 - To use the Event Recorder together with RTX5, select the software component <b>Compiler:Event Recorder</b>.
212 - Select the \b Source variant of the software component <b>CMSIS:RTOS2 (API):Keil RTX5</b>.
213 \image html event_recorder_rte.png "Component selection for Event Recorder"
214 - Enable the related settings under \ref evtrecConfig.
215 - Build the application code and download it to the debug hardware.
217 Once the target application generates event information, it can be viewed in the µVision debugger using the \b Event
222 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
224 \page theory_of_operation Theory of Operation
226 Many aspects of the kernel are configurable and the configuration options are mentioned where applicable.
228 \section SystemStartup System Startup
230 Since main is no longer a thread RTX5 does not interfere with the system startup until main is reached.
231 Once the execution reaches \c main() there is a recommended order to initialize the hardware and start the kernel. This is
232 also reflected in the user code template file "CMSIS-RTOS2 'main' function" supplied with the RTX5 component.
234 Your application's \c main() should implement at least the following in the given order:
235 -# Initialization and configuration of hardware including peripherals, memory, pins, clocks and the interrupt system.
236 -# Update the system core clock using the respective
237 <a href=../../Core/html/group__system__init__gr.html>CMSIS-Core (Cortex-M)</a> or
238 <a href=../../Core_A/html/group__system__init__gr.html>CMSIS-Core (Cortex-A)</a> function.
239 -# Initialize the CMSIS-RTOS kernel using \ref osKernelInitialize.
240 -# Optionally, create a new thread \c app_main, which is used as a main thread using \ref osThreadNew. Alternatively, threads
241 can be created in \c main() directly.
242 -# Start the RTOS scheduler using \ref osKernelStart which also configure system tick timer and RTOS specific interrupts.
243 This function does not return in case of successful execution. Any application code after \b osKernelStart will therefore not be executed.
245 \note Interrupts are initialized in \ref osKernelStart. Modifying basic In case priorities and
246 groupings in the NVIC are altered by the application after the above sequence it might be necessary to call
247 \ref osKernelInitialize again. Incorrect ossibly catched by \ref osRtxErrorNotify or causing a hard fault.
249 \note The tick timer is configured during \ref osKernelStart.
252 RTX5 implements a low-latency preemptive scheduler. Major parts of RTX5 are executed in handler mode such as
253 - \ref SysTick_Handler used for time-based scheduling.
254 - \ref SVC_Handler used for lock-based scheduling.
255 - \ref PendSV_Handler used for interrupt-based scheduling.
257 In order to be low-latency with respect to ISR execution those system exceptions are configured to use the
258 lowest priority groups available. The priorities are configured such that no preemption happens between them. Thus
259 no interrupt critical sections (i.e. interrupt locks) are needed to protect the scheduler.
261 \image html scheduling.png "Thread scheduling and interrupt execution"
263 The scheduler combines priority and round-robin based context switches. The example depicted in the image above contains
264 four threads (1, 2, 3, and 4). Threads 1 and 2 share the same priority, thread 3 has a higher one and thread 4 the highest
265 (\ref osThreadAttr_t::priority). As long as threads 3 and 4 are blocked the scheduler switches between thread 1 and 2 on
266 a time-slice basis (round-robin). The time-slice for round-robin scheduling can be configured, see Round-Robin Timeout in \ref systemConfig.
268 Thread 2 unblocks thread 3 by an arbitrary RTOS-call (executed in SVC handler mode) at time index 2. The scheduler switches to
269 thread 3 immediately because thread 3 has the highest priority. Thread 4 is still blocked.
271 At time index 4 an interrupt (ISR) occurs and preempts the SysTick_Handler. RTX does not add any latency to the interrupt
272 service execution. The ISR routine uses an RTOS-call that unblocks thread 4. Instead of switching to thread 4 immediately
273 the PendSV flag is set to defer the context switching. The PendSV_Handler is executed right after the SysTick_Handler returns
274 and the deferred context switch to thread 4 is carried out. As soon as highest priority thread 4 blocks again by using
275 a blocking RTOS-call execution is switched back to thread 3 immediately during time index 5.
277 At time index 5 thread 3 uses a blocking RTOS-call as well. Thus the scheduler switches back to thread 2 for time index 6.
278 At time index 7 the scheduler uses the round-robin mechanism to switch to thread 1 and so on.
280 \section MemoryAllocation Memory Allocation
282 RTX5 objects (thread, mutex, semaphore, timer, message queue, thread and event flags, as well as memory pool) require
283 dedicated RAM memory. Objects can be created using os<i>Object</i>New() calls and deleted using os<i>Object</i>Delete()
284 calls. The related object memory needs to be available during the lifetime of the object.
286 RTX5 offers three different memory allocation methods for objects:
287 - \ref GlobalMemoryPool uses a single global memory pool for all objects. It is easy to configure, but may have
288 the disadvantage for memory fragmentation when objects with different sizes are created and destroyed.
289 - \ref ObjectMemoryPool uses a fixed-size memory pool for each object type. The method is time deterministic
290 and avoids memory fragmentation.
291 - \ref StaticObjectMemory reserves memory during compile time and completely avoids that a system can be out of memory.
292 This is typically a required for some safety critical systems.
294 It possible to intermix all the memory allocation methods in the same application.
296 \subsection GlobalMemoryPool Global Memory Pool
298 The global memory pool allocates all objects from a memory area. This method of memory allocation is the default
299 configuration setting of RTX5.
301 \image html MemAllocGlob.png "Global Memory Pool for all objects"
303 When the memory pool does not provide sufficient memory, the creation of the object fails and the related
304 os<i>Object</i>New() function returns \token{NULL}.
306 Enabled in \ref systemConfig.
308 \subsection ObjectMemoryPool Object-specific Memory Pools
310 Object-specific memory pools avoids memory fragmentation with a dedicated fixed-size memory management for each object type.
311 This type of memory pools are fully time deterministic, which means that object creation and destruction takes always the
312 same fixed amount of time. As a fixed-size memory pool is specific to an object type, the handling of out-of-memory
313 situations is simplified.
315 \image html MemAllocSpec.png "One memory pool per object type"
317 Object-specific memory pools are selectively enabled for each object type, e.g: mutex or thread using the RTX configuration
319 - Enabled in \ref threadConfig for thread objects.
320 - Enabled in \ref timerConfig for timer objects.
321 - Enabled in \ref eventFlagsConfig for event objects.
322 - Enabled in \ref mutexConfig for mutex objects.
323 - Enabled in \ref semaphoreConfig for semaphore.
324 - Enabled in \ref memPoolConfig for memory pools.
325 - Enabled in \ref msgQueueConfig for message objects.
327 When the memory pool does not provide sufficient memory, the creation of the object fails and the related
328 os<i>Object</i>New() function returns \token{NULL}.
330 \subsection StaticObjectMemory Static Object Memory
331 In contrast to the dynamic memory allocations, the static memory allocation requires compile-time allocation of object memory.
333 \image html MemAllocStat.png "Statically allocated memory for all objects"
335 Static memory allocation can be achieved by providing user-defined memory using attributes at object creation,
336 see \ref CMSIS_RTOS_MemoryMgmt_Manual. Please take special note of the following restrictions:
338 Memory type | Requirements
339 ---------------------------------------------|-------------------------------------------------------------------------------
340 Control Block (osXxxAttr_t::cb_mem) | 4-Byte alignment. Size defined by \ref osRtxThreadCbSize, \ref osRtxTimerCbSize, \ref osRtxEventFlagsCbSize, \ref osRtxMutexCbSize, \ref osRtxSemaphoreCbSize, \ref osRtxMemoryPoolCbSize, \ref osRtxMessageQueueCbSize.
341 Thread Stack (osThreadAttr_t::stack_mem) | 8-Byte alignment. Size is application specific, i.e. amount of stack variables and frames.
342 Memory Pool (osMemoryPoolAttr_t::mp_mem) | 4-Byte alignment. Size calculated with \ref osRtxMemoryPoolMemSize.
343 Message Queue (osMessageQueueAttr_t::mq_mem) | 4-Byte alignment. Size calculated with \ref osRtxMessageQueueMemSize.
346 In order to allow RTX5 aware debugging, i.e. Component Viewer, to recognize control blocks these
347 needs to be placed in individual memory sections, i.e. using `__attribute__((section(...)))`.
349 RTX Object | Linker Section
350 --------------|------------------------
351 Thread | `.bss.os.thread.cb`
352 Timer | `.bss.os.timer.cb`
353 Event Flags | `.bss.os.evflags.cb`
354 Mutex | `.bss.os.mutex.cb`
355 Semaphore | `.bss.os.semaphore.cb`
356 Memory Pool | `.bss.os.mempool.cb`
357 Message Queue | `.bss.os.msgqueue.cb`
359 The following code example shows how to create an OS object using static memory.
361 <b> Code Example:</b>
363 /*----------------------------------------------------------------------------
364 * CMSIS-RTOS 'main' function template
365 *---------------------------------------------------------------------------*/
367 #include "RTE_Components.h"
368 #include CMSIS_device_header
369 #include "cmsis_os2.h"
371 //include rtx_os.h for types of RTX objects
374 //The thread function instanced in this example
375 void worker(void *arg)
384 // Define objects that are statically allocated for worker thread 1
385 __attribute__((section(".bss.os.thread.cb")))
386 osRtxThread_t worker_thread_tcb_1;
388 // Reserve two areas for the stacks of worker thread 1
389 // uint64_t makes sure the memory alignment is 8
390 uint64_t worker_thread_stk_1[64];
392 // Define the attributes which are used for thread creation
393 // Optional const saves RAM memory and includes the values in periodic ROM tests
394 const osThreadAttr_t worker_attr_1 = {
397 &worker_thread_tcb_1,
398 sizeof(worker_thread_tcb_1),
399 &worker_thread_stk_1[0],
400 sizeof(worker_thread_stk_1),
401 osPriorityAboveNormal,
405 // Define ID object for thread
408 /*----------------------------------------------------------------------------
409 * Application main thread
410 *---------------------------------------------------------------------------*/
411 void app_main (void *argument) {
412 uint32_t param = NULL;
414 // Create an instance of the worker thread with static resources (TCB and stack)
415 th1 = osThreadNew(worker, ¶m, &worker_attr_1);
421 // System Initialization
422 SystemCoreClockUpdate();
425 osKernelInitialize(); // Initialize CMSIS-RTOS
426 osThreadNew(app_main, NULL, NULL); // Create application main thread
427 osKernelStart(); // Start thread execution
433 \section ThreadStack Thread Stack Management
435 For Cortex-M processors without floating point unit the thread context requires 64 bytes on the local stack.
437 \note For Cortex-M4/M7 with FP the thread context requires 200 bytes on the local stack. For these devices the default stack
438 space should be increased to a minimum of 300 bytes.
440 Each thread is provided with a separate stack that holds the thread context and stack space for automatic variables and
441 return addresses for function call nesting. The stack sizes of RTX threads are flexibly configurable as explained in the
442 section \ref threadConfig. RTX offers a configurable checking for stack overflows and stack utilization.
445 \section lowPower Low-Power Operation
447 The system thread \b osRtxIdleThread can be use to switch the system into a low-power mode. The easiest form to enter a
448 low-power mode is the execution of the \c __WFE function that puts the processor into a sleep mode where it waits for an
453 #include "RTE_Components.h"
454 #include CMSIS_device_header /* Device definitions */
456 void osRtxIdleThread (void) {
457 /* The idle demon is a system thread, running when no other thread is */
461 __WFE(); /* Enter sleep mode */
467 \c __WFE() is not available in every Cortex-M implementation. Check device manuals for availability.
470 \section kernelTimer RTX Kernel Timer Tick
472 RTX uses the generic \ref CMSIS_RTOS_TickAPI to configure and control its periodic Kernel Tick.
474 To use an alternative timer as the Kernel Tick Timer one simply needs to implement a custom version
475 of the \ref CMSIS_RTOS_TickAPI.
477 \note The OS Tick implementation provided must asure that the used timer interrupt uses the same (low) priority group
478 as the service interrupts, i.e. interrupts used by RTX must not preempt each other. Refer to the \ref Scheduler section
481 \subsection TickLess Tick-less Low-Power Operation
483 RTX5 provides extension for tick-less operation which is useful for applications that use extensively low-power modes where
484 the SysTick timer is also disabled. To provide a time-tick in such power-saving modes, a wake-up timer is used to
485 derive timer intervals. The CMSIS-RTOS2 functions \ref osKernelSuspend and \ref osKernelResume control the tick-less
488 Using this functions allows the RTX5 thread scheduler to stop the periodic kernel tick interrupt. When all active threads
489 are suspended, the system enters power-down and calculates how long it can stay in this power-down mode. In the power-down
490 mode the processor and peripherals can be switched off. Only a wake-up timer must remain powered, because this timer is
491 responsible to wake-up the system after the power-down period expires.
493 The tick-less operation is controlled from the \b osRtxIdleThread thread. The wake-up timeout value is set before the system
494 enters the power-down mode. The function \ref osKernelSuspend calculates the wake-up timeout measured in RTX Timer Ticks;
495 this value is used to setup the wake-up timer that runs during the power-down mode of the system.
497 Once the system resumes operation (either by a wake-up time out or other interrupts) the RTX5 thread scheduler is started
498 with the function \ref osKernelResume. The parameter \a sleep_time specifies the time (in RTX Timer Ticks) that the system
499 was in power-down mode.
503 #include "msp.h" // Device header
505 /*----------------------------------------------------------------------------
506 * MSP432 Low-Power Extension Functions
507 *---------------------------------------------------------------------------*/
508 static void MSP432_LP_Entry(void) {
509 /* Enable PCM rude mode, which allows to device to enter LPM3 without waiting for peripherals */
510 PCM->CTL1 = PCM_CTL1_KEY_VAL | PCM_CTL1_FORCE_LPM_ENTRY;
511 /* Enable all SRAM bank retentions prior to going to LPM3 */
512 SYSCTL->SRAM_BANKRET |= SYSCTL_SRAM_BANKRET_BNK7_RET;
513 __enable_interrupt();
514 NVIC_EnableIRQ(RTC_C_IRQn);
515 /* Do not wake up on exit from ISR */
516 SCB->SCR |= SCB_SCR_SLEEPONEXIT_Msk;
517 /* Setting the sleep deep bit */
518 SCB->SCR |= (SCB_SCR_SLEEPDEEP_Msk);
521 static volatile unsigned int tc;
522 static volatile unsigned int tc_wakeup;
524 void RTC_C_IRQHandler(void)
526 if (tc++ > tc_wakeup)
528 SCB->SCR &= ~SCB_SCR_SLEEPONEXIT_Msk;
529 NVIC_DisableIRQ(RTC_C_IRQn);
530 NVIC_ClearPendingIRQ(RTC_C_IRQn);
533 if (RTC_C->PS0CTL & RTC_C_PS0CTL_RT0PSIFG)
535 RTC_C->CTL0 = RTC_C_KEY_VAL; // Unlock RTC key protected registers
536 RTC_C->PS0CTL &= ~RTC_C_PS0CTL_RT0PSIFG;
538 SCB->SCR |= (SCB_SCR_SLEEPDEEP_Msk);
542 uint32_t g_enable_sleep = 0;
544 void osRtxIdleThread (void) {
547 tc_wakeup = osKernelSuspend();
548 /* Is there some time to sleep? */
551 /* Enter the low power state */
555 /* Adjust the kernel ticks with the amount of ticks slept */
562 \c __WFE() is not available in every Arm Cortex-M implementation. Check device manuals for availability.
563 The alternative using \c __WFI() has other issues, please take note of http://www.keil.com/support/docs/3591.htm as well.
565 \section rtx_os_h RTX5 Header File
567 Every implementation of the CMSIS-RTOS2 API can bring its own additional features. RTX5 adds a couple of
568 \ref rtx5_specific "functions" for the idle more, for error notifications, and special system timer functions. It also is
569 using macros for control block and memory sizes.
571 If you require some of the RTX specific functions in your application code, \#include the header file \b %rtx_os.h:
576 \section CMSIS_RTOS_TimeOutValue Timeout Value
578 Timeout values are an argument to several \b osXxx functions to allow time for resolving a request. A timeout value of \b 0
579 means that the RTOS does not wait and the function returns instantly, even when no resource is available. A timeout value of
580 \ref osWaitForever means that the RTOS waits infinitely until a resource becomes available. Or one forces the thread to resume
581 using \ref osThreadResume which is discouraged.
583 The timeout value specifies the number of timer ticks until the time delay elapses. The value is an upper bound and
584 depends on the actual time elapsed since the last timer tick.
587 - timeout value \b 0 : the system does not wait, even when no resource is available the RTOS function returns instantly.
588 - timeout value \b 1 : the system waits until the next timer tick occurs; depending on the previous timer tick, it may be a
589 very short wait time.
590 - timeout value \b 2 : actual wait time is between 1 and 2 timer ticks.
591 - timeout value \ref osWaitForever : system waits infinite until a resource becomes available.
593 \image html TimerValues.png "Example of timeout using osDelay()"
596 \section CMSIS_RTOS_ISR_Calls Calls from Interrupt Service Routines
598 The following CMSIS-RTOS2 functions can be called from threads and Interrupt Service Routines (ISR):
599 - \ref osKernelGetInfo, \ref osKernelGetState,
600 \ref osKernelGetTickCount, \ref osKernelGetTickFreq, \ref osKernelGetSysTimerCount, \ref osKernelGetSysTimerFreq
601 - \ref osThreadGetId, \ref osThreadFlagsSet
602 - \ref osEventFlagsSet, \ref osEventFlagsClear, \ref osEventFlagsGet, \ref osEventFlagsWait
603 - \ref osSemaphoreAcquire, \ref osSemaphoreRelease, \ref osSemaphoreGetCount
604 - \ref osMemoryPoolAlloc, \ref osMemoryPoolFree, \ref osMemoryPoolGetCapacity, \ref osMemoryPoolGetBlockSize,
605 \ref osMemoryPoolGetCount, \ref osMemoryPoolGetSpace
606 - \ref osMessageQueuePut, \ref osMessageQueueGet, \ref osMessageQueueGetCapacity, \ref osMessageQueueGetMsgSize,
607 \ref osMessageQueueGetCount, \ref osMessageQueueGetSpace
609 Functions that cannot be called from an ISR are verifying the interrupt status and return the status code \b osErrorISR, in
610 case they are called from an ISR context. In some implementations, this condition might be caught using the HARD_FAULT
614 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
616 \page config_rtx5 Configure RTX v5
618 The file "RTX_Config.h" defines the configuration parameters of CMSIS-RTOS RTX and must be part of every project that is
619 using the CMSIS-RTOS RTX kernel. The configuration options are explained in detail in the following sections:
620 - \ref systemConfig covers system-wide settings for the global memory pool, tick frequency, ISR event buffer and round-robin thread switching.
621 - \ref threadConfig provides several parameters to configure the \ref CMSIS_RTOS_ThreadMgmt functions.
622 - \ref timerConfig provides several parameters to configure the \ref CMSIS_RTOS_TimerMgmt functions.
623 - \ref eventFlagsConfig provides several parameters to configure the \ref CMSIS_RTOS_EventFlags functions.
624 - \ref mutexConfig provides several parameters to configure the \ref CMSIS_RTOS_MutexMgmt functions.
625 - \ref semaphoreConfig provides several parameters to configure the \ref CMSIS_RTOS_SemaphoreMgmt functions.
626 - \ref memPoolConfig provides several parameters to configure the \ref CMSIS_RTOS_PoolMgmt functions.
627 - \ref msgQueueConfig provides several parameters to configure the \ref CMSIS_RTOS_Message functions.
628 - \ref evtrecConfig provides several parameters to configure RTX for usage with <a href="http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html" target="_blank"><b>Event Recorder</b></a>.
630 The file "RTX_Config.c" contains default implementations of the functions \ref osRtxIdleThread and \ref osRtxErrorNotify. Both functions
631 can simply be overwritten with a customized behavior by redefining them as part of the user code.
633 The configuration file uses <b>Configuration Wizard Annotations</b>. Refer to <b>Pack - Configuration Wizard Annotations</b> for details.
634 Depending on the development tool, the annotations might lead to a more user-friendly graphical representation of the
635 settings. The picture below shows the µVision \b Configuration \b Wizard view in MDK:
637 \image html config_wizard.png "RTX_Config.h in Configuration Wizard View"
639 Alternatively one can provide configuration options using the compiler command line.
641 For example one can customize the used tick frequency to 100us by (overwriting) the configuration using
643 cc -DOS_TICK_FREQ=100
646 \section systemConfig System Configuration
648 The system configuration covers system-wide settings for the global memory pool, tick frequency, ISR event buffer and
649 round-robin thread switching.
651 <b>System Configuration Options</b>
652 \image html config_wizard_system.png "RTX_Config.h: System Configuration"
654 Name | \#define | Description
655 ---------------------------------------|--------------------------|----------------------------------------------------------------
656 Global Dynamic Memory size [bytes] | \c OS_DYNAMIC_MEM_SIZE | Defines the combined global dynamic memory size for the \ref GlobalMemoryPool. Default value is \token{4096}. Value range is \token{[0-1073741824]} bytes, in multiples of \token{8} bytes.
657 Kernel Tick Frequency (Hz) | \c OS_TICK_FREQ | Defines base time unit for delays and timeouts in Hz. Default: 1000Hz = 1ms period.
658 Round-Robin Thread switching | \c OS_ROBIN_ENABLE | Enables Round-Robin Thread switching.
659 Round-Robin Timeout | \c OS_ROBIN_TIMEOUT | Defines how long a thread will execute before a thread switch. Default value is \token{5}. Value range is \token{[1-1000]}.
660 ISR FIFO Queue | \c OS_ISR_FIFO_QUEUE | RTOS Functions called from ISR store requests to this buffer. Default value is \token{16 entries}. Value range is \token{[4-256]} entries in multiples of \token{4}.
661 Object Memory usage counters | \c OS_OBJ_MEM_USAGE | Enables object memory usage counters to evaluate the maximum memory pool requirements individually for each RTOS object type.
663 \subsection systemConfig_glob_mem Global dynamic memory
664 Refer to \ref GlobalMemoryPool.
667 \subsection systemConfig_rr Round-Robin Thread Switching
669 RTX5 may be configured to use round-robin multitasking thread switching. Round-robin allows quasi-parallel execution of
670 several threads of the \a same priority. Threads are not really executed concurrently, but are scheduled where the available
671 CPU time is divided into time slices and RTX5 assigns a time slice to each thread. Because the time slice is typically short
672 (only a few milliseconds), it appears as though threads execute simultaneously.
674 Round-robin thread switching functions as follows:
675 - the tick is preloaded with the timeout value when a thread switch occurs
676 - the tick is decremented (if not already zero) each system tick if the same thread is still executing
677 - when the tick reaches 0 it indicates that a timeout has occurred. If there is another thread ready with the \a same
678 priority, then the system switches to that thread and the tick is preloaded with timeout again.
680 In other words, threads execute for the duration of their time slice (unless a thread's time slice is given up). Then, RTX
681 switches to the next thread that is in \b READY state and has the same priority. If no other thread with the same priority is
682 ready to run, the current running thread resumes it execution.
684 \note When switching to higher priority threads, the round-robin timeout value is reset.
686 Round-Robin multitasking is controlled with the <b>\#define OS_ROBIN_ENABLE</b>. The time slice period is configured (in RTX
687 timer ticks) with the <b>\#define OS_ROBIN_TIMEOUT</b>.
690 \subsection systemConfig_isr_fifo ISR FIFO Queue
691 The RTX functions (\ref CMSIS_RTOS_ISR_Calls), when called from and interrupt handler, store the request type and optional
692 parameter to the ISR FIFO queue buffer to be processed later, after the interrupt handler exits.
694 The scheduler is activated immediately after the IRQ handler has finished its execution to process the requests stored to the
695 FIFO queue buffer. The required size of this buffer depends on the number of functions that are called within the interrupt
696 handler. An insufficient queue size will be caught by \b osRtxErrorNotify with error code \b osRtxErrorISRQueueOverflow.
699 \subsection systemConfig_usage_counters Object Memory Usage Counters
701 Object memory usage counters help to evaluate the maximum memory pool requirements for each object type, just like stack
702 watermarking does for threads. The initial setup starts with a global memory pool for all object types. Consecutive runs of
703 the application with object memory usage counters enabled, help to introduce object specific memory pools for each object
704 type. Normally, this is required for applications that require a functional safety certification as global memory pools are
705 not allowed in this case.
708 \section threadConfig Thread Configuration
710 The RTX5 provides several parameters to configure the \ref CMSIS_RTOS_ThreadMgmt functions.
712 <b>Thread Configuration Options</b>
713 \image html config_wizard_threads.png "RTX_Config.h: Thread Configuration"
716 Option | \#define | Description
717 :--------------------------------------------------------------------------|:-------------------------------|:---------------------------------------------------------------
718 Object specific Memory allocation | \c OS_THREAD_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
719 Number of user Threads | \c OS_THREAD_NUM | Defines maximum number of user threads that can be active at the same time. Applies to user threads with system provided memory for control blocks. Default value is \token{1}. Value range is \token{[1-1000]}.
720 Number of user Threads with default Stack size | \c OS_THREAD_DEF_STACK_NUM | Defines maximum number of user threads with default stack size and applies to user threads with \token{0} stack size specified. Value range is \token{[0-1000]}.
721 Total Stack size [bytes] for user Threads with user-provided Stack size | \c OS_THREAD_USER_STACK_SIZE | Defines the combined stack size for user threads with user-provided stack size. Default value is \token{0}. Value range is \token{[0-1073741824]} Bytes, in multiples of \token{8}.
722 Default Thread Stack size [bytes] | \c OS_STACK_SIZE | Defines stack size for threads with zero stack size specified. Default value is \token{200}. Value range is \token{[96-1073741824]} Bytes, in multiples of \token{8}.
723 Idle Thread Stack size [bytes] | \c OS_IDLE_THREAD_STACK_SIZE | Defines stack size for Idle thread. Default value is \token{200}. Value range is \token{[72-1073741824]} bytes, in multiples of \token{8}.
724 Idle Thread TrustZone Module ID | \c OS_IDLE_THREAD_TZ_MOD_ID | Defines the \ref osThreadAttr_t::tz_module "TrustZone Module ID" the Idle Thread shall use. This needs to be set to a non-zero value if the Idle Thread need to call secure functions. Default value is \token{0}.
725 Stack overrun checking | \c OS_STACK_CHECK | Enable stack overrun checks at thread switch.
726 Stack usage watermark | \c OS_STACK_WATERMARK | Initialize thread stack with watermark pattern for analyzing stack usage. Enabling this option increases significantly the execution time of thread creation.
727 Processor mode for Thread execution | \c OS_PRIVILEGE_MODE | Controls the processor mode. Default value is \token{Privileged} mode. Value range is \token{[0=Unprivileged; 1=Privileged]} mode.
729 \subsection threadConfig_countstack Configuration of Thread Count and Stack Space
731 The RTX5 kernel uses a separate stack space for each thread and provides two methods for defining the stack requirements:
732 - <b>Static allocation</b>: when \ref osThreadAttr_t::stack_mem and \ref osThreadAttr_t::stack_size specify a memory area
733 which is used for the thread stack. \b Attention: The stack memory provided must be 64-bit aligned, i.e. by using uint64_t for declaration.
734 - <b>Dynamic allocation</b>: when \ref osThreadAttr_t is NULL or \ref osThreadAttr_t::stack_mem is NULL, the system
735 allocates the stack memory from:
736 - Object-specific Memory Pool (default Stack size) when "Object specific Memory allocation" is enabled and "Number of
737 user Threads with default Stack size" is not \token{0} and \ref osThreadAttr_t::stack_size is \token{0} (or
738 \ref osThreadAttr_t is NULL).
739 - Object-specific Memory Pool (user-provided Stack size) when "Object specific Memory allocation" is enabled and "Total
740 Stack size for user..." is not \token{0} and \ref osThreadAttr_t::stack_size is not \token{0}.
741 - Global Memory Pool when "Object specific Memory allocation" is disabled or (\ref osThreadAttr_t::stack_size is not
742 \token{0} and "Total Stack size for user..." is \token{0}) or (\ref osThreadAttr_t::stack_size is \token{0} and
743 "Number of user Threads with default Stack size" is \token{0}).
745 \ref osThreadAttr_t is a parameter of the function \ref osThreadNew.
748 Before the RTX kernel is started by the \ref osKernelStart() function, the main stack defined in startup_<i>device</i>.s is
749 used. The main stack is also used for:
750 - user application calls to RTX functions in \b thread \b mode using SVC calls
751 - interrupt/exception handlers.
753 \subsection threadConfig_ovfcheck Stack Overflow Checking
754 RTX5 implements a software stack overflow checking that traps stack overruns. Stack is used for return addresses and
755 automatic variables. Extensive usage or incorrect stack configuration may cause a stack overflow. Software stack overflow
756 checking is controlled with the define \c OS_STACK_CHECK.
758 If a stack overflow is detected, the function \ref osRtxErrorNotify with error code \ref osRtxErrorStackUnderflow is called. By
759 default, this function is implemented as an endless loop and will practically stop code execution.
761 \subsection threadConfig_watermark Stack Usage Watermark
762 RTX5 initializes thread stack with a watermark pattern (0xCC) when a thread is created. This allows the debugger to determine
763 the maximum stack usage for each thread. It is typically used during development but removed from the final application.
764 Stack usage watermark is controlled with the define \c OS_STACK_WATERMARK.
766 Enabling this option significantly increases the execution time of \ref osThreadNew (depends on thread stack size).
768 \subsection threadConfig_procmode Processor Mode for Thread Execution
769 RTX5 allows to execute threads in unprivileged or privileged processor mode. The processor mode is controlled with the
770 define \c OS_PRIVILEGE_MODE.
772 In \b unprivileged processor mode, the application software:
773 - has limited access to the MSR and MRS instructions, and cannot use the CPS instruction.
774 - cannot access the system timer, NVIC, or system control block.
775 - might have restricted access to memory or peripherals.
777 In \b privileged processor mode, the application software can use all the instructions and has access to all resources.
780 \section timerConfig Timer Configuration
782 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_TimerMgmt functions.
784 <b>Timer Configuration Options</b>
785 \image html config_wizard_timer.png "RTX_Config.h: Timer Configuration"
787 Name | \#define | Description
788 ---------------------------------------|--------------------------------|----------------------------------------------------------------
789 Object specific Memory allocation | \c OS_TIMER_OBJ_MEM | Enables object specific memory allocation.
790 Number of Timer objects | \c OS_TIMER_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
791 Timer Thread Priority | \c OS_TIMER_THREAD_PRIO | Defines priority for timer thread. Default value is \token{40}. Value range is \token{[8-48]}, in multiples of \token{8}. The numbers have the following priority correlation: \token{8=Low}; \token{16=Below Normal}; \token{24=Normal}; \token{32=Above Normal}; \token{40=High}; \token{48=Realtime}
792 Timer Thread Stack size [bytes] | \c OS_TIMER_THREAD_STACK_SIZE | Defines stack size for Timer thread. May be set to 0 when timers are not used. Default value is \token{200}. Value range is \token{[0-1073741824]}, in multiples of \token{8}.
793 Timer Thread TrustZone Module ID | \c OS_TIMER_THREAD_TZ_MOD_ID | Defines the \ref osThreadAttr_t::tz_module "TrustZone Module ID" the Timer Thread shall use. This needs to be set to a non-zero value if any Timer Callbacks need to call secure functions. Default value is \token{0}.
794 Timer Callback Queue entries | \c OS_TIMER_CB_QUEUE | Number of concurrent active timer callback functions. May be set to 0 when timers are not used. Default value is \token{4}. Value range is \token{[0-256]}.
796 \subsection timerConfig_obj Object-specific memory allocation
797 See \ref ObjectMemoryPool.
799 \subsection timerConfig_user User Timer Thread
800 The RTX5 function \b osRtxTimerThread executes callback functions when a time period expires. The priority of the timer
801 subsystem within the complete RTOS system is inherited from the priority of the \b osRtxTimerThread. This is configured by
802 \c OS_TIMER_THREAD_PRIO. Stack for callback functions is supplied by \b osRtxTimerThread. \c OS_TIMER_THREAD_STACK_SIZE must
803 satisfy the stack requirements of the callback function with the highest stack usage.
806 \section eventFlagsConfig Event Flags Configuration
808 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_EventFlags functions.
810 <b>Event Configuration Options</b>
811 \image html config_wizard_eventFlags.png "RTX_Config.h: Event Flags Configuration"
813 Name | \#define | Description
814 ---------------------------------------|--------------------------|----------------------------------------------------------------
815 Object specific Memory allocation | \c OS_EVFLAGS_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
816 Number of Event Flags objects | \c OS_EVFLAGS_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
818 \subsection eventFlagsConfig_obj Object-specific memory allocation
819 When object-specific memory is used, the pool size for all Event objects is specified by \c OS_EVFLAGS_NUM. Refer to
820 \ref ObjectMemoryPool.
823 \section mutexConfig Mutex Configuration
824 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_MutexMgmt functions.
826 <b>Mutex Configuration Options</b>
827 \image html config_wizard_mutex.png "RTX_Config.h: Mutex Configuration"
830 Name | \#define | Description
831 ---------------------------------------|--------------------------|----------------------------------------------------------------
832 Object specific Memory allocation | \c OS_MUTEX_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
833 Number of Mutex objects | \c OS_MUTEX_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
835 \subsection mutexConfig_obj Object-specific Memory Allocation
836 When object-specific memory is used, the pool size for all Mutex objects is specified by \c OS_MUTEX_NUM. Refer to
837 \ref ObjectMemoryPool.
840 \section semaphoreConfig Semaphore Configuration
842 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_SemaphoreMgmt functions.
844 <b>Semaphore Configuration Options</b>
845 \image html config_wizard_semaphore.png "RTX_Config.h: Semaphore Configuration"
848 Name | \#define | Description
849 ---------------------------------------|--------------------------|----------------------------------------------------------------
850 Object specific Memory allocation | \c OS_SEMAPHORE_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
851 Number of Semaphore objects | \c OS_SEMAPHORE_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
853 \subsection semaphoreConfig_obj Object-specific memory allocation
854 When Object-specific Memory is used, the pool size for all Semaphore objects is specified by \c OS_SEMAPHORE_NUM. Refer to
855 \ref ObjectMemoryPool.
858 \section memPoolConfig Memory Pool Configuration
860 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_PoolMgmt functions.
862 <b>Memory Pool Configuration Options</b>
863 \image html config_wizard_memPool.png "RTX_Config.h: Memory Pool Configuration"
865 Name | \#define | Description
866 ---------------------------------------|--------------------------|----------------------------------------------------------------
867 Object specific Memory allocation | \c OS_MEMPOOL_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
868 Number of Memory Pool objects | \c OS_MEMPOOL_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
869 Data Storage Memory size [bytes] | \c OS_MEMPOOL_DATA_SIZE | Defines the combined data storage memory size. Applies to objects with system provided memory for data storage. Default value is \token{0}. Value range is \token{[0-1073741824]}, in multiples of \token{8}.
871 \subsection memPoolConfig_obj Object-specific memory allocation
872 When object-specific memory is used, the number of pools for all MemoryPool objects is specified by \c OS_MEMPOOL_NUM. The
873 total storage size reserved for all pools is configured in \c OS_MEMPOOL_DATA_SIZE. Refer to \ref ObjectMemoryPool.
876 \section msgQueueConfig Message Queue Configuration
878 RTX5 provides several parameters to configure the \ref CMSIS_RTOS_Message functions.
880 <b>MessageQueue Configuration Options</b>
881 \image html config_wizard_msgQueue.png "RTX_Config.h: Message Queue Configuration"
883 Name | \#define | Description
884 ---------------------------------------|--------------------------|----------------------------------------------------------------
885 Object specific Memory allocation | \c OS_MSGQUEUE_OBJ_MEM | Enables object specific memory allocation. See \ref ObjectMemoryPool.
886 Number of Message Queue objects | \c OS_MSGQUEUE_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
887 Data Storage Memory size [bytes] | \c OS_MSGQUEUE_DATA_SIZE | Defines the combined data storage memory size. Applies to objects with system provided memory for data storage. Default value is \token{0}. Value range is \token{[0-1073741824]}, in multiples of \token{8}.
889 \subsection msgQueueConfig_obj Object-specific memory allocation
890 When Object-specific Memory is used, the number of queues for all Message Queue objects is specified by \c OS_MSGQUEUE_NUM.
891 The total storage size reserved for all queues is configured in \c OS_MSGQUEUE_DATA_SIZE. Refer to \ref ObjectMemoryPool.
894 \section evtrecConfig Event Recorder Configuration
896 This section describes the configuration settings for the <a href="http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html" target="_blank">Event Recorder</a>
897 annotations. The usage requires the source variant of RTX5; refer to \ref cre_rtx_proj_er for more information.
899 \subsection evtrecConfigGlobIni Global Configuration
900 Initialize Event Recorder during the \ref osKernelInitialize and optionally start event recording.
902 \image html config_wizard_evtrecGlobIni.png "RTX_Config.h: Initialization and filter setup configuration"
906 Name | \#define | Description
907 ----------------------|-----------------|----------------------------------------------------------------
908 Global Initialization | \c OS_EVR_INIT | Initialize Event Recorder during \ref osKernelInitialize.
909 Start Recording | \c OS_EVR_START | Start event recording after initialization.
912 - If <b>Global Initialization (\c OS_EVR_INIT)</b> is set, an explicit call to \c EventRecorderInitialize is not required.
913 - If <b>Start Recording (\c OS_EVR_START)</b> is set, an explicit call to \c EventRecorderStart is not required. You may call the function \c EventRecorderStop to stop recording.
916 <b>Global Event Filter Setup</b>
918 These event filter settings are applied to all software component numbers, including MDK middleware and user components.
920 \image html config_wizard_evtrecGlobEvtFiltSetup.png "RTX_Config.h: Global Event Filter Setup"
924 Name | \#define | Description
925 --------------------------|------------------|----------------------------------------------------------------
926 Error events | \c OS_EVR_LEVEL | Enable error events.
927 API function call events | \c OS_EVR_LEVEL | Enable API function call events.
928 Operation events | \c OS_EVR_LEVEL | Enable operation events.
929 Detailed operation events | \c OS_EVR_LEVEL | Enable detailed operation events.
932 You may disable event recording for specific software components by calling the function \c EventRecorderDisable.
934 <b>RTOS Event Filter Setup</b>
936 These event filter settings are applied to specific RTX component groups with sub-options for:
938 - API function call events
940 - Detailed operation events
942 The generation of events must be enabled as explained under \ref evtrecConfigEvtGen.
945 \image html config_wizard_evtrecRTOSEvtFilterSetup.png "RTX_Config.h: RTOS Event Filter Setup"
949 Name | \#define | Description
950 ------------------|----------------------------|----------------------------------------------------------------
951 Memory Management | \c OS_EVR_MEMORY_FILTER | Filter enable for Memory Management events.
952 Kernel | \c OS_EVR_KERNEL_FILTER | Filter enable for Kernel events.
953 Thread | \c OS_EVR_THREAD_FILTER | Filter enable for Thread events.
954 Timer | \c OS_EVR_TIMER_FILTER | Filter enable for Timer events.
955 Event Flags | \c OS_EVR_EVFLAGS_FILTER | Filter enable for Event Flags events.
956 Mutex | \c OS_EVR_MUTEX_FILTER | Filter enable for Mutex events.
957 Semaphore | \c OS_EVR_SEMAPHORE_FILTER | Filter enable for Semaphore events.
958 Memory Pool | \c OS_EVR_MEMPOOL_FILTER | Filter enable for Memory Pool events.
959 Message Queue | \c OS_EVR_MSGQUEUE_FILTER | Filter enable for Message Queue events.
962 \subsection evtrecConfigEvtGen RTOS Event Generation
964 Enable the event generation for specific RTX component groups. This requires the RTX source variant (refer to \ref cre_rtx_proj_er for more information).
966 \image html config_wizard_evtrecGeneration.png "RTX_Config.h: Event generation configuration"
970 Name | \#define | Description
971 ------------------|--------------------------|----------------------------------------------------------------
972 Memory Management | \c OS_EVR_MEMORY | Enables Memory Management events recording.
973 Kernel | \c OS_EVR_KERNEL | Enables Kernel events recording.
974 Thread | \c OS_EVR_THREAD | Enables Thread events recording.
975 Timer | \c OS_EVR_TIMER | Enables Timer events recording.
976 Event Flags | \c OS_EVR_EVFLAGS | Enables Event Flags events recording.
977 Mutex | \c OS_EVR_MUTEX | Enables Mutex events recording.
978 Semaphore | \c OS_EVR_SEMAPHORE | Enables Semaphore events recording.
979 Memory Pool | \c OS_EVR_MEMPOOL | Enables Memory Pool events recording.
980 Message Queue | \c OS_EVR_MSGQUEUE | Enables Message Queue events recording.
983 If event generation for a component is disabled, the code that generates the related events is not included. Thus, \ref evtrecConfigGlobIni "filters" for this
984 component will have no effect and the debugger is unable to display any events for the related component group.
987 \subsection systemConfig_event_recording Manual event configuration
989 To disable the generation of events for a specific RTX API call, use the following \#define settings (from <b>rtx_evrt.h</b>) and add these manually
990 to the <b>RTX_Config.h</b> file:
992 \b Memory \b events \n
993 \c EVR_RTX_MEMORY_INIT_DISABLE, \c EVR_RTX_MEMORY_ALLOC_DISABLE, \c EVR_RTX_MEMORY_FREE_DISABLE,
994 \c EVR_RTX_MEMORY_BLOCK_INIT_DISABLE, \c EVR_RTX_MEMORY_BLOCK_ALLOC_DISABLE, \c EVR_RTX_MEMORY_BLOCK_FREE_DISABLE
996 \b Kernel \b events \n
997 \c EVR_RTX_KERNEL_ERROR_DISABLE, \c EVR_RTX_KERNEL_INITIALIZE_DISABLE, \c EVR_RTX_KERNEL_INITIALIZED_DISABLE,
998 \c EVR_RTX_KERNEL_GET_INFO_DISABLE, \c EVR_RTX_KERNEL_INFO_RETRIEVED_DISABLE, \c EVR_RTX_KERNEL_GET_STATE_DISABLE,
999 \c EVR_RTX_KERNEL_START_DISABLE, \c EVR_RTX_KERNEL_STARTED_DISABLE, \c EVR_RTX_KERNEL_LOCK_DISABLE,
1000 \c EVR_RTX_KERNEL_LOCKED_DISABLE, \c EVR_RTX_KERNEL_UNLOCK_DISABLE, \c EVR_RTX_KERNEL_UNLOCKED_DISABLE,
1001 \c EVR_RTX_KERNEL_RESTORE_LOCK_DISABLE, \c EVR_RTX_KERNEL_LOCK_RESTORED_DISABLE, \c EVR_RTX_KERNEL_SUSPEND_DISABLE,
1002 \c EVR_RTX_KERNEL_SUSPENDED_DISABLE, \c EVR_RTX_KERNEL_RESUME_DISABLE, \c EVR_RTX_KERNEL_RESUMED_DISABLE,
1003 \c EVR_RTX_KERNEL_GET_TICK_COUNT_DISABLE, \c EVR_RTX_KERNEL_GET_TICK_FREQ_DISABLE,
1004 \c EVR_RTX_KERNEL_GET_SYS_TIMER_COUNT_DISABLE, \c EVR_RTX_KERNEL_GET_SYS_TIMER_FREQ_DISABLE
1006 \b Thread \b events \n
1007 \c EVR_RTX_THREAD_ERROR_DISABLE, \c EVR_RTX_THREAD_NEW_DISABLE, \c EVR_RTX_THREAD_CREATED_DISABLE,
1008 \c EVR_RTX_THREAD_GET_NAME_DISABLE, \c EVR_RTX_THREAD_GET_ID_DISABLE, \c EVR_RTX_THREAD_GET_STATE_DISABLE,
1009 \c EVR_RTX_THREAD_GET_STACK_SIZE_DISABLE, \c EVR_RTX_THREAD_GET_STACK_SPACE_DISABLE, \c EVR_RTX_THREAD_SET_PRIORITY_DISABLE,
1010 \c EVR_RTX_THREAD_GET_PRIORITY_DISABLE, \c EVR_RTX_THREAD_YIELD_DISABLE, \c EVR_RTX_THREAD_SUSPEND_DISABLE,
1011 \c EVR_RTX_THREAD_SUSPENDED_DISABLE, \c EVR_RTX_THREAD_RESUME_DISABLE, \c EVR_RTX_THREAD_RESUMED_DISABLE,
1012 \c EVR_RTX_THREAD_DETACH_DISABLE, \c EVR_RTX_THREAD_DETACHED_DISABLE, \c EVR_RTX_THREAD_JOIN_DISABLE,
1013 \c EVR_RTX_THREAD_JOIN_PENDING_DISABLE, \c EVR_RTX_THREAD_JOINED_DISABLE, \c EVR_RTX_THREAD_BLOCKED_DISABLE,
1014 \c EVR_RTX_THREAD_UNBLOCKED_DISABLE, \c EVR_RTX_THREAD_PREEMPTED_DISABLE, \c EVR_RTX_THREAD_SWITCHED_DISABLE,
1015 \c EVR_RTX_THREAD_EXIT_DISABLE, \c EVR_RTX_THREAD_TERMINATE_DISABLE, \c EVR_RTX_THREAD_DESTROYED_DISABLE,
1016 \c EVR_RTX_THREAD_GET_COUNT_DISABLE, \c EVR_RTX_THREAD_ENUMERATE_DISABLE
1018 \b Thread \b flag \b events \n
1019 \c EVR_RTX_THREAD_FLAGS_SET_DISABLE, \c EVR_RTX_THREAD_FLAGS_SET_DONE_DISABLE, \c EVR_RTX_THREAD_FLAGS_CLEAR_DISABLE,
1020 \c EVR_RTX_THREAD_FLAGS_CLEAR_DONE_DISABLE, \c EVR_RTX_THREAD_FLAGS_GET_DISABLE, \c EVR_RTX_THREAD_FLAGS_WAIT_DISABLE,
1021 \c EVR_RTX_THREAD_FLAGS_WAIT_PENDING_DISABLE, \c EVR_RTX_THREAD_FLAGS_WAIT_TIMEOUT_DISABLE,
1022 \c EVR_RTX_THREAD_FLAGS_WAIT_COMPLETED_DISABLE, \c EVR_RTX_THREAD_FLAGS_WAIT_NOT_COMPLETED_DISABLE
1024 \b Generic \b wait \b events \n
1025 \c EVR_RTX_THREAD_DELAY_DISABLE, \c EVR_RTX_THREAD_DELAY_UNTIL_DISABLE, \c EVR_RTX_THREAD_DELAY_COMPLETED_DISABLE
1027 \b Timer \b events \n
1028 \c EVR_RTX_TIMER_ERROR_DISABLE, \c EVR_RTX_TIMER_CALLBACK_DISABLE, \c EVR_RTX_TIMER_NEW_DISABLE,
1029 \c EVR_RTX_TIMER_CREATED_DISABLE, \c EVR_RTX_TIMER_GET_NAME_DISABLE, \c EVR_RTX_TIMER_START_DISABLE,
1030 \c EVR_RTX_TIMER_STARTED_DISABLE, \c EVR_RTX_TIMER_STOP_DISABLE, \c EVR_RTX_TIMER_STOPPED_DISABLE,
1031 \c EVR_RTX_TIMER_IS_RUNNING_DISABLE, \c EVR_RTX_TIMER_DELETE_DISABLE, \c EVR_RTX_TIMER_DESTROYED_DISABLE
1033 \b Event \b flag \b events \n
1034 \c EVR_RTX_EVENT_FLAGS_ERROR_DISABLE, \c EVR_RTX_EVENT_FLAGS_NEW_DISABLE, \c EVR_RTX_EVENT_FLAGS_CREATED_DISABLE,
1035 \c EVR_RTX_EVENT_FLAGS_GET_NAME_DISABLE, \c EVR_RTX_EVENT_FLAGS_SET_DISABLE, \c EVR_RTX_EVENT_FLAGS_SET_DONE_DISABLE,
1036 \c EVR_RTX_EVENT_FLAGS_CLEAR_DISABLE, \c EVR_RTX_EVENT_FLAGS_CLEAR_DONE_DISABLE, \c EVR_RTX_EVENT_FLAGS_GET_DISABLE,
1037 \c EVR_RTX_EVENT_FLAGS_WAIT_DISABLE, \c EVR_RTX_EVENT_FLAGS_WAIT_PENDING_DISABLE,
1038 \c EVR_RTX_EVENT_FLAGS_WAIT_TIMEOUT_DISABLE, \c EVR_RTX_EVENT_FLAGS_WAIT_COMPLETED_DISABLE,
1039 \c EVR_RTX_EVENT_FLAGS_WAIT_NOT_COMPLETED_DISABLE, \c EVR_RTX_EVENT_FLAGS_DELETE_DISABLE,
1040 \c EVR_RTX_EVENT_FLAGS_DESTROYED_DISABLE
1042 \b Mutex \b events \n
1043 \c EVR_RTX_MUTEX_ERROR_DISABLE, \c EVR_RTX_MUTEX_NEW_DISABLE, \c EVR_RTX_MUTEX_CREATED_DISABLE,
1044 \c EVR_RTX_MUTEX_GET_NAME_DISABLE, \c EVR_RTX_MUTEX_ACQUIRE_DISABLE, \c EVR_RTX_MUTEX_ACQUIRE_PENDING_DISABLE,
1045 \c EVR_RTX_MUTEX_ACQUIRE_TIMEOUT_DISABLE, \c EVR_RTX_MUTEX_ACQUIRED_DISABLE, \c EVR_RTX_MUTEX_NOT_ACQUIRED_DISABLE,
1046 \c EVR_RTX_MUTEX_RELEASE_DISABLE, \c EVR_RTX_MUTEX_RELEASED_DISABLE, \c EVR_RTX_MUTEX_GET_OWNER_DISABLE,
1047 \c EVR_RTX_MUTEX_DELETE_DISABLE, \c EVR_RTX_MUTEX_DESTROYED_DISABLE
1049 \b Semaphore \b events \n
1050 \c EVR_RTX_SEMAPHORE_ERROR_DISABLE, \c EVR_RTX_SEMAPHORE_NEW_DISABLE, \c EVR_RTX_SEMAPHORE_CREATED_DISABLE,
1051 \c EVR_RTX_SEMAPHORE_GET_NAME_DISABLE, \c EVR_RTX_SEMAPHORE_ACQUIRE_DISABLE, \c EVR_RTX_SEMAPHORE_ACQUIRE_PENDING_DISABLE,
1052 \c EVR_RTX_SEMAPHORE_ACQUIRE_TIMEOUT_DISABLE, \c EVR_RTX_SEMAPHORE_ACQUIRED_DISABLE,
1053 \c EVR_RTX_SEMAPHORE_NOT_ACQUIRED_DISABLE, \c EVR_RTX_SEMAPHORE_RELEASE_DISABLE, \c EVR_RTX_SEMAPHORE_RELEASED_DISABLE,
1054 \c EVR_RTX_SEMAPHORE_GET_COUNT_DISABLE, \c EVR_RTX_SEMAPHORE_DELETE_DISABLE, \c EVR_RTX_SEMAPHORE_DESTROYED_DISABLE
1056 \b Memory \b pool \b events \n
1057 \c EVR_RTX_MEMORY_POOL_ERROR_DISABLE, \c EVR_RTX_MEMORY_POOL_NEW_DISABLE, \c EVR_RTX_MEMORY_POOL_CREATED_DISABLE,
1058 \c EVR_RTX_MEMORY_POOL_GET_NAME_DISABLE, \c EVR_RTX_MEMORY_POOL_ALLOC_DISABLE, \c EVR_RTX_MEMORY_POOL_ALLOC_PENDING_DISABLE,
1059 \c EVR_RTX_MEMORY_POOL_ALLOC_TIMEOUT_DISABLE, \c EVR_RTX_MEMORY_POOL_ALLOCATED_DISABLE,
1060 \c EVR_RTX_MEMORY_POOL_ALLOC_FAILED_DISABLE, \c EVR_RTX_MEMORY_POOL_FREE_DISABLE, \c EVR_RTX_MEMORY_POOL_DEALLOCATED_DISABLE,
1061 \c EVR_RTX_MEMORY_POOL_FREE_FAILED_DISABLE, \c EVR_RTX_MEMORY_POOL_GET_CAPACITY_DISABLE,
1062 \c EVR_RTX_MEMORY_POOL_GET_BLOCK_SZIE_DISABLE, \c EVR_RTX_MEMORY_POOL_GET_COUNT_DISABLE,
1063 \c EVR_RTX_MEMORY_POOL_GET_SPACE_DISABLE, \c EVR_RTX_MEMORY_POOL_DELETE_DISABLE, \c EVR_RTX_MEMORY_POOL_DESTROYED_DISABLE
1065 \b Message \b queue \b events \n
1066 \c EVR_RTX_MESSAGE_QUEUE_ERROR_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_NEW_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_CREATED_DISABLE,
1067 \c EVR_RTX_MESSAGE_QUEUE_GET_NAME_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_PUT_DISABLE,
1068 \c EVR_RTX_MESSAGE_QUEUE_PUT_PENDING_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_PUT_TIMEOUT_DISABLE,
1069 \c EVR_RTX_MESSAGE_QUEUE_INSERT_PENDING_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_INSERTED_DISABLE,
1070 \c EVR_RTX_MESSAGE_QUEUE_NOT_INSERTED_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_GET_DISABLE,
1071 \c EVR_RTX_MESSAGE_QUEUE_GET_PENDING_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_GET_TIMEOUT_DISABLE,
1072 \c EVR_RTX_MESSAGE_QUEUE_RETRIEVED_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_NOT_RETRIEVED_DISABLE,
1073 \c EVR_RTX_MESSAGE_QUEUE_GET_CAPACITY_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_GET_MSG_SIZE_DISABLE,
1074 \c EVR_RTX_MESSAGE_QUEUE_GET_COUNT_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_GET_SPACE_DISABLE,
1075 \c EVR_RTX_MESSAGE_QUEUE_RESET_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_RESET_DONE_DISABLE,
1076 \c EVR_RTX_MESSAGE_QUEUE_DELETE_DISABLE, \c EVR_RTX_MESSAGE_QUEUE_DESTROYED_DISABLE
1082 /* ========================================================================================================================== */
1084 \page creating_RTX5_LIB Building the RTX5 Library
1086 The CMSIS Pack contains a µVision project for building the complete set of RTX5 libraries. This project can also be used as
1087 a reference for building the RTX5 libraries using a tool-chain of your choice.
1089 -# Open the project \b RTX_CM.uvprojx from the pack folder <b>CMSIS/RTOS2/RTX/Library/ARM/MDK</b> in µVision.
1090 -# Select the project target that matches your device's processor core.
1091 \n The project provides target configuration for all supported Cortex-M targets supported by RTX5.
1092 -# You can find out about the required preprocessor defines in the dialogs <b>Options for Target - C/C++</b> and
1093 <b>Options for Target - Asm</b>. Note the need to use at least the C99 compiler mode when building RTX from source.
1094 -# From the <b>Project</b> window you find the list of source files required for a complete library build.
1095 -# Build the library of your choice using \b Project - \b Build \b Target (or press F7).
1097 \image html own_lib_projwin.png "Project with files for Armv8-M Mainline"
1102 /* ========================================================================================================================== */
1104 \page technicalData5 Technical Data
1106 The following section contains technical information about RTX v5.
1108 - \subpage pHardwareRequirements lists the resource requirements of the RTX v5 kernel along with hardware dependencies.
1109 - \subpage pControlBlockSizes provides memory size information for \ref StaticObjectMemory "object-specific control block memory allocation".
1110 - \subpage pDirectory_Files is an overview of the supplied files that belong to RTX v5
1111 - \subpage pToolchains details about the compiler support which includes ArmCC (MDK, DS-5), IAR EW-ARM, and GCC.
1115 \page pHardwareRequirements Hardware Requirements
1117 The following section lists the hardware requirements for RTX v5 on the various supported target processors:
1119 \section tpProcessor Processor Requirements
1121 RTX assumes a fully function-able processor and uses the following hardware features. It does not implement any confidence test for processor validation which should be provided by an user-supplied software test library.
1124 \subsection tpCortexM0_M0P_M23 Cortex-M0/M0+/M23 target processor
1127 Hardware Requirement | Description
1128 :--------------------------|:------------------------------------------------------
1129 SysTick timer | The SysTick timer generates the kernel tick interrupts and the interface is implemented in %os_systick.c using the \ref CMSIS_RTOS_TickAPI
1130 Exception Handler | RTX implements exception handlers for SVC, PendSV, and SysTick interrupt
1131 Core Registers | The processor status is read using the following core registers: CONTROL, IPSR, PRIMASK
1132 System Control Block (SBC) | To control and setup the processor exceptions including PendSV and SVC
1133 Interrupt Control | The CMSIS-Core functions __disable_irq and __enable_irq to control the interrupt system via the CPSR core register.
1135 The interface files to the processor hardware are:
1136 - <b>%irq_cm0.s</b> defines exception handlers for Cortex-M0/M0+
1137 - <b>%irq_armv8mbl_common.s</b> defines exception handlers for Cortex-M23
1138 - <b>%rtx_core_cm.h</b> defines processor specific helper functions and the interfaces to Core Registers and Core Peripherals.
1139 - <b>%os_tick.h</b> is the \ref CMSIS_RTOS_TickAPI that defines the interface functions to the SysTick timer.
1142 - The CMSIS-Core variable \c SystemCoreClock is used to configure the SysTick timer.
1144 \subsection tpCortexM3_M4_M7_M33 Cortex-M3/M4/M7/M33 target processor
1147 Hardware Requirement | Description
1148 :--------------------------|:------------------------------------------------------
1149 SysTick timer | The SysTick timer generates the kernel tick interrupts and the interface is implemented in %os_systick.c using the \ref CMSIS_RTOS_TickAPI
1150 Exception Handler | RTX implements exception handlers for SVC, PendSV, and SysTick interrupt
1151 Core Registers | The processor status is read using the following core registers: CONTROL, IPSR, PRIMASK, BASEPRI
1152 System Control Block (SBC) | To control and setup the processor exceptions including PendSV and SVC
1153 NVIC Interface | The CMSIS-Core function NVIC_GetPriorityGrouping to setup interrupt priorities.
1154 LDREX, STREX instruction | Atomic execution avoids the requirement to disable interrupts and is implemented via exclusive access instructions.
1156 The interface files to the processor hardware are:
1157 - <b>%irq_cm3.s</b> defines exception handlers for Cortex-M3 and Cortex-M4/M7 without floating point unit.
1158 - <b>%irq_cm4f.s</b> defines exception handlers for Cortex-M4/M7 with floating point unit.
1159 - <b>%irq_armv8mml_common.s</b> defines exception handlers for Cortex-M33
1160 - <b>%rtx_core_cm.h</b> defines processor specific helper functions and the interfaces to Core Registers and Core Peripherals.
1161 - <b>%os_tick.h</b> is the \ref CMSIS_RTOS_TickAPI that defines the interface functions to the SysTick timer.
1164 - The CMSIS-Core variable \c SystemCoreClock is used to configure the SysTick timer.
1166 \subsection tpCortexA5_A7_A9 Cortex-A5/A7/A9 target processor
1169 Hardware Requirement | Description
1170 :--------------------------|:------------------------------------------------------
1171 Timer Peripheral | An arbitrary timer peripheral generates the kernel tick interrupts. The interfaces for Cortex-A Generic Timer and Private Timer are implemented in %os_tick_gtim.c and %os_tick_ptim.c using the \ref CMSIS_RTOS_TickAPI
1172 Exception Handler | RTX implements exception handlers for SVC, IRQ, Data Abort, Prefetch Abort and Undefined Instruction interrupt.
1173 Core Registers | The processor status is read using the following core registers: CPSR, CPACR and FPSCR.
1174 LDREX, STREX instruction | Atomic execution avoids the requirement to disable interrupts and is implemented via exclusive access instructions.
1175 Interrupt Controller | An interrupt controller interface is required to setup and control Timer Peripheral interrupt. The interface for Arm GIC (Generic Interrupt Controller) is implemented in %irq_ctrl_gic.c using the IRQ Controller API
1177 The interface files to the processor hardware are:
1178 - <b>%irq_ca.s</b> defines SVC, IRQ, Data Abort, Prefetch Abort and Undefined Instruction exception handlers.
1179 - <b>%rtx_core_ca.h</b> defines processor specific helper functions and the interfaces to Core Registers and Core Peripherals.
1180 - <b>%os_tick.h</b> is the \ref CMSIS_RTOS_TickAPI that defines the interface functions to the timer peripheral.
1181 - <b>%irq_ctrl.h</b> is the IRQ Controller API that defines the interface functions to the interrupt controller.
1184 - The CMSIS-Core variable \c SystemCoreClock is used to configure the timer peripheral.
1186 \section rMemory Memory Requirements
1187 RTX requires RAM memory that is accessible with contiguous linear addressing. When memory is split across multiple memory banks, some systems
1188 do not accept multiple load or store operations on this memory blocks.
1190 RTX does not implement any confidence test for memory validation. This should be implemented by an user-supplied software test library.
1194 \page pControlBlockSizes Control Block Sizes
1196 Keil RTX v5 specific control block definitions (including sizes) as well as memory pool and message queue memory requirements
1197 are defined in the header file <b>rtx_os.h</b>:
1199 If you provide memory for the RTOS objects, you need to know the size that is required for each object control block.
1200 The memory of the control block is provided by the parameter \em attr of the related \em osXxxxNew function.
1201 The element \em cb_mem is the memory address, \em cb_size is the size of the control block memory.
1203 Refer to \ref StaticObjectMemory for more information.
1205 The following table lists the control block sizes:
1207 Category | Control Block Size Attribute | Size | \#define symbol
1208 :-----------------------------|:----------------------------------|:-----------|:--------------------
1209 \ref CMSIS_RTOS_ThreadMgmt | \ref osThreadAttr_t::cb_mem | 68 bytes | \ref osRtxThreadCbSize
1210 \ref CMSIS_RTOS_TimerMgmt | \ref osTimerAttr_t::cb_mem | 32 bytes | \ref osRtxTimerCbSize
1211 \ref CMSIS_RTOS_EventFlags | \ref osEventFlagsAttr_t::cb_mem | 16 bytes | \ref osRtxEventFlagsCbSize
1212 \ref CMSIS_RTOS_MutexMgmt | \ref osMutexAttr_t::cb_mem | 28 bytes | \ref osRtxMutexCbSize
1213 \ref CMSIS_RTOS_SemaphoreMgmt | \ref osSemaphoreAttr_t::cb_mem | 16 bytes | \ref osRtxSemaphoreCbSize
1214 \ref CMSIS_RTOS_PoolMgmt | \ref osMemoryPoolAttr_t::cb_mem | 36 bytes | \ref osRtxMemoryPoolCbSize
1215 \ref CMSIS_RTOS_Message | \ref osMessageQueueAttr_t::cb_mem | 52 bytes | \ref osRtxMessageQueueCbSize
1219 \page pDirectory_Files Directory Structure and File Overview
1221 The following section provides an overview of the directory structure and the files that are relevant for the user's for
1222 CMSIS-RTOS RTX v5. The following directory references start below the CMSIS pack installation path, for example
1223 ARM/CMSIS/<i>version</i>/CMSIS/RTOS2.
1225 \section Folders RTX v5 Directory Structure
1227 The CMSIS-RTOS RTX v5 is delivered in source code and several examples are provided.
1229 <table class="cmtable" summary="CMSIS-RTOS RTX Library Files">
1236 <td>Header files: \b %cmsis_os2.h for \ref rtos_api2 and \b %os_tick.h for \ref rtos_os_tick_api.</td>
1240 <td>Generic <b>OS tick</b> implementations for various processors based on \ref rtos_os_tick_api.</td>
1244 <td><a class="el" href="../../RTOS/html/index.html">CMSIS-RTOS API v1</a> template source and header file.</td>
1248 <td>Directory with RTX specific files and folders. Also contains the component viewer description file.</td>
1252 <td>CMSIS-RTOS RTX configuration files %RTX_Config.h and %RTX_Config.c.</td>
1255 <td>RTX/Examples</td>
1256 <td>Example projects that can be directly used in development tools.</td>
1259 <td>RTX/Include</td>
1260 <td>RTX v5 specific include files.</td>
1263 <td>RTX/Include1</td>
1264 <td>CMSIS-RTOS v1 API header file.</td>
1267 <td>RTX/Library</td>
1268 <td>Pre-built libraries (see next table for details).</td>
1272 <td>Source code that can be used with ARMCC and GCC.</td>
1275 <td>RTX/Template</td>
1276 <td>User code templates for creating application projects with CMSIS-RTOS RTX v5.</td>
1280 \section libFiles RTX v5 Library Files
1282 The CMSIS-RTOS RTX Library is available pre-compiled for ARMCC and GCC compilers and supports all Cortex-M
1283 processor variants in every configuration, including Arm Cortex-M23 and Cortex-M33.
1285 <table class="cmtable" summary="CMSIS-RTOS RTX Library Files">
1287 <th>Library File</th>
1288 <th>Processor Configuration</th>
1291 <td>Library/ARM/RTX_CM0.lib</td>
1292 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M0 and M1, little-endian.</td>
1295 <td>Library/ARM/RTX_CM3.lib</td>
1296 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M3, M4, and M7 without FPU, little-endian.</td>
1299 <td>Library/ARM/RTX_CM4F.lib</td>
1300 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M4 and M7 with FPU, little-endian.</td>
1303 <td>Library/ARM/RTX_V8MB.lib</td>
1304 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Baseline.</td>
1307 <td>Library/ARM/RTX_V8MBN.lib</td>
1308 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Baseline, non-secure.</td>
1311 <td>Library/ARM/RTX_V8MM.lib</td>
1312 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Mainline.</td>
1315 <td>Library/ARM/RTX_V8MMF.lib</td>
1316 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Mainline with FPU.</td>
1319 <td>Library/ARM/RTX_V8MMFN.lib</td>
1320 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Mainline with FPU, non-secure.</td>
1323 <td>Library/ARM/RTX_V8MMN.lib</td>
1324 <td>CMSIS-RTOS RTX Library for ARMCC Compiler, Armv8-M Mainline, non-secure.</td>
1327 <td>Library/GCC/libRTX_CM0.a</td>
1328 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Cortex-M0 and M1, little-endian.</td>
1331 <td>Library/GCC/libRTX_CM3.a</td>
1332 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Cortex-M3, M4, and M7 without FPU, little-endian.</td>
1335 <td>Library/GCC/libRTX_CM4F.a</td>
1336 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Cortex-M4 and M7 with FPU, little-endian.</td>
1339 <td>Library/GCC/libRTX_V8MB.a</td>
1340 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Baseline.</td>
1343 <td>Library/GCC/libRTX_V8MBN.a</td>
1344 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Baseline, non-secure.</td>
1347 <td>Library/GCC/libRTX_V8MM.a</td>
1348 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Mainline.</td>
1351 <td>Library/GCC/libRTX_V8MMF.a</td>
1352 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Mainline with FPU.</td>
1355 <td>Library/GCC/libRTX_V8MMFN.a</td>
1356 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Mainline with FPU, non-secure.</td>
1359 <td>Library/GCC/libRTX_V8MMN.a</td>
1360 <td>CMSIS-RTOS libRTX Library for GCC Compiler, Armv8-M Mainline, non-secure.</td>
1365 \page pToolchains Supported Toolchains
1367 Keil RTX5 is developed and tested using the common toolchains and development environments.
1369 \section technicalData_Toolchain_ARM Arm Compiler (Arm/Keil MDK, uVision5)
1371 RTX5 is initially developed and optimized using Arm Compiler and Arm/Keil MDK.
1372 The current release is tested with the following versions:
1374 <li>Arm Compiler 5.06 Update 6</li>
1375 <li>Arm Compiler 6.6.2 (Long Term Maintenance)</li>
1376 <li>Arm Compiler 6.9</li>
1377 <li>RTOS-aware debugging with uVision 5.24</li>
1380 \section technicalData_Toolchain_IAR IAR Embedded Workbench
1382 RTX5 has been ported to the IAR Embedded Workbench. The following releases are known to work:
1384 <li>IAR Embedded Workbench 7.7 (<a href="https://github.com/ARM-software/CMSIS_5/issues/201">community report</a>)</li>
1385 <li>IAR Embedded Workbench 7.80.4</li>
1386 <li><b>IAR Embedded Workbench 8.20.1</b></li>
1389 \section technicalData_Toolchain_GCC GNU Compiler Collection
1391 RTX5 has also been ported to support GCC, maintenance mainly relays on community contribution.
1392 Active development is currently tested with:
1394 <li>GNU Tools for Arm Embedded 6.3.1 20170620</li>
1399 /* ========================================================================================================================== */
1401 \page CodingRules Coding Rules
1403 CMSIS components use <a href="../../General/html/index.html#CodingRules"><b>general coding rules</b></a> across the various components.
1405 The CMSIS-RTOS2 API is using the following <b>Namespace</b> prefixes:
1406 - <b>os</b> for all definitions and function names.
1407 - <b>os</b> with postfix <b>_t</b> for all typedefs.
1409 The CMSIS-RTOS2 RTX v5 implementation is using the following <b>Namespace</b> prefixes for public symbol definitions:
1410 - <b>osRtx</b> for all general definitions and function names that relate to the RTX kernel.
1411 - <b>osRtx</b> with postfix <b>_t</b> for all typedefs.
1412 - <b>OS_Tick_</b> for interface functions to the hardware system tick timer.
1413 - <b>EvrRtx</b> for event function annotations that interface to the Event Recorder.
1416 /* ========================================================================================================================== */
1418 \page misraCompliance5 MISRA C:2012 Compliance
1419 The RTX5 C source files use <b><a class=el href="http://www.misra.org.uk/" target="_blank">MISRA C:2012</a></b> guidelines as underlying coding standard.
1421 For MISRA validation, <b><a class=el href="http://www.gimpel.com/" target="_blank">PC-lint</a></b> V9.00L is used with configuration for Arm Compiler V6.9.
1422 The PC-Lint validation setup is part of the project file <b>.\\CMSIS\\RTOS2\\RTX\\Library\\ARM\\MDK\\RTX_CM.uvprojx</b> as shown below.
1423 Refer to <b><a class=el href="http://www.keil.com/support/man/docs/uv4/uv4_ut_pclint_validation.htm" target="_blank">Setup for PC-Lint</a></b> for more information.
1425 \image html "PC-Lint.png" "Running PC-Lint within MDK - uVision"
1427 The PC-Lint configuration uses the following Options under <b>Tools - PC-Lint Setup...</b>:
1428 - Config File: co-ARMCC-6.lnt (20-Mar-2017) with additional options:
1431 -esym(526,__builtin_*) -esym(628,__builtin_*)
1432 -sem(__builtin_clz, pure)
1433 +doffsetof(t,m)=((size_t)&((t*)0)->m) -emacro((413,923,9078),offsetof)
1434 -ecall(534,__disable_irq)
1436 - Included Project Information:
1437 - Enable: Add 'Include' paths
1438 - Enable: Add 'Software Packs' paths
1439 - Enable: Verify 'Software Packs' includes
1440 - Enable: Add 'Preprocessor' symbols
1441 - Enable: Add 'Define' symbols
1442 - MISRA Rules Setup and Configuration:
1443 - MISRQ_C_2012_Config.lnt; all rules enabled
1444 - includes definition file: au-misra3.lnt (12-Jun-2014)
1445 - Additional Lint Commands (for both single and mutiple files):
1447 - emacro(835,osRtxConfigPrivilegedMode)
1450 The C source code is annotated with PC-Lint control comments to allows MISRA deviations.
1451 These deviations with the underlaying design decisions are described in the following.
1456 The RTX source code has the following deviations from MISRA:
1471 All source code deviations are clearly marked and in summary these deviations affect the following MISRA rules:
1472 - [MISRA 2012 Directive 4.9, advisory]: A function should be used in preference to a function-like macro where yet are interchangeable
1473 - [MISRA 2012 Rule 1.3, required]: There shall be no occurrence of undefined or critical unspecified behavior
1474 - [MISRA 2012 Rule 10.3, required]: Expression assigned to a narrower or different essential type
1475 - [MISRA 2012 Rule 10.5, advisory]: Impermissible cast; cannot cast from 'essentially unsigned' to 'essentially enum\<i\>'
1476 - [MISRA 2012 Rule 11.1, required]: Conversions shall not be performed between a pointer to a function and any other type
1477 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1478 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1479 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1480 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1481 - [MISRA 2012 Rule 15.5, advisory]: A function should have a single point of exit at the end
1482 - [MISRA 2012 Rule 20.10, advisory]: The # and ## preprocessor operators should not be used
1484 In the following all deviations are described in detail.
1486 \section MISRA_1 [MISRA Note 1]: Return statements for parameter checking
1488 Return statements are used at the beginning of several functions to validate parameter values and object states.
1489 The function returns immediately without any side-effects and typically an error status is set. This structure
1490 keeps the source code better structured and easier to understand.
1492 This design decision implies the following MISRA deviation:
1493 - [MISRA 2012 Rule 15.5, advisory]: A function should have a single point of exit at the end
1495 All locations in the source code are marked with:
1497 //lint -e{904} "Return statement before end of function" [MISRA Note 1]
1501 \section MISRA_2 [MISRA Note 2]: Object identifiers are void pointers
1503 CMSIS-RTOS is independant of an underlying RTOS implementation. The object idenifiers are therefore defined as void pointers to:
1504 - allow application programs that are agnostic from an underlying RTOS implementation.
1505 - avoid accidently accesses an RTOS control block from an application program.
1507 This design decisions imply the following MISRA deviations:
1508 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1509 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1511 All locations in the source code are marked with:
1513 //lint -e{9079} -e{9087} "cast from pointer to void to pointer to object type" [MISRA Note 2]
1516 In the RTX5 implementation the requried pointer conversions are implemented in the header file rtx_lib.h with the following inline functions:
1519 osRtxThread_t *osRtxThreadId (osThread_t thread_id);
1520 osRtxTimer_t *osRtxTimerId (osTimer_t timer_id);
1521 osRtxEventFlags_t *osRtxEventFlagsId (osEventFlags_t ef_id);
1522 osRtxMutex_t *osRtxMutexId (osMutex_t mutex_id);
1523 osRtxSemaphore_t *osRtxSemaphoreId (osSemaphore_t semaphore_id);
1524 osRtxMemoryPool_t *osRtxMemoryPoolId (osMemoryPoolId_t mp_id);
1525 osRtxMessageQueue_t *osRtxMessageQueueId(osMessageQueueId_t mq_id);
1528 \section MISRA_3 [MISRA Note 3]: Conversion to unified object control blocks
1530 RTX uses a unified object control block structure that contains common object members.
1531 The unified control blocks use a fixed layout at the beginning of the sturcture and starts always with an object identifier.
1532 This allows common object functions that receive a pointer to a unified object control block and reference only the
1533 pointer or the members in the fixed layout. Using common object functions and data (for example the ISR queue) reduces
1534 code complexity and keeps the source code better structured. Refer also to \ref MISRA_4
1536 This design decisions imply the following MISRA deviations:
1537 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1538 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1540 All locations in the source code are marked with:
1542 //lint -e{9079} -e{9087} "cast from pointer to void to pointer to object type" [MISRA Note 3]
1546 In the RTX5 implementation the requried pointer conversions are implemented in the header file \em rtx_lib.h with the following inline function:
1549 osRtxObject_t *osRtxObject (void *object);
1553 \section MISRA_4 [MISRA Note 4]: Conversion from unified object control blocks
1555 RTX uses a unified object control block structure that contains common object members. Refer to \ref MISRA_3 for more information.
1556 To process specifc control block data, pointer conversions are required.
1558 This design decisions imply the following MISRA deviations:
1559 - [MISRA 2012 Rule 1.3, required]: There shall be no occurrence of undefined or critical unspecified behavior
1560 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1561 In addition PC-Lint issues:
1562 - Info 826: Suspicious pointer-to-pointer conversion (area too small)
1564 All locations in the source code are marked with:
1566 //lint -e{740} -e{826} -e{9087} "cast from pointer to generic object to specific object" [MISRA Note 4]
1569 In the RTX5 source code the requried pointer conversions are implemented in the header file \em rtx_lib.h with the following inline functions:
1572 osRtxThread_t *osRtxThreadObject (osRtxObject_t *object);
1573 osRtxTimer_t *osRtxTimerObject (osRtxObject_t *object);
1574 osRtxEventFlags_t *osRtxEventFlagsObject (osRtxObject_t *object);
1575 osRtxMutex_t *osRtxMutexObject (osRtxObject_t *object);
1576 osRtxSemaphore_t *osRtxSemaphoreObject (osRtxObject_t *object);
1577 osRtxMemoryPool_t *osRtxMemoryPoolObject (osRtxObject_t *object);
1578 osRtxMessageQueue_t *osRtxMessageQueueObject (osRtxObject_t *object);
1579 osRtxMessage_t *osRtxMessageObject (osRtxObject_t *object);
1582 \section MISRA_5 [MISRA Note 5]: Conversion to object types
1584 The RTX5 kernel has common memory management functions that use void pointers. These memory allocation fuctions returns
1585 a void pointer which is correctly aligned for object types.
1587 This design decision implies the following MISRA deviations:
1588 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1590 All locations in the source code are marked with:
1592 //lint -e{9079} "conversion from pointer to void to pointer to other type" [MISRA Note 5]
1598 os_thread_t *thread;
1600 //lint -e{9079} "conversion from pointer to void to pointer to other type" [MISRA Note 5]
1601 thread = osRtxMemoryPoolAlloc(osRtxInfo.mpi.thread);
1606 \section MISRA_6 [MISRA Note 6]: Conversion from user provided storage
1608 CMSIS-RTOS2 and RTX5 support user provided storage for object control blocks, stack, and data storage.
1609 The API uses void pointers to define the location of this user provided storage. It is therefore
1610 required to cast the void pointer to underlying storage types. Alignment restrictions of user provided storage
1611 are checked before accessing memory. Refer also to \ref MISRA_7.
1613 This design decisions imply the following MISRA deviations:
1614 - [MISRA 2012 Rule 11.3, required]: A cast shall not be performed between a pointer to object type and a pointer to a different object type
1615 - [MISRA 2012 Rule 11.5, advisory]: A conversion should not be performed from pointer to void into pointer to object
1617 All locations in the source code are marked with:
1619 //lint -e{9079} "conversion from pointer to void to pointer to other type" [MISRA Note 6]
1624 static osTimerId_t svcRtxTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr) {
1629 //lint -e{9079} "conversion from pointer to void to pointer to other type" [MISRA Note 6]
1630 timer = attr->cb_mem;
1634 \section MISRA_7 [MISRA Note 7]: Check for proper pointer alignment
1636 RTX5 verifies the alignment of user provided storage for object control blocks, stack, and data storage.
1637 Refer also to \ref MISRA_6 for more information.
1639 This design decision implies the following MISRA deviations:
1640 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1641 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1643 All locations in the source code are marked with:
1645 //lint -e(923) -e(9078) "cast from pointer to unsigned int" [MISRA Note 7]
1650 static osThreadId_t svcRtxThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr) {
1654 if (stack_mem != NULL) {
1655 //lint -e(923) -e(9078) "cast from pointer to unsigned int" [MISRA Note 7]
1656 if ((((uint32_t)stack_mem & 7U) != 0U) || (stack_size == 0U)) {
1660 \section MISRA_8 [MISRA Note 8]: Memory allocation management
1662 RTX5 implements memory allocation functions which require pointer arithmetic to manage memory.
1663 The structure with the type \em mem_block_t that is used to menage memory allocation blocks is defined in \em rtx_memory.c
1665 This design decision implies the following MISRA deviations:
1666 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1667 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1669 All locations in the source code are marked with:
1671 //lint -e(923) -e(9078) "cast from pointer to unsigned int" [MISRA Note 8]
1674 The required pointer arithmetic is implemented in \em rtx_memory.c with the following function:
1676 __STATIC_INLINE mem_block_t *MemBlockPtr (void *mem, uint32_t offset) {
1680 //lint --e{923} --e{9078} "cast between pointer and unsigned int" [MISRA Note 8]
1681 addr = (uint32_t)mem + offset;
1682 ptr = (mem_block_t *)addr;
1688 \section MISRA_9 [MISRA Note 9]: Pointer conversions for register access
1690 The CMSIS-Core peripheral register blocks are accessed using a structure. The memory address of this structure
1691 is specified as unsigned integer number. Pointer conversions are required to access the specific registers.
1693 This design decision implies the following MISRA deviations:
1694 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1695 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1697 All locations in the source code are marked with:
1699 //lint -emacro((923,9078),SCB) "cast from unsigned long to pointer" [MISRA Note 9]
1705 #define SCS_BASE (0xE000E000UL)
1706 #define SCB ((SCB_Type *)SCB_BASE)
1707 typedef struct {...} SCB_Type;
1712 \section MISRA_10 [MISRA Note 10]: SVC calls use function-like macros
1714 RTX5 is using SVC (Service Calls) to switch between thread mode (for user code execution) and handler mode (for RTOS kernel execution).
1715 The SVC function call mechanism is implemented with assembly instructions to construct the code for SVC.
1716 The source code uses C macros and are designed as C function-like macros to generate parameter passing
1717 for variables depending on macro parameters. An alternative replacement code would be complex.
1718 The C macros use multiple '##' operators however it has been verified that the order of evaluation is irrelevant
1719 and result of macro expansion is always predictable.
1721 This design decision implies the following MISRA deviations:
1722 - [MISRA 2012 Directive 4.9, advisory]: A function should be used in preference to a function-like macro where yet are interchangeable
1723 - [MISRA 2012 Rule 1.3, required]: There shall be no occurrence of undefined or critical unspecified behavior
1724 - [MISRA 2012 Rule 20.10, advisory]: The # and ## preprocessor operators should not be used
1726 The relevant source code is in the file \em rtx_core_cm.h and is marked with:
1728 //lint -save -e9023 -e9024 -e9026 "Function-like macros using '#/##'" [MISRA Note 10]
1732 \section MISRA_11 [MISRA Note 11]: SVC calls use assembly code
1734 The SVC (Service Call) functions are constructed as a mix of C and inline assembly as it is required to access CPU registers
1735 for parameter passing. The function parameters are mapped to the CPU registers R0..R3 and SVC function number to
1736 CPU register R12 (or R7). For assembly inter-working the function parameters are casted to unsigned int values.
1738 The function return value after SVC call is mapped to the CPU register R0. Return value is casted from unsigned int
1739 to the target value.
1741 It has been verified that this method has has no side-effects and is well defined.
1743 This design decision implies the following MISRA deviations:
1744 - [MISRA 2012 Rule 10.3, required]: Expression assigned to a narrower or different essential type
1745 - [MISRA 2012 Rule 10.5, advisory]: Impermissible cast; cannot cast from 'essentially unsigned' to 'essentially enum\<i\>'
1746 - [MISRA 2012 Rule 11.1, required]: Conversions shall not be performed between a pointer to a function and any other type
1747 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1748 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1750 SVC functions are marked as library modules and not processed by PC-lint. The relevant source code is marked with:
1752 //lint ++flb "Library Begin" [MISRA Note 11]
1754 //lint --flb "Library End"
1759 // Service Calls definitions
1760 //lint ++flb "Library Begin" [MISRA Note 11]
1761 SVC0_1(Delay, osStatus_t, uint32_t)
1762 SVC0_1(DelayUntil, osStatus_t, uint32_t)
1763 //lint --flb "Library End"
1766 PC-lint does not process ASM input/output operand lists and therefore falsely identifies issues:
1767 - Last value assigned to variable not used
1768 - Symbol not subsequently referenced
1769 \todo: what has been done to mitigate that?
1772 \section MISRA_12 [MISRA Note 12]: Usage of exclusive access instructions
1774 The RTX5 implementation uses the CPU instructions LDREX and STREX (when supported by the processor) to implement atomic operations.
1775 This atomic operations elimite the requirement for interrupt lock-outs. The atomic operations are implemented using
1778 PC-lint cannot process assembler instructions including the input/output operand lists and therefore falsely identifies issues:
1779 - Symbol not initialized
1780 - Symbol not subsequently referenced
1781 - Symbol not referenced
1782 - Pointer parameter could be declared as pointing to const
1784 It has been verified that atomic operations have no side-effects and are well defined.
1786 The functions that implement atomic instructions are marked as library modules and not processed by PC-lint. The relevant source code is marked with:
1788 //lint ++flb "Library Begin" [MISRA Note 12]
1790 //lint --flb "Library End"
1794 \section MISRA_13 [MISRA Note 13]: Usage of Event Recorder
1796 The Event Recorder is a generic event logger and the related functions are called to record an event.
1797 The function parameters are 32-bit id, 32-bit values, pointer to void (data) and are recorded as 32-bit numbers.
1798 The parameters for the Event Recorder may require cast opertions to unsigned int which however has no side-effects
1799 and is well defined.
1801 The return value indicates success or failure. There is no need to check the return value since no action is
1802 taken when a Event Recorder function fail. The EventID macro (part of external Event Recorder) constructs the
1803 ID based on input parameters which are shifted, masked with '&' and combined with '|'.
1804 Zero value input parameters are valid and cause zero used with '&' and '|'.
1806 The usage of the Event Recorder implies the following MISRA deviations:
1807 - [MISRA 2012 Rule 11.1, required]: Conversions shall not be performed between a pointer to a function and any other type
1808 - [MISRA 2012 Rule 11.4, advisory]: A conversion should not be performed between a pointer to object and an integer type
1809 - [MISRA 2012 Rule 11.6, required]: A cast shall not be performed between pointer to void and an arithmetic type
1810 In addition PC-Lint issues:
1811 - Info 835: A zero has been given as left argument to operator '&'
1812 - Info 845: The right argument to operator '|' is certain to be 0
1814 The functions that call the Event Recorder are in the module \em rtx_evr.c and the related PC-Lint messages are disabled with:
1816 //lint -e923 -e9074 -e9078 -emacro((835,845),EventID) [MISRA Note 13]
1821 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
1823 \page functionOverview Function Overview
1825 CMSIS-RTOS2 provides multiple API interfaces:
1826 - \subpage rtos_api2 is the new C function interface that supports dynamic object creation and Armv8-M (Arm Cortex-M23 and
1828 - <a class="el" href="../../RTOS/html/functionOverview.html">CMSIS-RTOS C API v1</a> is a C function API that is backward
1829 compatible with CMSIS-RTOS v1.
1830 - \subpage rtos_apicpp is a C++ class function API (future extension).
1832 It is possible to intermix the different API variants in the same application and even in the same C/C++ source module.
1833 However, the functions of the <a class="el" href="../../RTOS/html/functionOverview.html">CMSIS-RTOS C API v1</a> may be deprecated in future versions of CMSIS-RTOS.
1835 CMSIS-RTOS2 defines also a generic system timer interface that works across the supported Arm Cortex processors:
1836 - \subpage rtos_os_tick_api is the interface to a kernel system timer.
1839 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
1841 \page rtos_api2 CMSIS-RTOS C API v2
1843 Overview of all CMSIS-RTOS C API v2 functions that are implemented in the \subpage cmsis_os2_h.
1845 \section rtos_api2_basics Common Design Concepts
1847 All RTOS objects share a common design concept. The overall life-cycle of
1848 an object can be summarized as created -> in use -> destroyed.
1850 <b>Create Objects</b>
1852 An object is created by calling its `osXxxNew` function. The new function returns an identifier
1853 that can be used to operate with the new object. The actual state of an object is typically stored
1854 in an object specific control block. The memory layout (and size needed) for the control
1855 block is implementation specific. One should not make any specific assumptions about the control
1856 block. The control block layout might change and hence should be seen as an implementation
1859 In order to expose control about object specific options all `osXxxNew` functions provide an
1860 optional `attr` argument, which can be left as \token{NULL} by default. It takes a pointer to
1861 an object specific attribute structure, commonly containing the fields
1862 - `name` to attach a human readable name to the object for identification,
1863 - `attr_bits` to control object-specific options,
1864 - `cb_mem` to provide memory for the control block manually, and
1865 - `cb_size` to quantify the memory size provided for the control block.
1867 The `name` attribute is only used for object identification, e.g. using RTOS-aware debugging. The
1868 attached string is not used for any other purposes internally.
1870 The `cb_mem` and `cb_size` attributes can be used to provide memory for the control block manually
1871 instead of relying on the implementation internal memory allocation. One has to assure that the
1872 amount of memory pointed to by `cb_mem` is sufficient for the objects control block structure. If
1873 the size given as `cb_size` is not sufficient the `osXxxNew` function returns with an error, i.e.
1874 returning \token{NULL}. Furthermore providing control block memory manually is less portable. Thus
1875 one has to take care about implementation specific alignment and placement requirements for instance.
1876 Refer to \ref CMSIS_RTOS_MemoryMgmt for further details.
1880 After an object has been created successfully it can be used until it is destroyed. The actions
1881 defined for an object depends on its type. Commonly all the `osXxxDoSomething` access function
1882 require the reference to the object to work with as the first `xxx_id` parameter.
1884 The access function can be assumed to apply some sort of sanity checking on the id parameter. So
1885 that it is assured one cannot accidentally call an access function with a \token{NULL} object
1886 reference. Furthermore the concrete object type is verified, i.e. one cannot call access functions
1887 of one object type with a reference to another object type.
1889 All further parameter checks applied are either object and action specific or may even be implementation
1890 specific. Thus one should always check action function return values for `osErrorParameter` to asure the
1891 provided arguments were accepted.
1893 As a rule of thumb only non-blocking access function can be used from \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines" (ISR).
1894 This incorporates `osXxxWait` functions (and similar) limited to be called with parameter `timeout`
1895 set to \token{0}, i.e. usage of try-semantics.
1897 <b>Object Destruction</b>
1899 Objects that are not needed anymore can be destructed on demand to free the control block memory. Objects
1900 are not destructed implicitly. Thus one can assume an object id to be valid until `osXxxDelete` is called
1901 explicitly. The delete function finally frees the control block memory. In case of user provided control
1902 block memory, see above, the memory must be freed manually as well.
1904 The only exception one has to take care of are Threads which do not have an explicit `osThreadDelete` function.
1905 Threads can either be `detached` or `joinable`. Detached threads are automatically destroyed on termination,
1906 i.e. call to \ref osThreadTerminate or \ref osThreadExit or return from thread function. On the other hand joinable
1907 threads are kept alive until one explicitly calls \ref osThreadJoin.
1909 \section rtos_api2_functions Function Reference
1911 - \ref CMSIS_RTOS_KernelCtrl
1912 - \ref osKernelGetInfo : \copybrief osKernelGetInfo
1913 - \ref osKernelGetState : \copybrief osKernelGetState
1914 - \ref osKernelGetSysTimerCount : \copybrief osKernelGetSysTimerCount
1915 - \ref osKernelGetSysTimerFreq : \copybrief osKernelGetSysTimerFreq
1916 - \ref osKernelInitialize : \copybrief osKernelInitialize
1917 - \ref osKernelLock : \copybrief osKernelLock
1918 - \ref osKernelUnlock : \copybrief osKernelUnlock
1919 - \ref osKernelRestoreLock : \copybrief osKernelRestoreLock
1920 - \ref osKernelResume : \copybrief osKernelResume
1921 - \ref osKernelStart : \copybrief osKernelStart
1922 - \ref osKernelSuspend : \copybrief osKernelSuspend
1923 - \ref osKernelGetTickCount : \copybrief osKernelGetTickCount
1924 - \ref osKernelGetTickFreq : \copybrief osKernelGetTickFreq
1926 - \ref CMSIS_RTOS_ThreadMgmt
1927 - \ref osThreadDetach : \copybrief osThreadDetach
1928 - \ref osThreadEnumerate : \copybrief osThreadEnumerate
1929 - \ref osThreadExit : \copybrief osThreadExit
1930 - \ref osThreadGetCount : \copybrief osThreadGetCount
1931 - \ref osThreadGetId : \copybrief osThreadGetId
1932 - \ref osThreadGetName : \copybrief osThreadGetName
1933 - \ref osThreadGetPriority : \copybrief osThreadGetPriority
1934 - \ref osThreadGetStackSize : \copybrief osThreadGetStackSize
1935 - \ref osThreadGetStackSpace : \copybrief osThreadGetStackSpace
1936 - \ref osThreadGetState : \copybrief osThreadGetState
1937 - \ref osThreadJoin : \copybrief osThreadJoin
1938 - \ref osThreadNew : \copybrief osThreadNew
1939 - \ref osThreadResume : \copybrief osThreadResume
1940 - \ref osThreadSetPriority : \copybrief osThreadSetPriority
1941 - \ref osThreadSuspend : \copybrief osThreadSuspend
1942 - \ref osThreadTerminate : \copybrief osThreadTerminate
1943 - \ref osThreadYield : \copybrief osThreadYield
1945 - \ref CMSIS_RTOS_ThreadFlagsMgmt
1946 - \ref osThreadFlagsSet : \copybrief osThreadFlagsSet
1947 - \ref osThreadFlagsClear : \copybrief osThreadFlagsClear
1948 - \ref osThreadFlagsGet : \copybrief osThreadFlagsGet
1949 - \ref osThreadFlagsWait : \copybrief osThreadFlagsWait
1951 - \ref CMSIS_RTOS_EventFlags
1952 - \ref osEventFlagsGetName : \copybrief osEventFlagsGetName
1953 - \ref osEventFlagsNew : \copybrief osEventFlagsNew
1954 - \ref osEventFlagsDelete : \copybrief osEventFlagsDelete
1955 - \ref osEventFlagsSet : \copybrief osEventFlagsSet
1956 - \ref osEventFlagsClear : \copybrief osEventFlagsClear
1957 - \ref osEventFlagsGet : \copybrief osEventFlagsGet
1958 - \ref osEventFlagsWait : \copybrief osEventFlagsWait
1960 - \ref CMSIS_RTOS_Wait
1961 - \ref osDelay : \copybrief osDelay
1962 - \ref osDelayUntil : \copybrief osDelayUntil
1964 - \ref CMSIS_RTOS_TimerMgmt
1965 - \ref osTimerDelete : \copybrief osTimerDelete
1966 - \ref osTimerGetName : \copybrief osTimerGetName
1967 - \ref osTimerIsRunning : \copybrief osTimerIsRunning
1968 - \ref osTimerNew : \copybrief osTimerNew
1969 - \ref osTimerStart : \copybrief osTimerStart
1970 - \ref osTimerStop : \copybrief osTimerStop
1972 - \ref CMSIS_RTOS_MutexMgmt
1973 - \ref osMutexAcquire : \copybrief osMutexAcquire
1974 - \ref osMutexDelete : \copybrief osMutexDelete
1975 - \ref osMutexGetName : \copybrief osMutexGetName
1976 - \ref osMutexGetOwner : \copybrief osMutexGetOwner
1977 - \ref osMutexNew : \copybrief osMutexNew
1978 - \ref osMutexRelease : \copybrief osMutexRelease
1980 - \ref CMSIS_RTOS_SemaphoreMgmt
1981 - \ref osSemaphoreAcquire : \copybrief osSemaphoreAcquire
1982 - \ref osSemaphoreDelete : \copybrief osSemaphoreDelete
1983 - \ref osSemaphoreGetCount : \copybrief osSemaphoreGetCount
1984 - \ref osSemaphoreGetName : \copybrief osSemaphoreGetName
1985 - \ref osSemaphoreNew : \copybrief osSemaphoreNew
1986 - \ref osSemaphoreRelease : \copybrief osSemaphoreRelease
1988 - \ref CMSIS_RTOS_PoolMgmt
1989 - \ref osMemoryPoolAlloc : \copybrief osMemoryPoolAlloc
1990 - \ref osMemoryPoolDelete : \copybrief osMemoryPoolDelete
1991 - \ref osMemoryPoolFree : \copybrief osMemoryPoolFree
1992 - \ref osMemoryPoolGetBlockSize : \copybrief osMemoryPoolGetBlockSize
1993 - \ref osMemoryPoolGetCapacity : \copybrief osMemoryPoolGetCapacity
1994 - \ref osMemoryPoolGetCount : \copybrief osMemoryPoolGetCount
1995 - \ref osMemoryPoolGetName : \copybrief osMemoryPoolGetName
1996 - \ref osMemoryPoolGetSpace : \copybrief osMemoryPoolGetSpace
1997 - \ref osMemoryPoolNew : \copybrief osMemoryPoolNew
1999 - \ref CMSIS_RTOS_Message
2000 - \ref osMessageQueueDelete : \copybrief osMessageQueueDelete
2001 - \ref osMessageQueueGet : \copybrief osMessageQueueGet
2002 - \ref osMessageQueueGetCapacity : \copybrief osMessageQueueGetCapacity
2003 - \ref osMessageQueueGetCount : \copybrief osMessageQueueGetCount
2004 - \ref osMessageQueueGetMsgSize : \copybrief osMessageQueueGetMsgSize
2005 - \ref osMessageQueueGetName : \copybrief osMessageQueueGetName
2006 - \ref osMessageQueueGetSpace : \copybrief osMessageQueueGetSpace
2007 - \ref osMessageQueueNew : \copybrief osMessageQueueNew
2008 - \ref osMessageQueuePut : \copybrief osMessageQueuePut
2009 - \ref osMessageQueueReset : \copybrief osMessageQueueReset
2012 - \ref rtx5_specific
2013 - \ref osRtxErrorNotify : \copybrief osRtxErrorNotify
2014 - \ref osRtxIdleThread : \copybrief osRtxIdleThread
2016 The following CMSIS-RTOS C API v2 functions can be called from threads and \ref CMSIS_RTOS_ISR_Calls "Interrupt Service Routines"
2018 - \ref osKernelGetInfo, \ref osKernelGetState,
2019 \ref osKernelGetTickCount, \ref osKernelGetTickFreq, \ref osKernelGetSysTimerCount, \ref osKernelGetSysTimerFreq
2020 - \ref osThreadGetId, \ref osThreadFlagsSet
2021 - \ref osEventFlagsSet, \ref osEventFlagsClear, \ref osEventFlagsGet, \ref osEventFlagsWait
2022 - \ref osSemaphoreAcquire, \ref osSemaphoreRelease, \ref osSemaphoreGetCount
2023 - \ref osMemoryPoolAlloc, \ref osMemoryPoolFree, \ref osMemoryPoolGetCapacity, \ref osMemoryPoolGetBlockSize,
2024 \ref osMemoryPoolGetCount, \ref osMemoryPoolGetSpace
2025 - \ref osMessageQueuePut, \ref osMessageQueueGet, \ref osMessageQueueGetCapacity, \ref osMessageQueueGetMsgSize,
2026 \ref osMessageQueueGetCount, \ref osMessageQueueGetSpace
2030 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
2032 \page rtos_apicpp CMSIS-RTOS C++ API
2034 A C++11/C++14 interface is planned for the future.
2037 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
2039 \page rtos_os_tick_api OS Tick API
2041 The CMSIS OS Tick API may be used by an RTOS implementation to be easily potable across the different Cortex-M and Cortex-A processors.
2042 It provides a generic interface to a kernel system tick timer and defines the following functions:
2044 - The Reference for \ref CMSIS_RTOS_TickAPI provides details about these functions:
2045 - \ref OS_Tick_Setup : \copybrief OS_Tick_Setup
2046 - \ref OS_Tick_Enable : \copybrief OS_Tick_Enable
2047 - \ref OS_Tick_Disable : \copybrief OS_Tick_Disable
2048 - \ref OS_Tick_AcknowledgeIRQ : \copybrief OS_Tick_AcknowledgeIRQ
2049 - \ref OS_Tick_GetIRQn : \copybrief OS_Tick_GetIRQn
2050 - \ref OS_Tick_GetClock : \copybrief OS_Tick_GetClock
2051 - \ref OS_Tick_GetInterval : \copybrief OS_Tick_GetInterval
2052 - \ref OS_Tick_GetCount : \copybrief OS_Tick_GetCount
2053 - \ref OS_Tick_GetOverflow : \copybrief OS_Tick_GetOverflow
2058 /* ======================================================================================================================== */
2059 // Group creation for Reference
2061 \addtogroup CMSIS_RTOS1 CMSIS-RTOS API v1
2062 \brief This section describes the CMSIS-RTOS API v1.
2064 The CMSIS-RTOS is a generic API layer that interfaces to an existing RTOS kernel.
2066 CMSIS-RTOS2 provides an translation layer for the
2067 <a class="el" href="../../RTOS/html/index.html">CMSIS-RTOS API v1</a> that simplifies migration.
2069 Refer to the <a class="el" href="../../RTOS/html/modules.html">Reference</a> guide of the CMSIS-RTOS API v1 for details.
2072 // Group creation for Reference
2074 \addtogroup CMSIS_RTOS CMSIS-RTOS API v2
2075 \brief C interface of \ref rtos_api2 defined in cmsis_os2.h
2077 The CMSIS-RTOS2 is a generic API layer that interfaces to an RTOS kernel.
2079 The complete API interface is defined in the \ref cmsis_os2_h. When using dynamic memory allocation for objects, source code
2080 or libraries require no modifications when using on a different CMSIS-RTOS2 implementation.
2082 Refer to \ref rtos_api2_basics for further details.
2086 \addtogroup CMSIS_RTOS_MemoryMgmt Memory Management
2088 \brief Information about memory management possibilities
2090 The \ref CMSIS_RTOS offers two options for memory management the user can choose. For object storage one can either use
2091 - \ref CMSIS_RTOS_MemoryMgmt_Automatic (fully portable), or
2092 - \ref CMSIS_RTOS_MemoryMgmt_Manual (implementation specific).
2094 In order to affect the memory allocation scheme all RTOS objects that can be created on request, i.e. those having a `osXxxNew`
2095 function, accept an optional `osXxxAttr_t attr` argument on creation. As a rule of thumb the object attributes at least have
2096 members to assign custom control block memory, i.e. `cb_mem` and `cb_size` members. By default, i.e. `attr` is `NULL`
2097 or `cb_mem` is `NULL`, \ref CMSIS_RTOS_MemoryMgmt_Automatic is used. Providing a pointer to user memory in `cb_mem` switches
2098 to \ref CMSIS_RTOS_MemoryMgmt_Manual.
2100 \note For detailed information about memory allocation strategies provided in RTX5 refer to \ref MemoryAllocation.
2102 \section CMSIS_RTOS_MemoryMgmt_Automatic Automatic Dynamic Allocation
2104 The automatic allocation is the default and viable for many use-cases. Moreover it is fully portable across different
2105 implementations of the \ref CMSIS_RTOS. The common drawback of dynamic memory allocation is the possibility of memory
2106 fragmentation and exhaustion. Given that all needed objects are created once upon system initialization and never
2107 deleted at runtime this class of runtime failures can be prevented, though.
2109 The actual allocation strategy used is implementation specific, i.e. whether global heap or preallocated memory pools are used.
2111 <b> Code Example:</b>
2113 #include "cmsis_os2.h" // implementation agnostic
2115 osMutexId_t mutex_id;
2116 osMutexId_t mutex2_id;
2118 const osMutexAttr_t Thread_Mutex_attr = {
2119 "myThreadMutex", // human readable mutex name
2120 osMutexRecursive | osMutexPrioInherit, // attr_bits
2121 NULL, // memory for control block (default)
2122 0U // size for control block (default)
2125 void CreateMutex (void) {
2126 mutex_id = osMutexNew(NULL); // use default values for all attributes
2127 mutex2_id = osMutexNew(&Thread_Mutex_attr); // use attributes from defined structure
2132 The Mutexes in this example are created using automatic memory allocation.
2134 \section CMSIS_RTOS_MemoryMgmt_Manual Manual User-defined Allocation
2136 One can get fine grained control over memory allocation by providing user-defined memory.
2137 The actual requirements such user-defined memory are implementation specific. Thus one
2138 needs to carefully refer to the size and alignment rules of the implementation used, e.g.
2139 for RTX see \ref StaticObjectMemory.
2141 <b> Code Example:</b>
2143 #include "rtx_os.h" // implementation specific
2145 osMutexId_t mutex_id;
2147 static uint32_t mutex_cb[osRtxMutexCbSize/4U]; // implementation specific
2149 const osMutexAttr_t Thread_Mutex_attr = {
2150 "myThreadMutex", // human readable mutex name
2151 osMutexRecursive | osMutexPrioInherit, // attr_bits
2152 mutex_cb, // memory for control block (user-defined)
2153 sizeof(mutex_cb) // size for control block (user-defined)
2156 void CreateMutex (void) {
2157 mutex_id = osMutexNew(&Thread_Mutex_attr); // use attributes from defined structure
2162 The above example uses user-defined memory for the mutex control block. Depending on the actual
2163 implementation used one needs to include the specific header file, `rtx_os.h` in this case.
2167 // Group creation for Reference
2169 \addtogroup CMSIS_RTOS CMSIS-RTOS API v2
2170 \brief C interface of \ref rtos_api2 defined in <b>%cmsis_os2.h</b>
2172 The CMSIS-RTOS2 is a generic API layer that interfaces to an RTOS kernel.
2174 The complete API interface is defined in the \ref cmsis_os2_h. When using dynamic memory allocation for objects, source code
2175 or libraries require no modifications when using on a different CMSIS-RTOS2 implementation.
2177 Refer to \ref rtos_api2_basics for further details.