1 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
5 The CMSIS-RTOS2 manages the resources of the microcontroller system and implements the concept of parallel threads that run concurrently.
6 There are many advantages of using an CMSIS-RTOS2 compliant kernel as it provides a standardized interface.
8 Applications frequently require several concurrent activities. CMSIS-RTOS2 can manage multiple concurrent activities at the time when
9 they are needed. Each activity gets a separate thread which executes a specific task and this simplifies the overall program structure.
10 The CMSIS-RTOS2 system is scalable and additional threads can be added easily at a later time. Threads have a priority allowing faster
11 execution of time-critical parts of an user application.
13 The CMSIS-RTOS2 offers services needed in many real-time applications, for example, periodical activation of timer functions,
14 memory management, and message exchange between threads with time limits.
16 The <b>CMSIS-RTOS API v2</b> addresses the following new requirements:
17 - Dynamic object creation no longer requires static memory, static memory buffers are now optional.
18 - Support for ARMv8-M architecture that provides a Secure and Non-Secure state of code execution.
19 - Provisions for message passing in multi-core systems.
20 - Full support of C++ run-time environments.
21 - C interface which is binary compatible across <a class="el" href="http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html">ABI compatible compilers</a>.
23 As a consequence of these requirements the CMSIS-RTOS API v2 has the following fundamental modifications:
24 - The functions osXxxxNew replace osXxxxCreate functions; osXxxxNew and osXxxxDelete create and destroy objects.
25 - The C function main is not longer started as a thread (this was an optional feature in CMSIS-RTOS v1).
26 - Functions that return osEvent have been replaced.
28 CMSIS-RTOS API v2 provides an translation layer for the
29 <a class="el" href="../../RTOS/html/index.html">CMSIS-RTOS API v1</a>.
30 It is possible to intermix CMSIS-RTOS API v2 and CMSIS-RTOS API v1 within the same application.
31 You may migrate overtime to the new API as explained in \ref os2Migration.
33 CMSIS-RTOS API v2 is not POSIX compliant, but has provisions to enable a C++11/C++14 interface.
35 The following sections provide further details about CMSIS-RTOS2 and the RTX reference implementation.
36 - \subpage rtos_revisionHistory documents changes made in each version for CMSIS-RTOS2 and RTX version 5.
37 - \subpage rtx5_impl provides general information about the operation of RTX version 5.
38 - \subpage config_rtx explains the configuration options of RTX version 5.
39 - \subpage cre_rtx_proj describes how to create projects using RTX version 5.
40 - \subpage os2Migration shows how to use CMSIS-RTOS2 in existing projects and lists function differences to CMSIS-RTOS v1.
41 - \subpage rtosValidation describes the validation suite that is public available.
42 - \subpage functionOverview lists the CMSIS-RTOS2 API functions and the header file cmsis_os2.h.
46 CMSIS-RTOS2 in ARM::CMSIS Pack
47 -----------------------------
49 The following files relevant to CMSIS-RTOS2 are present in the <b>ARM::CMSIS</b> Pack directories:
51 -----------------------------|------------------------------------------------------------------------
52 \b CMSIS/Documentation/RTOS2 | This documentation
53 \b CMSIS/RTOS2/Include | \ref cmsis_os2_h
54 \b CMSIS/RTOS2/RTX | CMSIS-RTOS v2 reference implementation based on RTX version 5
55 \b CMSIS/RTOS2/Template | compatiblity layer to CMSIS-RTOS v1
59 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
61 \page rtos_revisionHistory Revision History
63 <table class="cmtable" summary="Revision History">
72 -- added: osKernelGetInfo, osKernelGetState.\n
73 -- added: osKernelLock, osKernelUnlock.\n
74 -- added: osKernelSuspend, osKernelResume.\n
75 -- added: osKernelGetTime.\n
76 -- renamed osKernelSysTick to osKernelGetSysTick.\n
78 -- extended number of thread priorities.\n
79 -- changed thread return value.\n
80 -- replaced osThreadCreate with osThreadNew.\n
81 -- added: osThreadGetState.\n
82 -- added: osThreadSuspend, osThreadResume.\n
83 -- added: osThreadJoin, osThreadDetach, osThreadExit.\n
85 -- renamed osSignals to osThreadFlags.\n
86 -- changed return value of Set/Clear/Wait functions.\n
87 -- Clear function limited to current running thread.\n
88 -- extended Wait function (options).\n
89 -- added: osThreadFlagsGet.\n
90 - Event Flags: added new independent object for handling Event Flags.\n
91 - Delay and Wait functions:\n
92 -- added: osDelayUntil.\n
93 -- deprecated: osWait.\n
95 -- replaced osTimerCreate with osTimerNew.\n
96 -- added: osTimerIsRunning.\n
98 -- extended: attributes (Recursive, Priority Inherit, Robust).\n
99 -- replaced osMutexCreate with osMutexNew.\n
100 -- renamed osMutexWait to osMutexAcquire.\n
101 -- added: osMutexGetOwner.\n
103 -- extended: maximum and initial token count.\n
104 -- replaced osSemaphoreCreate with osSemaphoreNew.\n
105 -- renamed osSemaphoreWait to osSemaphoreAcquire (changed return value).\n
106 -- added: osSemaphoreGetCount.\n
108 -- using osMemoryPool prefix instead of osPool.\n
109 -- replaced osPoolCreate with osMemoryPoolNew.\n
110 -- extended: osMemoryPoolAlloc (timeout).\n
111 -- added: osMemoryPoolGetCapacity, osMemoryPoolGetBlockSize.\n
112 -- added: osMemoryPoolGetCount, osMemoryPoolGetSpace.\n
113 -- added: osMemoryPoolDelete.\n
114 -- deprecated: osPoolCAlloc.\n
116 -- fixed size messages instead of a single 32-bit values.\n
117 -- using osMessageQueue prefix instead of osMessage.\n
118 -- replaced osMessageCreate with osMessageQueueNew.\n
119 -- updated: osMessageQueuePut, osMessageQueueGet.\n
120 -- added: osMessageQueueGetCapacity, osMessageQueueGetMsgSize.\n
121 -- added: osMessageQueueGetCount, osMessageQueueGetSpace.\n
122 -- added: osMessageQueueReset, osMessageQueueDelete.\n
123 - Mail Queue: deprecated (superseded by extended Message Queue functionality).\n
127 <td>V1.02 - only documentation changes</td>
129 Added: Overview of the \ref rtosValidation "CMSIS-RTOS Validation" Software Pack.\n
130 Clarified: Behavior of \ref CMSIS_RTOS_TimeOutValue.
135 <td>Added: New control functions for short timeouts in microsecond resolution \b osKernelSysTick,
136 \b osKernelSysTickFrequency, \b osKernelSysTickMicroSec.\n
137 Removed: osSignalGet.
142 <td>Added capabilities for C++, kernel initialization and object deletion.\n
143 Prepared for C++ class interface. In this context to \em const attribute has been moved from osXxxxDef_t typedefs to
144 the osXxxxDef macros.\n
145 Added: \ref osTimerDelete, \ref osMutexDelete, \ref osSemaphoreDelete.\n
146 Added: \ref osKernelInitialize that prepares the Kernel for object creation.\n
152 <td>First official Release.\n
153 Added: \ref osKernelStart; starting 'main' as a thread is now an optional feature.\n
154 Semaphores have now the standard behavior.\n
155 \b osTimerCreate does no longer start the timer. Added: \ref osTimerStart (replaces osTimerRestart).\n
156 Changed: osThreadPass is renamed to \ref osThreadYield.
161 <td>Preview Release.</td>
167 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
169 \page rtx5_impl RTX v5 Implementation
171 The RTX version 5 implements the CMSIS-RTOS API v2 as native RTOS interface for Cortex-M processor-based devices.
172 A translation layer to CMSIS-RTOS API v1 is provided and with minimal effort RTX version 5 can be used in applications that
173 where previously based on RTX version 4 and CMSIS-RTOS v1.
175 <b>Theory of Operation</b>
177 This section describes the internal operations of RTX version 5:
178 - \subpage SystemStartup describes the C/C++ library initialization process.
179 - \subpage MemoryAllocation describes the resource management in the target system.
180 - \subpage ThreadStack explains how RTX manages the stack memory for threads.
181 - \subpage lowPower explains how to utilize power saving modes of Cortex-M devices.
182 - \subpage KernelTimer explains the options for time delays and timeouts.
183 - \subpage CMSIS_RTOS_TimeOutValue explains behaviour of timeouts including \token{0}=no wait and \ref osWaitForever.
184 - \subpage TickLess enables ultra-low power operation with custom timer.
185 - \subpage CMSIS_RTOS_ISR_Calls lists the functions calls that are supported from interrupt context.
187 Many aspects of the kernel are configurable and the configuration options are mentioned where applicable.
189 \page SystemStartup System Startup
191 Since main is no longer a thread RTX5 does not interfere with the system startup until main is reached.
192 Once the execution reaches main() there is a recommended order to initialize the hardware and start the kernel. This is also reflected in the "CMSIS-RTOS2 main Template" supplied with the RTX5 component.
194 The main() of you application should implement at least the following in the given order:
195 -# Initialization and configuration of hardware including peripheral, memory, pin, clock and interrupt system.
196 -# Update \ref SystemCoreClock using the respective <a href=../../Core/html/group__system__init__gr.html>CMSIS-CORE function</a>.
197 -# Initialize CMSIS-RTOS kernel using \ref osKernelInitialize.
198 -# Optionally create a new thread app_main, which is used as a main thread using \ref osThreadCreate. Alternatively threads can be created in main directly.
199 -# Start RTOS scheduler using \ref osKernelStart. Any application code after osKernelStart will not be executed unless \ref osKernelStart fails.
201 \note Interrupts like SVC used by the Kernel are initialized in \ref osKernelInitialize. In case priorities and groupings in the NVIC are altered by the application after the above sequence it might be necessary to call \ref osKernelInitialize again.
203 \page MemoryAllocation Memory Allocation
205 The RTX objects (thread, mutex, semaphore, timer, message, event and memory pool) require dedicated RAM memory.
206 Objects can be created using os<i>object</i>New() calls and deleted using os<i>object</i>Delete() calls. The related
207 object memory needs to be available during the life-time of the object.
209 RTX5 offers three different memory allocation methods for objects:
211 - \ref GlobalMemoryPool uses a single global memory pool for all objects. It is easy to configure, but may have
212 the disadvantage for memory fragmentation when objects with different sizes are created and destroyed.
214 - \ref ObjectMemoryPool uses a fixed-size memory pool for each object type. The method is time deterministic
215 and avoids memory fragmentation.
217 - \ref StaticObjectMemory reserves memory during compile time and completely avoids that a system can be out of memory.
218 This is typically a required for some safety critical systems.
220 It possible to intermix all the memory allocation methods in the same application.
222 \section GlobalMemoryPool Global Memory Pool
224 The global memory pool allocates all objects from a one memory area.
225 This method of memory allocation is the default configuration setting of RTX5.
227 \image html MemAllocGlob.png "Global Memory Pool for all objects"
229 When pool does not provide sufficient memory the creation of the object fails and the related os<i>object</i>New() function returns \token{NULL}.
231 \todo refer to object counters once available
233 Enabled in \ref systemConfig.
235 \section ObjectMemoryPool Object-specific Memory Pools
237 Object-specific Memory Pools avoids memory fragmentation with a dedicated fixed-size memory management for each object type.
238 This type of memory pools are fully time deterministic, which means object creation and destruction takes always the same fixed amount of time.
239 As a fixed-size memory pool is specific to an object type the handling of out-of-memory situations is simplified.
241 \image html MemAllocSpec.png "One memory pool per object type"
243 Object-specific memory pools are selectively enabled for each object type, e.g: mutex or thread using the RTX configuration file:
244 - Enabled in \ref threadConfig for thread objects.
245 - Enabled in \ref timerConfig for timer objects.
246 - Enabled in \ref eventFlagsConfig for event objects.
247 - Enabled in \ref mutexConfig for mutex objects.
248 - Enabled in \ref semaphoreConfig for semaphore.
249 - Enabled in \ref memPoolConfig for memory pools.
250 - Enabled in \ref msgQueueConfig for message objects.
252 When memory pool does not provide sufficient memory the creation of the object fails and the related os<i>object</i>New() function returns \token{NULL}.
254 \todo explain how to Map pools to different memory spaces (e.g. for systems with different speed grades of RAM memory)
256 \section StaticObjectMemory Static Object Memory
257 In contrast to the dynamic memory allocations the static memory allocation requires compile-time allocation of object memory.
259 \image html MemAllocStat.png "Statically allocated memory for all objects"
261 The following code example shows how to create an OS object using static memory.
263 <b> Code Example: </b>
265 /*----------------------------------------------------------------------------
266 * CMSIS-RTOS 'main' function template
267 *---------------------------------------------------------------------------*/
269 #include "RTE_Components.h"
270 #include CMSIS_device_header
271 #include "cmsis_os2.h"
273 //include rtx_os.h for types of RTX objects
276 //The thread function instanced in this example
277 void worker(void *arg)
286 // Define objects that are statically allocated for worker threads 1 and 2
287 os_thread_t worker_thread_tcb_1;
289 // Reserve two areas for the stacks of worker threads 1 and 2
290 // uint64_t makes sure the memory alignment is 8
291 uint64_t worker_thread_stk_1[64];
293 // Define the attributes which are used for thread creation
294 // Optional const saves RAM memory and includes the values in periodic ROM tests
295 const osThreadAttr_t worker_attr_1 = {
298 &worker_thread_tcb_1,
299 sizeof(worker_thread_tcb_1),
300 &worker_thread_stk_1[0],
301 sizeof(worker_thread_stk_1),
302 osPriorityAboveNormal,
307 // Define ID object for thread
310 /*----------------------------------------------------------------------------
311 * Application main thread
312 *---------------------------------------------------------------------------*/
313 void app_main (void *argument) {
314 uint32_t param = NULL;
316 // Create an instance of the worker thread with static resources (TCB and stack)
317 th1 = osThreadNew(worker, ¶m, &worker_attr_1);
323 // System Initialization
324 SystemCoreClockUpdate();
327 osKernelInitialize(); // Initialize CMSIS-RTOS
328 osThreadNew(app_main, NULL, NULL); // Create application main thread
329 osKernelStart(); // Start thread execution
336 /* ========================================================================================================================== */
338 \page ThreadStack Thread Stack Management
342 For Cortex-M processors without floating point unit the thread context requires 64 bytes on the local stack.
344 For Cortex-M4 FPU and Cortex-M7 FPU the thread context requires 200 bytes on the local stack. For devices with Cortex-M4 FPU and Cortex-M7 FPU the default stack space should be increased to a minimum of 300 bytes.
346 Each thread is provided with an separate stack that holds the thread context and stack space for automatic variables and return addresses for function call nesting. The stack sizes of the RTX threads are flexible configurable as explained in the section \ref threadConfig. RTX even offers a configurable checking for stack overflows and stack utilization.
351 /* ========================================================================================================================== */
353 \page lowPower Low-Power Operation
355 The system thread \b os_IdleThread can be use to switch the system into a low-power mode. The easiest form to enter a
356 low-power mode is the execution of the \c __WFE function that puts the processor into a sleep mode where it waits for an
359 <b>Configuration Example:</b>
362 #include "RTE_Components.h"
363 #include CMSIS_device_header /* Device definitions */
365 void os_IdleThread (void) {
366 /* The idle demon is a system thread, running when no other thread is */
370 __WFE(); /* Enter sleep mode */
376 \c __WFE() is not available at every Cortex-M implementation. Check device manuals for availability.
380 /* ========================================================================================================================== */
382 \page KernelTimer RTX Kernel Timer Tick
384 By default, CMSIS-RTOS RTX5 uses the Cortex-M
385 <a href="http://www.keil.com/support/man/docs/gsac/GSAC_SYSTICKtimer.htm" target="_blank">SysTick</a> timer to generate
386 periodic interrupts for the RTX kernel timer tick. CMSIS-RTOS provides \ref CMSIS_RTOS_TimerMgmt functions and several
387 CMSIS-RTOS functions have a timeout parameter. This periodic RTX kernel timer tick interrupt is used to derive the required
388 time interval. CMSIS-RTOS RTX also provides configuration options for a alternative timer and tick-less operation.
390 To handle timeout and time delays for threads, the CMSIS-RTOS RTX thread management is controlled by the RTX kernel timer
391 tick interrupt. The thread context contains all CPU registers (R0 - R12), the return address (LR), the program counter (PC), and the processor
392 status register (xPSR). For the Cortex-M4 FPU and Cortex-M7 FPU the floating point status and registers (S0 - S32, FPSCR) are
393 also part of the thread context.
395 When a thread switch occurs:
396 - the thread context of the current running thread is stored on the local stack of this thread.
397 - the stack pointer is switched to the next running thread.
398 - the thread context of this next running thread is restored and this thread starts to run.
401 \page CMSIS_RTOS_TimeOutValue Timeout Value
403 Timeout values are an argument to several \b osXxx functions to allow time for resolving a request.
404 A timeout value of \b 0 means that the RTOS does not wait and returns instantly, even when no resource is available.
405 A timeout value of \ref osWaitForever means that the RTOS waits infinite until a resource becomes available.
407 The timeout value specifies the number of timer ticks until the time delay elapses. The value is an upper bound and
408 depends on the actual time elapsed since the last timer tick.
411 - timeout value \b 0 : the system does not wait, even when no resource is available the RTOS function returns instantly.
412 - timeout value \b 1 : the system waits until the next timer tick occurs; depending on the previous timer tick, it may be a very short wait time.
413 - timeout value \b 2 : actual wait time is between 1 and 2 timer ticks.
414 - timeout value \ref osWaitForever : system waits infinite until a resource becomes available.
416 \todo B: remove first '|' to make the picture clearer, make ... before first tick, add word 'time' after the arrow.
418 \image html TimerValues.png "Example of timeout using osDelay()"
420 \page CMSIS_RTOS_ISR_Calls Calls from Interrupt Service Routines
422 The following CMSIS-RTOS2 functions can be called from threads and Interrupt Service Routines (ISR):
423 - \ref osThreadFlagsSet
424 - \ref osEventFlagsSet, \ref osEventFlagsClear, \ref osEventFlagsGet, \ref osEventFlagsWait
425 - \ref osSemaphoreAcquire, \ref osSemaphoreRelease, \ref osSemaphoreGetCount
426 - \ref osMemoryPoolAlloc, \ref osMemoryPoolFree, \ref osMemoryPoolGetCapacity, \ref osMemoryPoolGetBlockSize, \ref osMemoryPoolGetCount, \ref osMemoryPoolGetSpace
427 - \ref osMessageQueuePut, \ref osMessageQueueGet, \ref osMessageQueueGetCapacity, \ref osMessageQueueGetMsgSize, \ref osMessageQueueGetCount, \ref osMessageQueueGetSpace
429 Functions that cannot be called from an ISR are verifying the interrupt status and return, in case they are called
430 from an ISR context, the status code \b osErrorISR. In some implementations, this condition might be caught using the HARD
435 /* ========================================================================================================================== */
437 \page TickLess Tick-less Low-Power Operation
439 RTX5 provides extension for tick-less operation which is useful for applications that use extensively low-power
440 modes where the SysTick timer is also disabled. To provide a time-tick in such power-saving modes a wake-up timer is used to
441 derive timer intervals. The CMSIS-RTOS2 functions \ref osKernelSuspend and \ref osKernelResume control the tick-less operation.
443 Using this functions allows the RTX5 thread scheduler to stop the periodic kernel tick interrupt. When all active threads
444 are suspended, the system enters power-down and calculates how long it can stay in this power-down mode. In the power-down
445 mode the processor and potentially peripherals can be switched off. Only a wake-up timer must remain powered, because this
446 timer is responsible to wake-up the system after the power-down period expires.
448 The tick-less operation is controlled from the \b os_IdleThread thread. The wake-up timeout value is set before the system
449 enters the power-down mode. The function \ref osKernelSuspend calculates the wake-up timeout measured in RTX Timer Ticks; this
450 value is used to setup the wake-up timer that runs during the power-down mode of the system.
452 Once the system resumes operation (either by a wake-up time out or other interrupts) the RTX5 thread scheduler is started with
453 the function \ref osKernelResume. The parameter \a sleep_time specifies the time (in RTX Timer Ticks) that the system was in
458 #include "msp.h" // Device header
460 /*----------------------------------------------------------------------------
461 * MSP432 Low-Power Extension Functions
462 *---------------------------------------------------------------------------*/
463 static void MSP432_LP_Entry(void) {
464 /* Enable PCM rude mode, which allows to device to enter LPM3 without waiting for peripherals */
465 PCM->CTL1 = PCM_CTL1_KEY_VAL | PCM_CTL1_FORCE_LPM_ENTRY;
466 /* Enable all SRAM bank retentions prior to going to LPM3 */
467 SYSCTL->SRAM_BANKRET |= SYSCTL_SRAM_BANKRET_BNK7_RET;
468 __enable_interrupt();
469 NVIC_EnableIRQ(RTC_C_IRQn);
470 /* Do not wake up on exit from ISR */
471 SCB->SCR |= SCB_SCR_SLEEPONEXIT_Msk;
472 /* Setting the sleep deep bit */
473 SCB->SCR |= (SCB_SCR_SLEEPDEEP_Msk);
476 static volatile unsigned int tc;
477 static volatile unsigned int tc_wakeup;
479 void RTC_C_IRQHandler(void)
481 if (tc++ > tc_wakeup)
483 SCB->SCR &= ~SCB_SCR_SLEEPONEXIT_Msk;
484 NVIC_DisableIRQ(RTC_C_IRQn);
485 NVIC_ClearPendingIRQ(RTC_C_IRQn);
488 if (RTC_C->PS0CTL & RTC_C_PS0CTL_RT0PSIFG)
490 RTC_C->CTL0 = RTC_C_KEY_VAL; // Unlock RTC key protected registers
491 RTC_C->PS0CTL &= ~RTC_C_PS0CTL_RT0PSIFG;
493 SCB->SCR |= (SCB_SCR_SLEEPDEEP_Msk);
497 uint32_t g_enable_sleep = 0;
499 void os_IdleThread (void) {
502 tc_wakeup = osKernelSuspend();
503 /* Is there some time to sleep? */
506 /* Enter the low power state */
510 /* Adjust the kernel ticks with the amount of ticks slept */
517 \c __WFI() is not available at every Cortex-M implementation. Check device manuals for availability.
521 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
523 \page cre_rtx_proj Create an RTX Project
525 Example projects using CMSIS-RTOS RTX are available for various development boards. To make use of these examples, you need
526 to install a Device Family Pack in µVision and use Pack Installer to open a CMSIS-RTOS2 Blinky project. If you wish to start a CMSIS-RTOS RTX5 from scratch, follow these steps:
527 - Create a new project and select a device.
528 - In the Manage Run-Time Environment window that opens, select <b>CMSIS\::CORE</b> and <b>CMSIS\::RTOS2 (API)\::Keil RTX5</b>.
529 If the <b>Validation Output</b> requires other components to be present, try to use the \b Resolve button:
531 \image html manage_rte_output.png
533 - Click \b OK. In the \b Project window, you will see the files that have been automatically added to you project, such as
534 \b %RTX_Config.c and the system and startup files:
536 \image html project_window.png
538 - You can add template files to the project by right-clicking on <b>Source Group 1</b> and selecting
539 <b>Add New Item to 'Source Group 1'</b>. In the new window, click on <b>User Code Template</b>. On the right-hand side
540 you will see all available template files for CMSIS-RTOS RTX:
542 \image html add_item.png
544 - Finally, \ref config_rtx "configure" RTX to the application's needs using the \b %RTX_Config.c file.
547 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
549 \page config_rtx Configure RTX v5
551 The file "RTX_Config.c" defines the configuration parameters of CMSIS-RTOS RTX and must be part of every project that is using the CMSIS-RTOS RTX kernel.
553 The configuration file uses
554 <a class="el" href="http://www.keil.com/pack/doc/CMSIS/Pack/html/_config_wizard.html" target="_blank">Configuration Wizard Annotations</a>.
555 Depending on the development tool, the annotations might lead to a more user-friendly graphical representation of the settings.
556 The screenshot below shows the configuration file represented by the µVision Configuration Wizard:
558 \image html config_wizard.png "RTX_Conf_CM.c in Configuration Wizard View"
560 The configuration options are explained on these pages:
561 - \subpage systemConfig
562 - \subpage threadConfig
563 - \subpage timerConfig
564 - \subpage eventFlagsConfig
565 - \subpage mutexConfig
566 - \subpage semaphoreConfig
567 - \subpage memPoolConfig
568 - \subpage msgQueueConfig
572 /* ========================================================================================================================== */
574 \page systemConfig System Configuration
576 \image html config_wizard_system.png "RTX_Conf_CM.c: System Configuration"
579 Name | \#define | Description
580 ---------------------------------------|--------------------------|----------------------------------------------------------------
581 Global Dynamic Memory size [bytes] | \c OS_DYNAMIC_MEM_SIZE | Defines the combined global dynamic memory size for the \ref GlobalMemoryPool. Default value is \token{4096}. Value range is \token{[0-1073741824]} bytes, in multiples of \token{8} bytes.
582 Round-Robin Thread switching | \c OS_ROBIN_ENABLE | Enables Round-Robin Thread switching.
583 Round-Robin Timeout [ms] | \c OS_ROBIN_TIMEOUT | Defines how long a thread will execute before a thread switch. Default value is \token{5}. Value range is \token{[1-1000]}.
584 ISR FIFO Queue | \c OS_ISR_FIFO_QUEUE | RTOS Functions called from ISR store requests to this buffer. Default value is \token{16 entries}. Value range is \token{[4-256]} entries in multiples of \token{4}.
587 /* ========================================================================================================================== */
589 \page threadConfig Thread Configuration
591 The CMSIS-RTOS RTX provides several parameters to configure threads.
593 \section stackConfig Configuration of Thread Count and Stack Space
595 \ref osThreadAttr_t is passed to osThreadNew to set the options of a thread.
597 CMSIS-RTOS RTX defines two methods for defining the stack requirements:
598 - when \a *stack_mem in osThreadAttr_t is NULL, a fixed-size memory pool is used for the thread stack. In this case, \b OS_STKSIZE specifies the stack size for the thread function.
599 - when \a *stack_mem specifies a memory location, the thread stack provided there. The size of this user space is specified with \b stack_size.
601 Stack memory for threads is configured either statically by Static Resources - Number of Threads (total). Static memory in the size of Number of Threads * Default Thread Stack size is reserved.
602 Alternatively the memory is allocated on demand from the Dynamic Resources pool (configured by System Configuration - Dynamic Resources - Memory size [bytes] for Stack).
604 The CMSIS-RTOS RTX kernel uses a separate stack for each thread it creates. However, before the kernel is started by the \ref osKernelInitialize() function, the main stack size that is configured in the file startup_<i>device</i>.s is used.
606 \image html config_wizard_threads.png "RTX_Conf_CM.c: Thread Configuration"
608 Main stack is also used when:
609 - the user application calls the majority of RTX functions from Thread mode (ending up in an SVC call)
610 - running from handlers (user interrupt of exception handlers like SVCm PendSV, Faults, etc.)
612 Name | \#define | Description
613 ---------------------------------------------------------|------------------------|----------------------------------------------------------------
614 Object specific Memory allocation | \c OS_THREAD_OBJ_MEM | Enables object specific memory allocation. See /ref ObjectMemoryPool.
615 Number of user Threads (total) | \c OS_THREAD_NUM | Defines maximum number of user threads that can be active at the same time. Applies to user threads with system provided memory for control blocks. Default value is \token{6}. Value range is \token{[1-1000]}.
616 Number of user Threads with user-provided Stack size | \c OS_THREAD_USER_STACK_NUM | Defines maximum number of user threads with user-provided stack size. Default value is \token{0}. Value range is \token{[0-1000]}.
617 Total Stack size [bytes] for user Threads with user-provided Stack size | \c OS_THREAD_USER_STACK_SIZE | Defines the combined stack size for user threads with user-provided stack size. Default value is \token{0}. Value range is \token{[0-1073741824]} bits, sepping \token{8} bits.
618 Default Thread Stack size [bytes] | \c OS_STACK_SIZE | Defines stack size for threads with zero stack size specified. Default value is \token{200}. Value range is \token{[96-1073741824]} bits, sepping \token{8} bits.
619 Idle Thread Stack size [bytes] | \c OS_IDLE_THREAD_STACK_SIZE | Defines stack size for Idle thread. Default value is \token{200}. Value range is \token{[72-1073741824]} bits, sepping \token{8} bits.
620 Stack overrun checking | \c OS_STACK_CHECK | Enable stack overrun checks at thread switch. Enabling this option increases slightly the execution time of a thread switch. If a stack overflow is detected at a thread switch, the function \b os_error with error code = 1 is called. By default, this function is implemented as endless loop and will practically stop code execution.
621 Stack usage watermark | \c OS_STACK_WATERMARK | Initialize thread stack with watermark pattern for analyzing stack usage. Enabling this option increases significantly the execution time of thread creation.
622 Processor mode for Thread execution | \c OS_PRIVILEGE_MODE | Controls the processor mode. Default value is \token{Privileged} mode. Value range is \token{[0=Unprivileged; 1=Privileged]} mode.
626 /* ========================================================================================================================== */
628 \page timerConfig Timer Configuration
630 \image html config_wizard_timer.png "RTX_Conf_CM.c: Timer Configuration"
633 Name | \#define | Description
634 ---------------------------------------|--------------------------|----------------------------------------------------------------
635 Object specific Memory allocation | \c OS_TIMER_OBJ_MEM | Enables object specific memory allocation. See /ref ObjectMemoryPool.
636 Number of Timer objects | \c OS_TIMER_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[1-1000]}.
637 Timer Thread Priority | \c OS_TIMER_THREAD_PRIO | Defines priority for timer thread. Default value is \token{40}. Value range is \token{[8-48]}, stepping \token{8}. The numbers have the following priority correlation: \token{8=Low}; \token{16=Below Normal}; \token{24=Normal}; \token{32=Above Normal}; \token{40=High}; \token{48=Realtime}
638 Timer Thread Stack size [bytes] | \c OS_TIMER_THREAD_STACK_SIZE | Defines stack size for Timer thread. May be set to 0 when timers are not used. Default value is \token{200}. Value range is \token{[0-1073741824]}, stepping \token{8}.
639 Timer Callback Queue entries | \c OS_TIMER_CB_QUEUE | Number of concurrent active timer callback functions. May be set to 0 when timers are not used. Default value is \token{4}. Value range is \token{[0-256]}.
642 /* ========================================================================================================================== */
644 \page eventFlagsConfig Event Flags Configuration
646 \image html config_wizard_eventFlags.png "RTX_Conf_CM.c: Event Flags Configuration"
649 Name | \#define | Description
650 ---------------------------------------|--------------------------|----------------------------------------------------------------
651 Object specific Memory allocation | \c OS_EVFLAGS_OBJ_MEM | Enables object specific memory allocation. See /ref ObjectMemoryPool.
652 Number of Event Flags objects | \c OS_EVFLAGS_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[0-1000]}.
656 /* ========================================================================================================================== */
658 \page mutexConfig Mutex Configuration
660 \image html config_wizard_mutex.png "RTX_Conf_CM.c: Mutex Configuration"
663 Name | \#define | Description
664 ---------------------------------------|--------------------------|----------------------------------------------------------------
665 Object specific Memory allocation | \c OS_MUTEX_OBJ_MEM | Enables object specific memory allocation. See /ref ObjectMemoryPool.
666 Number of Mutex objects | \c OS_MUTEX_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[0-1000]}.
670 /* ========================================================================================================================== */
672 \page semaphoreConfig Semaphore Configuration
674 \image html config_wizard_semaphore.png "RTX_Conf_CM.c: Semaphore Configuration"
677 Name | \#define | Description
678 ---------------------------------------|--------------------------|----------------------------------------------------------------
679 Object specific Memory allocation | \c OS_SEMAPHORE_OBJ_MEM | Enables object specific memory allocation. See /ref ObjectMemoryPool.
680 Number of Semaphore objects | \c OS_SEMAPHORE_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[0-1000]}.
684 /* ========================================================================================================================== */
686 \page memPoolConfig Memory Pool Configuration
688 \image html config_wizard_memPool.png "RTX_Conf_CM.c: Memory Pool Configuration"
691 Name | \#define | Description
692 ---------------------------------------|--------------------------|----------------------------------------------------------------
693 Object specific Memory allocation | \c OS_MEMPOOL_OBJ_MEM | Enables object specific memory allocation. See /ref ObjectMemoryPool.
694 Number of Memory Pool objects | \c OS_MEMPOOL_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[0-1000]}.
695 Data Storage Memory size [bytes] | \c OS_MEMPOOL_DATA_SIZE | Defines the combined data storage memory size. Applies to objects with system provided memory for data storage. Default value is \token{0}. Value range is \token{[0-1073741824]}, stepping \token{4}.
700 /* ========================================================================================================================== */
702 \page msgQueueConfig Message Queue Configuration
704 \image html config_wizard_msgQueue.png "RTX_Conf_CM.c: Message Queue Configuration"
707 Name | \#define | Description
708 ---------------------------------------|--------------------------|----------------------------------------------------------------
709 Object specific Memory allocation | \c OS_MSGQUEUE_OBJ_MEM | Enables object specific memory allocation. See /ref ObjectMemoryPool.
710 Number of Message Queue objects | \c OS_MSGQUEUE_NUM | Defines maximum number of objects that can be active at the same time. Applies to objects with system provided memory for control blocks. Value range is \token{[0-1000]}.
711 Data Storage Memory size [bytes] | \c OS_MSGQUEUE_DATA_SIZE | Defines the combined data storage memory size. Applies to objects with system provided memory for data storage. Default value is \token{0}. Value range is \token{[0-1073741824]}, stepping \token{4}.
715 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
717 \page rtosValidation RTOS Validation
719 ARM offers a <a class=el href="http://www.keil.com/pack" target="_blank">Software Pack</a> for the CMSIS-RTOS Validation.
720 The <b>ARM::CMSIS-RTOS_Validation</b> Pack contains the following:
722 - Source code of a CMSIS-RTOS Validation Suite along with configuration file.
723 - Documentation of the CMSIS-RTOS Validation Suite.
724 - Example that shows the usage of the CMSIS-RTOS Validation Suite using simulation.
727 A public version of the test suite is available only for CMSIS-RTOS v1 API.
729 The CMSIS-RTOS Validation Suite performs generic validation of various RTOS features. The test cases verify the
730 functional behavior, test invalid parameters and call management functions from ISR.
732 The following CMSIS-RTOS features can be tested with the current release:
733 - Thread : Create multiple threads, terminate, restart, yield, change priority
734 - Timer : Create periodic and one-shot timers
735 - GenWait : Call generic wait functions (osDelay and osWait)
736 - WaitFunc : Measure wait ticks (delay, mail, message, mutex, semaphore, signal)
738 Moreover the following inter-thread communication functions can be tested:
739 - Signal : Verify signal events
740 - Memory Pool : Verify memory allocation
741 - Message Queue : Exchange messages between threads
742 - Mail Queue : Exchange data between threads
743 - Mutex : Synchronize resource access
744 - Semaphore : Access shared resources
746 The RTOS Validation output can be printed to a console, output via ITM printf, or output to a memory buffer.
748 \section test_output Sample Test Output
750 CMSIS-RTOS Test Suite Oct 21 2015 16:39:16
752 TEST 01: TC_ThreadCreate PASSED
753 TEST 02: TC_ThreadMultiInstance PASSED
754 TEST 03: TC_ThreadTerminate PASSED
757 TEST 08: TC_ThreadChainedCreate PASSED
758 TEST 09: TC_ThreadYield NOT EXECUTED
759 TEST 10: TC_ThreadParam PASSED
762 TEST 60: TC_MailFromISRToThread PASSED
764 Test Summary: 60 Tests, 59 Executed, 59 Passed, 0 Failed, 0 Warnings.
770 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
772 \page functionOverview Function Overview
774 CMSIS-RTOS v2 provides multiple API interfaces:
775 - \subpage rtos_api2 is the new C function API that supports dynamic object creation, ARMv8-M, and multi-processor communication.
776 - <a class="el" href="../../RTOS/html/functionOverview.html">CMSIS-RTOS C API v1</a> is a C function API the is backward compatible with CMSIS-RTOS v1.
777 - \subpage rtos_apicpp is a C++ class function API.
779 It is possible to intermix the different API variants in the same application and even in the same C/C++ source module.
780 However, the functions of the <b>C API Version 1</b> may be deprecated in future versions of CMSIS-RTOS.
782 \section rtos_api2 CMSIS-RTOS2
784 Overview of all CMSIS-RTOS C API v2 functions that are implemented in the \subpage cmsis_os2_h.
786 - \ref CMSIS_RTOS_KernelCtrl
787 - \ref osKernelGetInfo : \copybrief osKernelGetInfo
788 - \ref osKernelGetState : \copybrief osKernelGetState
789 - \ref osKernelGetSysTimerCount : \copybrief osKernelGetSysTimerCount
790 - \ref osKernelGetSysTimerFreq : \copybrief osKernelGetSysTimerFreq
791 - \ref osKernelInitialize : \copybrief osKernelInitialize
792 - \ref osKernelLock : \copybrief osKernelLock
793 - \ref osKernelResume : \copybrief osKernelResume
794 - \ref osKernelStart : \copybrief osKernelStart
795 - \ref osKernelSuspend : \copybrief osKernelSuspend
796 - \ref osKernelGetTickCount : \copybrief osKernelGetTickCount
797 - \ref osKernelGetTickFreq : \copybrief osKernelGetTickFreq
798 - \ref osKernelUnlock : \copybrief osKernelUnlock
800 - \ref CMSIS_RTOS_ThreadMgmt
801 - \ref osThreadDetach : \copybrief osThreadDetach
802 - \ref osThreadExit : \copybrief osThreadExit
803 - \ref osThreadGetName : \copybrief osThreadGetName
804 - \ref osThreadGetId : \copybrief osThreadGetId
805 - \ref osThreadGetPriority : \copybrief osThreadGetPriority
806 - \ref osThreadGetState : \copybrief osThreadGetState
807 - \ref osThreadJoin : \copybrief osThreadJoin
808 - \ref osThreadNew : \copybrief osThreadNew
809 - \ref osThreadResume : \copybrief osThreadResume
810 - \ref osThreadSetPriority : \copybrief osThreadSetPriority
811 - \ref osThreadSuspend : \copybrief osThreadSuspend
812 - \ref osThreadTerminate : \copybrief osThreadTerminate
813 - \ref osThreadYield : \copybrief osThreadYield
815 - \ref CMSIS_RTOS_Wait
816 - \ref osDelay : \copybrief osDelay
817 - \ref osDelayUntil : \copybrief osDelayUntil
819 - \ref CMSIS_RTOS_TimerMgmt
820 - \ref osTimerDelete : \copybrief osTimerDelete
821 - \ref osTimerIsRunning : \copybrief osTimerIsRunning
822 - \ref osTimerNew : \copybrief osTimerNew
823 - \ref osTimerStart : \copybrief osTimerStart
824 - \ref osTimerStop : \copybrief osTimerStop
826 - \ref CMSIS_RTOS_EventFlags
827 - \ref osEventFlagsNew : \copybrief osEventFlagsNew
828 - \ref osEventFlagsDelete : \copybrief osEventFlagsDelete
829 - \ref osEventFlagsSet : \copybrief osEventFlagsSet
830 - \ref osEventFlagsClear : \copybrief osEventFlagsClear
831 - \ref osEventFlagsGet : \copybrief osEventFlagsGet
832 - \ref osEventFlagsWait : \copybrief osEventFlagsWait
834 - \ref CMSIS_RTOS_ThreadFlagsMgmt
835 - \ref osThreadFlagsSet : \copybrief osThreadFlagsSet
836 - \ref osThreadFlagsClear : \copybrief osThreadFlagsClear
837 - \ref osThreadFlagsGet : \copybrief osThreadFlagsGet
838 - \ref osThreadFlagsWait : \copybrief osThreadFlagsWait
840 - \ref CMSIS_RTOS_Message
841 - \ref osMessageQueueDelete : \copybrief osMessageQueueDelete
842 - \ref osMessageQueueGet : \copybrief osMessageQueueGet
843 - \ref osMessageQueueGetCapacity : \copybrief osMessageQueueGetCapacity
844 - \ref osMessageQueueGetCount : \copybrief osMessageQueueGetCount
845 - \ref osMessageQueueGetMsgSize : \copybrief osMessageQueueGetMsgSize
846 - \ref osMessageQueueGetSpace : \copybrief osMessageQueueGetSpace
847 - \ref osMessageQueueNew : \copybrief osMessageQueueNew
848 - \ref osMessageQueuePut : \copybrief osMessageQueuePut
849 - \ref osMessageQueueReset : \copybrief osMessageQueueReset
851 - \ref CMSIS_RTOS_PoolMgmt
852 - \ref osMemoryPoolAlloc : \copybrief osMemoryPoolAlloc
853 - \ref osMemoryPoolDelete : \copybrief osMemoryPoolDelete
854 - \ref osMemoryPoolFree : \copybrief osMemoryPoolFree
855 - \ref osMemoryPoolGetBlockSize : \copybrief osMemoryPoolGetBlockSize
856 - \ref osMemoryPoolGetCapacity : \copybrief osMemoryPoolGetCapacity
857 - \ref osMemoryPoolGetCount : \copybrief osMemoryPoolGetCount
858 - \ref osMemoryPoolGetSpace : \copybrief osMemoryPoolGetSpace
859 - \ref osMemoryPoolNew : \copybrief osMemoryPoolNew
861 - \ref CMSIS_RTOS_MutexMgmt
862 - \ref osMutexAcquire : \copybrief osMutexAcquire
863 - \ref osMutexDelete : \copybrief osMutexDelete
864 - \ref osMutexGetOwner : \copybrief osMutexGetOwner
865 - \ref osMutexNew : \copybrief osMutexNew
866 - \ref osMutexRelease : \copybrief osMutexRelease
868 - \ref CMSIS_RTOS_SemaphoreMgmt
869 - \ref osSemaphoreAcquire : \copybrief osSemaphoreAcquire
870 - \ref osSemaphoreDelete : \copybrief osSemaphoreDelete
871 - \ref osSemaphoreGetCount : \copybrief osSemaphoreGetCount
872 - \ref osSemaphoreNew : \copybrief osSemaphoreNew
873 - \ref osSemaphoreRelease : \copybrief osSemaphoreRelease
875 The following CMSIS-RTOS2 functions can be called from threads and Interrupt Service Routines (ISR):
876 - \ref osThreadFlagsSet
877 - \ref osEventFlagsSet, \ref osEventFlagsClear, \ref osEventFlagsGet, \ref osEventFlagsWait
878 - \ref osSemaphoreAcquire, \ref osSemaphoreRelease, \ref osSemaphoreGetCount
879 - \ref osMemoryPoolAlloc, \ref osMemoryPoolFree, \ref osMemoryPoolGetCapacity, \ref osMemoryPoolGetBlockSize, \ref osMemoryPoolGetCount, \ref osMemoryPoolGetSpace
880 - \ref osMessageQueuePut, \ref osMessageQueueGet, \ref osMessageQueueGetCapacity, \ref osMessageQueueGetMsgSize, \ref osMessageQueueGetCount, \ref osMessageQueueGetSpace
885 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
887 \page rtos_apicpp CMSIS-RTOS C++ API
889 The C++11/C++14 interface is planned to be released in January 2017.
893 /*=======0=========1=========2=========3=========4=========5=========6=========7=========8=========9=========0=========1====*/
895 \page cmsis_os2_h cmsis_os2.h header file
897 The file \b cmsis_os2.h is a standard header file that interfaces to every CMSIS-RTOS API v2 compliant Real-Time Operating Systems (RTOS).
898 Each implementation is provided the same cmsis_os2.h which defines the interface to the \ref rtos_api2.
900 Using the \b cmsis_os2.h along with dynamic object allocation allows to create source code or libraries that require no modifications
901 when using on a different CMSIS-RTOS v2 implementation.
903 <b>Header file %cmsis_os2.h</b>
908 /* ========================================================================================================================== */
909 // Group creation for Reference
911 \addtogroup CMSIS_RTOS1 CMSIS-RTOS API v1
912 \brief This section describes the CMSIS-RTOS API v1.
914 The CMSIS-RTOS is a generic API layer that interfaces to an existing RTOS kernel.
916 CMSIS-RTOS API v2 provides an translation layer for the
917 <a class="el" href="../../RTOS/html/index.html">CMSIS-RTOS API v1</a> that simplifies migration.
919 Refer to the <a class="el" href="../../RTOS/html/modules.html">Reference</a> guide of the CMSIS-RTOS API v1 for details.
922 // Group creation for Reference
924 \addtogroup CMSIS_RTOS CMSIS-RTOS2 API
925 \brief Describes the C function interface of CMSIS-RTOS API v2.
927 The CMSIS-RTOS2 is a generic API layer that interfaces to an RTOS kernel.
929 The complete API interface is defined in the \ref cmsis_os2_h. When using dynamic memory allocation for objects, source code or libraries require no modifications
930 when using on a different CMSIS-RTOS2 implementation.