2 * FreeRTOS Kernel V10.4.3
\r
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * https://www.FreeRTOS.org
\r
23 * https://github.com/FreeRTOS
\r
27 /* Standard includes. */
\r
31 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
32 * all the API functions to use the MPU wrappers. That should only be done when
\r
33 * task.h is included from an application file. */
\r
34 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
36 /* FreeRTOS includes. */
\r
37 #include "FreeRTOS.h"
\r
40 #include "stack_macros.h"
\r
42 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
43 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
44 * for the header files above, but not in this file, in order to generate the
\r
45 * correct privileged Vs unprivileged linkage and placement. */
\r
46 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
48 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
49 * functions but without including stdio.h here. */
\r
50 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
52 /* At the bottom of this file are two optional functions that can be used
\r
53 * to generate human readable text from the raw data generated by the
\r
54 * uxTaskGetSystemState() function. Note the formatting functions are provided
\r
55 * for convenience only, and are NOT considered part of the kernel. */
\r
57 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
59 #if ( configUSE_PREEMPTION == 0 )
\r
61 /* If the cooperative scheduler is being used then a yield should not be
\r
62 * performed just because a higher priority task has been woken. */
\r
63 #define taskYIELD_IF_USING_PREEMPTION()
\r
65 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
68 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
69 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
\r
70 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
71 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
74 * The value used to fill the stack of a task when the task is created. This
\r
75 * is used purely for checking the high water mark for tasks.
\r
77 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
79 /* Bits used to record how a task's stack and TCB were allocated. */
\r
80 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
81 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
82 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
84 /* If any of the following are set then task stacks are filled with a known
\r
85 * value so the high water mark can be determined. If none of the following are
\r
86 * set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
87 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
88 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
94 * Macros used by vListTask to indicate which state a task is in.
\r
96 #define tskRUNNING_CHAR ( 'X' )
\r
97 #define tskBLOCKED_CHAR ( 'B' )
\r
98 #define tskREADY_CHAR ( 'R' )
\r
99 #define tskDELETED_CHAR ( 'D' )
\r
100 #define tskSUSPENDED_CHAR ( 'S' )
\r
103 * Some kernel aware debuggers require the data the debugger needs access to to
\r
104 * be global, rather than file scope.
\r
106 #ifdef portREMOVE_STATIC_QUALIFIER
\r
110 /* The name allocated to the Idle task. This can be overridden by defining
\r
111 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
112 #ifndef configIDLE_TASK_NAME
\r
113 #define configIDLE_TASK_NAME "IDLE"
\r
116 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
118 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
119 * performed in a generic way that is not optimised to any particular
\r
120 * microcontroller architecture. */
\r
122 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
124 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
126 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
128 uxTopReadyPriority = ( uxPriority ); \
\r
130 } /* taskRECORD_READY_PRIORITY */
\r
132 /*-----------------------------------------------------------*/
\r
134 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
136 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
138 /* Find the highest priority queue that contains ready tasks. */ \
\r
139 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
141 configASSERT( uxTopPriority ); \
\r
145 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
146 * the same priority get an equal share of the processor time. */ \
\r
147 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
148 uxTopReadyPriority = uxTopPriority; \
\r
149 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
151 /*-----------------------------------------------------------*/
\r
153 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
154 * they are only required when a port optimised method of task selection is
\r
156 #define taskRESET_READY_PRIORITY( uxPriority )
\r
157 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
159 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
162 * performed in a way that is tailored to the particular microcontroller
\r
163 * architecture being used. */
\r
165 /* A port optimised version is provided. Call the port defined macros. */
\r
166 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
168 /*-----------------------------------------------------------*/
\r
170 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
172 UBaseType_t uxTopPriority; \
\r
174 /* Find the highest priority list that contains ready tasks. */ \
\r
175 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
176 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
177 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
178 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
180 /*-----------------------------------------------------------*/
\r
182 /* A port optimised version is provided, call it only if the TCB being reset
\r
183 * is being referenced from a ready list. If it is referenced from a delayed
\r
184 * or suspended list then it won't be in a ready list. */
\r
185 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
187 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
189 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
193 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
195 /*-----------------------------------------------------------*/
\r
197 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
198 * count overflows. */
\r
199 #define taskSWITCH_DELAYED_LISTS() \
\r
203 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
204 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
206 pxTemp = pxDelayedTaskList; \
\r
207 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
208 pxOverflowDelayedTaskList = pxTemp; \
\r
209 xNumOfOverflows++; \
\r
210 prvResetNextTaskUnblockTime(); \
\r
213 /*-----------------------------------------------------------*/
\r
216 * Place the task represented by pxTCB into the appropriate ready list for
\r
217 * the task. It is inserted at the end of the list.
\r
219 #define prvAddTaskToReadyList( pxTCB ) \
\r
220 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
221 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
222 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
223 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
224 /*-----------------------------------------------------------*/
\r
227 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
\r
228 * where NULL is used to indicate that the handle of the currently executing
\r
229 * task should be used in place of the parameter. This macro simply checks to
\r
230 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
232 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
234 /* The item value of the event list item is normally used to hold the priority
\r
235 * of the task to which it belongs (coded to allow it to be held in reverse
\r
236 * priority order). However, it is occasionally borrowed for other purposes. It
\r
237 * is important its value is not updated due to a task priority change while it is
\r
238 * being used for another purpose. The following bit definition is used to inform
\r
239 * the scheduler that the value should not be changed - in which case it is the
\r
240 * responsibility of whichever module is using the value to ensure it gets set back
\r
241 * to its original value when it is released. */
\r
242 #if ( configUSE_16_BIT_TICKS == 1 )
\r
243 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
249 * Task control block. A task control block (TCB) is allocated for each task,
\r
250 * and stores task state information, including a pointer to the task's context
\r
251 * (the task's run time environment, including register values)
\r
253 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
255 volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
257 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
258 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
261 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
262 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
263 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
264 StackType_t * pxStack; /*< Points to the start of the stack. */
\r
265 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
267 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
268 StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
271 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
272 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
275 #if ( configUSE_TRACE_FACILITY == 1 )
\r
276 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
277 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
280 #if ( configUSE_MUTEXES == 1 )
\r
281 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
282 UBaseType_t uxMutexesHeld;
\r
285 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
286 TaskHookFunction_t pxTaskTag;
\r
289 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
290 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
293 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
294 uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
297 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
298 /* Allocate a Newlib reent structure that is specific to this task.
\r
299 * Note Newlib support has been included by popular demand, but is not
\r
300 * used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
301 * responsible for resulting newlib operation. User must be familiar with
\r
302 * newlib and must provide system-wide implementations of the necessary
\r
303 * stubs. Be warned that (at the time of writing) the current newlib design
\r
304 * implements a system-wide malloc() that must be provided with locks.
\r
306 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
307 * for additional information. */
\r
308 struct _reent xNewLib_reent;
\r
311 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
312 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
313 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
316 /* See the comments in FreeRTOS.h with the definition of
\r
317 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
318 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
319 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
322 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
323 uint8_t ucDelayAborted;
\r
326 #if ( configUSE_POSIX_ERRNO == 1 )
\r
331 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
332 * below to enable the use of older kernel aware debuggers. */
\r
333 typedef tskTCB TCB_t;
\r
335 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
336 * which static variables must be declared volatile. */
\r
337 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
339 /* Lists for ready and blocked tasks. --------------------
\r
340 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
\r
341 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
342 * the static qualifier. */
\r
343 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
\r
344 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
345 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
346 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
347 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
348 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
350 #if ( INCLUDE_vTaskDelete == 1 )
\r
352 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
353 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
357 #if ( INCLUDE_vTaskSuspend == 1 )
\r
359 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
363 /* Global POSIX errno. Its value is changed upon context switching to match
\r
364 * the errno of the currently running task. */
\r
365 #if ( configUSE_POSIX_ERRNO == 1 )
\r
366 int FreeRTOS_errno = 0;
\r
369 /* Other file private variables. --------------------------------*/
\r
370 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
371 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
372 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
373 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
374 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
375 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
376 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
377 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
378 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
379 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
381 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
\r
382 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
\r
383 * to determine the number of priority lists to read back from the remote target. */
\r
384 const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
\r
386 /* Context switches are held pending while the scheduler is suspended. Also,
\r
387 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
388 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
389 * If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
390 * moves the task's event list item into the xPendingReadyList, ready for the
\r
391 * kernel to move the task from the pending ready list into the real ready list
\r
392 * when the scheduler is unsuspended. The pending ready list itself can only be
\r
393 * accessed from a critical section. */
\r
394 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
396 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
398 /* Do not move these variables to function scope as doing so prevents the
\r
399 * code working with debuggers that need to remove the static qualifier. */
\r
400 PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
401 PRIVILEGED_DATA static volatile uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
407 /*-----------------------------------------------------------*/
\r
409 /* File private functions. --------------------------------*/
\r
412 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
413 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
414 * is in any other state.
\r
416 #if ( INCLUDE_vTaskSuspend == 1 )
\r
418 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
420 #endif /* INCLUDE_vTaskSuspend */
\r
423 * Utility to ready all the lists used by the scheduler. This is called
\r
424 * automatically upon the creation of the first task.
\r
426 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
429 * The idle task, which as all tasks is implemented as a never ending loop.
\r
430 * The idle task is automatically created and added to the ready lists upon
\r
431 * creation of the first user task.
\r
433 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
434 * language extensions. The equivalent prototype for this function is:
\r
436 * void prvIdleTask( void *pvParameters );
\r
439 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
\r
442 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
443 * including the stack pointed to by the TCB.
\r
445 * This does not free memory allocated by the task itself (i.e. memory
\r
446 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
448 #if ( INCLUDE_vTaskDelete == 1 )
\r
450 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
\r
455 * Used only by the idle task. This checks to see if anything has been placed
\r
456 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
457 * and its TCB deleted.
\r
459 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
462 * The currently executing task is entering the Blocked state. Add the task to
\r
463 * either the current or the overflow delayed task list.
\r
465 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
466 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
469 * Fills an TaskStatus_t structure with information on each task that is
\r
470 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
471 * a suspended list, etc.).
\r
473 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
474 * NORMAL APPLICATION CODE.
\r
476 #if ( configUSE_TRACE_FACILITY == 1 )
\r
478 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
480 eTaskState eState ) PRIVILEGED_FUNCTION;
\r
485 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
486 * the task if it is found, or NULL if the task is not found.
\r
488 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
490 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
491 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
496 * When a task is created, the stack of the task is filled with a known value.
\r
497 * This function determines the 'high water mark' of the task stack by
\r
498 * determining how much of the stack remains at the original preset value.
\r
500 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
502 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
507 * Return the amount of time, in ticks, that will pass before the kernel will
\r
508 * next move a task from the Blocked state to the Running state.
\r
510 * This conditional compilation should use inequality to 0, not equality to 1.
\r
511 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
512 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
513 * set to a value other than 1.
\r
515 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
517 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
522 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
523 * will exit the Blocked state.
\r
525 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
\r
527 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
530 * Helper function used to pad task names with spaces when printing out
\r
531 * human readable tables of task information.
\r
533 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
534 const char * pcTaskName ) PRIVILEGED_FUNCTION;
\r
539 * Called after a Task_t structure has been allocated either statically or
\r
540 * dynamically to fill in the structure's members.
\r
542 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
543 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
544 const uint32_t ulStackDepth,
\r
545 void * const pvParameters,
\r
546 UBaseType_t uxPriority,
\r
547 TaskHandle_t * const pxCreatedTask,
\r
549 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
552 * Called after a new task has been created and initialised to place the task
\r
553 * under the control of the scheduler.
\r
555 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
\r
558 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
559 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
560 * called by the function.
\r
562 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
564 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
568 /*-----------------------------------------------------------*/
\r
570 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
572 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
573 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
574 const uint32_t ulStackDepth,
\r
575 void * const pvParameters,
\r
576 UBaseType_t uxPriority,
\r
577 StackType_t * const puxStackBuffer,
\r
578 StaticTask_t * const pxTaskBuffer )
\r
581 TaskHandle_t xReturn;
\r
583 configASSERT( puxStackBuffer != NULL );
\r
584 configASSERT( pxTaskBuffer != NULL );
\r
586 #if ( configASSERT_DEFINED == 1 )
\r
588 /* Sanity check that the size of the structure used to declare a
\r
589 * variable of type StaticTask_t equals the size of the real task
\r
591 volatile size_t xSize = sizeof( StaticTask_t );
\r
592 configASSERT( xSize == sizeof( TCB_t ) );
\r
593 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
595 #endif /* configASSERT_DEFINED */
\r
597 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
599 /* The memory used for the task's TCB and stack are passed into this
\r
600 * function - use them. */
\r
601 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
602 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
604 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
606 /* Tasks can be created statically or dynamically, so note this
\r
607 * task was created statically in case the task is later deleted. */
\r
608 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
610 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
612 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
613 prvAddNewTaskToReadyList( pxNewTCB );
\r
623 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
624 /*-----------------------------------------------------------*/
\r
626 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
628 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
\r
629 TaskHandle_t * pxCreatedTask )
\r
632 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
634 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
635 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
637 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
639 /* Allocate space for the TCB. Where the memory comes from depends
\r
640 * on the implementation of the port malloc function and whether or
\r
641 * not static allocation is being used. */
\r
642 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
644 /* Store the stack location in the TCB. */
\r
645 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
647 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
649 /* Tasks can be created statically or dynamically, so note this
\r
650 * task was created statically in case the task is later deleted. */
\r
651 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
653 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
655 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
656 pxTaskDefinition->pcName,
\r
657 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
658 pxTaskDefinition->pvParameters,
\r
659 pxTaskDefinition->uxPriority,
\r
660 pxCreatedTask, pxNewTCB,
\r
661 pxTaskDefinition->xRegions );
\r
663 prvAddNewTaskToReadyList( pxNewTCB );
\r
670 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
671 /*-----------------------------------------------------------*/
\r
673 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
675 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
\r
676 TaskHandle_t * pxCreatedTask )
\r
679 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
681 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
683 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
685 /* Allocate space for the TCB. Where the memory comes from depends
\r
686 * on the implementation of the port malloc function and whether or
\r
687 * not static allocation is being used. */
\r
688 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
690 if( pxNewTCB != NULL )
\r
692 /* Store the stack location in the TCB. */
\r
693 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
695 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
697 /* Tasks can be created statically or dynamically, so note
\r
698 * this task had a statically allocated stack in case it is
\r
699 * later deleted. The TCB was allocated dynamically. */
\r
700 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
702 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
704 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
705 pxTaskDefinition->pcName,
\r
706 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
707 pxTaskDefinition->pvParameters,
\r
708 pxTaskDefinition->uxPriority,
\r
709 pxCreatedTask, pxNewTCB,
\r
710 pxTaskDefinition->xRegions );
\r
712 prvAddNewTaskToReadyList( pxNewTCB );
\r
720 #endif /* portUSING_MPU_WRAPPERS */
\r
721 /*-----------------------------------------------------------*/
\r
723 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
725 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
726 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
727 const configSTACK_DEPTH_TYPE usStackDepth,
\r
728 void * const pvParameters,
\r
729 UBaseType_t uxPriority,
\r
730 TaskHandle_t * const pxCreatedTask )
\r
733 BaseType_t xReturn;
\r
735 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
736 * does not grow into the TCB. Likewise if the stack grows up then allocate
\r
737 * the TCB then the stack. */
\r
738 #if ( portSTACK_GROWTH > 0 )
\r
740 /* Allocate space for the TCB. Where the memory comes from depends on
\r
741 * the implementation of the port malloc function and whether or not static
\r
742 * allocation is being used. */
\r
743 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
745 if( pxNewTCB != NULL )
\r
747 /* Allocate space for the stack used by the task being created.
\r
748 * The base of the stack memory stored in the TCB so the task can
\r
749 * be deleted later if required. */
\r
750 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
752 if( pxNewTCB->pxStack == NULL )
\r
754 /* Could not allocate the stack. Delete the allocated TCB. */
\r
755 vPortFree( pxNewTCB );
\r
760 #else /* portSTACK_GROWTH */
\r
762 StackType_t * pxStack;
\r
764 /* Allocate space for the stack used by the task being created. */
\r
765 pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
767 if( pxStack != NULL )
\r
769 /* Allocate space for the TCB. */
\r
770 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
772 if( pxNewTCB != NULL )
\r
774 /* Store the stack location in the TCB. */
\r
775 pxNewTCB->pxStack = pxStack;
\r
779 /* The stack cannot be used as the TCB was not created. Free
\r
781 vPortFreeStack( pxStack );
\r
789 #endif /* portSTACK_GROWTH */
\r
791 if( pxNewTCB != NULL )
\r
793 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
795 /* Tasks can be created statically or dynamically, so note this
\r
796 * task was created dynamically in case it is later deleted. */
\r
797 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
799 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
801 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
802 prvAddNewTaskToReadyList( pxNewTCB );
\r
807 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
813 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
814 /*-----------------------------------------------------------*/
\r
816 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
817 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
818 const uint32_t ulStackDepth,
\r
819 void * const pvParameters,
\r
820 UBaseType_t uxPriority,
\r
821 TaskHandle_t * const pxCreatedTask,
\r
823 const MemoryRegion_t * const xRegions )
\r
825 StackType_t * pxTopOfStack;
\r
828 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
829 /* Should the task be created in privileged mode? */
\r
830 BaseType_t xRunPrivileged;
\r
832 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
834 xRunPrivileged = pdTRUE;
\r
838 xRunPrivileged = pdFALSE;
\r
840 uxPriority &= ~portPRIVILEGE_BIT;
\r
841 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
843 /* Avoid dependency on memset() if it is not required. */
\r
844 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
846 /* Fill the stack with a known value to assist debugging. */
\r
847 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
849 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
851 /* Calculate the top of stack address. This depends on whether the stack
\r
852 * grows from high memory to low (as per the 80x86) or vice versa.
\r
853 * portSTACK_GROWTH is used to make the result positive or negative as required
\r
855 #if ( portSTACK_GROWTH < 0 )
\r
857 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
858 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
860 /* Check the alignment of the calculated top of stack is correct. */
\r
861 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
863 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
865 /* Also record the stack's high address, which may assist
\r
867 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
869 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
871 #else /* portSTACK_GROWTH */
\r
873 pxTopOfStack = pxNewTCB->pxStack;
\r
875 /* Check the alignment of the stack buffer is correct. */
\r
876 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
878 /* The other extreme of the stack space is required if stack checking is
\r
880 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
882 #endif /* portSTACK_GROWTH */
\r
884 /* Store the task name in the TCB. */
\r
885 if( pcName != NULL )
\r
887 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
889 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
891 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
892 * configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
893 * string is not accessible (extremely unlikely). */
\r
894 if( pcName[ x ] == ( char ) 0x00 )
\r
900 mtCOVERAGE_TEST_MARKER();
\r
904 /* Ensure the name string is terminated in the case that the string length
\r
905 * was greater or equal to configMAX_TASK_NAME_LEN. */
\r
906 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
910 /* The task has not been given a name, so just ensure there is a NULL
\r
911 * terminator when it is read out. */
\r
912 pxNewTCB->pcTaskName[ 0 ] = 0x00;
\r
915 /* This is used as an array index so must ensure it's not too large. */
\r
916 configASSERT( uxPriority < configMAX_PRIORITIES );
\r
917 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
919 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
923 mtCOVERAGE_TEST_MARKER();
\r
926 pxNewTCB->uxPriority = uxPriority;
\r
927 #if ( configUSE_MUTEXES == 1 )
\r
929 pxNewTCB->uxBasePriority = uxPriority;
\r
930 pxNewTCB->uxMutexesHeld = 0;
\r
932 #endif /* configUSE_MUTEXES */
\r
934 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
935 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
937 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
938 * back to the containing TCB from a generic item in a list. */
\r
939 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
941 /* Event lists are always in priority order. */
\r
942 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
943 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
945 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
947 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
949 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
951 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
953 pxNewTCB->pxTaskTag = NULL;
\r
955 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
957 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
959 pxNewTCB->ulRunTimeCounter = 0UL;
\r
961 #endif /* configGENERATE_RUN_TIME_STATS */
\r
963 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
965 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
969 /* Avoid compiler warning about unreferenced parameter. */
\r
974 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
976 memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
\r
980 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
982 memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
\r
983 memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
\r
987 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
989 /* Initialise this task's Newlib reent structure.
\r
990 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
991 * for additional information. */
\r
992 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
996 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
998 pxNewTCB->ucDelayAborted = pdFALSE;
\r
1002 /* Initialize the TCB stack to look as if the task was already running,
\r
1003 * but had been interrupted by the scheduler. The return address is set
\r
1004 * to the start of the task function. Once the stack has been initialised
\r
1005 * the top of stack variable is updated. */
\r
1006 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
1008 /* If the port has capability to detect stack overflow,
\r
1009 * pass the stack end address to the stack initialization
\r
1010 * function as well. */
\r
1011 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1013 #if ( portSTACK_GROWTH < 0 )
\r
1015 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1017 #else /* portSTACK_GROWTH */
\r
1019 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1021 #endif /* portSTACK_GROWTH */
\r
1023 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1025 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1027 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1029 #else /* portUSING_MPU_WRAPPERS */
\r
1031 /* If the port has capability to detect stack overflow,
\r
1032 * pass the stack end address to the stack initialization
\r
1033 * function as well. */
\r
1034 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1036 #if ( portSTACK_GROWTH < 0 )
\r
1038 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
1040 #else /* portSTACK_GROWTH */
\r
1042 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1044 #endif /* portSTACK_GROWTH */
\r
1046 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1048 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1050 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1052 #endif /* portUSING_MPU_WRAPPERS */
\r
1054 if( pxCreatedTask != NULL )
\r
1056 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1057 * change the created task's priority, delete the created task, etc.*/
\r
1058 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1062 mtCOVERAGE_TEST_MARKER();
\r
1065 /*-----------------------------------------------------------*/
\r
1067 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
\r
1069 /* Ensure interrupts don't access the task lists while the lists are being
\r
1071 taskENTER_CRITICAL();
\r
1073 uxCurrentNumberOfTasks++;
\r
1075 if( pxCurrentTCB == NULL )
\r
1077 /* There are no other tasks, or all the other tasks are in
\r
1078 * the suspended state - make this the current task. */
\r
1079 pxCurrentTCB = pxNewTCB;
\r
1081 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1083 /* This is the first task to be created so do the preliminary
\r
1084 * initialisation required. We will not recover if this call
\r
1085 * fails, but we will report the failure. */
\r
1086 prvInitialiseTaskLists();
\r
1090 mtCOVERAGE_TEST_MARKER();
\r
1095 /* If the scheduler is not already running, make this task the
\r
1096 * current task if it is the highest priority task to be created
\r
1098 if( xSchedulerRunning == pdFALSE )
\r
1100 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1102 pxCurrentTCB = pxNewTCB;
\r
1106 mtCOVERAGE_TEST_MARKER();
\r
1111 mtCOVERAGE_TEST_MARKER();
\r
1117 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1119 /* Add a counter into the TCB for tracing only. */
\r
1120 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1122 #endif /* configUSE_TRACE_FACILITY */
\r
1123 traceTASK_CREATE( pxNewTCB );
\r
1125 prvAddTaskToReadyList( pxNewTCB );
\r
1127 portSETUP_TCB( pxNewTCB );
\r
1129 taskEXIT_CRITICAL();
\r
1131 if( xSchedulerRunning != pdFALSE )
\r
1133 /* If the created task is of a higher priority than the current task
\r
1134 * then it should run now. */
\r
1135 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1137 taskYIELD_IF_USING_PREEMPTION();
\r
1141 mtCOVERAGE_TEST_MARKER();
\r
1146 mtCOVERAGE_TEST_MARKER();
\r
1149 /*-----------------------------------------------------------*/
\r
1151 #if ( INCLUDE_vTaskDelete == 1 )
\r
1153 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1157 taskENTER_CRITICAL();
\r
1159 /* If null is passed in here then it is the calling task that is
\r
1160 * being deleted. */
\r
1161 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1163 /* Remove task from the ready/delayed list. */
\r
1164 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1166 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1170 mtCOVERAGE_TEST_MARKER();
\r
1173 /* Is the task waiting on an event also? */
\r
1174 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1176 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1180 mtCOVERAGE_TEST_MARKER();
\r
1183 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1184 * detect that the task lists need re-generating. This is done before
\r
1185 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1189 if( pxTCB == pxCurrentTCB )
\r
1191 /* A task is deleting itself. This cannot complete within the
\r
1192 * task itself, as a context switch to another task is required.
\r
1193 * Place the task in the termination list. The idle task will
\r
1194 * check the termination list and free up any memory allocated by
\r
1195 * the scheduler for the TCB and stack of the deleted task. */
\r
1196 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1198 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1199 * there is a task that has been deleted and that it should therefore
\r
1200 * check the xTasksWaitingTermination list. */
\r
1201 ++uxDeletedTasksWaitingCleanUp;
\r
1203 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1204 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1205 traceTASK_DELETE( pxTCB );
\r
1207 /* The pre-delete hook is primarily for the Windows simulator,
\r
1208 * in which Windows specific clean up operations are performed,
\r
1209 * after which it is not possible to yield away from this task -
\r
1210 * hence xYieldPending is used to latch that a context switch is
\r
1212 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1216 --uxCurrentNumberOfTasks;
\r
1217 traceTASK_DELETE( pxTCB );
\r
1218 prvDeleteTCB( pxTCB );
\r
1220 /* Reset the next expected unblock time in case it referred to
\r
1221 * the task that has just been deleted. */
\r
1222 prvResetNextTaskUnblockTime();
\r
1225 taskEXIT_CRITICAL();
\r
1227 /* Force a reschedule if it is the currently running task that has just
\r
1228 * been deleted. */
\r
1229 if( xSchedulerRunning != pdFALSE )
\r
1231 if( pxTCB == pxCurrentTCB )
\r
1233 configASSERT( uxSchedulerSuspended == 0 );
\r
1234 portYIELD_WITHIN_API();
\r
1238 mtCOVERAGE_TEST_MARKER();
\r
1243 #endif /* INCLUDE_vTaskDelete */
\r
1244 /*-----------------------------------------------------------*/
\r
1246 #if ( INCLUDE_xTaskDelayUntil == 1 )
\r
1248 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
\r
1249 const TickType_t xTimeIncrement )
\r
1251 TickType_t xTimeToWake;
\r
1252 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1254 configASSERT( pxPreviousWakeTime );
\r
1255 configASSERT( ( xTimeIncrement > 0U ) );
\r
1256 configASSERT( uxSchedulerSuspended == 0 );
\r
1258 vTaskSuspendAll();
\r
1260 /* Minor optimisation. The tick count cannot change in this
\r
1262 const TickType_t xConstTickCount = xTickCount;
\r
1264 /* Generate the tick time at which the task wants to wake. */
\r
1265 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1267 if( xConstTickCount < *pxPreviousWakeTime )
\r
1269 /* The tick count has overflowed since this function was
\r
1270 * lasted called. In this case the only time we should ever
\r
1271 * actually delay is if the wake time has also overflowed,
\r
1272 * and the wake time is greater than the tick time. When this
\r
1273 * is the case it is as if neither time had overflowed. */
\r
1274 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1276 xShouldDelay = pdTRUE;
\r
1280 mtCOVERAGE_TEST_MARKER();
\r
1285 /* The tick time has not overflowed. In this case we will
\r
1286 * delay if either the wake time has overflowed, and/or the
\r
1287 * tick time is less than the wake time. */
\r
1288 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1290 xShouldDelay = pdTRUE;
\r
1294 mtCOVERAGE_TEST_MARKER();
\r
1298 /* Update the wake time ready for the next call. */
\r
1299 *pxPreviousWakeTime = xTimeToWake;
\r
1301 if( xShouldDelay != pdFALSE )
\r
1303 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1305 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1306 * the time to wake, so subtract the current tick count. */
\r
1307 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1311 mtCOVERAGE_TEST_MARKER();
\r
1314 xAlreadyYielded = xTaskResumeAll();
\r
1316 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1317 * have put ourselves to sleep. */
\r
1318 if( xAlreadyYielded == pdFALSE )
\r
1320 portYIELD_WITHIN_API();
\r
1324 mtCOVERAGE_TEST_MARKER();
\r
1327 return xShouldDelay;
\r
1330 #endif /* INCLUDE_xTaskDelayUntil */
\r
1331 /*-----------------------------------------------------------*/
\r
1333 #if ( INCLUDE_vTaskDelay == 1 )
\r
1335 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1337 BaseType_t xAlreadyYielded = pdFALSE;
\r
1339 /* A delay time of zero just forces a reschedule. */
\r
1340 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1342 configASSERT( uxSchedulerSuspended == 0 );
\r
1343 vTaskSuspendAll();
\r
1345 traceTASK_DELAY();
\r
1347 /* A task that is removed from the event list while the
\r
1348 * scheduler is suspended will not get placed in the ready
\r
1349 * list or removed from the blocked list until the scheduler
\r
1352 * This task cannot be in an event list as it is the currently
\r
1353 * executing task. */
\r
1354 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1356 xAlreadyYielded = xTaskResumeAll();
\r
1360 mtCOVERAGE_TEST_MARKER();
\r
1363 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1364 * have put ourselves to sleep. */
\r
1365 if( xAlreadyYielded == pdFALSE )
\r
1367 portYIELD_WITHIN_API();
\r
1371 mtCOVERAGE_TEST_MARKER();
\r
1375 #endif /* INCLUDE_vTaskDelay */
\r
1376 /*-----------------------------------------------------------*/
\r
1378 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1380 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1382 eTaskState eReturn;
\r
1383 List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
\r
1384 const TCB_t * const pxTCB = xTask;
\r
1386 configASSERT( pxTCB );
\r
1388 if( pxTCB == pxCurrentTCB )
\r
1390 /* The task calling this function is querying its own state. */
\r
1391 eReturn = eRunning;
\r
1395 taskENTER_CRITICAL();
\r
1397 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1398 pxDelayedList = pxDelayedTaskList;
\r
1399 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1401 taskEXIT_CRITICAL();
\r
1403 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1405 /* The task being queried is referenced from one of the Blocked
\r
1407 eReturn = eBlocked;
\r
1410 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1411 else if( pxStateList == &xSuspendedTaskList )
\r
1413 /* The task being queried is referenced from the suspended
\r
1414 * list. Is it genuinely suspended or is it blocked
\r
1415 * indefinitely? */
\r
1416 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1418 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1422 /* The task does not appear on the event list item of
\r
1423 * and of the RTOS objects, but could still be in the
\r
1424 * blocked state if it is waiting on its notification
\r
1425 * rather than waiting on an object. If not, is
\r
1427 eReturn = eSuspended;
\r
1429 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1431 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1433 eReturn = eBlocked;
\r
1438 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1440 eReturn = eSuspended;
\r
1442 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1446 eReturn = eBlocked;
\r
1449 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
\r
1451 #if ( INCLUDE_vTaskDelete == 1 )
\r
1452 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1454 /* The task being queried is referenced from the deleted
\r
1455 * tasks list, or it is not referenced from any lists at
\r
1457 eReturn = eDeleted;
\r
1461 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1463 /* If the task is not in any other state, it must be in the
\r
1464 * Ready (including pending ready) state. */
\r
1470 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1472 #endif /* INCLUDE_eTaskGetState */
\r
1473 /*-----------------------------------------------------------*/
\r
1475 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1477 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1479 TCB_t const * pxTCB;
\r
1480 UBaseType_t uxReturn;
\r
1482 taskENTER_CRITICAL();
\r
1484 /* If null is passed in here then it is the priority of the task
\r
1485 * that called uxTaskPriorityGet() that is being queried. */
\r
1486 pxTCB = prvGetTCBFromHandle( xTask );
\r
1487 uxReturn = pxTCB->uxPriority;
\r
1489 taskEXIT_CRITICAL();
\r
1494 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1495 /*-----------------------------------------------------------*/
\r
1497 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1499 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1501 TCB_t const * pxTCB;
\r
1502 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1504 /* RTOS ports that support interrupt nesting have the concept of a
\r
1505 * maximum system call (or maximum API call) interrupt priority.
\r
1506 * Interrupts that are above the maximum system call priority are keep
\r
1507 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1508 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1509 * is defined in FreeRTOSConfig.h then
\r
1510 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1511 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1512 * been assigned a priority above the configured maximum system call
\r
1513 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1514 * from interrupts that have been assigned a priority at or (logically)
\r
1515 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1516 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1517 * simple as possible. More information (albeit Cortex-M specific) is
\r
1518 * provided on the following link:
\r
1519 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1520 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1522 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1524 /* If null is passed in here then it is the priority of the calling
\r
1525 * task that is being queried. */
\r
1526 pxTCB = prvGetTCBFromHandle( xTask );
\r
1527 uxReturn = pxTCB->uxPriority;
\r
1529 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1534 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1535 /*-----------------------------------------------------------*/
\r
1537 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1539 void vTaskPrioritySet( TaskHandle_t xTask,
\r
1540 UBaseType_t uxNewPriority )
\r
1543 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1544 BaseType_t xYieldRequired = pdFALSE;
\r
1546 configASSERT( uxNewPriority < configMAX_PRIORITIES );
\r
1548 /* Ensure the new priority is valid. */
\r
1549 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1551 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1555 mtCOVERAGE_TEST_MARKER();
\r
1558 taskENTER_CRITICAL();
\r
1560 /* If null is passed in here then it is the priority of the calling
\r
1561 * task that is being changed. */
\r
1562 pxTCB = prvGetTCBFromHandle( xTask );
\r
1564 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1566 #if ( configUSE_MUTEXES == 1 )
\r
1568 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1572 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1576 if( uxCurrentBasePriority != uxNewPriority )
\r
1578 /* The priority change may have readied a task of higher
\r
1579 * priority than the calling task. */
\r
1580 if( uxNewPriority > uxCurrentBasePriority )
\r
1582 if( pxTCB != pxCurrentTCB )
\r
1584 /* The priority of a task other than the currently
\r
1585 * running task is being raised. Is the priority being
\r
1586 * raised above that of the running task? */
\r
1587 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1589 xYieldRequired = pdTRUE;
\r
1593 mtCOVERAGE_TEST_MARKER();
\r
1598 /* The priority of the running task is being raised,
\r
1599 * but the running task must already be the highest
\r
1600 * priority task able to run so no yield is required. */
\r
1603 else if( pxTCB == pxCurrentTCB )
\r
1605 /* Setting the priority of the running task down means
\r
1606 * there may now be another task of higher priority that
\r
1607 * is ready to execute. */
\r
1608 xYieldRequired = pdTRUE;
\r
1612 /* Setting the priority of any other task down does not
\r
1613 * require a yield as the running task must be above the
\r
1614 * new priority of the task being modified. */
\r
1617 /* Remember the ready list the task might be referenced from
\r
1618 * before its uxPriority member is changed so the
\r
1619 * taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1620 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1622 #if ( configUSE_MUTEXES == 1 )
\r
1624 /* Only change the priority being used if the task is not
\r
1625 * currently using an inherited priority. */
\r
1626 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1628 pxTCB->uxPriority = uxNewPriority;
\r
1632 mtCOVERAGE_TEST_MARKER();
\r
1635 /* The base priority gets set whatever. */
\r
1636 pxTCB->uxBasePriority = uxNewPriority;
\r
1638 #else /* if ( configUSE_MUTEXES == 1 ) */
\r
1640 pxTCB->uxPriority = uxNewPriority;
\r
1642 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1644 /* Only reset the event list item value if the value is not
\r
1645 * being used for anything else. */
\r
1646 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1648 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1652 mtCOVERAGE_TEST_MARKER();
\r
1655 /* If the task is in the blocked or suspended list we need do
\r
1656 * nothing more than change its priority variable. However, if
\r
1657 * the task is in a ready list it needs to be removed and placed
\r
1658 * in the list appropriate to its new priority. */
\r
1659 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1661 /* The task is currently in its ready list - remove before
\r
1662 * adding it to its new ready list. As we are in a critical
\r
1663 * section we can do this even if the scheduler is suspended. */
\r
1664 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1666 /* It is known that the task is in its ready list so
\r
1667 * there is no need to check again and the port level
\r
1668 * reset macro can be called directly. */
\r
1669 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1673 mtCOVERAGE_TEST_MARKER();
\r
1676 prvAddTaskToReadyList( pxTCB );
\r
1680 mtCOVERAGE_TEST_MARKER();
\r
1683 if( xYieldRequired != pdFALSE )
\r
1685 taskYIELD_IF_USING_PREEMPTION();
\r
1689 mtCOVERAGE_TEST_MARKER();
\r
1692 /* Remove compiler warning about unused variables when the port
\r
1693 * optimised task selection is not being used. */
\r
1694 ( void ) uxPriorityUsedOnEntry;
\r
1697 taskEXIT_CRITICAL();
\r
1700 #endif /* INCLUDE_vTaskPrioritySet */
\r
1701 /*-----------------------------------------------------------*/
\r
1703 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1705 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1709 taskENTER_CRITICAL();
\r
1711 /* If null is passed in here then it is the running task that is
\r
1712 * being suspended. */
\r
1713 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1715 traceTASK_SUSPEND( pxTCB );
\r
1717 /* Remove task from the ready/delayed list and place in the
\r
1718 * suspended list. */
\r
1719 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1721 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1725 mtCOVERAGE_TEST_MARKER();
\r
1728 /* Is the task waiting on an event also? */
\r
1729 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1731 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1735 mtCOVERAGE_TEST_MARKER();
\r
1738 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1740 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1744 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1746 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1748 /* The task was blocked to wait for a notification, but is
\r
1749 * now suspended, so no notification was received. */
\r
1750 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
\r
1754 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1756 taskEXIT_CRITICAL();
\r
1758 if( xSchedulerRunning != pdFALSE )
\r
1760 /* Reset the next expected unblock time in case it referred to the
\r
1761 * task that is now in the Suspended state. */
\r
1762 taskENTER_CRITICAL();
\r
1764 prvResetNextTaskUnblockTime();
\r
1766 taskEXIT_CRITICAL();
\r
1770 mtCOVERAGE_TEST_MARKER();
\r
1773 if( pxTCB == pxCurrentTCB )
\r
1775 if( xSchedulerRunning != pdFALSE )
\r
1777 /* The current task has just been suspended. */
\r
1778 configASSERT( uxSchedulerSuspended == 0 );
\r
1779 portYIELD_WITHIN_API();
\r
1783 /* The scheduler is not running, but the task that was pointed
\r
1784 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1785 * must be adjusted to point to a different task. */
\r
1786 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1788 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1789 * NULL so when the next task is created pxCurrentTCB will
\r
1790 * be set to point to it no matter what its relative priority
\r
1792 pxCurrentTCB = NULL;
\r
1796 vTaskSwitchContext();
\r
1802 mtCOVERAGE_TEST_MARKER();
\r
1806 #endif /* INCLUDE_vTaskSuspend */
\r
1807 /*-----------------------------------------------------------*/
\r
1809 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1811 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1813 BaseType_t xReturn = pdFALSE;
\r
1814 const TCB_t * const pxTCB = xTask;
\r
1816 /* Accesses xPendingReadyList so must be called from a critical
\r
1819 /* It does not make sense to check if the calling task is suspended. */
\r
1820 configASSERT( xTask );
\r
1822 /* Is the task being resumed actually in the suspended list? */
\r
1823 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1825 /* Has the task already been resumed from within an ISR? */
\r
1826 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1828 /* Is it in the suspended list because it is in the Suspended
\r
1829 * state, or because is is blocked with no timeout? */
\r
1830 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1836 mtCOVERAGE_TEST_MARKER();
\r
1841 mtCOVERAGE_TEST_MARKER();
\r
1846 mtCOVERAGE_TEST_MARKER();
\r
1850 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1852 #endif /* INCLUDE_vTaskSuspend */
\r
1853 /*-----------------------------------------------------------*/
\r
1855 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1857 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1859 TCB_t * const pxTCB = xTaskToResume;
\r
1861 /* It does not make sense to resume the calling task. */
\r
1862 configASSERT( xTaskToResume );
\r
1864 /* The parameter cannot be NULL as it is impossible to resume the
\r
1865 * currently executing task. */
\r
1866 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1868 taskENTER_CRITICAL();
\r
1870 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1872 traceTASK_RESUME( pxTCB );
\r
1874 /* The ready list can be accessed even if the scheduler is
\r
1875 * suspended because this is inside a critical section. */
\r
1876 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1877 prvAddTaskToReadyList( pxTCB );
\r
1879 /* A higher priority task may have just been resumed. */
\r
1880 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1882 /* This yield may not cause the task just resumed to run,
\r
1883 * but will leave the lists in the correct state for the
\r
1885 taskYIELD_IF_USING_PREEMPTION();
\r
1889 mtCOVERAGE_TEST_MARKER();
\r
1894 mtCOVERAGE_TEST_MARKER();
\r
1897 taskEXIT_CRITICAL();
\r
1901 mtCOVERAGE_TEST_MARKER();
\r
1905 #endif /* INCLUDE_vTaskSuspend */
\r
1907 /*-----------------------------------------------------------*/
\r
1909 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1911 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1913 BaseType_t xYieldRequired = pdFALSE;
\r
1914 TCB_t * const pxTCB = xTaskToResume;
\r
1915 UBaseType_t uxSavedInterruptStatus;
\r
1917 configASSERT( xTaskToResume );
\r
1919 /* RTOS ports that support interrupt nesting have the concept of a
\r
1920 * maximum system call (or maximum API call) interrupt priority.
\r
1921 * Interrupts that are above the maximum system call priority are keep
\r
1922 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1923 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1924 * is defined in FreeRTOSConfig.h then
\r
1925 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1926 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1927 * been assigned a priority above the configured maximum system call
\r
1928 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1929 * from interrupts that have been assigned a priority at or (logically)
\r
1930 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1931 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1932 * simple as possible. More information (albeit Cortex-M specific) is
\r
1933 * provided on the following link:
\r
1934 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1935 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1937 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1939 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1941 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1943 /* Check the ready lists can be accessed. */
\r
1944 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1946 /* Ready lists can be accessed so move the task from the
\r
1947 * suspended list to the ready list directly. */
\r
1948 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1950 xYieldRequired = pdTRUE;
\r
1952 /* Mark that a yield is pending in case the user is not
\r
1953 * using the return value to initiate a context switch
\r
1954 * from the ISR using portYIELD_FROM_ISR. */
\r
1955 xYieldPending = pdTRUE;
\r
1959 mtCOVERAGE_TEST_MARKER();
\r
1962 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1963 prvAddTaskToReadyList( pxTCB );
\r
1967 /* The delayed or ready lists cannot be accessed so the task
\r
1968 * is held in the pending ready list until the scheduler is
\r
1970 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1975 mtCOVERAGE_TEST_MARKER();
\r
1978 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1980 return xYieldRequired;
\r
1983 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1984 /*-----------------------------------------------------------*/
\r
1986 void vTaskStartScheduler( void )
\r
1988 BaseType_t xReturn;
\r
1990 /* Add the idle task at the lowest priority. */
\r
1991 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1993 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
\r
1994 StackType_t * pxIdleTaskStackBuffer = NULL;
\r
1995 uint32_t ulIdleTaskStackSize;
\r
1997 /* The Idle task is created using user provided RAM - obtain the
\r
1998 * address of the RAM then create the idle task. */
\r
1999 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
2000 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
2001 configIDLE_TASK_NAME,
\r
2002 ulIdleTaskStackSize,
\r
2003 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
2004 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2005 pxIdleTaskStackBuffer,
\r
2006 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2008 if( xIdleTaskHandle != NULL )
\r
2017 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
2019 /* The Idle task is being created using dynamically allocated RAM. */
\r
2020 xReturn = xTaskCreate( prvIdleTask,
\r
2021 configIDLE_TASK_NAME,
\r
2022 configMINIMAL_STACK_SIZE,
\r
2024 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2025 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2027 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
2029 #if ( configUSE_TIMERS == 1 )
\r
2031 if( xReturn == pdPASS )
\r
2033 xReturn = xTimerCreateTimerTask();
\r
2037 mtCOVERAGE_TEST_MARKER();
\r
2040 #endif /* configUSE_TIMERS */
\r
2042 if( xReturn == pdPASS )
\r
2044 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2045 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2046 * the only macro called by the function. */
\r
2047 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2049 freertos_tasks_c_additions_init();
\r
2053 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2054 * before or during the call to xPortStartScheduler(). The stacks of
\r
2055 * the created tasks contain a status word with interrupts switched on
\r
2056 * so interrupts will automatically get re-enabled when the first task
\r
2057 * starts to run. */
\r
2058 portDISABLE_INTERRUPTS();
\r
2060 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2062 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2063 * structure specific to the task that will run first.
\r
2064 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
2065 * for additional information. */
\r
2066 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2068 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2070 xNextTaskUnblockTime = portMAX_DELAY;
\r
2071 xSchedulerRunning = pdTRUE;
\r
2072 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2074 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2075 * macro must be defined to configure the timer/counter used to generate
\r
2076 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2077 * is set to 0 and the following line fails to build then ensure you do not
\r
2078 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2079 * FreeRTOSConfig.h file. */
\r
2080 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2082 traceTASK_SWITCHED_IN();
\r
2084 /* Setting up the timer tick is hardware specific and thus in the
\r
2085 * portable interface. */
\r
2086 if( xPortStartScheduler() != pdFALSE )
\r
2088 /* Should not reach here as if the scheduler is running the
\r
2089 * function will not return. */
\r
2093 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2098 /* This line will only be reached if the kernel could not be started,
\r
2099 * because there was not enough FreeRTOS heap to create the idle task
\r
2100 * or the timer task. */
\r
2101 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2104 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2105 * meaning xIdleTaskHandle is not used anywhere else. */
\r
2106 ( void ) xIdleTaskHandle;
\r
2108 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
\r
2109 * from getting optimized out as it is no longer used by the kernel. */
\r
2110 ( void ) uxTopUsedPriority;
\r
2112 /*-----------------------------------------------------------*/
\r
2114 void vTaskEndScheduler( void )
\r
2116 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2117 * routine so the original ISRs can be restored if necessary. The port
\r
2118 * layer must ensure interrupts enable bit is left in the correct state. */
\r
2119 portDISABLE_INTERRUPTS();
\r
2120 xSchedulerRunning = pdFALSE;
\r
2121 vPortEndScheduler();
\r
2123 /*----------------------------------------------------------*/
\r
2125 void vTaskSuspendAll( void )
\r
2127 /* A critical section is not required as the variable is of type
\r
2128 * BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2129 * post in the FreeRTOS support forum before reporting this as a bug! -
\r
2130 * https://goo.gl/wu4acr */
\r
2132 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2133 * do not otherwise exhibit real time behaviour. */
\r
2134 portSOFTWARE_BARRIER();
\r
2136 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2137 * is used to allow calls to vTaskSuspendAll() to nest. */
\r
2138 ++uxSchedulerSuspended;
\r
2140 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2141 * the above increment elsewhere. */
\r
2142 portMEMORY_BARRIER();
\r
2144 /*----------------------------------------------------------*/
\r
2146 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2148 static TickType_t prvGetExpectedIdleTime( void )
\r
2150 TickType_t xReturn;
\r
2151 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2153 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2154 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2155 * task that are in the Ready state, even though the idle task is
\r
2157 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2159 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2161 uxHigherPriorityReadyTasks = pdTRUE;
\r
2166 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2168 /* When port optimised task selection is used the uxTopReadyPriority
\r
2169 * variable is used as a bit map. If bits other than the least
\r
2170 * significant bit are set then there are tasks that have a priority
\r
2171 * above the idle priority that are in the Ready state. This takes
\r
2172 * care of the case where the co-operative scheduler is in use. */
\r
2173 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2175 uxHigherPriorityReadyTasks = pdTRUE;
\r
2178 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
\r
2180 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2184 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2186 /* There are other idle priority tasks in the ready state. If
\r
2187 * time slicing is used then the very next tick interrupt must be
\r
2191 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2193 /* There are tasks in the Ready state that have a priority above the
\r
2194 * idle priority. This path can only be reached if
\r
2195 * configUSE_PREEMPTION is 0. */
\r
2200 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2206 #endif /* configUSE_TICKLESS_IDLE */
\r
2207 /*----------------------------------------------------------*/
\r
2209 BaseType_t xTaskResumeAll( void )
\r
2211 TCB_t * pxTCB = NULL;
\r
2212 BaseType_t xAlreadyYielded = pdFALSE;
\r
2214 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2215 * previous call to vTaskSuspendAll(). */
\r
2216 configASSERT( uxSchedulerSuspended );
\r
2218 /* It is possible that an ISR caused a task to be removed from an event
\r
2219 * list while the scheduler was suspended. If this was the case then the
\r
2220 * removed task will have been added to the xPendingReadyList. Once the
\r
2221 * scheduler has been resumed it is safe to move all the pending ready
\r
2222 * tasks from this list into their appropriate ready list. */
\r
2223 taskENTER_CRITICAL();
\r
2225 --uxSchedulerSuspended;
\r
2227 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2229 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2231 /* Move any readied tasks from the pending list into the
\r
2232 * appropriate ready list. */
\r
2233 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2235 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2236 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2237 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2238 prvAddTaskToReadyList( pxTCB );
\r
2240 /* If the moved task has a priority higher than or equal to
\r
2241 * the current task then a yield must be performed. */
\r
2242 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2244 xYieldPending = pdTRUE;
\r
2248 mtCOVERAGE_TEST_MARKER();
\r
2252 if( pxTCB != NULL )
\r
2254 /* A task was unblocked while the scheduler was suspended,
\r
2255 * which may have prevented the next unblock time from being
\r
2256 * re-calculated, in which case re-calculate it now. Mainly
\r
2257 * important for low power tickless implementations, where
\r
2258 * this can prevent an unnecessary exit from low power
\r
2260 prvResetNextTaskUnblockTime();
\r
2263 /* If any ticks occurred while the scheduler was suspended then
\r
2264 * they should be processed now. This ensures the tick count does
\r
2265 * not slip, and that any delayed tasks are resumed at the correct
\r
2268 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2270 if( xPendedCounts > ( TickType_t ) 0U )
\r
2274 if( xTaskIncrementTick() != pdFALSE )
\r
2276 xYieldPending = pdTRUE;
\r
2280 mtCOVERAGE_TEST_MARKER();
\r
2284 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2290 mtCOVERAGE_TEST_MARKER();
\r
2294 if( xYieldPending != pdFALSE )
\r
2296 #if ( configUSE_PREEMPTION != 0 )
\r
2298 xAlreadyYielded = pdTRUE;
\r
2301 taskYIELD_IF_USING_PREEMPTION();
\r
2305 mtCOVERAGE_TEST_MARKER();
\r
2311 mtCOVERAGE_TEST_MARKER();
\r
2314 taskEXIT_CRITICAL();
\r
2316 return xAlreadyYielded;
\r
2318 /*-----------------------------------------------------------*/
\r
2320 TickType_t xTaskGetTickCount( void )
\r
2322 TickType_t xTicks;
\r
2324 /* Critical section required if running on a 16 bit processor. */
\r
2325 portTICK_TYPE_ENTER_CRITICAL();
\r
2327 xTicks = xTickCount;
\r
2329 portTICK_TYPE_EXIT_CRITICAL();
\r
2333 /*-----------------------------------------------------------*/
\r
2335 TickType_t xTaskGetTickCountFromISR( void )
\r
2337 TickType_t xReturn;
\r
2338 UBaseType_t uxSavedInterruptStatus;
\r
2340 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2341 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
2342 * above the maximum system call priority are kept permanently enabled, even
\r
2343 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2344 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2345 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2346 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2347 * assigned a priority above the configured maximum system call priority.
\r
2348 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2349 * that have been assigned a priority at or (logically) below the maximum
\r
2350 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2351 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2352 * More information (albeit Cortex-M specific) is provided on the following
\r
2353 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
2354 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2356 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2358 xReturn = xTickCount;
\r
2360 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2364 /*-----------------------------------------------------------*/
\r
2366 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2368 /* A critical section is not required because the variables are of type
\r
2370 return uxCurrentNumberOfTasks;
\r
2372 /*-----------------------------------------------------------*/
\r
2374 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2378 /* If null is passed in here then the name of the calling task is being
\r
2380 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2381 configASSERT( pxTCB );
\r
2382 return &( pxTCB->pcTaskName[ 0 ] );
\r
2384 /*-----------------------------------------------------------*/
\r
2386 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2388 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
2389 const char pcNameToQuery[] )
\r
2391 TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
\r
2394 BaseType_t xBreakLoop;
\r
2396 /* This function is called with the scheduler suspended. */
\r
2398 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2400 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2404 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2406 /* Check each character in the name looking for a match or
\r
2408 xBreakLoop = pdFALSE;
\r
2410 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2412 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2414 if( cNextChar != pcNameToQuery[ x ] )
\r
2416 /* Characters didn't match. */
\r
2417 xBreakLoop = pdTRUE;
\r
2419 else if( cNextChar == ( char ) 0x00 )
\r
2421 /* Both strings terminated, a match must have been
\r
2423 pxReturn = pxNextTCB;
\r
2424 xBreakLoop = pdTRUE;
\r
2428 mtCOVERAGE_TEST_MARKER();
\r
2431 if( xBreakLoop != pdFALSE )
\r
2437 if( pxReturn != NULL )
\r
2439 /* The handle has been found. */
\r
2442 } while( pxNextTCB != pxFirstTCB );
\r
2446 mtCOVERAGE_TEST_MARKER();
\r
2452 #endif /* INCLUDE_xTaskGetHandle */
\r
2453 /*-----------------------------------------------------------*/
\r
2455 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2457 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2459 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2462 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2463 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2465 vTaskSuspendAll();
\r
2467 /* Search the ready lists. */
\r
2471 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2473 if( pxTCB != NULL )
\r
2475 /* Found the handle. */
\r
2478 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2480 /* Search the delayed lists. */
\r
2481 if( pxTCB == NULL )
\r
2483 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2486 if( pxTCB == NULL )
\r
2488 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2491 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2493 if( pxTCB == NULL )
\r
2495 /* Search the suspended list. */
\r
2496 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2501 #if ( INCLUDE_vTaskDelete == 1 )
\r
2503 if( pxTCB == NULL )
\r
2505 /* Search the deleted list. */
\r
2506 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2511 ( void ) xTaskResumeAll();
\r
2516 #endif /* INCLUDE_xTaskGetHandle */
\r
2517 /*-----------------------------------------------------------*/
\r
2519 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2521 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
\r
2522 const UBaseType_t uxArraySize,
\r
2523 uint32_t * const pulTotalRunTime )
\r
2525 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2527 vTaskSuspendAll();
\r
2529 /* Is there a space in the array for each task in the system? */
\r
2530 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2532 /* Fill in an TaskStatus_t structure with information on each
\r
2533 * task in the Ready state. */
\r
2537 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2538 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2540 /* Fill in an TaskStatus_t structure with information on each
\r
2541 * task in the Blocked state. */
\r
2542 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2543 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2545 #if ( INCLUDE_vTaskDelete == 1 )
\r
2547 /* Fill in an TaskStatus_t structure with information on
\r
2548 * each task that has been deleted but not yet cleaned up. */
\r
2549 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2553 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2555 /* Fill in an TaskStatus_t structure with information on
\r
2556 * each task in the Suspended state. */
\r
2557 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2561 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2563 if( pulTotalRunTime != NULL )
\r
2565 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2566 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2568 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2572 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2574 if( pulTotalRunTime != NULL )
\r
2576 *pulTotalRunTime = 0;
\r
2579 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2583 mtCOVERAGE_TEST_MARKER();
\r
2586 ( void ) xTaskResumeAll();
\r
2591 #endif /* configUSE_TRACE_FACILITY */
\r
2592 /*----------------------------------------------------------*/
\r
2594 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2596 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2598 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2599 * started, then xIdleTaskHandle will be NULL. */
\r
2600 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2601 return xIdleTaskHandle;
\r
2604 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2605 /*----------------------------------------------------------*/
\r
2607 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2608 * This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2609 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2611 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2613 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2615 /* Correct the tick count value after a period during which the tick
\r
2616 * was suppressed. Note this does *not* call the tick hook function for
\r
2617 * each stepped tick. */
\r
2618 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2619 xTickCount += xTicksToJump;
\r
2620 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2623 #endif /* configUSE_TICKLESS_IDLE */
\r
2624 /*----------------------------------------------------------*/
\r
2626 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2628 BaseType_t xYieldOccurred;
\r
2630 /* Must not be called with the scheduler suspended as the implementation
\r
2631 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2632 configASSERT( uxSchedulerSuspended == 0 );
\r
2634 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2635 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2636 vTaskSuspendAll();
\r
2637 xPendedTicks += xTicksToCatchUp;
\r
2638 xYieldOccurred = xTaskResumeAll();
\r
2640 return xYieldOccurred;
\r
2642 /*----------------------------------------------------------*/
\r
2644 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2646 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2648 TCB_t * pxTCB = xTask;
\r
2649 BaseType_t xReturn;
\r
2651 configASSERT( pxTCB );
\r
2653 vTaskSuspendAll();
\r
2655 /* A task can only be prematurely removed from the Blocked state if
\r
2656 * it is actually in the Blocked state. */
\r
2657 if( eTaskGetState( xTask ) == eBlocked )
\r
2661 /* Remove the reference to the task from the blocked list. An
\r
2662 * interrupt won't touch the xStateListItem because the
\r
2663 * scheduler is suspended. */
\r
2664 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2666 /* Is the task waiting on an event also? If so remove it from
\r
2667 * the event list too. Interrupts can touch the event list item,
\r
2668 * even though the scheduler is suspended, so a critical section
\r
2670 taskENTER_CRITICAL();
\r
2672 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2674 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2676 /* This lets the task know it was forcibly removed from the
\r
2677 * blocked state so it should not re-evaluate its block time and
\r
2678 * then block again. */
\r
2679 pxTCB->ucDelayAborted = pdTRUE;
\r
2683 mtCOVERAGE_TEST_MARKER();
\r
2686 taskEXIT_CRITICAL();
\r
2688 /* Place the unblocked task into the appropriate ready list. */
\r
2689 prvAddTaskToReadyList( pxTCB );
\r
2691 /* A task being unblocked cannot cause an immediate context
\r
2692 * switch if preemption is turned off. */
\r
2693 #if ( configUSE_PREEMPTION == 1 )
\r
2695 /* Preemption is on, but a context switch should only be
\r
2696 * performed if the unblocked task has a priority that is
\r
2697 * higher than the currently executing task. */
\r
2698 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2700 /* Pend the yield to be performed when the scheduler
\r
2701 * is unsuspended. */
\r
2702 xYieldPending = pdTRUE;
\r
2706 mtCOVERAGE_TEST_MARKER();
\r
2709 #endif /* configUSE_PREEMPTION */
\r
2716 ( void ) xTaskResumeAll();
\r
2721 #endif /* INCLUDE_xTaskAbortDelay */
\r
2722 /*----------------------------------------------------------*/
\r
2724 BaseType_t xTaskIncrementTick( void )
\r
2727 TickType_t xItemValue;
\r
2728 BaseType_t xSwitchRequired = pdFALSE;
\r
2730 /* Called by the portable layer each time a tick interrupt occurs.
\r
2731 * Increments the tick then checks to see if the new tick value will cause any
\r
2732 * tasks to be unblocked. */
\r
2733 traceTASK_INCREMENT_TICK( xTickCount );
\r
2735 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2737 /* Minor optimisation. The tick count cannot change in this
\r
2739 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2741 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2742 * delayed lists if it wraps to 0. */
\r
2743 xTickCount = xConstTickCount;
\r
2745 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2747 taskSWITCH_DELAYED_LISTS();
\r
2751 mtCOVERAGE_TEST_MARKER();
\r
2754 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2755 * the queue in the order of their wake time - meaning once one task
\r
2756 * has been found whose block time has not expired there is no need to
\r
2757 * look any further down the list. */
\r
2758 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2762 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2764 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2765 * to the maximum possible value so it is extremely
\r
2766 * unlikely that the
\r
2767 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2768 * next time through. */
\r
2769 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2774 /* The delayed list is not empty, get the value of the
\r
2775 * item at the head of the delayed list. This is the time
\r
2776 * at which the task at the head of the delayed list must
\r
2777 * be removed from the Blocked state. */
\r
2778 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2779 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2781 if( xConstTickCount < xItemValue )
\r
2783 /* It is not time to unblock this item yet, but the
\r
2784 * item value is the time at which the task at the head
\r
2785 * of the blocked list must be removed from the Blocked
\r
2786 * state - so record the item value in
\r
2787 * xNextTaskUnblockTime. */
\r
2788 xNextTaskUnblockTime = xItemValue;
\r
2789 break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
\r
2793 mtCOVERAGE_TEST_MARKER();
\r
2796 /* It is time to remove the item from the Blocked state. */
\r
2797 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2799 /* Is the task waiting on an event also? If so remove
\r
2800 * it from the event list. */
\r
2801 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2803 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2807 mtCOVERAGE_TEST_MARKER();
\r
2810 /* Place the unblocked task into the appropriate ready
\r
2812 prvAddTaskToReadyList( pxTCB );
\r
2814 /* A task being unblocked cannot cause an immediate
\r
2815 * context switch if preemption is turned off. */
\r
2816 #if ( configUSE_PREEMPTION == 1 )
\r
2818 /* Preemption is on, but a context switch should
\r
2819 * only be performed if the unblocked task has a
\r
2820 * priority that is equal to or higher than the
\r
2821 * currently executing task. */
\r
2822 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2824 xSwitchRequired = pdTRUE;
\r
2828 mtCOVERAGE_TEST_MARKER();
\r
2831 #endif /* configUSE_PREEMPTION */
\r
2836 /* Tasks of equal priority to the currently running task will share
\r
2837 * processing time (time slice) if preemption is on, and the application
\r
2838 * writer has not explicitly turned time slicing off. */
\r
2839 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2841 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2843 xSwitchRequired = pdTRUE;
\r
2847 mtCOVERAGE_TEST_MARKER();
\r
2850 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2852 #if ( configUSE_TICK_HOOK == 1 )
\r
2854 /* Guard against the tick hook being called when the pended tick
\r
2855 * count is being unwound (when the scheduler is being unlocked). */
\r
2856 if( xPendedTicks == ( TickType_t ) 0 )
\r
2858 vApplicationTickHook();
\r
2862 mtCOVERAGE_TEST_MARKER();
\r
2865 #endif /* configUSE_TICK_HOOK */
\r
2867 #if ( configUSE_PREEMPTION == 1 )
\r
2869 if( xYieldPending != pdFALSE )
\r
2871 xSwitchRequired = pdTRUE;
\r
2875 mtCOVERAGE_TEST_MARKER();
\r
2878 #endif /* configUSE_PREEMPTION */
\r
2884 /* The tick hook gets called at regular intervals, even if the
\r
2885 * scheduler is locked. */
\r
2886 #if ( configUSE_TICK_HOOK == 1 )
\r
2888 vApplicationTickHook();
\r
2893 return xSwitchRequired;
\r
2895 /*-----------------------------------------------------------*/
\r
2897 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2899 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
\r
2900 TaskHookFunction_t pxHookFunction )
\r
2904 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2906 if( xTask == NULL )
\r
2908 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2915 /* Save the hook function in the TCB. A critical section is required as
\r
2916 * the value can be accessed from an interrupt. */
\r
2917 taskENTER_CRITICAL();
\r
2919 xTCB->pxTaskTag = pxHookFunction;
\r
2921 taskEXIT_CRITICAL();
\r
2924 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2925 /*-----------------------------------------------------------*/
\r
2927 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2929 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2932 TaskHookFunction_t xReturn;
\r
2934 /* If xTask is NULL then set the calling task's hook. */
\r
2935 pxTCB = prvGetTCBFromHandle( xTask );
\r
2937 /* Save the hook function in the TCB. A critical section is required as
\r
2938 * the value can be accessed from an interrupt. */
\r
2939 taskENTER_CRITICAL();
\r
2941 xReturn = pxTCB->pxTaskTag;
\r
2943 taskEXIT_CRITICAL();
\r
2948 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2949 /*-----------------------------------------------------------*/
\r
2951 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2953 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2956 TaskHookFunction_t xReturn;
\r
2957 UBaseType_t uxSavedInterruptStatus;
\r
2959 /* If xTask is NULL then set the calling task's hook. */
\r
2960 pxTCB = prvGetTCBFromHandle( xTask );
\r
2962 /* Save the hook function in the TCB. A critical section is required as
\r
2963 * the value can be accessed from an interrupt. */
\r
2964 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2966 xReturn = pxTCB->pxTaskTag;
\r
2968 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2973 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2974 /*-----------------------------------------------------------*/
\r
2976 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2978 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
\r
2979 void * pvParameter )
\r
2982 BaseType_t xReturn;
\r
2984 /* If xTask is NULL then we are calling our own task hook. */
\r
2985 if( xTask == NULL )
\r
2987 xTCB = pxCurrentTCB;
\r
2994 if( xTCB->pxTaskTag != NULL )
\r
2996 xReturn = xTCB->pxTaskTag( pvParameter );
\r
3006 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
3007 /*-----------------------------------------------------------*/
\r
3009 void vTaskSwitchContext( void )
\r
3011 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
3013 /* The scheduler is currently suspended - do not allow a context
\r
3015 xYieldPending = pdTRUE;
\r
3019 xYieldPending = pdFALSE;
\r
3020 traceTASK_SWITCHED_OUT();
\r
3022 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3024 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3025 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3027 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3030 /* Add the amount of time the task has been running to the
\r
3031 * accumulated time so far. The time the task started running was
\r
3032 * stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3033 * protection here so count values are only valid until the timer
\r
3034 * overflows. The guard against negative values is to protect
\r
3035 * against suspect run time stat counter implementations - which
\r
3036 * are provided by the application, not the kernel. */
\r
3037 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3039 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3043 mtCOVERAGE_TEST_MARKER();
\r
3046 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3048 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3050 /* Check for stack overflow, if configured. */
\r
3051 taskCHECK_FOR_STACK_OVERFLOW();
\r
3053 /* Before the currently running task is switched out, save its errno. */
\r
3054 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3056 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3060 /* Select a new task to run using either the generic C or port
\r
3061 * optimised asm code. */
\r
3062 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3063 traceTASK_SWITCHED_IN();
\r
3065 /* After the new task is switched in, update the global errno. */
\r
3066 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3068 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3072 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3074 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
3075 * structure specific to this task.
\r
3076 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3077 * for additional information. */
\r
3078 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
3080 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3083 /*-----------------------------------------------------------*/
\r
3085 void vTaskPlaceOnEventList( List_t * const pxEventList,
\r
3086 const TickType_t xTicksToWait )
\r
3088 configASSERT( pxEventList );
\r
3090 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3091 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3093 /* Place the event list item of the TCB in the appropriate event list.
\r
3094 * This is placed in the list in priority order so the highest priority task
\r
3095 * is the first to be woken by the event.
\r
3097 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
\r
3098 * Normally, the xItemValue of a TCB's ListItem_t members is:
\r
3099 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
\r
3100 * Therefore, the event list is sorted in descending priority order.
\r
3102 * The queue that contains the event list is locked, preventing
\r
3103 * simultaneous access from interrupts. */
\r
3104 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3106 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3108 /*-----------------------------------------------------------*/
\r
3110 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
\r
3111 const TickType_t xItemValue,
\r
3112 const TickType_t xTicksToWait )
\r
3114 configASSERT( pxEventList );
\r
3116 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3117 * the event groups implementation. */
\r
3118 configASSERT( uxSchedulerSuspended != 0 );
\r
3120 /* Store the item value in the event list item. It is safe to access the
\r
3121 * event list item here as interrupts won't access the event list item of a
\r
3122 * task that is not in the Blocked state. */
\r
3123 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3125 /* Place the event list item of the TCB at the end of the appropriate event
\r
3126 * list. It is safe to access the event list here because it is part of an
\r
3127 * event group implementation - and interrupts don't access event groups
\r
3128 * directly (instead they access them indirectly by pending function calls to
\r
3129 * the task level). */
\r
3130 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3132 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3134 /*-----------------------------------------------------------*/
\r
3136 #if ( configUSE_TIMERS == 1 )
\r
3138 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
\r
3139 TickType_t xTicksToWait,
\r
3140 const BaseType_t xWaitIndefinitely )
\r
3142 configASSERT( pxEventList );
\r
3144 /* This function should not be called by application code hence the
\r
3145 * 'Restricted' in its name. It is not part of the public API. It is
\r
3146 * designed for use by kernel code, and has special calling requirements -
\r
3147 * it should be called with the scheduler suspended. */
\r
3150 /* Place the event list item of the TCB in the appropriate event list.
\r
3151 * In this case it is assume that this is the only task that is going to
\r
3152 * be waiting on this event list, so the faster vListInsertEnd() function
\r
3153 * can be used in place of vListInsert. */
\r
3154 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3156 /* If the task should block indefinitely then set the block time to a
\r
3157 * value that will be recognised as an indefinite delay inside the
\r
3158 * prvAddCurrentTaskToDelayedList() function. */
\r
3159 if( xWaitIndefinitely != pdFALSE )
\r
3161 xTicksToWait = portMAX_DELAY;
\r
3164 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3165 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3168 #endif /* configUSE_TIMERS */
\r
3169 /*-----------------------------------------------------------*/
\r
3171 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3173 TCB_t * pxUnblockedTCB;
\r
3174 BaseType_t xReturn;
\r
3176 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3177 * called from a critical section within an ISR. */
\r
3179 /* The event list is sorted in priority order, so the first in the list can
\r
3180 * be removed as it is known to be the highest priority. Remove the TCB from
\r
3181 * the delayed list, and add it to the ready list.
\r
3183 * If an event is for a queue that is locked then this function will never
\r
3184 * get called - the lock count on the queue will get modified instead. This
\r
3185 * means exclusive access to the event list is guaranteed here.
\r
3187 * This function assumes that a check has already been made to ensure that
\r
3188 * pxEventList is not empty. */
\r
3189 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3190 configASSERT( pxUnblockedTCB );
\r
3191 ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
\r
3193 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3195 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3196 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3198 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3200 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3201 * might be set to the blocked task's time out time. If the task is
\r
3202 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3203 * normally left unchanged, because it is automatically reset to a new
\r
3204 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3205 * tickless idling is used it might be more important to enter sleep mode
\r
3206 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3207 * ensure it is updated at the earliest possible time. */
\r
3208 prvResetNextTaskUnblockTime();
\r
3214 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3215 * pending until the scheduler is resumed. */
\r
3216 vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3219 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3221 /* Return true if the task removed from the event list has a higher
\r
3222 * priority than the calling task. This allows the calling task to know if
\r
3223 * it should force a context switch now. */
\r
3226 /* Mark that a yield is pending in case the user is not using the
\r
3227 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3228 xYieldPending = pdTRUE;
\r
3232 xReturn = pdFALSE;
\r
3237 /*-----------------------------------------------------------*/
\r
3239 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
\r
3240 const TickType_t xItemValue )
\r
3242 TCB_t * pxUnblockedTCB;
\r
3244 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3245 * the event flags implementation. */
\r
3246 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3248 /* Store the new item value in the event list. */
\r
3249 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3251 /* Remove the event list form the event flag. Interrupts do not access
\r
3253 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3254 configASSERT( pxUnblockedTCB );
\r
3255 ( void ) uxListRemove( pxEventListItem );
\r
3257 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3259 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3260 * might be set to the blocked task's time out time. If the task is
\r
3261 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3262 * normally left unchanged, because it is automatically reset to a new
\r
3263 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3264 * tickless idling is used it might be more important to enter sleep mode
\r
3265 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3266 * ensure it is updated at the earliest possible time. */
\r
3267 prvResetNextTaskUnblockTime();
\r
3271 /* Remove the task from the delayed list and add it to the ready list. The
\r
3272 * scheduler is suspended so interrupts will not be accessing the ready
\r
3274 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3275 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3277 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3279 /* The unblocked task has a priority above that of the calling task, so
\r
3280 * a context switch is required. This function is called with the
\r
3281 * scheduler suspended so xYieldPending is set so the context switch
\r
3282 * occurs immediately that the scheduler is resumed (unsuspended). */
\r
3283 xYieldPending = pdTRUE;
\r
3286 /*-----------------------------------------------------------*/
\r
3288 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3290 configASSERT( pxTimeOut );
\r
3291 taskENTER_CRITICAL();
\r
3293 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3294 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3296 taskEXIT_CRITICAL();
\r
3298 /*-----------------------------------------------------------*/
\r
3300 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3302 /* For internal use only as it does not use a critical section. */
\r
3303 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3304 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3306 /*-----------------------------------------------------------*/
\r
3308 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
\r
3309 TickType_t * const pxTicksToWait )
\r
3311 BaseType_t xReturn;
\r
3313 configASSERT( pxTimeOut );
\r
3314 configASSERT( pxTicksToWait );
\r
3316 taskENTER_CRITICAL();
\r
3318 /* Minor optimisation. The tick count cannot change in this block. */
\r
3319 const TickType_t xConstTickCount = xTickCount;
\r
3320 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3322 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
3323 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3325 /* The delay was aborted, which is not the same as a time out,
\r
3326 * but has the same result. */
\r
3327 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3333 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3334 if( *pxTicksToWait == portMAX_DELAY )
\r
3336 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3337 * specified is the maximum block time then the task should block
\r
3338 * indefinitely, and therefore never time out. */
\r
3339 xReturn = pdFALSE;
\r
3344 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3346 /* The tick count is greater than the time at which
\r
3347 * vTaskSetTimeout() was called, but has also overflowed since
\r
3348 * vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3349 * around and gone past again. This passed since vTaskSetTimeout()
\r
3352 *pxTicksToWait = ( TickType_t ) 0;
\r
3354 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3356 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3357 *pxTicksToWait -= xElapsedTime;
\r
3358 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3359 xReturn = pdFALSE;
\r
3363 *pxTicksToWait = ( TickType_t ) 0;
\r
3367 taskEXIT_CRITICAL();
\r
3371 /*-----------------------------------------------------------*/
\r
3373 void vTaskMissedYield( void )
\r
3375 xYieldPending = pdTRUE;
\r
3377 /*-----------------------------------------------------------*/
\r
3379 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3381 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3383 UBaseType_t uxReturn;
\r
3384 TCB_t const * pxTCB;
\r
3386 if( xTask != NULL )
\r
3389 uxReturn = pxTCB->uxTaskNumber;
\r
3399 #endif /* configUSE_TRACE_FACILITY */
\r
3400 /*-----------------------------------------------------------*/
\r
3402 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3404 void vTaskSetTaskNumber( TaskHandle_t xTask,
\r
3405 const UBaseType_t uxHandle )
\r
3409 if( xTask != NULL )
\r
3412 pxTCB->uxTaskNumber = uxHandle;
\r
3416 #endif /* configUSE_TRACE_FACILITY */
\r
3419 * -----------------------------------------------------------
\r
3421 * ----------------------------------------------------------
\r
3423 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3424 * language extensions. The equivalent prototype for this function is:
\r
3426 * void prvIdleTask( void *pvParameters );
\r
3429 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3431 /* Stop warnings. */
\r
3432 ( void ) pvParameters;
\r
3434 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3435 * SCHEDULER IS STARTED. **/
\r
3437 /* In case a task that has a secure context deletes itself, in which case
\r
3438 * the idle task is responsible for deleting the task's secure context, if
\r
3440 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3444 /* See if any tasks have deleted themselves - if so then the idle task
\r
3445 * is responsible for freeing the deleted task's TCB and stack. */
\r
3446 prvCheckTasksWaitingTermination();
\r
3448 #if ( configUSE_PREEMPTION == 0 )
\r
3450 /* If we are not using preemption we keep forcing a task switch to
\r
3451 * see if any other task has become available. If we are using
\r
3452 * preemption we don't need to do this as any task becoming available
\r
3453 * will automatically get the processor anyway. */
\r
3456 #endif /* configUSE_PREEMPTION */
\r
3458 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3460 /* When using preemption tasks of equal priority will be
\r
3461 * timesliced. If a task that is sharing the idle priority is ready
\r
3462 * to run then the idle task should yield before the end of the
\r
3465 * A critical region is not required here as we are just reading from
\r
3466 * the list, and an occasional incorrect value will not matter. If
\r
3467 * the ready list at the idle priority contains more than one task
\r
3468 * then a task other than the idle task is ready to execute. */
\r
3469 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3475 mtCOVERAGE_TEST_MARKER();
\r
3478 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3480 #if ( configUSE_IDLE_HOOK == 1 )
\r
3482 extern void vApplicationIdleHook( void );
\r
3484 /* Call the user defined function from within the idle task. This
\r
3485 * allows the application designer to add background functionality
\r
3486 * without the overhead of a separate task.
\r
3487 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3488 * CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3489 vApplicationIdleHook();
\r
3491 #endif /* configUSE_IDLE_HOOK */
\r
3493 /* This conditional compilation should use inequality to 0, not equality
\r
3494 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3495 * user defined low power mode implementations require
\r
3496 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3497 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3499 TickType_t xExpectedIdleTime;
\r
3501 /* It is not desirable to suspend then resume the scheduler on
\r
3502 * each iteration of the idle task. Therefore, a preliminary
\r
3503 * test of the expected idle time is performed without the
\r
3504 * scheduler suspended. The result here is not necessarily
\r
3506 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3508 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3510 vTaskSuspendAll();
\r
3512 /* Now the scheduler is suspended, the expected idle
\r
3513 * time can be sampled again, and this time its value can
\r
3515 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3516 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3518 /* Define the following macro to set xExpectedIdleTime to 0
\r
3519 * if the application does not want
\r
3520 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3521 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3523 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3525 traceLOW_POWER_IDLE_BEGIN();
\r
3526 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3527 traceLOW_POWER_IDLE_END();
\r
3531 mtCOVERAGE_TEST_MARKER();
\r
3534 ( void ) xTaskResumeAll();
\r
3538 mtCOVERAGE_TEST_MARKER();
\r
3541 #endif /* configUSE_TICKLESS_IDLE */
\r
3544 /*-----------------------------------------------------------*/
\r
3546 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3548 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3550 /* The idle task exists in addition to the application tasks. */
\r
3551 const UBaseType_t uxNonApplicationTasks = 1;
\r
3552 eSleepModeStatus eReturn = eStandardSleep;
\r
3554 /* This function must be called from a critical section. */
\r
3556 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3558 /* A task was made ready while the scheduler was suspended. */
\r
3559 eReturn = eAbortSleep;
\r
3561 else if( xYieldPending != pdFALSE )
\r
3563 /* A yield was pended while the scheduler was suspended. */
\r
3564 eReturn = eAbortSleep;
\r
3566 else if( xPendedTicks != 0 )
\r
3568 /* A tick interrupt has already occurred but was held pending
\r
3569 * because the scheduler is suspended. */
\r
3570 eReturn = eAbortSleep;
\r
3574 /* If all the tasks are in the suspended list (which might mean they
\r
3575 * have an infinite block time rather than actually being suspended)
\r
3576 * then it is safe to turn all clocks off and just wait for external
\r
3578 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3580 eReturn = eNoTasksWaitingTimeout;
\r
3584 mtCOVERAGE_TEST_MARKER();
\r
3591 #endif /* configUSE_TICKLESS_IDLE */
\r
3592 /*-----------------------------------------------------------*/
\r
3594 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3596 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
\r
3597 BaseType_t xIndex,
\r
3602 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3604 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3605 configASSERT( pxTCB != NULL );
\r
3606 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3610 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3611 /*-----------------------------------------------------------*/
\r
3613 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3615 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
\r
3616 BaseType_t xIndex )
\r
3618 void * pvReturn = NULL;
\r
3621 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3623 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3624 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3634 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3635 /*-----------------------------------------------------------*/
\r
3637 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3639 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
\r
3640 const MemoryRegion_t * const xRegions )
\r
3644 /* If null is passed in here then we are modifying the MPU settings of
\r
3645 * the calling task. */
\r
3646 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3648 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3651 #endif /* portUSING_MPU_WRAPPERS */
\r
3652 /*-----------------------------------------------------------*/
\r
3654 static void prvInitialiseTaskLists( void )
\r
3656 UBaseType_t uxPriority;
\r
3658 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3660 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3663 vListInitialise( &xDelayedTaskList1 );
\r
3664 vListInitialise( &xDelayedTaskList2 );
\r
3665 vListInitialise( &xPendingReadyList );
\r
3667 #if ( INCLUDE_vTaskDelete == 1 )
\r
3669 vListInitialise( &xTasksWaitingTermination );
\r
3671 #endif /* INCLUDE_vTaskDelete */
\r
3673 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3675 vListInitialise( &xSuspendedTaskList );
\r
3677 #endif /* INCLUDE_vTaskSuspend */
\r
3679 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3681 pxDelayedTaskList = &xDelayedTaskList1;
\r
3682 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3684 /*-----------------------------------------------------------*/
\r
3686 static void prvCheckTasksWaitingTermination( void )
\r
3688 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3690 #if ( INCLUDE_vTaskDelete == 1 )
\r
3694 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3695 * being called too often in the idle task. */
\r
3696 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3698 taskENTER_CRITICAL();
\r
3700 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3701 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3702 --uxCurrentNumberOfTasks;
\r
3703 --uxDeletedTasksWaitingCleanUp;
\r
3705 taskEXIT_CRITICAL();
\r
3707 prvDeleteTCB( pxTCB );
\r
3710 #endif /* INCLUDE_vTaskDelete */
\r
3712 /*-----------------------------------------------------------*/
\r
3714 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3716 void vTaskGetInfo( TaskHandle_t xTask,
\r
3717 TaskStatus_t * pxTaskStatus,
\r
3718 BaseType_t xGetFreeStackSpace,
\r
3719 eTaskState eState )
\r
3723 /* xTask is NULL then get the state of the calling task. */
\r
3724 pxTCB = prvGetTCBFromHandle( xTask );
\r
3726 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3727 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
\r
3728 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3729 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3730 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3732 #if ( configUSE_MUTEXES == 1 )
\r
3734 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3738 pxTaskStatus->uxBasePriority = 0;
\r
3742 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3744 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3748 pxTaskStatus->ulRunTimeCounter = 0;
\r
3752 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3753 * value of eState passed into this function is eInvalid - otherwise the
\r
3754 * state is just set to whatever is passed in. */
\r
3755 if( eState != eInvalid )
\r
3757 if( pxTCB == pxCurrentTCB )
\r
3759 pxTaskStatus->eCurrentState = eRunning;
\r
3763 pxTaskStatus->eCurrentState = eState;
\r
3765 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3767 /* If the task is in the suspended list then there is a
\r
3768 * chance it is actually just blocked indefinitely - so really
\r
3769 * it should be reported as being in the Blocked state. */
\r
3770 if( eState == eSuspended )
\r
3772 vTaskSuspendAll();
\r
3774 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3776 pxTaskStatus->eCurrentState = eBlocked;
\r
3779 ( void ) xTaskResumeAll();
\r
3782 #endif /* INCLUDE_vTaskSuspend */
\r
3787 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3790 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3791 * parameter is provided to allow it to be skipped. */
\r
3792 if( xGetFreeStackSpace != pdFALSE )
\r
3794 #if ( portSTACK_GROWTH > 0 )
\r
3796 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3800 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3806 pxTaskStatus->usStackHighWaterMark = 0;
\r
3810 #endif /* configUSE_TRACE_FACILITY */
\r
3811 /*-----------------------------------------------------------*/
\r
3813 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3815 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
3817 eTaskState eState )
\r
3819 configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
\r
3820 UBaseType_t uxTask = 0;
\r
3822 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3824 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3826 /* Populate an TaskStatus_t structure within the
\r
3827 * pxTaskStatusArray array for each task that is referenced from
\r
3828 * pxList. See the definition of TaskStatus_t in task.h for the
\r
3829 * meaning of each TaskStatus_t structure member. */
\r
3832 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3833 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3835 } while( pxNextTCB != pxFirstTCB );
\r
3839 mtCOVERAGE_TEST_MARKER();
\r
3845 #endif /* configUSE_TRACE_FACILITY */
\r
3846 /*-----------------------------------------------------------*/
\r
3848 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3850 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3852 uint32_t ulCount = 0U;
\r
3854 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3856 pucStackByte -= portSTACK_GROWTH;
\r
3860 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3862 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3865 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3866 /*-----------------------------------------------------------*/
\r
3868 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3870 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3871 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3872 * user to determine the return type. It gets around the problem of the value
\r
3873 * overflowing on 8-bit types without breaking backward compatibility for
\r
3874 * applications that expect an 8-bit return type. */
\r
3875 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3878 uint8_t * pucEndOfStack;
\r
3879 configSTACK_DEPTH_TYPE uxReturn;
\r
3881 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3882 * the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3883 * allows the user to determine the return type. It gets around the
\r
3884 * problem of the value overflowing on 8-bit types without breaking
\r
3885 * backward compatibility for applications that expect an 8-bit return
\r
3888 pxTCB = prvGetTCBFromHandle( xTask );
\r
3890 #if portSTACK_GROWTH < 0
\r
3892 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3896 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3900 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3905 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3906 /*-----------------------------------------------------------*/
\r
3908 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3910 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3913 uint8_t * pucEndOfStack;
\r
3914 UBaseType_t uxReturn;
\r
3916 pxTCB = prvGetTCBFromHandle( xTask );
\r
3918 #if portSTACK_GROWTH < 0
\r
3920 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3924 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3928 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3933 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3934 /*-----------------------------------------------------------*/
\r
3936 #if ( INCLUDE_vTaskDelete == 1 )
\r
3938 static void prvDeleteTCB( TCB_t * pxTCB )
\r
3940 /* This call is required specifically for the TriCore port. It must be
\r
3941 * above the vPortFree() calls. The call is also used by ports/demos that
\r
3942 * want to allocate and clean RAM statically. */
\r
3943 portCLEAN_UP_TCB( pxTCB );
\r
3945 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3946 * to the task to free any memory allocated at the application level.
\r
3947 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3948 * for additional information. */
\r
3949 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3951 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3953 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3955 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3957 /* The task can only have been allocated dynamically - free both
\r
3958 * the stack and TCB. */
\r
3959 vPortFreeStack( pxTCB->pxStack );
\r
3960 vPortFree( pxTCB );
\r
3962 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3964 /* The task could have been allocated statically or dynamically, so
\r
3965 * check what was statically allocated before trying to free the
\r
3967 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3969 /* Both the stack and TCB were allocated dynamically, so both
\r
3970 * must be freed. */
\r
3971 vPortFreeStack( pxTCB->pxStack );
\r
3972 vPortFree( pxTCB );
\r
3974 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3976 /* Only the stack was statically allocated, so the TCB is the
\r
3977 * only memory that must be freed. */
\r
3978 vPortFree( pxTCB );
\r
3982 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3983 * nothing needs to be freed. */
\r
3984 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
3985 mtCOVERAGE_TEST_MARKER();
\r
3988 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3991 #endif /* INCLUDE_vTaskDelete */
\r
3992 /*-----------------------------------------------------------*/
\r
3994 static void prvResetNextTaskUnblockTime( void )
\r
3996 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
3998 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
3999 * the maximum possible value so it is extremely unlikely that the
\r
4000 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
4001 * there is an item in the delayed list. */
\r
4002 xNextTaskUnblockTime = portMAX_DELAY;
\r
4006 /* The new current delayed list is not empty, get the value of
\r
4007 * the item at the head of the delayed list. This is the time at
\r
4008 * which the task at the head of the delayed list should be removed
\r
4009 * from the Blocked state. */
\r
4010 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
4013 /*-----------------------------------------------------------*/
\r
4015 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
4017 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
4019 TaskHandle_t xReturn;
\r
4021 /* A critical section is not required as this is not called from
\r
4022 * an interrupt and the current TCB will always be the same for any
\r
4023 * individual execution thread. */
\r
4024 xReturn = pxCurrentTCB;
\r
4029 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
4030 /*-----------------------------------------------------------*/
\r
4032 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
4034 BaseType_t xTaskGetSchedulerState( void )
\r
4036 BaseType_t xReturn;
\r
4038 if( xSchedulerRunning == pdFALSE )
\r
4040 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4044 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4046 xReturn = taskSCHEDULER_RUNNING;
\r
4050 xReturn = taskSCHEDULER_SUSPENDED;
\r
4057 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4058 /*-----------------------------------------------------------*/
\r
4060 #if ( configUSE_MUTEXES == 1 )
\r
4062 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4064 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4065 BaseType_t xReturn = pdFALSE;
\r
4067 /* If the mutex was given back by an interrupt while the queue was
\r
4068 * locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4069 * needed as interrupts can no longer use mutexes? */
\r
4070 if( pxMutexHolder != NULL )
\r
4072 /* If the holder of the mutex has a priority below the priority of
\r
4073 * the task attempting to obtain the mutex then it will temporarily
\r
4074 * inherit the priority of the task attempting to obtain the mutex. */
\r
4075 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4077 /* Adjust the mutex holder state to account for its new
\r
4078 * priority. Only reset the event list item value if the value is
\r
4079 * not being used for anything else. */
\r
4080 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4082 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4086 mtCOVERAGE_TEST_MARKER();
\r
4089 /* If the task being modified is in the ready state it will need
\r
4090 * to be moved into a new list. */
\r
4091 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4093 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4095 /* It is known that the task is in its ready list so
\r
4096 * there is no need to check again and the port level
\r
4097 * reset macro can be called directly. */
\r
4098 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4102 mtCOVERAGE_TEST_MARKER();
\r
4105 /* Inherit the priority before being moved into the new list. */
\r
4106 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4107 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4111 /* Just inherit the priority. */
\r
4112 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4115 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4117 /* Inheritance occurred. */
\r
4122 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4124 /* The base priority of the mutex holder is lower than the
\r
4125 * priority of the task attempting to take the mutex, but the
\r
4126 * current priority of the mutex holder is not lower than the
\r
4127 * priority of the task attempting to take the mutex.
\r
4128 * Therefore the mutex holder must have already inherited a
\r
4129 * priority, but inheritance would have occurred if that had
\r
4130 * not been the case. */
\r
4135 mtCOVERAGE_TEST_MARKER();
\r
4141 mtCOVERAGE_TEST_MARKER();
\r
4147 #endif /* configUSE_MUTEXES */
\r
4148 /*-----------------------------------------------------------*/
\r
4150 #if ( configUSE_MUTEXES == 1 )
\r
4152 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4154 TCB_t * const pxTCB = pxMutexHolder;
\r
4155 BaseType_t xReturn = pdFALSE;
\r
4157 if( pxMutexHolder != NULL )
\r
4159 /* A task can only have an inherited priority if it holds the mutex.
\r
4160 * If the mutex is held by a task then it cannot be given from an
\r
4161 * interrupt, and if a mutex is given by the holding task then it must
\r
4162 * be the running state task. */
\r
4163 configASSERT( pxTCB == pxCurrentTCB );
\r
4164 configASSERT( pxTCB->uxMutexesHeld );
\r
4165 ( pxTCB->uxMutexesHeld )--;
\r
4167 /* Has the holder of the mutex inherited the priority of another
\r
4169 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4171 /* Only disinherit if no other mutexes are held. */
\r
4172 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4174 /* A task can only have an inherited priority if it holds
\r
4175 * the mutex. If the mutex is held by a task then it cannot be
\r
4176 * given from an interrupt, and if a mutex is given by the
\r
4177 * holding task then it must be the running state task. Remove
\r
4178 * the holding task from the ready list. */
\r
4179 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4181 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4185 mtCOVERAGE_TEST_MARKER();
\r
4188 /* Disinherit the priority before adding the task into the
\r
4189 * new ready list. */
\r
4190 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4191 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4193 /* Reset the event list item value. It cannot be in use for
\r
4194 * any other purpose if this task is running, and it must be
\r
4195 * running to give back the mutex. */
\r
4196 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4197 prvAddTaskToReadyList( pxTCB );
\r
4199 /* Return true to indicate that a context switch is required.
\r
4200 * This is only actually required in the corner case whereby
\r
4201 * multiple mutexes were held and the mutexes were given back
\r
4202 * in an order different to that in which they were taken.
\r
4203 * If a context switch did not occur when the first mutex was
\r
4204 * returned, even if a task was waiting on it, then a context
\r
4205 * switch should occur when the last mutex is returned whether
\r
4206 * a task is waiting on it or not. */
\r
4211 mtCOVERAGE_TEST_MARKER();
\r
4216 mtCOVERAGE_TEST_MARKER();
\r
4221 mtCOVERAGE_TEST_MARKER();
\r
4227 #endif /* configUSE_MUTEXES */
\r
4228 /*-----------------------------------------------------------*/
\r
4230 #if ( configUSE_MUTEXES == 1 )
\r
4232 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
\r
4233 UBaseType_t uxHighestPriorityWaitingTask )
\r
4235 TCB_t * const pxTCB = pxMutexHolder;
\r
4236 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4237 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4239 if( pxMutexHolder != NULL )
\r
4241 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4243 configASSERT( pxTCB->uxMutexesHeld );
\r
4245 /* Determine the priority to which the priority of the task that
\r
4246 * holds the mutex should be set. This will be the greater of the
\r
4247 * holding task's base priority and the priority of the highest
\r
4248 * priority task that is waiting to obtain the mutex. */
\r
4249 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4251 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4255 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4258 /* Does the priority need to change? */
\r
4259 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4261 /* Only disinherit if no other mutexes are held. This is a
\r
4262 * simplification in the priority inheritance implementation. If
\r
4263 * the task that holds the mutex is also holding other mutexes then
\r
4264 * the other mutexes may have caused the priority inheritance. */
\r
4265 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4267 /* If a task has timed out because it already holds the
\r
4268 * mutex it was trying to obtain then it cannot of inherited
\r
4269 * its own priority. */
\r
4270 configASSERT( pxTCB != pxCurrentTCB );
\r
4272 /* Disinherit the priority, remembering the previous
\r
4273 * priority to facilitate determining the subject task's
\r
4275 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
\r
4276 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4277 pxTCB->uxPriority = uxPriorityToUse;
\r
4279 /* Only reset the event list item value if the value is not
\r
4280 * being used for anything else. */
\r
4281 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4283 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4287 mtCOVERAGE_TEST_MARKER();
\r
4290 /* If the running task is not the task that holds the mutex
\r
4291 * then the task that holds the mutex could be in either the
\r
4292 * Ready, Blocked or Suspended states. Only remove the task
\r
4293 * from its current state list if it is in the Ready state as
\r
4294 * the task's priority is going to change and there is one
\r
4295 * Ready list per priority. */
\r
4296 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4298 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4300 /* It is known that the task is in its ready list so
\r
4301 * there is no need to check again and the port level
\r
4302 * reset macro can be called directly. */
\r
4303 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4307 mtCOVERAGE_TEST_MARKER();
\r
4310 prvAddTaskToReadyList( pxTCB );
\r
4314 mtCOVERAGE_TEST_MARKER();
\r
4319 mtCOVERAGE_TEST_MARKER();
\r
4324 mtCOVERAGE_TEST_MARKER();
\r
4329 mtCOVERAGE_TEST_MARKER();
\r
4333 #endif /* configUSE_MUTEXES */
\r
4334 /*-----------------------------------------------------------*/
\r
4336 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4338 void vTaskEnterCritical( void )
\r
4340 portDISABLE_INTERRUPTS();
\r
4342 if( xSchedulerRunning != pdFALSE )
\r
4344 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4346 /* This is not the interrupt safe version of the enter critical
\r
4347 * function so assert() if it is being called from an interrupt
\r
4348 * context. Only API functions that end in "FromISR" can be used in an
\r
4349 * interrupt. Only assert if the critical nesting count is 1 to
\r
4350 * protect against recursive calls if the assert function also uses a
\r
4351 * critical section. */
\r
4352 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4354 portASSERT_IF_IN_ISR();
\r
4359 mtCOVERAGE_TEST_MARKER();
\r
4363 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4364 /*-----------------------------------------------------------*/
\r
4366 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4368 void vTaskExitCritical( void )
\r
4370 if( xSchedulerRunning != pdFALSE )
\r
4372 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4374 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4376 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4378 portENABLE_INTERRUPTS();
\r
4382 mtCOVERAGE_TEST_MARKER();
\r
4387 mtCOVERAGE_TEST_MARKER();
\r
4392 mtCOVERAGE_TEST_MARKER();
\r
4396 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4397 /*-----------------------------------------------------------*/
\r
4399 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4401 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
4402 const char * pcTaskName )
\r
4406 /* Start by copying the entire string. */
\r
4407 strcpy( pcBuffer, pcTaskName );
\r
4409 /* Pad the end of the string with spaces to ensure columns line up when
\r
4411 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4413 pcBuffer[ x ] = ' ';
\r
4417 pcBuffer[ x ] = ( char ) 0x00;
\r
4419 /* Return the new end of string. */
\r
4420 return &( pcBuffer[ x ] );
\r
4423 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4424 /*-----------------------------------------------------------*/
\r
4426 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4428 void vTaskList( char * pcWriteBuffer )
\r
4430 TaskStatus_t * pxTaskStatusArray;
\r
4431 UBaseType_t uxArraySize, x;
\r
4437 * This function is provided for convenience only, and is used by many
\r
4438 * of the demo applications. Do not consider it to be part of the
\r
4441 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4442 * uxTaskGetSystemState() output into a human readable table that
\r
4443 * displays task: names, states, priority, stack usage and task number.
\r
4444 * Stack usage specified as the number of unused StackType_t words stack can hold
\r
4445 * on top of stack - not the number of bytes.
\r
4447 * vTaskList() has a dependency on the sprintf() C library function that
\r
4448 * might bloat the code size, use a lot of stack, and provide different
\r
4449 * results on different platforms. An alternative, tiny, third party,
\r
4450 * and limited functionality implementation of sprintf() is provided in
\r
4451 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4452 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4453 * snprintf() implementation!).
\r
4455 * It is recommended that production systems call uxTaskGetSystemState()
\r
4456 * directly to get access to raw stats data, rather than indirectly
\r
4457 * through a call to vTaskList().
\r
4461 /* Make sure the write buffer does not contain a string. */
\r
4462 *pcWriteBuffer = ( char ) 0x00;
\r
4464 /* Take a snapshot of the number of tasks in case it changes while this
\r
4465 * function is executing. */
\r
4466 uxArraySize = uxCurrentNumberOfTasks;
\r
4468 /* Allocate an array index for each task. NOTE! if
\r
4469 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4470 * equate to NULL. */
\r
4471 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4473 if( pxTaskStatusArray != NULL )
\r
4475 /* Generate the (binary) data. */
\r
4476 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4478 /* Create a human readable table from the binary data. */
\r
4479 for( x = 0; x < uxArraySize; x++ )
\r
4481 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4484 cStatus = tskRUNNING_CHAR;
\r
4488 cStatus = tskREADY_CHAR;
\r
4492 cStatus = tskBLOCKED_CHAR;
\r
4496 cStatus = tskSUSPENDED_CHAR;
\r
4500 cStatus = tskDELETED_CHAR;
\r
4503 case eInvalid: /* Fall through. */
\r
4504 default: /* Should not get here, but it is included
\r
4505 * to prevent static checking errors. */
\r
4506 cStatus = ( char ) 0x00;
\r
4510 /* Write the task name to the string, padding with spaces so it
\r
4511 * can be printed in tabular form more easily. */
\r
4512 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4514 /* Write the rest of the string. */
\r
4515 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4516 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4519 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4520 * is 0 then vPortFree() will be #defined to nothing. */
\r
4521 vPortFree( pxTaskStatusArray );
\r
4525 mtCOVERAGE_TEST_MARKER();
\r
4529 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4530 /*----------------------------------------------------------*/
\r
4532 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4534 void vTaskGetRunTimeStats( char * pcWriteBuffer )
\r
4536 TaskStatus_t * pxTaskStatusArray;
\r
4537 UBaseType_t uxArraySize, x;
\r
4538 uint32_t ulTotalTime, ulStatsAsPercentage;
\r
4540 #if ( configUSE_TRACE_FACILITY != 1 )
\r
4542 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4549 * This function is provided for convenience only, and is used by many
\r
4550 * of the demo applications. Do not consider it to be part of the
\r
4553 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4554 * of the uxTaskGetSystemState() output into a human readable table that
\r
4555 * displays the amount of time each task has spent in the Running state
\r
4556 * in both absolute and percentage terms.
\r
4558 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4559 * function that might bloat the code size, use a lot of stack, and
\r
4560 * provide different results on different platforms. An alternative,
\r
4561 * tiny, third party, and limited functionality implementation of
\r
4562 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4563 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4564 * a full snprintf() implementation!).
\r
4566 * It is recommended that production systems call uxTaskGetSystemState()
\r
4567 * directly to get access to raw stats data, rather than indirectly
\r
4568 * through a call to vTaskGetRunTimeStats().
\r
4571 /* Make sure the write buffer does not contain a string. */
\r
4572 *pcWriteBuffer = ( char ) 0x00;
\r
4574 /* Take a snapshot of the number of tasks in case it changes while this
\r
4575 * function is executing. */
\r
4576 uxArraySize = uxCurrentNumberOfTasks;
\r
4578 /* Allocate an array index for each task. NOTE! If
\r
4579 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4580 * equate to NULL. */
\r
4581 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4583 if( pxTaskStatusArray != NULL )
\r
4585 /* Generate the (binary) data. */
\r
4586 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4588 /* For percentage calculations. */
\r
4589 ulTotalTime /= 100UL;
\r
4591 /* Avoid divide by zero errors. */
\r
4592 if( ulTotalTime > 0UL )
\r
4594 /* Create a human readable table from the binary data. */
\r
4595 for( x = 0; x < uxArraySize; x++ )
\r
4597 /* What percentage of the total run time has the task used?
\r
4598 * This will always be rounded down to the nearest integer.
\r
4599 * ulTotalRunTimeDiv100 has already been divided by 100. */
\r
4600 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4602 /* Write the task name to the string, padding with
\r
4603 * spaces so it can be printed in tabular form more
\r
4605 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4607 if( ulStatsAsPercentage > 0UL )
\r
4609 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4611 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4615 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4616 * printf() library can be used. */
\r
4617 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4623 /* If the percentage is zero here then the task has
\r
4624 * consumed less than 1% of the total run time. */
\r
4625 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4627 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4631 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4632 * printf() library can be used. */
\r
4633 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4638 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4643 mtCOVERAGE_TEST_MARKER();
\r
4646 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4647 * is 0 then vPortFree() will be #defined to nothing. */
\r
4648 vPortFree( pxTaskStatusArray );
\r
4652 mtCOVERAGE_TEST_MARKER();
\r
4656 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4657 /*-----------------------------------------------------------*/
\r
4659 TickType_t uxTaskResetEventItemValue( void )
\r
4661 TickType_t uxReturn;
\r
4663 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4665 /* Reset the event list item to its normal value - so it can be used with
\r
4666 * queues and semaphores. */
\r
4667 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4671 /*-----------------------------------------------------------*/
\r
4673 #if ( configUSE_MUTEXES == 1 )
\r
4675 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4677 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4678 * then pxCurrentTCB will be NULL. */
\r
4679 if( pxCurrentTCB != NULL )
\r
4681 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4684 return pxCurrentTCB;
\r
4687 #endif /* configUSE_MUTEXES */
\r
4688 /*-----------------------------------------------------------*/
\r
4690 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4692 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
\r
4693 BaseType_t xClearCountOnExit,
\r
4694 TickType_t xTicksToWait )
\r
4696 uint32_t ulReturn;
\r
4698 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4700 taskENTER_CRITICAL();
\r
4702 /* Only block if the notification count is not already non-zero. */
\r
4703 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
\r
4705 /* Mark this task as waiting for a notification. */
\r
4706 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4708 if( xTicksToWait > ( TickType_t ) 0 )
\r
4710 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4711 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
\r
4713 /* All ports are written to allow a yield in a critical
\r
4714 * section (some will yield immediately, others wait until the
\r
4715 * critical section exits) - but it is not something that
\r
4716 * application code should ever do. */
\r
4717 portYIELD_WITHIN_API();
\r
4721 mtCOVERAGE_TEST_MARKER();
\r
4726 mtCOVERAGE_TEST_MARKER();
\r
4729 taskEXIT_CRITICAL();
\r
4731 taskENTER_CRITICAL();
\r
4733 traceTASK_NOTIFY_TAKE( uxIndexToWait );
\r
4734 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4736 if( ulReturn != 0UL )
\r
4738 if( xClearCountOnExit != pdFALSE )
\r
4740 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
\r
4744 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
\r
4749 mtCOVERAGE_TEST_MARKER();
\r
4752 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4754 taskEXIT_CRITICAL();
\r
4759 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4760 /*-----------------------------------------------------------*/
\r
4762 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4764 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
\r
4765 uint32_t ulBitsToClearOnEntry,
\r
4766 uint32_t ulBitsToClearOnExit,
\r
4767 uint32_t * pulNotificationValue,
\r
4768 TickType_t xTicksToWait )
\r
4770 BaseType_t xReturn;
\r
4772 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4774 taskENTER_CRITICAL();
\r
4776 /* Only block if a notification is not already pending. */
\r
4777 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4779 /* Clear bits in the task's notification value as bits may get
\r
4780 * set by the notifying task or interrupt. This can be used to
\r
4781 * clear the value to zero. */
\r
4782 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
\r
4784 /* Mark this task as waiting for a notification. */
\r
4785 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4787 if( xTicksToWait > ( TickType_t ) 0 )
\r
4789 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4790 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
\r
4792 /* All ports are written to allow a yield in a critical
\r
4793 * section (some will yield immediately, others wait until the
\r
4794 * critical section exits) - but it is not something that
\r
4795 * application code should ever do. */
\r
4796 portYIELD_WITHIN_API();
\r
4800 mtCOVERAGE_TEST_MARKER();
\r
4805 mtCOVERAGE_TEST_MARKER();
\r
4808 taskEXIT_CRITICAL();
\r
4810 taskENTER_CRITICAL();
\r
4812 traceTASK_NOTIFY_WAIT( uxIndexToWait );
\r
4814 if( pulNotificationValue != NULL )
\r
4816 /* Output the current notification value, which may or may not
\r
4817 * have changed. */
\r
4818 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4821 /* If ucNotifyValue is set then either the task never entered the
\r
4822 * blocked state (because a notification was already pending) or the
\r
4823 * task unblocked because of a notification. Otherwise the task
\r
4824 * unblocked because of a timeout. */
\r
4825 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4827 /* A notification was not received. */
\r
4828 xReturn = pdFALSE;
\r
4832 /* A notification was already pending or a notification was
\r
4833 * received while the task was waiting. */
\r
4834 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
\r
4838 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4840 taskEXIT_CRITICAL();
\r
4845 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4846 /*-----------------------------------------------------------*/
\r
4848 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4850 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
\r
4851 UBaseType_t uxIndexToNotify,
\r
4853 eNotifyAction eAction,
\r
4854 uint32_t * pulPreviousNotificationValue )
\r
4857 BaseType_t xReturn = pdPASS;
\r
4858 uint8_t ucOriginalNotifyState;
\r
4860 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4861 configASSERT( xTaskToNotify );
\r
4862 pxTCB = xTaskToNotify;
\r
4864 taskENTER_CRITICAL();
\r
4866 if( pulPreviousNotificationValue != NULL )
\r
4868 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
4871 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
4873 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
4878 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
4882 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
4885 case eSetValueWithOverwrite:
\r
4886 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4889 case eSetValueWithoutOverwrite:
\r
4891 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4893 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4897 /* The value could not be written to the task. */
\r
4905 /* The task is being notified without its notify value being
\r
4911 /* Should not get here if all enums are handled.
\r
4912 * Artificially force an assert by testing a value the
\r
4913 * compiler can't assume is const. */
\r
4914 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
4919 traceTASK_NOTIFY( uxIndexToNotify );
\r
4921 /* If the task is in the blocked state specifically to wait for a
\r
4922 * notification then unblock it now. */
\r
4923 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4925 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4926 prvAddTaskToReadyList( pxTCB );
\r
4928 /* The task should not have been on an event list. */
\r
4929 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4931 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
4933 /* If a task is blocked waiting for a notification then
\r
4934 * xNextTaskUnblockTime might be set to the blocked task's time
\r
4935 * out time. If the task is unblocked for a reason other than
\r
4936 * a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4937 * because it will automatically get reset to a new value when
\r
4938 * the tick count equals xNextTaskUnblockTime. However if
\r
4939 * tickless idling is used it might be more important to enter
\r
4940 * sleep mode at the earliest possible time - so reset
\r
4941 * xNextTaskUnblockTime here to ensure it is updated at the
\r
4942 * earliest possible time. */
\r
4943 prvResetNextTaskUnblockTime();
\r
4947 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4949 /* The notified task has a priority above the currently
\r
4950 * executing task so a yield is required. */
\r
4951 taskYIELD_IF_USING_PREEMPTION();
\r
4955 mtCOVERAGE_TEST_MARKER();
\r
4960 mtCOVERAGE_TEST_MARKER();
\r
4963 taskEXIT_CRITICAL();
\r
4968 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4969 /*-----------------------------------------------------------*/
\r
4971 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4973 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
\r
4974 UBaseType_t uxIndexToNotify,
\r
4976 eNotifyAction eAction,
\r
4977 uint32_t * pulPreviousNotificationValue,
\r
4978 BaseType_t * pxHigherPriorityTaskWoken )
\r
4981 uint8_t ucOriginalNotifyState;
\r
4982 BaseType_t xReturn = pdPASS;
\r
4983 UBaseType_t uxSavedInterruptStatus;
\r
4985 configASSERT( xTaskToNotify );
\r
4986 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4988 /* RTOS ports that support interrupt nesting have the concept of a
\r
4989 * maximum system call (or maximum API call) interrupt priority.
\r
4990 * Interrupts that are above the maximum system call priority are keep
\r
4991 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
4992 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4993 * is defined in FreeRTOSConfig.h then
\r
4994 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4995 * failure if a FreeRTOS API function is called from an interrupt that has
\r
4996 * been assigned a priority above the configured maximum system call
\r
4997 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
4998 * from interrupts that have been assigned a priority at or (logically)
\r
4999 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5000 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5001 * simple as possible. More information (albeit Cortex-M specific) is
\r
5002 * provided on the following link:
\r
5003 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5004 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5006 pxTCB = xTaskToNotify;
\r
5008 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5010 if( pulPreviousNotificationValue != NULL )
\r
5012 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
5015 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5016 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5021 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
5025 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5028 case eSetValueWithOverwrite:
\r
5029 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5032 case eSetValueWithoutOverwrite:
\r
5034 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
5036 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5040 /* The value could not be written to the task. */
\r
5048 /* The task is being notified without its notify value being
\r
5054 /* Should not get here if all enums are handled.
\r
5055 * Artificially force an assert by testing a value the
\r
5056 * compiler can't assume is const. */
\r
5057 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
5061 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
\r
5063 /* If the task is in the blocked state specifically to wait for a
\r
5064 * notification then unblock it now. */
\r
5065 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5067 /* The task should not have been on an event list. */
\r
5068 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5070 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5072 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
5073 prvAddTaskToReadyList( pxTCB );
\r
5077 /* The delayed and ready lists cannot be accessed, so hold
\r
5078 * this task pending until the scheduler is resumed. */
\r
5079 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5082 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5084 /* The notified task has a priority above the currently
\r
5085 * executing task so a yield is required. */
\r
5086 if( pxHigherPriorityTaskWoken != NULL )
\r
5088 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5091 /* Mark that a yield is pending in case the user is not
\r
5092 * using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5093 * safe FreeRTOS function. */
\r
5094 xYieldPending = pdTRUE;
\r
5098 mtCOVERAGE_TEST_MARKER();
\r
5102 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5107 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5108 /*-----------------------------------------------------------*/
\r
5110 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5112 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
\r
5113 UBaseType_t uxIndexToNotify,
\r
5114 BaseType_t * pxHigherPriorityTaskWoken )
\r
5117 uint8_t ucOriginalNotifyState;
\r
5118 UBaseType_t uxSavedInterruptStatus;
\r
5120 configASSERT( xTaskToNotify );
\r
5121 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5123 /* RTOS ports that support interrupt nesting have the concept of a
\r
5124 * maximum system call (or maximum API call) interrupt priority.
\r
5125 * Interrupts that are above the maximum system call priority are keep
\r
5126 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5127 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5128 * is defined in FreeRTOSConfig.h then
\r
5129 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5130 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5131 * been assigned a priority above the configured maximum system call
\r
5132 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5133 * from interrupts that have been assigned a priority at or (logically)
\r
5134 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5135 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5136 * simple as possible. More information (albeit Cortex-M specific) is
\r
5137 * provided on the following link:
\r
5138 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5139 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5141 pxTCB = xTaskToNotify;
\r
5143 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5145 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5146 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5148 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5150 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5152 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
\r
5154 /* If the task is in the blocked state specifically to wait for a
\r
5155 * notification then unblock it now. */
\r
5156 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5158 /* The task should not have been on an event list. */
\r
5159 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5161 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5163 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
5164 prvAddTaskToReadyList( pxTCB );
\r
5168 /* The delayed and ready lists cannot be accessed, so hold
\r
5169 * this task pending until the scheduler is resumed. */
\r
5170 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5173 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5175 /* The notified task has a priority above the currently
\r
5176 * executing task so a yield is required. */
\r
5177 if( pxHigherPriorityTaskWoken != NULL )
\r
5179 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5182 /* Mark that a yield is pending in case the user is not
\r
5183 * using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5184 * safe FreeRTOS function. */
\r
5185 xYieldPending = pdTRUE;
\r
5189 mtCOVERAGE_TEST_MARKER();
\r
5193 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5196 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5197 /*-----------------------------------------------------------*/
\r
5199 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5201 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
\r
5202 UBaseType_t uxIndexToClear )
\r
5205 BaseType_t xReturn;
\r
5207 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5209 /* If null is passed in here then it is the calling task that is having
\r
5210 * its notification state cleared. */
\r
5211 pxTCB = prvGetTCBFromHandle( xTask );
\r
5213 taskENTER_CRITICAL();
\r
5215 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
\r
5217 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
\r
5225 taskEXIT_CRITICAL();
\r
5230 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5231 /*-----------------------------------------------------------*/
\r
5233 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5235 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
\r
5236 UBaseType_t uxIndexToClear,
\r
5237 uint32_t ulBitsToClear )
\r
5240 uint32_t ulReturn;
\r
5242 /* If null is passed in here then it is the calling task that is having
\r
5243 * its notification state cleared. */
\r
5244 pxTCB = prvGetTCBFromHandle( xTask );
\r
5246 taskENTER_CRITICAL();
\r
5248 /* Return the notification as it was before the bits were cleared,
\r
5249 * then clear the bit mask. */
\r
5250 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
\r
5251 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
\r
5253 taskEXIT_CRITICAL();
\r
5258 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5259 /*-----------------------------------------------------------*/
\r
5261 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5263 uint32_t ulTaskGetIdleRunTimeCounter( void )
\r
5265 return xIdleTaskHandle->ulRunTimeCounter;
\r
5269 /*-----------------------------------------------------------*/
\r
5271 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
5272 const BaseType_t xCanBlockIndefinitely )
\r
5274 TickType_t xTimeToWake;
\r
5275 const TickType_t xConstTickCount = xTickCount;
\r
5277 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
5279 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5280 * reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5281 * when the task leaves the Blocked state. */
\r
5282 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5286 /* Remove the task from the ready list before adding it to the blocked list
\r
5287 * as the same list item is used for both lists. */
\r
5288 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5290 /* The current task must be in a ready list, so there is no need to
\r
5291 * check, and the port reset macro can be called directly. */
\r
5292 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5296 mtCOVERAGE_TEST_MARKER();
\r
5299 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5301 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5303 /* Add the task to the suspended task list instead of a delayed task
\r
5304 * list to ensure it is not woken by a timing event. It will block
\r
5305 * indefinitely. */
\r
5306 vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5310 /* Calculate the time at which the task should be woken if the event
\r
5311 * does not occur. This may overflow but this doesn't matter, the
\r
5312 * kernel will manage it correctly. */
\r
5313 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5315 /* The list item will be inserted in wake time order. */
\r
5316 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5318 if( xTimeToWake < xConstTickCount )
\r
5320 /* Wake time has overflowed. Place this item in the overflow
\r
5322 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5326 /* The wake time has not overflowed, so the current block list
\r
5328 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5330 /* If the task entering the blocked state was placed at the
\r
5331 * head of the list of blocked tasks then xNextTaskUnblockTime
\r
5332 * needs to be updated too. */
\r
5333 if( xTimeToWake < xNextTaskUnblockTime )
\r
5335 xNextTaskUnblockTime = xTimeToWake;
\r
5339 mtCOVERAGE_TEST_MARKER();
\r
5344 #else /* INCLUDE_vTaskSuspend */
\r
5346 /* Calculate the time at which the task should be woken if the event
\r
5347 * does not occur. This may overflow but this doesn't matter, the kernel
\r
5348 * will manage it correctly. */
\r
5349 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5351 /* The list item will be inserted in wake time order. */
\r
5352 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5354 if( xTimeToWake < xConstTickCount )
\r
5356 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5357 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5361 /* The wake time has not overflowed, so the current block list is used. */
\r
5362 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5364 /* If the task entering the blocked state was placed at the head of the
\r
5365 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5367 if( xTimeToWake < xNextTaskUnblockTime )
\r
5369 xNextTaskUnblockTime = xTimeToWake;
\r
5373 mtCOVERAGE_TEST_MARKER();
\r
5377 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5378 ( void ) xCanBlockIndefinitely;
\r
5380 #endif /* INCLUDE_vTaskSuspend */
\r
5383 /* Code below here allows additional code to be inserted into this source file,
\r
5384 * especially where access to file scope functions and data is needed (for example
\r
5385 * when performing module tests). */
\r
5387 #ifdef FREERTOS_MODULE_TEST
\r
5388 #include "tasks_test_access_functions.h"
\r
5392 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5394 #include "freertos_tasks_c_additions.h"
\r
5396 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5397 static void freertos_tasks_c_additions_init( void )
\r
5399 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r
5403 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
\r