2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * SPDX-License-Identifier: MIT
\r
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
8 * this software and associated documentation files (the "Software"), to deal in
\r
9 * the Software without restriction, including without limitation the rights to
\r
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
11 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
12 * subject to the following conditions:
\r
14 * The above copyright notice and this permission notice shall be included in all
\r
15 * copies or substantial portions of the Software.
\r
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
24 * https://www.FreeRTOS.org
\r
25 * https://github.com/FreeRTOS
\r
29 /* Standard includes. */
\r
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
34 * all the API functions to use the MPU wrappers. That should only be done when
\r
35 * task.h is included from an application file. */
\r
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
38 /* FreeRTOS includes. */
\r
39 #include "FreeRTOS.h"
\r
42 #include "stack_macros.h"
\r
44 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
45 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
46 * for the header files above, but not in this file, in order to generate the
\r
47 * correct privileged Vs unprivileged linkage and placement. */
\r
48 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
51 * functions but without including stdio.h here. */
\r
52 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
54 /* At the bottom of this file are two optional functions that can be used
\r
55 * to generate human readable text from the raw data generated by the
\r
56 * uxTaskGetSystemState() function. Note the formatting functions are provided
\r
57 * for convenience only, and are NOT considered part of the kernel. */
\r
59 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
61 #if ( configUSE_PREEMPTION == 0 )
\r
63 /* If the cooperative scheduler is being used then a yield should not be
\r
64 * performed just because a higher priority task has been woken. */
\r
65 #define taskYIELD_IF_USING_PREEMPTION()
\r
67 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
70 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
71 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
\r
72 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
73 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
76 * The value used to fill the stack of a task when the task is created. This
\r
77 * is used purely for checking the high water mark for tasks.
\r
79 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
81 /* Bits used to record how a task's stack and TCB were allocated. */
\r
82 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
83 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
84 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
86 /* If any of the following are set then task stacks are filled with a known
\r
87 * value so the high water mark can be determined. If none of the following are
\r
88 * set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
89 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
92 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
96 * Macros used by vListTask to indicate which state a task is in.
\r
98 #define tskRUNNING_CHAR ( 'X' )
\r
99 #define tskBLOCKED_CHAR ( 'B' )
\r
100 #define tskREADY_CHAR ( 'R' )
\r
101 #define tskDELETED_CHAR ( 'D' )
\r
102 #define tskSUSPENDED_CHAR ( 'S' )
\r
105 * Some kernel aware debuggers require the data the debugger needs access to to
\r
106 * be global, rather than file scope.
\r
108 #ifdef portREMOVE_STATIC_QUALIFIER
\r
112 /* The name allocated to the Idle task. This can be overridden by defining
\r
113 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
114 #ifndef configIDLE_TASK_NAME
\r
115 #define configIDLE_TASK_NAME "IDLE"
\r
118 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
120 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
121 * performed in a generic way that is not optimised to any particular
\r
122 * microcontroller architecture. */
\r
124 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
126 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
128 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
130 uxTopReadyPriority = ( uxPriority ); \
\r
132 } /* taskRECORD_READY_PRIORITY */
\r
134 /*-----------------------------------------------------------*/
\r
136 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
138 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
140 /* Find the highest priority queue that contains ready tasks. */ \
\r
141 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
143 configASSERT( uxTopPriority ); \
\r
147 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
148 * the same priority get an equal share of the processor time. */ \
\r
149 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
150 uxTopReadyPriority = uxTopPriority; \
\r
151 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
153 /*-----------------------------------------------------------*/
\r
155 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
156 * they are only required when a port optimised method of task selection is
\r
158 #define taskRESET_READY_PRIORITY( uxPriority )
\r
159 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
161 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
163 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
164 * performed in a way that is tailored to the particular microcontroller
\r
165 * architecture being used. */
\r
167 /* A port optimised version is provided. Call the port defined macros. */
\r
168 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
170 /*-----------------------------------------------------------*/
\r
172 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
174 UBaseType_t uxTopPriority; \
\r
176 /* Find the highest priority list that contains ready tasks. */ \
\r
177 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
178 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
179 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
180 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
182 /*-----------------------------------------------------------*/
\r
184 /* A port optimised version is provided, call it only if the TCB being reset
\r
185 * is being referenced from a ready list. If it is referenced from a delayed
\r
186 * or suspended list then it won't be in a ready list. */
\r
187 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
189 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
191 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
195 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
197 /*-----------------------------------------------------------*/
\r
199 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
200 * count overflows. */
\r
201 #define taskSWITCH_DELAYED_LISTS() \
\r
205 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
206 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
208 pxTemp = pxDelayedTaskList; \
\r
209 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
210 pxOverflowDelayedTaskList = pxTemp; \
\r
211 xNumOfOverflows++; \
\r
212 prvResetNextTaskUnblockTime(); \
\r
215 /*-----------------------------------------------------------*/
\r
218 * Place the task represented by pxTCB into the appropriate ready list for
\r
219 * the task. It is inserted at the end of the list.
\r
221 #define prvAddTaskToReadyList( pxTCB ) \
\r
222 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
223 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
224 listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
225 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
226 /*-----------------------------------------------------------*/
\r
229 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
\r
230 * where NULL is used to indicate that the handle of the currently executing
\r
231 * task should be used in place of the parameter. This macro simply checks to
\r
232 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
234 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
236 /* The item value of the event list item is normally used to hold the priority
\r
237 * of the task to which it belongs (coded to allow it to be held in reverse
\r
238 * priority order). However, it is occasionally borrowed for other purposes. It
\r
239 * is important its value is not updated due to a task priority change while it is
\r
240 * being used for another purpose. The following bit definition is used to inform
\r
241 * the scheduler that the value should not be changed - in which case it is the
\r
242 * responsibility of whichever module is using the value to ensure it gets set back
\r
243 * to its original value when it is released. */
\r
244 #if ( configUSE_16_BIT_TICKS == 1 )
\r
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
247 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
251 * Task control block. A task control block (TCB) is allocated for each task,
\r
252 * and stores task state information, including a pointer to the task's context
\r
253 * (the task's run time environment, including register values)
\r
255 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
257 volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
259 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
260 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
263 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
264 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
265 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
266 StackType_t * pxStack; /*< Points to the start of the stack. */
\r
267 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
269 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
270 StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
273 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
274 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
277 #if ( configUSE_TRACE_FACILITY == 1 )
\r
278 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
279 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
282 #if ( configUSE_MUTEXES == 1 )
\r
283 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
284 UBaseType_t uxMutexesHeld;
\r
287 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
288 TaskHookFunction_t pxTaskTag;
\r
291 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
292 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
295 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
296 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
299 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
301 /* Allocate a Newlib reent structure that is specific to this task.
\r
302 * Note Newlib support has been included by popular demand, but is not
\r
303 * used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
304 * responsible for resulting newlib operation. User must be familiar with
\r
305 * newlib and must provide system-wide implementations of the necessary
\r
306 * stubs. Be warned that (at the time of writing) the current newlib design
\r
307 * implements a system-wide malloc() that must be provided with locks.
\r
309 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
310 * for additional information. */
\r
311 struct _reent xNewLib_reent;
\r
314 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
315 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
316 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
319 /* See the comments in FreeRTOS.h with the definition of
\r
320 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
321 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
322 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
325 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
326 uint8_t ucDelayAborted;
\r
329 #if ( configUSE_POSIX_ERRNO == 1 )
\r
334 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
335 * below to enable the use of older kernel aware debuggers. */
\r
336 typedef tskTCB TCB_t;
\r
338 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
339 * which static variables must be declared volatile. */
\r
340 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
342 /* Lists for ready and blocked tasks. --------------------
\r
343 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
\r
344 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
345 * the static qualifier. */
\r
346 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
\r
347 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
348 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
349 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
350 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
351 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
353 #if ( INCLUDE_vTaskDelete == 1 )
\r
355 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
356 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
360 #if ( INCLUDE_vTaskSuspend == 1 )
\r
362 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
366 /* Global POSIX errno. Its value is changed upon context switching to match
\r
367 * the errno of the currently running task. */
\r
368 #if ( configUSE_POSIX_ERRNO == 1 )
\r
369 int FreeRTOS_errno = 0;
\r
372 /* Other file private variables. --------------------------------*/
\r
373 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
374 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
375 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
376 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
377 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
378 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
379 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
380 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
381 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
382 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
384 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
\r
385 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
\r
386 * to determine the number of priority lists to read back from the remote target. */
\r
387 const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
\r
389 /* Context switches are held pending while the scheduler is suspended. Also,
\r
390 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
391 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
392 * If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
393 * moves the task's event list item into the xPendingReadyList, ready for the
\r
394 * kernel to move the task from the pending ready list into the real ready list
\r
395 * when the scheduler is unsuspended. The pending ready list itself can only be
\r
396 * accessed from a critical section. */
\r
397 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
399 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
401 /* Do not move these variables to function scope as doing so prevents the
\r
402 * code working with debuggers that need to remove the static qualifier. */
\r
403 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
404 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
410 /*-----------------------------------------------------------*/
\r
412 /* File private functions. --------------------------------*/
\r
415 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
416 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
417 * is in any other state.
\r
419 #if ( INCLUDE_vTaskSuspend == 1 )
\r
421 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
423 #endif /* INCLUDE_vTaskSuspend */
\r
426 * Utility to ready all the lists used by the scheduler. This is called
\r
427 * automatically upon the creation of the first task.
\r
429 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
432 * The idle task, which as all tasks is implemented as a never ending loop.
\r
433 * The idle task is automatically created and added to the ready lists upon
\r
434 * creation of the first user task.
\r
436 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
437 * language extensions. The equivalent prototype for this function is:
\r
439 * void prvIdleTask( void *pvParameters );
\r
442 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
\r
445 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
446 * including the stack pointed to by the TCB.
\r
448 * This does not free memory allocated by the task itself (i.e. memory
\r
449 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
451 #if ( INCLUDE_vTaskDelete == 1 )
\r
453 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
\r
458 * Used only by the idle task. This checks to see if anything has been placed
\r
459 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
460 * and its TCB deleted.
\r
462 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
465 * The currently executing task is entering the Blocked state. Add the task to
\r
466 * either the current or the overflow delayed task list.
\r
468 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
469 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
472 * Fills an TaskStatus_t structure with information on each task that is
\r
473 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
474 * a suspended list, etc.).
\r
476 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
477 * NORMAL APPLICATION CODE.
\r
479 #if ( configUSE_TRACE_FACILITY == 1 )
\r
481 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
483 eTaskState eState ) PRIVILEGED_FUNCTION;
\r
488 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
489 * the task if it is found, or NULL if the task is not found.
\r
491 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
493 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
494 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
499 * When a task is created, the stack of the task is filled with a known value.
\r
500 * This function determines the 'high water mark' of the task stack by
\r
501 * determining how much of the stack remains at the original preset value.
\r
503 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
505 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
510 * Return the amount of time, in ticks, that will pass before the kernel will
\r
511 * next move a task from the Blocked state to the Running state.
\r
513 * This conditional compilation should use inequality to 0, not equality to 1.
\r
514 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
515 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
516 * set to a value other than 1.
\r
518 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
520 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
525 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
526 * will exit the Blocked state.
\r
528 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
\r
530 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
533 * Helper function used to pad task names with spaces when printing out
\r
534 * human readable tables of task information.
\r
536 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
537 const char * pcTaskName ) PRIVILEGED_FUNCTION;
\r
542 * Called after a Task_t structure has been allocated either statically or
\r
543 * dynamically to fill in the structure's members.
\r
545 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
546 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
547 const uint32_t ulStackDepth,
\r
548 void * const pvParameters,
\r
549 UBaseType_t uxPriority,
\r
550 TaskHandle_t * const pxCreatedTask,
\r
552 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
555 * Called after a new task has been created and initialised to place the task
\r
556 * under the control of the scheduler.
\r
558 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
\r
561 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
562 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
563 * called by the function.
\r
565 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
567 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
571 /*-----------------------------------------------------------*/
\r
573 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
575 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
576 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
577 const uint32_t ulStackDepth,
\r
578 void * const pvParameters,
\r
579 UBaseType_t uxPriority,
\r
580 StackType_t * const puxStackBuffer,
\r
581 StaticTask_t * const pxTaskBuffer )
\r
584 TaskHandle_t xReturn;
\r
586 configASSERT( puxStackBuffer != NULL );
\r
587 configASSERT( pxTaskBuffer != NULL );
\r
589 #if ( configASSERT_DEFINED == 1 )
\r
591 /* Sanity check that the size of the structure used to declare a
\r
592 * variable of type StaticTask_t equals the size of the real task
\r
594 volatile size_t xSize = sizeof( StaticTask_t );
\r
595 configASSERT( xSize == sizeof( TCB_t ) );
\r
596 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
598 #endif /* configASSERT_DEFINED */
\r
600 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
602 /* The memory used for the task's TCB and stack are passed into this
\r
603 * function - use them. */
\r
604 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
605 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
607 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
609 /* Tasks can be created statically or dynamically, so note this
\r
610 * task was created statically in case the task is later deleted. */
\r
611 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
613 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
615 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
616 prvAddNewTaskToReadyList( pxNewTCB );
\r
626 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
627 /*-----------------------------------------------------------*/
\r
629 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
631 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
\r
632 TaskHandle_t * pxCreatedTask )
\r
635 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
637 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
638 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
640 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
642 /* Allocate space for the TCB. Where the memory comes from depends
\r
643 * on the implementation of the port malloc function and whether or
\r
644 * not static allocation is being used. */
\r
645 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
647 /* Store the stack location in the TCB. */
\r
648 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
650 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
652 /* Tasks can be created statically or dynamically, so note this
\r
653 * task was created statically in case the task is later deleted. */
\r
654 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
656 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
658 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
659 pxTaskDefinition->pcName,
\r
660 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
661 pxTaskDefinition->pvParameters,
\r
662 pxTaskDefinition->uxPriority,
\r
663 pxCreatedTask, pxNewTCB,
\r
664 pxTaskDefinition->xRegions );
\r
666 prvAddNewTaskToReadyList( pxNewTCB );
\r
673 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
674 /*-----------------------------------------------------------*/
\r
676 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
678 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
\r
679 TaskHandle_t * pxCreatedTask )
\r
682 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
684 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
686 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
688 /* Allocate space for the TCB. Where the memory comes from depends
\r
689 * on the implementation of the port malloc function and whether or
\r
690 * not static allocation is being used. */
\r
691 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
693 if( pxNewTCB != NULL )
\r
695 /* Store the stack location in the TCB. */
\r
696 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
698 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
700 /* Tasks can be created statically or dynamically, so note
\r
701 * this task had a statically allocated stack in case it is
\r
702 * later deleted. The TCB was allocated dynamically. */
\r
703 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
705 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
707 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
708 pxTaskDefinition->pcName,
\r
709 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
710 pxTaskDefinition->pvParameters,
\r
711 pxTaskDefinition->uxPriority,
\r
712 pxCreatedTask, pxNewTCB,
\r
713 pxTaskDefinition->xRegions );
\r
715 prvAddNewTaskToReadyList( pxNewTCB );
\r
723 #endif /* portUSING_MPU_WRAPPERS */
\r
724 /*-----------------------------------------------------------*/
\r
726 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
728 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
729 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
730 const configSTACK_DEPTH_TYPE usStackDepth,
\r
731 void * const pvParameters,
\r
732 UBaseType_t uxPriority,
\r
733 TaskHandle_t * const pxCreatedTask )
\r
736 BaseType_t xReturn;
\r
738 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
739 * does not grow into the TCB. Likewise if the stack grows up then allocate
\r
740 * the TCB then the stack. */
\r
741 #if ( portSTACK_GROWTH > 0 )
\r
743 /* Allocate space for the TCB. Where the memory comes from depends on
\r
744 * the implementation of the port malloc function and whether or not static
\r
745 * allocation is being used. */
\r
746 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
748 if( pxNewTCB != NULL )
\r
750 /* Allocate space for the stack used by the task being created.
\r
751 * The base of the stack memory stored in the TCB so the task can
\r
752 * be deleted later if required. */
\r
753 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
755 if( pxNewTCB->pxStack == NULL )
\r
757 /* Could not allocate the stack. Delete the allocated TCB. */
\r
758 vPortFree( pxNewTCB );
\r
763 #else /* portSTACK_GROWTH */
\r
765 StackType_t * pxStack;
\r
767 /* Allocate space for the stack used by the task being created. */
\r
768 pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
770 if( pxStack != NULL )
\r
772 /* Allocate space for the TCB. */
\r
773 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
775 if( pxNewTCB != NULL )
\r
777 /* Store the stack location in the TCB. */
\r
778 pxNewTCB->pxStack = pxStack;
\r
782 /* The stack cannot be used as the TCB was not created. Free
\r
784 vPortFreeStack( pxStack );
\r
792 #endif /* portSTACK_GROWTH */
\r
794 if( pxNewTCB != NULL )
\r
796 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
798 /* Tasks can be created statically or dynamically, so note this
\r
799 * task was created dynamically in case it is later deleted. */
\r
800 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
802 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
804 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
805 prvAddNewTaskToReadyList( pxNewTCB );
\r
810 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
816 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
817 /*-----------------------------------------------------------*/
\r
819 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
820 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
821 const uint32_t ulStackDepth,
\r
822 void * const pvParameters,
\r
823 UBaseType_t uxPriority,
\r
824 TaskHandle_t * const pxCreatedTask,
\r
826 const MemoryRegion_t * const xRegions )
\r
828 StackType_t * pxTopOfStack;
\r
831 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
832 /* Should the task be created in privileged mode? */
\r
833 BaseType_t xRunPrivileged;
\r
835 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
837 xRunPrivileged = pdTRUE;
\r
841 xRunPrivileged = pdFALSE;
\r
843 uxPriority &= ~portPRIVILEGE_BIT;
\r
844 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
846 /* Avoid dependency on memset() if it is not required. */
\r
847 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
849 /* Fill the stack with a known value to assist debugging. */
\r
850 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
852 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
854 /* Calculate the top of stack address. This depends on whether the stack
\r
855 * grows from high memory to low (as per the 80x86) or vice versa.
\r
856 * portSTACK_GROWTH is used to make the result positive or negative as required
\r
858 #if ( portSTACK_GROWTH < 0 )
\r
860 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
861 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
863 /* Check the alignment of the calculated top of stack is correct. */
\r
864 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
866 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
868 /* Also record the stack's high address, which may assist
\r
870 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
872 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
874 #else /* portSTACK_GROWTH */
\r
876 pxTopOfStack = pxNewTCB->pxStack;
\r
878 /* Check the alignment of the stack buffer is correct. */
\r
879 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
881 /* The other extreme of the stack space is required if stack checking is
\r
883 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
885 #endif /* portSTACK_GROWTH */
\r
887 /* Store the task name in the TCB. */
\r
888 if( pcName != NULL )
\r
890 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
892 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
894 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
895 * configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
896 * string is not accessible (extremely unlikely). */
\r
897 if( pcName[ x ] == ( char ) 0x00 )
\r
903 mtCOVERAGE_TEST_MARKER();
\r
907 /* Ensure the name string is terminated in the case that the string length
\r
908 * was greater or equal to configMAX_TASK_NAME_LEN. */
\r
909 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
913 /* The task has not been given a name, so just ensure there is a NULL
\r
914 * terminator when it is read out. */
\r
915 pxNewTCB->pcTaskName[ 0 ] = 0x00;
\r
918 /* This is used as an array index so must ensure it's not too large. */
\r
919 configASSERT( uxPriority < configMAX_PRIORITIES );
\r
921 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
923 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
927 mtCOVERAGE_TEST_MARKER();
\r
930 pxNewTCB->uxPriority = uxPriority;
\r
931 #if ( configUSE_MUTEXES == 1 )
\r
933 pxNewTCB->uxBasePriority = uxPriority;
\r
934 pxNewTCB->uxMutexesHeld = 0;
\r
936 #endif /* configUSE_MUTEXES */
\r
938 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
939 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
941 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
942 * back to the containing TCB from a generic item in a list. */
\r
943 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
945 /* Event lists are always in priority order. */
\r
946 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
947 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
949 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
951 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
953 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
955 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
957 pxNewTCB->pxTaskTag = NULL;
\r
959 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
961 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
963 pxNewTCB->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
\r
965 #endif /* configGENERATE_RUN_TIME_STATS */
\r
967 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
969 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
973 /* Avoid compiler warning about unreferenced parameter. */
\r
978 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
980 memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
\r
984 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
986 memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
\r
987 memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
\r
991 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
993 /* Initialise this task's Newlib reent structure.
\r
994 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
995 * for additional information. */
\r
996 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
1000 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
1002 pxNewTCB->ucDelayAborted = pdFALSE;
\r
1006 /* Initialize the TCB stack to look as if the task was already running,
\r
1007 * but had been interrupted by the scheduler. The return address is set
\r
1008 * to the start of the task function. Once the stack has been initialised
\r
1009 * the top of stack variable is updated. */
\r
1010 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
1012 /* If the port has capability to detect stack overflow,
\r
1013 * pass the stack end address to the stack initialization
\r
1014 * function as well. */
\r
1015 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1017 #if ( portSTACK_GROWTH < 0 )
\r
1019 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1021 #else /* portSTACK_GROWTH */
\r
1023 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1025 #endif /* portSTACK_GROWTH */
\r
1027 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1029 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1031 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1033 #else /* portUSING_MPU_WRAPPERS */
\r
1035 /* If the port has capability to detect stack overflow,
\r
1036 * pass the stack end address to the stack initialization
\r
1037 * function as well. */
\r
1038 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1040 #if ( portSTACK_GROWTH < 0 )
\r
1042 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
1044 #else /* portSTACK_GROWTH */
\r
1046 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1048 #endif /* portSTACK_GROWTH */
\r
1050 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1052 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1054 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1056 #endif /* portUSING_MPU_WRAPPERS */
\r
1058 if( pxCreatedTask != NULL )
\r
1060 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1061 * change the created task's priority, delete the created task, etc.*/
\r
1062 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1066 mtCOVERAGE_TEST_MARKER();
\r
1069 /*-----------------------------------------------------------*/
\r
1071 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
\r
1073 /* Ensure interrupts don't access the task lists while the lists are being
\r
1075 taskENTER_CRITICAL();
\r
1077 uxCurrentNumberOfTasks++;
\r
1079 if( pxCurrentTCB == NULL )
\r
1081 /* There are no other tasks, or all the other tasks are in
\r
1082 * the suspended state - make this the current task. */
\r
1083 pxCurrentTCB = pxNewTCB;
\r
1085 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1087 /* This is the first task to be created so do the preliminary
\r
1088 * initialisation required. We will not recover if this call
\r
1089 * fails, but we will report the failure. */
\r
1090 prvInitialiseTaskLists();
\r
1094 mtCOVERAGE_TEST_MARKER();
\r
1099 /* If the scheduler is not already running, make this task the
\r
1100 * current task if it is the highest priority task to be created
\r
1102 if( xSchedulerRunning == pdFALSE )
\r
1104 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1106 pxCurrentTCB = pxNewTCB;
\r
1110 mtCOVERAGE_TEST_MARKER();
\r
1115 mtCOVERAGE_TEST_MARKER();
\r
1121 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1123 /* Add a counter into the TCB for tracing only. */
\r
1124 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1126 #endif /* configUSE_TRACE_FACILITY */
\r
1127 traceTASK_CREATE( pxNewTCB );
\r
1129 prvAddTaskToReadyList( pxNewTCB );
\r
1131 portSETUP_TCB( pxNewTCB );
\r
1133 taskEXIT_CRITICAL();
\r
1135 if( xSchedulerRunning != pdFALSE )
\r
1137 /* If the created task is of a higher priority than the current task
\r
1138 * then it should run now. */
\r
1139 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1141 taskYIELD_IF_USING_PREEMPTION();
\r
1145 mtCOVERAGE_TEST_MARKER();
\r
1150 mtCOVERAGE_TEST_MARKER();
\r
1153 /*-----------------------------------------------------------*/
\r
1155 #if ( INCLUDE_vTaskDelete == 1 )
\r
1157 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1161 taskENTER_CRITICAL();
\r
1163 /* If null is passed in here then it is the calling task that is
\r
1164 * being deleted. */
\r
1165 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1167 /* Remove task from the ready/delayed list. */
\r
1168 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1170 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1174 mtCOVERAGE_TEST_MARKER();
\r
1177 /* Is the task waiting on an event also? */
\r
1178 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1180 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1184 mtCOVERAGE_TEST_MARKER();
\r
1187 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1188 * detect that the task lists need re-generating. This is done before
\r
1189 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1193 if( pxTCB == pxCurrentTCB )
\r
1195 /* A task is deleting itself. This cannot complete within the
\r
1196 * task itself, as a context switch to another task is required.
\r
1197 * Place the task in the termination list. The idle task will
\r
1198 * check the termination list and free up any memory allocated by
\r
1199 * the scheduler for the TCB and stack of the deleted task. */
\r
1200 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1202 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1203 * there is a task that has been deleted and that it should therefore
\r
1204 * check the xTasksWaitingTermination list. */
\r
1205 ++uxDeletedTasksWaitingCleanUp;
\r
1207 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1208 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1209 traceTASK_DELETE( pxTCB );
\r
1211 /* The pre-delete hook is primarily for the Windows simulator,
\r
1212 * in which Windows specific clean up operations are performed,
\r
1213 * after which it is not possible to yield away from this task -
\r
1214 * hence xYieldPending is used to latch that a context switch is
\r
1216 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1220 --uxCurrentNumberOfTasks;
\r
1221 traceTASK_DELETE( pxTCB );
\r
1222 prvDeleteTCB( pxTCB );
\r
1224 /* Reset the next expected unblock time in case it referred to
\r
1225 * the task that has just been deleted. */
\r
1226 prvResetNextTaskUnblockTime();
\r
1229 taskEXIT_CRITICAL();
\r
1231 /* Force a reschedule if it is the currently running task that has just
\r
1232 * been deleted. */
\r
1233 if( xSchedulerRunning != pdFALSE )
\r
1235 if( pxTCB == pxCurrentTCB )
\r
1237 configASSERT( uxSchedulerSuspended == 0 );
\r
1238 portYIELD_WITHIN_API();
\r
1242 mtCOVERAGE_TEST_MARKER();
\r
1247 #endif /* INCLUDE_vTaskDelete */
\r
1248 /*-----------------------------------------------------------*/
\r
1250 #if ( INCLUDE_xTaskDelayUntil == 1 )
\r
1252 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
\r
1253 const TickType_t xTimeIncrement )
\r
1255 TickType_t xTimeToWake;
\r
1256 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1258 configASSERT( pxPreviousWakeTime );
\r
1259 configASSERT( ( xTimeIncrement > 0U ) );
\r
1260 configASSERT( uxSchedulerSuspended == 0 );
\r
1262 vTaskSuspendAll();
\r
1264 /* Minor optimisation. The tick count cannot change in this
\r
1266 const TickType_t xConstTickCount = xTickCount;
\r
1268 /* Generate the tick time at which the task wants to wake. */
\r
1269 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1271 if( xConstTickCount < *pxPreviousWakeTime )
\r
1273 /* The tick count has overflowed since this function was
\r
1274 * lasted called. In this case the only time we should ever
\r
1275 * actually delay is if the wake time has also overflowed,
\r
1276 * and the wake time is greater than the tick time. When this
\r
1277 * is the case it is as if neither time had overflowed. */
\r
1278 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1280 xShouldDelay = pdTRUE;
\r
1284 mtCOVERAGE_TEST_MARKER();
\r
1289 /* The tick time has not overflowed. In this case we will
\r
1290 * delay if either the wake time has overflowed, and/or the
\r
1291 * tick time is less than the wake time. */
\r
1292 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1294 xShouldDelay = pdTRUE;
\r
1298 mtCOVERAGE_TEST_MARKER();
\r
1302 /* Update the wake time ready for the next call. */
\r
1303 *pxPreviousWakeTime = xTimeToWake;
\r
1305 if( xShouldDelay != pdFALSE )
\r
1307 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1309 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1310 * the time to wake, so subtract the current tick count. */
\r
1311 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1315 mtCOVERAGE_TEST_MARKER();
\r
1318 xAlreadyYielded = xTaskResumeAll();
\r
1320 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1321 * have put ourselves to sleep. */
\r
1322 if( xAlreadyYielded == pdFALSE )
\r
1324 portYIELD_WITHIN_API();
\r
1328 mtCOVERAGE_TEST_MARKER();
\r
1331 return xShouldDelay;
\r
1334 #endif /* INCLUDE_xTaskDelayUntil */
\r
1335 /*-----------------------------------------------------------*/
\r
1337 #if ( INCLUDE_vTaskDelay == 1 )
\r
1339 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1341 BaseType_t xAlreadyYielded = pdFALSE;
\r
1343 /* A delay time of zero just forces a reschedule. */
\r
1344 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1346 configASSERT( uxSchedulerSuspended == 0 );
\r
1347 vTaskSuspendAll();
\r
1349 traceTASK_DELAY();
\r
1351 /* A task that is removed from the event list while the
\r
1352 * scheduler is suspended will not get placed in the ready
\r
1353 * list or removed from the blocked list until the scheduler
\r
1356 * This task cannot be in an event list as it is the currently
\r
1357 * executing task. */
\r
1358 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1360 xAlreadyYielded = xTaskResumeAll();
\r
1364 mtCOVERAGE_TEST_MARKER();
\r
1367 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1368 * have put ourselves to sleep. */
\r
1369 if( xAlreadyYielded == pdFALSE )
\r
1371 portYIELD_WITHIN_API();
\r
1375 mtCOVERAGE_TEST_MARKER();
\r
1379 #endif /* INCLUDE_vTaskDelay */
\r
1380 /*-----------------------------------------------------------*/
\r
1382 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1384 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1386 eTaskState eReturn;
\r
1387 List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
\r
1388 const TCB_t * const pxTCB = xTask;
\r
1390 configASSERT( pxTCB );
\r
1392 if( pxTCB == pxCurrentTCB )
\r
1394 /* The task calling this function is querying its own state. */
\r
1395 eReturn = eRunning;
\r
1399 taskENTER_CRITICAL();
\r
1401 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1402 pxDelayedList = pxDelayedTaskList;
\r
1403 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1405 taskEXIT_CRITICAL();
\r
1407 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1409 /* The task being queried is referenced from one of the Blocked
\r
1411 eReturn = eBlocked;
\r
1414 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1415 else if( pxStateList == &xSuspendedTaskList )
\r
1417 /* The task being queried is referenced from the suspended
\r
1418 * list. Is it genuinely suspended or is it blocked
\r
1419 * indefinitely? */
\r
1420 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1422 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1426 /* The task does not appear on the event list item of
\r
1427 * and of the RTOS objects, but could still be in the
\r
1428 * blocked state if it is waiting on its notification
\r
1429 * rather than waiting on an object. If not, is
\r
1431 eReturn = eSuspended;
\r
1433 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1435 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1437 eReturn = eBlocked;
\r
1442 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1444 eReturn = eSuspended;
\r
1446 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1450 eReturn = eBlocked;
\r
1453 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
\r
1455 #if ( INCLUDE_vTaskDelete == 1 )
\r
1456 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1458 /* The task being queried is referenced from the deleted
\r
1459 * tasks list, or it is not referenced from any lists at
\r
1461 eReturn = eDeleted;
\r
1465 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1467 /* If the task is not in any other state, it must be in the
\r
1468 * Ready (including pending ready) state. */
\r
1474 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1476 #endif /* INCLUDE_eTaskGetState */
\r
1477 /*-----------------------------------------------------------*/
\r
1479 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1481 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1483 TCB_t const * pxTCB;
\r
1484 UBaseType_t uxReturn;
\r
1486 taskENTER_CRITICAL();
\r
1488 /* If null is passed in here then it is the priority of the task
\r
1489 * that called uxTaskPriorityGet() that is being queried. */
\r
1490 pxTCB = prvGetTCBFromHandle( xTask );
\r
1491 uxReturn = pxTCB->uxPriority;
\r
1493 taskEXIT_CRITICAL();
\r
1498 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1499 /*-----------------------------------------------------------*/
\r
1501 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1503 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1505 TCB_t const * pxTCB;
\r
1506 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1508 /* RTOS ports that support interrupt nesting have the concept of a
\r
1509 * maximum system call (or maximum API call) interrupt priority.
\r
1510 * Interrupts that are above the maximum system call priority are keep
\r
1511 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1512 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1513 * is defined in FreeRTOSConfig.h then
\r
1514 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1515 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1516 * been assigned a priority above the configured maximum system call
\r
1517 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1518 * from interrupts that have been assigned a priority at or (logically)
\r
1519 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1520 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1521 * simple as possible. More information (albeit Cortex-M specific) is
\r
1522 * provided on the following link:
\r
1523 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1524 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1526 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1528 /* If null is passed in here then it is the priority of the calling
\r
1529 * task that is being queried. */
\r
1530 pxTCB = prvGetTCBFromHandle( xTask );
\r
1531 uxReturn = pxTCB->uxPriority;
\r
1533 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1538 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1539 /*-----------------------------------------------------------*/
\r
1541 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1543 void vTaskPrioritySet( TaskHandle_t xTask,
\r
1544 UBaseType_t uxNewPriority )
\r
1547 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1548 BaseType_t xYieldRequired = pdFALSE;
\r
1550 configASSERT( uxNewPriority < configMAX_PRIORITIES );
\r
1552 /* Ensure the new priority is valid. */
\r
1553 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1555 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1559 mtCOVERAGE_TEST_MARKER();
\r
1562 taskENTER_CRITICAL();
\r
1564 /* If null is passed in here then it is the priority of the calling
\r
1565 * task that is being changed. */
\r
1566 pxTCB = prvGetTCBFromHandle( xTask );
\r
1568 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1570 #if ( configUSE_MUTEXES == 1 )
\r
1572 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1576 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1580 if( uxCurrentBasePriority != uxNewPriority )
\r
1582 /* The priority change may have readied a task of higher
\r
1583 * priority than the calling task. */
\r
1584 if( uxNewPriority > uxCurrentBasePriority )
\r
1586 if( pxTCB != pxCurrentTCB )
\r
1588 /* The priority of a task other than the currently
\r
1589 * running task is being raised. Is the priority being
\r
1590 * raised above that of the running task? */
\r
1591 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1593 xYieldRequired = pdTRUE;
\r
1597 mtCOVERAGE_TEST_MARKER();
\r
1602 /* The priority of the running task is being raised,
\r
1603 * but the running task must already be the highest
\r
1604 * priority task able to run so no yield is required. */
\r
1607 else if( pxTCB == pxCurrentTCB )
\r
1609 /* Setting the priority of the running task down means
\r
1610 * there may now be another task of higher priority that
\r
1611 * is ready to execute. */
\r
1612 xYieldRequired = pdTRUE;
\r
1616 /* Setting the priority of any other task down does not
\r
1617 * require a yield as the running task must be above the
\r
1618 * new priority of the task being modified. */
\r
1621 /* Remember the ready list the task might be referenced from
\r
1622 * before its uxPriority member is changed so the
\r
1623 * taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1624 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1626 #if ( configUSE_MUTEXES == 1 )
\r
1628 /* Only change the priority being used if the task is not
\r
1629 * currently using an inherited priority. */
\r
1630 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1632 pxTCB->uxPriority = uxNewPriority;
\r
1636 mtCOVERAGE_TEST_MARKER();
\r
1639 /* The base priority gets set whatever. */
\r
1640 pxTCB->uxBasePriority = uxNewPriority;
\r
1642 #else /* if ( configUSE_MUTEXES == 1 ) */
\r
1644 pxTCB->uxPriority = uxNewPriority;
\r
1646 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1648 /* Only reset the event list item value if the value is not
\r
1649 * being used for anything else. */
\r
1650 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1652 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1656 mtCOVERAGE_TEST_MARKER();
\r
1659 /* If the task is in the blocked or suspended list we need do
\r
1660 * nothing more than change its priority variable. However, if
\r
1661 * the task is in a ready list it needs to be removed and placed
\r
1662 * in the list appropriate to its new priority. */
\r
1663 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1665 /* The task is currently in its ready list - remove before
\r
1666 * adding it to its new ready list. As we are in a critical
\r
1667 * section we can do this even if the scheduler is suspended. */
\r
1668 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1670 /* It is known that the task is in its ready list so
\r
1671 * there is no need to check again and the port level
\r
1672 * reset macro can be called directly. */
\r
1673 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1677 mtCOVERAGE_TEST_MARKER();
\r
1680 prvAddTaskToReadyList( pxTCB );
\r
1684 mtCOVERAGE_TEST_MARKER();
\r
1687 if( xYieldRequired != pdFALSE )
\r
1689 taskYIELD_IF_USING_PREEMPTION();
\r
1693 mtCOVERAGE_TEST_MARKER();
\r
1696 /* Remove compiler warning about unused variables when the port
\r
1697 * optimised task selection is not being used. */
\r
1698 ( void ) uxPriorityUsedOnEntry;
\r
1701 taskEXIT_CRITICAL();
\r
1704 #endif /* INCLUDE_vTaskPrioritySet */
\r
1705 /*-----------------------------------------------------------*/
\r
1707 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1709 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1713 taskENTER_CRITICAL();
\r
1715 /* If null is passed in here then it is the running task that is
\r
1716 * being suspended. */
\r
1717 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1719 traceTASK_SUSPEND( pxTCB );
\r
1721 /* Remove task from the ready/delayed list and place in the
\r
1722 * suspended list. */
\r
1723 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1725 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1729 mtCOVERAGE_TEST_MARKER();
\r
1732 /* Is the task waiting on an event also? */
\r
1733 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1735 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1739 mtCOVERAGE_TEST_MARKER();
\r
1742 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1744 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1748 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1750 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1752 /* The task was blocked to wait for a notification, but is
\r
1753 * now suspended, so no notification was received. */
\r
1754 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
\r
1758 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1760 taskEXIT_CRITICAL();
\r
1762 if( xSchedulerRunning != pdFALSE )
\r
1764 /* Reset the next expected unblock time in case it referred to the
\r
1765 * task that is now in the Suspended state. */
\r
1766 taskENTER_CRITICAL();
\r
1768 prvResetNextTaskUnblockTime();
\r
1770 taskEXIT_CRITICAL();
\r
1774 mtCOVERAGE_TEST_MARKER();
\r
1777 if( pxTCB == pxCurrentTCB )
\r
1779 if( xSchedulerRunning != pdFALSE )
\r
1781 /* The current task has just been suspended. */
\r
1782 configASSERT( uxSchedulerSuspended == 0 );
\r
1783 portYIELD_WITHIN_API();
\r
1787 /* The scheduler is not running, but the task that was pointed
\r
1788 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1789 * must be adjusted to point to a different task. */
\r
1790 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1792 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1793 * NULL so when the next task is created pxCurrentTCB will
\r
1794 * be set to point to it no matter what its relative priority
\r
1796 pxCurrentTCB = NULL;
\r
1800 vTaskSwitchContext();
\r
1806 mtCOVERAGE_TEST_MARKER();
\r
1810 #endif /* INCLUDE_vTaskSuspend */
\r
1811 /*-----------------------------------------------------------*/
\r
1813 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1815 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1817 BaseType_t xReturn = pdFALSE;
\r
1818 const TCB_t * const pxTCB = xTask;
\r
1820 /* Accesses xPendingReadyList so must be called from a critical
\r
1823 /* It does not make sense to check if the calling task is suspended. */
\r
1824 configASSERT( xTask );
\r
1826 /* Is the task being resumed actually in the suspended list? */
\r
1827 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1829 /* Has the task already been resumed from within an ISR? */
\r
1830 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1832 /* Is it in the suspended list because it is in the Suspended
\r
1833 * state, or because is is blocked with no timeout? */
\r
1834 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1840 mtCOVERAGE_TEST_MARKER();
\r
1845 mtCOVERAGE_TEST_MARKER();
\r
1850 mtCOVERAGE_TEST_MARKER();
\r
1854 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1856 #endif /* INCLUDE_vTaskSuspend */
\r
1857 /*-----------------------------------------------------------*/
\r
1859 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1861 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1863 TCB_t * const pxTCB = xTaskToResume;
\r
1865 /* It does not make sense to resume the calling task. */
\r
1866 configASSERT( xTaskToResume );
\r
1868 /* The parameter cannot be NULL as it is impossible to resume the
\r
1869 * currently executing task. */
\r
1870 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1872 taskENTER_CRITICAL();
\r
1874 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1876 traceTASK_RESUME( pxTCB );
\r
1878 /* The ready list can be accessed even if the scheduler is
\r
1879 * suspended because this is inside a critical section. */
\r
1880 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1881 prvAddTaskToReadyList( pxTCB );
\r
1883 /* A higher priority task may have just been resumed. */
\r
1884 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1886 /* This yield may not cause the task just resumed to run,
\r
1887 * but will leave the lists in the correct state for the
\r
1889 taskYIELD_IF_USING_PREEMPTION();
\r
1893 mtCOVERAGE_TEST_MARKER();
\r
1898 mtCOVERAGE_TEST_MARKER();
\r
1901 taskEXIT_CRITICAL();
\r
1905 mtCOVERAGE_TEST_MARKER();
\r
1909 #endif /* INCLUDE_vTaskSuspend */
\r
1911 /*-----------------------------------------------------------*/
\r
1913 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1915 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1917 BaseType_t xYieldRequired = pdFALSE;
\r
1918 TCB_t * const pxTCB = xTaskToResume;
\r
1919 UBaseType_t uxSavedInterruptStatus;
\r
1921 configASSERT( xTaskToResume );
\r
1923 /* RTOS ports that support interrupt nesting have the concept of a
\r
1924 * maximum system call (or maximum API call) interrupt priority.
\r
1925 * Interrupts that are above the maximum system call priority are keep
\r
1926 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1927 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1928 * is defined in FreeRTOSConfig.h then
\r
1929 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1930 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1931 * been assigned a priority above the configured maximum system call
\r
1932 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1933 * from interrupts that have been assigned a priority at or (logically)
\r
1934 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1935 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1936 * simple as possible. More information (albeit Cortex-M specific) is
\r
1937 * provided on the following link:
\r
1938 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1939 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1941 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1943 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1945 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1947 /* Check the ready lists can be accessed. */
\r
1948 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1950 /* Ready lists can be accessed so move the task from the
\r
1951 * suspended list to the ready list directly. */
\r
1952 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1954 xYieldRequired = pdTRUE;
\r
1956 /* Mark that a yield is pending in case the user is not
\r
1957 * using the return value to initiate a context switch
\r
1958 * from the ISR using portYIELD_FROM_ISR. */
\r
1959 xYieldPending = pdTRUE;
\r
1963 mtCOVERAGE_TEST_MARKER();
\r
1966 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1967 prvAddTaskToReadyList( pxTCB );
\r
1971 /* The delayed or ready lists cannot be accessed so the task
\r
1972 * is held in the pending ready list until the scheduler is
\r
1974 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1979 mtCOVERAGE_TEST_MARKER();
\r
1982 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1984 return xYieldRequired;
\r
1987 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1988 /*-----------------------------------------------------------*/
\r
1990 void vTaskStartScheduler( void )
\r
1992 BaseType_t xReturn;
\r
1994 /* Add the idle task at the lowest priority. */
\r
1995 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1997 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
\r
1998 StackType_t * pxIdleTaskStackBuffer = NULL;
\r
1999 uint32_t ulIdleTaskStackSize;
\r
2001 /* The Idle task is created using user provided RAM - obtain the
\r
2002 * address of the RAM then create the idle task. */
\r
2003 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
2004 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
2005 configIDLE_TASK_NAME,
\r
2006 ulIdleTaskStackSize,
\r
2007 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
2008 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2009 pxIdleTaskStackBuffer,
\r
2010 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2012 if( xIdleTaskHandle != NULL )
\r
2021 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
2023 /* The Idle task is being created using dynamically allocated RAM. */
\r
2024 xReturn = xTaskCreate( prvIdleTask,
\r
2025 configIDLE_TASK_NAME,
\r
2026 configMINIMAL_STACK_SIZE,
\r
2028 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2029 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2031 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
2033 #if ( configUSE_TIMERS == 1 )
\r
2035 if( xReturn == pdPASS )
\r
2037 xReturn = xTimerCreateTimerTask();
\r
2041 mtCOVERAGE_TEST_MARKER();
\r
2044 #endif /* configUSE_TIMERS */
\r
2046 if( xReturn == pdPASS )
\r
2048 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2049 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2050 * the only macro called by the function. */
\r
2051 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2053 freertos_tasks_c_additions_init();
\r
2057 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2058 * before or during the call to xPortStartScheduler(). The stacks of
\r
2059 * the created tasks contain a status word with interrupts switched on
\r
2060 * so interrupts will automatically get re-enabled when the first task
\r
2061 * starts to run. */
\r
2062 portDISABLE_INTERRUPTS();
\r
2064 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2066 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2067 * structure specific to the task that will run first.
\r
2068 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
2069 * for additional information. */
\r
2070 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2072 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2074 xNextTaskUnblockTime = portMAX_DELAY;
\r
2075 xSchedulerRunning = pdTRUE;
\r
2076 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2078 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2079 * macro must be defined to configure the timer/counter used to generate
\r
2080 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2081 * is set to 0 and the following line fails to build then ensure you do not
\r
2082 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2083 * FreeRTOSConfig.h file. */
\r
2084 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2086 traceTASK_SWITCHED_IN();
\r
2088 /* Setting up the timer tick is hardware specific and thus in the
\r
2089 * portable interface. */
\r
2090 if( xPortStartScheduler() != pdFALSE )
\r
2092 /* Should not reach here as if the scheduler is running the
\r
2093 * function will not return. */
\r
2097 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2102 /* This line will only be reached if the kernel could not be started,
\r
2103 * because there was not enough FreeRTOS heap to create the idle task
\r
2104 * or the timer task. */
\r
2105 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2108 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2109 * meaning xIdleTaskHandle is not used anywhere else. */
\r
2110 ( void ) xIdleTaskHandle;
\r
2112 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
\r
2113 * from getting optimized out as it is no longer used by the kernel. */
\r
2114 ( void ) uxTopUsedPriority;
\r
2116 /*-----------------------------------------------------------*/
\r
2118 void vTaskEndScheduler( void )
\r
2120 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2121 * routine so the original ISRs can be restored if necessary. The port
\r
2122 * layer must ensure interrupts enable bit is left in the correct state. */
\r
2123 portDISABLE_INTERRUPTS();
\r
2124 xSchedulerRunning = pdFALSE;
\r
2125 vPortEndScheduler();
\r
2127 /*----------------------------------------------------------*/
\r
2129 void vTaskSuspendAll( void )
\r
2131 /* A critical section is not required as the variable is of type
\r
2132 * BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2133 * post in the FreeRTOS support forum before reporting this as a bug! -
\r
2134 * https://goo.gl/wu4acr */
\r
2136 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2137 * do not otherwise exhibit real time behaviour. */
\r
2138 portSOFTWARE_BARRIER();
\r
2140 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2141 * is used to allow calls to vTaskSuspendAll() to nest. */
\r
2142 ++uxSchedulerSuspended;
\r
2144 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2145 * the above increment elsewhere. */
\r
2146 portMEMORY_BARRIER();
\r
2148 /*----------------------------------------------------------*/
\r
2150 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2152 static TickType_t prvGetExpectedIdleTime( void )
\r
2154 TickType_t xReturn;
\r
2155 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2157 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2158 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2159 * task that are in the Ready state, even though the idle task is
\r
2161 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2163 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2165 uxHigherPriorityReadyTasks = pdTRUE;
\r
2170 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2172 /* When port optimised task selection is used the uxTopReadyPriority
\r
2173 * variable is used as a bit map. If bits other than the least
\r
2174 * significant bit are set then there are tasks that have a priority
\r
2175 * above the idle priority that are in the Ready state. This takes
\r
2176 * care of the case where the co-operative scheduler is in use. */
\r
2177 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2179 uxHigherPriorityReadyTasks = pdTRUE;
\r
2182 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
\r
2184 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2188 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2190 /* There are other idle priority tasks in the ready state. If
\r
2191 * time slicing is used then the very next tick interrupt must be
\r
2195 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2197 /* There are tasks in the Ready state that have a priority above the
\r
2198 * idle priority. This path can only be reached if
\r
2199 * configUSE_PREEMPTION is 0. */
\r
2204 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2210 #endif /* configUSE_TICKLESS_IDLE */
\r
2211 /*----------------------------------------------------------*/
\r
2213 BaseType_t xTaskResumeAll( void )
\r
2215 TCB_t * pxTCB = NULL;
\r
2216 BaseType_t xAlreadyYielded = pdFALSE;
\r
2218 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2219 * previous call to vTaskSuspendAll(). */
\r
2220 configASSERT( uxSchedulerSuspended );
\r
2222 /* It is possible that an ISR caused a task to be removed from an event
\r
2223 * list while the scheduler was suspended. If this was the case then the
\r
2224 * removed task will have been added to the xPendingReadyList. Once the
\r
2225 * scheduler has been resumed it is safe to move all the pending ready
\r
2226 * tasks from this list into their appropriate ready list. */
\r
2227 taskENTER_CRITICAL();
\r
2229 --uxSchedulerSuspended;
\r
2231 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2233 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2235 /* Move any readied tasks from the pending list into the
\r
2236 * appropriate ready list. */
\r
2237 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2239 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2240 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2241 portMEMORY_BARRIER();
\r
2242 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2243 prvAddTaskToReadyList( pxTCB );
\r
2245 /* If the moved task has a priority higher than or equal to
\r
2246 * the current task then a yield must be performed. */
\r
2247 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2249 xYieldPending = pdTRUE;
\r
2253 mtCOVERAGE_TEST_MARKER();
\r
2257 if( pxTCB != NULL )
\r
2259 /* A task was unblocked while the scheduler was suspended,
\r
2260 * which may have prevented the next unblock time from being
\r
2261 * re-calculated, in which case re-calculate it now. Mainly
\r
2262 * important for low power tickless implementations, where
\r
2263 * this can prevent an unnecessary exit from low power
\r
2265 prvResetNextTaskUnblockTime();
\r
2268 /* If any ticks occurred while the scheduler was suspended then
\r
2269 * they should be processed now. This ensures the tick count does
\r
2270 * not slip, and that any delayed tasks are resumed at the correct
\r
2273 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2275 if( xPendedCounts > ( TickType_t ) 0U )
\r
2279 if( xTaskIncrementTick() != pdFALSE )
\r
2281 xYieldPending = pdTRUE;
\r
2285 mtCOVERAGE_TEST_MARKER();
\r
2289 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2295 mtCOVERAGE_TEST_MARKER();
\r
2299 if( xYieldPending != pdFALSE )
\r
2301 #if ( configUSE_PREEMPTION != 0 )
\r
2303 xAlreadyYielded = pdTRUE;
\r
2306 taskYIELD_IF_USING_PREEMPTION();
\r
2310 mtCOVERAGE_TEST_MARKER();
\r
2316 mtCOVERAGE_TEST_MARKER();
\r
2319 taskEXIT_CRITICAL();
\r
2321 return xAlreadyYielded;
\r
2323 /*-----------------------------------------------------------*/
\r
2325 TickType_t xTaskGetTickCount( void )
\r
2327 TickType_t xTicks;
\r
2329 /* Critical section required if running on a 16 bit processor. */
\r
2330 portTICK_TYPE_ENTER_CRITICAL();
\r
2332 xTicks = xTickCount;
\r
2334 portTICK_TYPE_EXIT_CRITICAL();
\r
2338 /*-----------------------------------------------------------*/
\r
2340 TickType_t xTaskGetTickCountFromISR( void )
\r
2342 TickType_t xReturn;
\r
2343 UBaseType_t uxSavedInterruptStatus;
\r
2345 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2346 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
2347 * above the maximum system call priority are kept permanently enabled, even
\r
2348 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2349 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2350 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2351 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2352 * assigned a priority above the configured maximum system call priority.
\r
2353 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2354 * that have been assigned a priority at or (logically) below the maximum
\r
2355 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2356 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2357 * More information (albeit Cortex-M specific) is provided on the following
\r
2358 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
2359 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2361 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2363 xReturn = xTickCount;
\r
2365 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2369 /*-----------------------------------------------------------*/
\r
2371 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2373 /* A critical section is not required because the variables are of type
\r
2375 return uxCurrentNumberOfTasks;
\r
2377 /*-----------------------------------------------------------*/
\r
2379 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2383 /* If null is passed in here then the name of the calling task is being
\r
2385 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2386 configASSERT( pxTCB );
\r
2387 return &( pxTCB->pcTaskName[ 0 ] );
\r
2389 /*-----------------------------------------------------------*/
\r
2391 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2393 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
2394 const char pcNameToQuery[] )
\r
2396 TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
\r
2399 BaseType_t xBreakLoop;
\r
2401 /* This function is called with the scheduler suspended. */
\r
2403 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2405 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2409 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2411 /* Check each character in the name looking for a match or
\r
2413 xBreakLoop = pdFALSE;
\r
2415 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2417 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2419 if( cNextChar != pcNameToQuery[ x ] )
\r
2421 /* Characters didn't match. */
\r
2422 xBreakLoop = pdTRUE;
\r
2424 else if( cNextChar == ( char ) 0x00 )
\r
2426 /* Both strings terminated, a match must have been
\r
2428 pxReturn = pxNextTCB;
\r
2429 xBreakLoop = pdTRUE;
\r
2433 mtCOVERAGE_TEST_MARKER();
\r
2436 if( xBreakLoop != pdFALSE )
\r
2442 if( pxReturn != NULL )
\r
2444 /* The handle has been found. */
\r
2447 } while( pxNextTCB != pxFirstTCB );
\r
2451 mtCOVERAGE_TEST_MARKER();
\r
2457 #endif /* INCLUDE_xTaskGetHandle */
\r
2458 /*-----------------------------------------------------------*/
\r
2460 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2462 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2464 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2467 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2468 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2470 vTaskSuspendAll();
\r
2472 /* Search the ready lists. */
\r
2476 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2478 if( pxTCB != NULL )
\r
2480 /* Found the handle. */
\r
2483 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2485 /* Search the delayed lists. */
\r
2486 if( pxTCB == NULL )
\r
2488 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2491 if( pxTCB == NULL )
\r
2493 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2496 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2498 if( pxTCB == NULL )
\r
2500 /* Search the suspended list. */
\r
2501 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2506 #if ( INCLUDE_vTaskDelete == 1 )
\r
2508 if( pxTCB == NULL )
\r
2510 /* Search the deleted list. */
\r
2511 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2516 ( void ) xTaskResumeAll();
\r
2521 #endif /* INCLUDE_xTaskGetHandle */
\r
2522 /*-----------------------------------------------------------*/
\r
2524 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2526 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
\r
2527 const UBaseType_t uxArraySize,
\r
2528 configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
\r
2530 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2532 vTaskSuspendAll();
\r
2534 /* Is there a space in the array for each task in the system? */
\r
2535 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2537 /* Fill in an TaskStatus_t structure with information on each
\r
2538 * task in the Ready state. */
\r
2542 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2543 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2545 /* Fill in an TaskStatus_t structure with information on each
\r
2546 * task in the Blocked state. */
\r
2547 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2548 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2550 #if ( INCLUDE_vTaskDelete == 1 )
\r
2552 /* Fill in an TaskStatus_t structure with information on
\r
2553 * each task that has been deleted but not yet cleaned up. */
\r
2554 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2558 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2560 /* Fill in an TaskStatus_t structure with information on
\r
2561 * each task in the Suspended state. */
\r
2562 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2566 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2568 if( pulTotalRunTime != NULL )
\r
2570 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2571 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2573 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2577 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2579 if( pulTotalRunTime != NULL )
\r
2581 *pulTotalRunTime = 0;
\r
2584 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2588 mtCOVERAGE_TEST_MARKER();
\r
2591 ( void ) xTaskResumeAll();
\r
2596 #endif /* configUSE_TRACE_FACILITY */
\r
2597 /*----------------------------------------------------------*/
\r
2599 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2601 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2603 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2604 * started, then xIdleTaskHandle will be NULL. */
\r
2605 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2606 return xIdleTaskHandle;
\r
2609 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2610 /*----------------------------------------------------------*/
\r
2612 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2613 * This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2614 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2616 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2618 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2620 /* Correct the tick count value after a period during which the tick
\r
2621 * was suppressed. Note this does *not* call the tick hook function for
\r
2622 * each stepped tick. */
\r
2623 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2624 xTickCount += xTicksToJump;
\r
2625 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2628 #endif /* configUSE_TICKLESS_IDLE */
\r
2629 /*----------------------------------------------------------*/
\r
2631 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2633 BaseType_t xYieldOccurred;
\r
2635 /* Must not be called with the scheduler suspended as the implementation
\r
2636 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2637 configASSERT( uxSchedulerSuspended == 0 );
\r
2639 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2640 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2641 vTaskSuspendAll();
\r
2642 xPendedTicks += xTicksToCatchUp;
\r
2643 xYieldOccurred = xTaskResumeAll();
\r
2645 return xYieldOccurred;
\r
2647 /*----------------------------------------------------------*/
\r
2649 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2651 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2653 TCB_t * pxTCB = xTask;
\r
2654 BaseType_t xReturn;
\r
2656 configASSERT( pxTCB );
\r
2658 vTaskSuspendAll();
\r
2660 /* A task can only be prematurely removed from the Blocked state if
\r
2661 * it is actually in the Blocked state. */
\r
2662 if( eTaskGetState( xTask ) == eBlocked )
\r
2666 /* Remove the reference to the task from the blocked list. An
\r
2667 * interrupt won't touch the xStateListItem because the
\r
2668 * scheduler is suspended. */
\r
2669 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2671 /* Is the task waiting on an event also? If so remove it from
\r
2672 * the event list too. Interrupts can touch the event list item,
\r
2673 * even though the scheduler is suspended, so a critical section
\r
2675 taskENTER_CRITICAL();
\r
2677 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2679 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2681 /* This lets the task know it was forcibly removed from the
\r
2682 * blocked state so it should not re-evaluate its block time and
\r
2683 * then block again. */
\r
2684 pxTCB->ucDelayAborted = pdTRUE;
\r
2688 mtCOVERAGE_TEST_MARKER();
\r
2691 taskEXIT_CRITICAL();
\r
2693 /* Place the unblocked task into the appropriate ready list. */
\r
2694 prvAddTaskToReadyList( pxTCB );
\r
2696 /* A task being unblocked cannot cause an immediate context
\r
2697 * switch if preemption is turned off. */
\r
2698 #if ( configUSE_PREEMPTION == 1 )
\r
2700 /* Preemption is on, but a context switch should only be
\r
2701 * performed if the unblocked task has a priority that is
\r
2702 * higher than the currently executing task. */
\r
2703 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2705 /* Pend the yield to be performed when the scheduler
\r
2706 * is unsuspended. */
\r
2707 xYieldPending = pdTRUE;
\r
2711 mtCOVERAGE_TEST_MARKER();
\r
2714 #endif /* configUSE_PREEMPTION */
\r
2721 ( void ) xTaskResumeAll();
\r
2726 #endif /* INCLUDE_xTaskAbortDelay */
\r
2727 /*----------------------------------------------------------*/
\r
2729 BaseType_t xTaskIncrementTick( void )
\r
2732 TickType_t xItemValue;
\r
2733 BaseType_t xSwitchRequired = pdFALSE;
\r
2735 /* Called by the portable layer each time a tick interrupt occurs.
\r
2736 * Increments the tick then checks to see if the new tick value will cause any
\r
2737 * tasks to be unblocked. */
\r
2738 traceTASK_INCREMENT_TICK( xTickCount );
\r
2740 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2742 /* Minor optimisation. The tick count cannot change in this
\r
2744 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2746 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2747 * delayed lists if it wraps to 0. */
\r
2748 xTickCount = xConstTickCount;
\r
2750 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2752 taskSWITCH_DELAYED_LISTS();
\r
2756 mtCOVERAGE_TEST_MARKER();
\r
2759 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2760 * the queue in the order of their wake time - meaning once one task
\r
2761 * has been found whose block time has not expired there is no need to
\r
2762 * look any further down the list. */
\r
2763 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2767 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2769 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2770 * to the maximum possible value so it is extremely
\r
2771 * unlikely that the
\r
2772 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2773 * next time through. */
\r
2774 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2779 /* The delayed list is not empty, get the value of the
\r
2780 * item at the head of the delayed list. This is the time
\r
2781 * at which the task at the head of the delayed list must
\r
2782 * be removed from the Blocked state. */
\r
2783 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2784 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2786 if( xConstTickCount < xItemValue )
\r
2788 /* It is not time to unblock this item yet, but the
\r
2789 * item value is the time at which the task at the head
\r
2790 * of the blocked list must be removed from the Blocked
\r
2791 * state - so record the item value in
\r
2792 * xNextTaskUnblockTime. */
\r
2793 xNextTaskUnblockTime = xItemValue;
\r
2794 break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
\r
2798 mtCOVERAGE_TEST_MARKER();
\r
2801 /* It is time to remove the item from the Blocked state. */
\r
2802 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2804 /* Is the task waiting on an event also? If so remove
\r
2805 * it from the event list. */
\r
2806 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2808 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2812 mtCOVERAGE_TEST_MARKER();
\r
2815 /* Place the unblocked task into the appropriate ready
\r
2817 prvAddTaskToReadyList( pxTCB );
\r
2819 /* A task being unblocked cannot cause an immediate
\r
2820 * context switch if preemption is turned off. */
\r
2821 #if ( configUSE_PREEMPTION == 1 )
\r
2823 /* Preemption is on, but a context switch should
\r
2824 * only be performed if the unblocked task has a
\r
2825 * priority that is equal to or higher than the
\r
2826 * currently executing task. */
\r
2827 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2829 xSwitchRequired = pdTRUE;
\r
2833 mtCOVERAGE_TEST_MARKER();
\r
2836 #endif /* configUSE_PREEMPTION */
\r
2841 /* Tasks of equal priority to the currently running task will share
\r
2842 * processing time (time slice) if preemption is on, and the application
\r
2843 * writer has not explicitly turned time slicing off. */
\r
2844 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2846 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2848 xSwitchRequired = pdTRUE;
\r
2852 mtCOVERAGE_TEST_MARKER();
\r
2855 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2857 #if ( configUSE_TICK_HOOK == 1 )
\r
2859 /* Guard against the tick hook being called when the pended tick
\r
2860 * count is being unwound (when the scheduler is being unlocked). */
\r
2861 if( xPendedTicks == ( TickType_t ) 0 )
\r
2863 vApplicationTickHook();
\r
2867 mtCOVERAGE_TEST_MARKER();
\r
2870 #endif /* configUSE_TICK_HOOK */
\r
2872 #if ( configUSE_PREEMPTION == 1 )
\r
2874 if( xYieldPending != pdFALSE )
\r
2876 xSwitchRequired = pdTRUE;
\r
2880 mtCOVERAGE_TEST_MARKER();
\r
2883 #endif /* configUSE_PREEMPTION */
\r
2889 /* The tick hook gets called at regular intervals, even if the
\r
2890 * scheduler is locked. */
\r
2891 #if ( configUSE_TICK_HOOK == 1 )
\r
2893 vApplicationTickHook();
\r
2898 return xSwitchRequired;
\r
2900 /*-----------------------------------------------------------*/
\r
2902 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2904 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
\r
2905 TaskHookFunction_t pxHookFunction )
\r
2909 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2911 if( xTask == NULL )
\r
2913 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2920 /* Save the hook function in the TCB. A critical section is required as
\r
2921 * the value can be accessed from an interrupt. */
\r
2922 taskENTER_CRITICAL();
\r
2924 xTCB->pxTaskTag = pxHookFunction;
\r
2926 taskEXIT_CRITICAL();
\r
2929 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2930 /*-----------------------------------------------------------*/
\r
2932 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2934 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2937 TaskHookFunction_t xReturn;
\r
2939 /* If xTask is NULL then set the calling task's hook. */
\r
2940 pxTCB = prvGetTCBFromHandle( xTask );
\r
2942 /* Save the hook function in the TCB. A critical section is required as
\r
2943 * the value can be accessed from an interrupt. */
\r
2944 taskENTER_CRITICAL();
\r
2946 xReturn = pxTCB->pxTaskTag;
\r
2948 taskEXIT_CRITICAL();
\r
2953 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2954 /*-----------------------------------------------------------*/
\r
2956 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2958 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2961 TaskHookFunction_t xReturn;
\r
2962 UBaseType_t uxSavedInterruptStatus;
\r
2964 /* If xTask is NULL then set the calling task's hook. */
\r
2965 pxTCB = prvGetTCBFromHandle( xTask );
\r
2967 /* Save the hook function in the TCB. A critical section is required as
\r
2968 * the value can be accessed from an interrupt. */
\r
2969 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2971 xReturn = pxTCB->pxTaskTag;
\r
2973 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2978 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2979 /*-----------------------------------------------------------*/
\r
2981 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2983 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
\r
2984 void * pvParameter )
\r
2987 BaseType_t xReturn;
\r
2989 /* If xTask is NULL then we are calling our own task hook. */
\r
2990 if( xTask == NULL )
\r
2992 xTCB = pxCurrentTCB;
\r
2999 if( xTCB->pxTaskTag != NULL )
\r
3001 xReturn = xTCB->pxTaskTag( pvParameter );
\r
3011 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
3012 /*-----------------------------------------------------------*/
\r
3014 void vTaskSwitchContext( void )
\r
3016 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
3018 /* The scheduler is currently suspended - do not allow a context
\r
3020 xYieldPending = pdTRUE;
\r
3024 xYieldPending = pdFALSE;
\r
3025 traceTASK_SWITCHED_OUT();
\r
3027 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3029 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3030 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3032 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3035 /* Add the amount of time the task has been running to the
\r
3036 * accumulated time so far. The time the task started running was
\r
3037 * stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3038 * protection here so count values are only valid until the timer
\r
3039 * overflows. The guard against negative values is to protect
\r
3040 * against suspect run time stat counter implementations - which
\r
3041 * are provided by the application, not the kernel. */
\r
3042 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3044 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3048 mtCOVERAGE_TEST_MARKER();
\r
3051 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3053 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3055 /* Check for stack overflow, if configured. */
\r
3056 taskCHECK_FOR_STACK_OVERFLOW();
\r
3058 /* Before the currently running task is switched out, save its errno. */
\r
3059 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3061 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3065 /* Select a new task to run using either the generic C or port
\r
3066 * optimised asm code. */
\r
3067 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3068 traceTASK_SWITCHED_IN();
\r
3070 /* After the new task is switched in, update the global errno. */
\r
3071 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3073 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3077 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3079 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
3080 * structure specific to this task.
\r
3081 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3082 * for additional information. */
\r
3083 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
3085 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3088 /*-----------------------------------------------------------*/
\r
3090 void vTaskPlaceOnEventList( List_t * const pxEventList,
\r
3091 const TickType_t xTicksToWait )
\r
3093 configASSERT( pxEventList );
\r
3095 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3096 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3098 /* Place the event list item of the TCB in the appropriate event list.
\r
3099 * This is placed in the list in priority order so the highest priority task
\r
3100 * is the first to be woken by the event.
\r
3102 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
\r
3103 * Normally, the xItemValue of a TCB's ListItem_t members is:
\r
3104 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
\r
3105 * Therefore, the event list is sorted in descending priority order.
\r
3107 * The queue that contains the event list is locked, preventing
\r
3108 * simultaneous access from interrupts. */
\r
3109 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3111 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3113 /*-----------------------------------------------------------*/
\r
3115 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
\r
3116 const TickType_t xItemValue,
\r
3117 const TickType_t xTicksToWait )
\r
3119 configASSERT( pxEventList );
\r
3121 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3122 * the event groups implementation. */
\r
3123 configASSERT( uxSchedulerSuspended != 0 );
\r
3125 /* Store the item value in the event list item. It is safe to access the
\r
3126 * event list item here as interrupts won't access the event list item of a
\r
3127 * task that is not in the Blocked state. */
\r
3128 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3130 /* Place the event list item of the TCB at the end of the appropriate event
\r
3131 * list. It is safe to access the event list here because it is part of an
\r
3132 * event group implementation - and interrupts don't access event groups
\r
3133 * directly (instead they access them indirectly by pending function calls to
\r
3134 * the task level). */
\r
3135 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3137 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3139 /*-----------------------------------------------------------*/
\r
3141 #if ( configUSE_TIMERS == 1 )
\r
3143 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
\r
3144 TickType_t xTicksToWait,
\r
3145 const BaseType_t xWaitIndefinitely )
\r
3147 configASSERT( pxEventList );
\r
3149 /* This function should not be called by application code hence the
\r
3150 * 'Restricted' in its name. It is not part of the public API. It is
\r
3151 * designed for use by kernel code, and has special calling requirements -
\r
3152 * it should be called with the scheduler suspended. */
\r
3155 /* Place the event list item of the TCB in the appropriate event list.
\r
3156 * In this case it is assume that this is the only task that is going to
\r
3157 * be waiting on this event list, so the faster vListInsertEnd() function
\r
3158 * can be used in place of vListInsert. */
\r
3159 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3161 /* If the task should block indefinitely then set the block time to a
\r
3162 * value that will be recognised as an indefinite delay inside the
\r
3163 * prvAddCurrentTaskToDelayedList() function. */
\r
3164 if( xWaitIndefinitely != pdFALSE )
\r
3166 xTicksToWait = portMAX_DELAY;
\r
3169 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3170 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3173 #endif /* configUSE_TIMERS */
\r
3174 /*-----------------------------------------------------------*/
\r
3176 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3178 TCB_t * pxUnblockedTCB;
\r
3179 BaseType_t xReturn;
\r
3181 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3182 * called from a critical section within an ISR. */
\r
3184 /* The event list is sorted in priority order, so the first in the list can
\r
3185 * be removed as it is known to be the highest priority. Remove the TCB from
\r
3186 * the delayed list, and add it to the ready list.
\r
3188 * If an event is for a queue that is locked then this function will never
\r
3189 * get called - the lock count on the queue will get modified instead. This
\r
3190 * means exclusive access to the event list is guaranteed here.
\r
3192 * This function assumes that a check has already been made to ensure that
\r
3193 * pxEventList is not empty. */
\r
3194 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3195 configASSERT( pxUnblockedTCB );
\r
3196 listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
\r
3198 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3200 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3201 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3203 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3205 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3206 * might be set to the blocked task's time out time. If the task is
\r
3207 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3208 * normally left unchanged, because it is automatically reset to a new
\r
3209 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3210 * tickless idling is used it might be more important to enter sleep mode
\r
3211 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3212 * ensure it is updated at the earliest possible time. */
\r
3213 prvResetNextTaskUnblockTime();
\r
3219 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3220 * pending until the scheduler is resumed. */
\r
3221 listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3224 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3226 /* Return true if the task removed from the event list has a higher
\r
3227 * priority than the calling task. This allows the calling task to know if
\r
3228 * it should force a context switch now. */
\r
3231 /* Mark that a yield is pending in case the user is not using the
\r
3232 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3233 xYieldPending = pdTRUE;
\r
3237 xReturn = pdFALSE;
\r
3242 /*-----------------------------------------------------------*/
\r
3244 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
\r
3245 const TickType_t xItemValue )
\r
3247 TCB_t * pxUnblockedTCB;
\r
3249 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3250 * the event flags implementation. */
\r
3251 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3253 /* Store the new item value in the event list. */
\r
3254 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3256 /* Remove the event list form the event flag. Interrupts do not access
\r
3258 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3259 configASSERT( pxUnblockedTCB );
\r
3260 listREMOVE_ITEM( pxEventListItem );
\r
3262 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3264 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3265 * might be set to the blocked task's time out time. If the task is
\r
3266 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3267 * normally left unchanged, because it is automatically reset to a new
\r
3268 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3269 * tickless idling is used it might be more important to enter sleep mode
\r
3270 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3271 * ensure it is updated at the earliest possible time. */
\r
3272 prvResetNextTaskUnblockTime();
\r
3276 /* Remove the task from the delayed list and add it to the ready list. The
\r
3277 * scheduler is suspended so interrupts will not be accessing the ready
\r
3279 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3280 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3282 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3284 /* The unblocked task has a priority above that of the calling task, so
\r
3285 * a context switch is required. This function is called with the
\r
3286 * scheduler suspended so xYieldPending is set so the context switch
\r
3287 * occurs immediately that the scheduler is resumed (unsuspended). */
\r
3288 xYieldPending = pdTRUE;
\r
3291 /*-----------------------------------------------------------*/
\r
3293 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3295 configASSERT( pxTimeOut );
\r
3296 taskENTER_CRITICAL();
\r
3298 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3299 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3301 taskEXIT_CRITICAL();
\r
3303 /*-----------------------------------------------------------*/
\r
3305 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3307 /* For internal use only as it does not use a critical section. */
\r
3308 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3309 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3311 /*-----------------------------------------------------------*/
\r
3313 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
\r
3314 TickType_t * const pxTicksToWait )
\r
3316 BaseType_t xReturn;
\r
3318 configASSERT( pxTimeOut );
\r
3319 configASSERT( pxTicksToWait );
\r
3321 taskENTER_CRITICAL();
\r
3323 /* Minor optimisation. The tick count cannot change in this block. */
\r
3324 const TickType_t xConstTickCount = xTickCount;
\r
3325 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3327 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
3328 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3330 /* The delay was aborted, which is not the same as a time out,
\r
3331 * but has the same result. */
\r
3332 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3338 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3339 if( *pxTicksToWait == portMAX_DELAY )
\r
3341 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3342 * specified is the maximum block time then the task should block
\r
3343 * indefinitely, and therefore never time out. */
\r
3344 xReturn = pdFALSE;
\r
3349 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3351 /* The tick count is greater than the time at which
\r
3352 * vTaskSetTimeout() was called, but has also overflowed since
\r
3353 * vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3354 * around and gone past again. This passed since vTaskSetTimeout()
\r
3357 *pxTicksToWait = ( TickType_t ) 0;
\r
3359 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3361 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3362 *pxTicksToWait -= xElapsedTime;
\r
3363 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3364 xReturn = pdFALSE;
\r
3368 *pxTicksToWait = ( TickType_t ) 0;
\r
3372 taskEXIT_CRITICAL();
\r
3376 /*-----------------------------------------------------------*/
\r
3378 void vTaskMissedYield( void )
\r
3380 xYieldPending = pdTRUE;
\r
3382 /*-----------------------------------------------------------*/
\r
3384 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3386 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3388 UBaseType_t uxReturn;
\r
3389 TCB_t const * pxTCB;
\r
3391 if( xTask != NULL )
\r
3394 uxReturn = pxTCB->uxTaskNumber;
\r
3404 #endif /* configUSE_TRACE_FACILITY */
\r
3405 /*-----------------------------------------------------------*/
\r
3407 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3409 void vTaskSetTaskNumber( TaskHandle_t xTask,
\r
3410 const UBaseType_t uxHandle )
\r
3414 if( xTask != NULL )
\r
3417 pxTCB->uxTaskNumber = uxHandle;
\r
3421 #endif /* configUSE_TRACE_FACILITY */
\r
3424 * -----------------------------------------------------------
\r
3426 * ----------------------------------------------------------
\r
3428 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3429 * language extensions. The equivalent prototype for this function is:
\r
3431 * void prvIdleTask( void *pvParameters );
\r
3434 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3436 /* Stop warnings. */
\r
3437 ( void ) pvParameters;
\r
3439 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3440 * SCHEDULER IS STARTED. **/
\r
3442 /* In case a task that has a secure context deletes itself, in which case
\r
3443 * the idle task is responsible for deleting the task's secure context, if
\r
3445 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3449 /* See if any tasks have deleted themselves - if so then the idle task
\r
3450 * is responsible for freeing the deleted task's TCB and stack. */
\r
3451 prvCheckTasksWaitingTermination();
\r
3453 #if ( configUSE_PREEMPTION == 0 )
\r
3455 /* If we are not using preemption we keep forcing a task switch to
\r
3456 * see if any other task has become available. If we are using
\r
3457 * preemption we don't need to do this as any task becoming available
\r
3458 * will automatically get the processor anyway. */
\r
3461 #endif /* configUSE_PREEMPTION */
\r
3463 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3465 /* When using preemption tasks of equal priority will be
\r
3466 * timesliced. If a task that is sharing the idle priority is ready
\r
3467 * to run then the idle task should yield before the end of the
\r
3470 * A critical region is not required here as we are just reading from
\r
3471 * the list, and an occasional incorrect value will not matter. If
\r
3472 * the ready list at the idle priority contains more than one task
\r
3473 * then a task other than the idle task is ready to execute. */
\r
3474 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3480 mtCOVERAGE_TEST_MARKER();
\r
3483 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3485 #if ( configUSE_IDLE_HOOK == 1 )
\r
3487 extern void vApplicationIdleHook( void );
\r
3489 /* Call the user defined function from within the idle task. This
\r
3490 * allows the application designer to add background functionality
\r
3491 * without the overhead of a separate task.
\r
3492 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3493 * CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3494 vApplicationIdleHook();
\r
3496 #endif /* configUSE_IDLE_HOOK */
\r
3498 /* This conditional compilation should use inequality to 0, not equality
\r
3499 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3500 * user defined low power mode implementations require
\r
3501 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3502 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3504 TickType_t xExpectedIdleTime;
\r
3506 /* It is not desirable to suspend then resume the scheduler on
\r
3507 * each iteration of the idle task. Therefore, a preliminary
\r
3508 * test of the expected idle time is performed without the
\r
3509 * scheduler suspended. The result here is not necessarily
\r
3511 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3513 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3515 vTaskSuspendAll();
\r
3517 /* Now the scheduler is suspended, the expected idle
\r
3518 * time can be sampled again, and this time its value can
\r
3520 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3521 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3523 /* Define the following macro to set xExpectedIdleTime to 0
\r
3524 * if the application does not want
\r
3525 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3526 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3528 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3530 traceLOW_POWER_IDLE_BEGIN();
\r
3531 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3532 traceLOW_POWER_IDLE_END();
\r
3536 mtCOVERAGE_TEST_MARKER();
\r
3539 ( void ) xTaskResumeAll();
\r
3543 mtCOVERAGE_TEST_MARKER();
\r
3546 #endif /* configUSE_TICKLESS_IDLE */
\r
3549 /*-----------------------------------------------------------*/
\r
3551 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3553 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3555 /* The idle task exists in addition to the application tasks. */
\r
3556 const UBaseType_t uxNonApplicationTasks = 1;
\r
3557 eSleepModeStatus eReturn = eStandardSleep;
\r
3559 /* This function must be called from a critical section. */
\r
3561 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3563 /* A task was made ready while the scheduler was suspended. */
\r
3564 eReturn = eAbortSleep;
\r
3566 else if( xYieldPending != pdFALSE )
\r
3568 /* A yield was pended while the scheduler was suspended. */
\r
3569 eReturn = eAbortSleep;
\r
3571 else if( xPendedTicks != 0 )
\r
3573 /* A tick interrupt has already occurred but was held pending
\r
3574 * because the scheduler is suspended. */
\r
3575 eReturn = eAbortSleep;
\r
3579 /* If all the tasks are in the suspended list (which might mean they
\r
3580 * have an infinite block time rather than actually being suspended)
\r
3581 * then it is safe to turn all clocks off and just wait for external
\r
3583 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3585 eReturn = eNoTasksWaitingTimeout;
\r
3589 mtCOVERAGE_TEST_MARKER();
\r
3596 #endif /* configUSE_TICKLESS_IDLE */
\r
3597 /*-----------------------------------------------------------*/
\r
3599 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3601 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
\r
3602 BaseType_t xIndex,
\r
3607 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3609 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3610 configASSERT( pxTCB != NULL );
\r
3611 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3615 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3616 /*-----------------------------------------------------------*/
\r
3618 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3620 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
\r
3621 BaseType_t xIndex )
\r
3623 void * pvReturn = NULL;
\r
3626 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3628 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3629 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3639 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3640 /*-----------------------------------------------------------*/
\r
3642 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3644 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
\r
3645 const MemoryRegion_t * const xRegions )
\r
3649 /* If null is passed in here then we are modifying the MPU settings of
\r
3650 * the calling task. */
\r
3651 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3653 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3656 #endif /* portUSING_MPU_WRAPPERS */
\r
3657 /*-----------------------------------------------------------*/
\r
3659 static void prvInitialiseTaskLists( void )
\r
3661 UBaseType_t uxPriority;
\r
3663 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3665 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3668 vListInitialise( &xDelayedTaskList1 );
\r
3669 vListInitialise( &xDelayedTaskList2 );
\r
3670 vListInitialise( &xPendingReadyList );
\r
3672 #if ( INCLUDE_vTaskDelete == 1 )
\r
3674 vListInitialise( &xTasksWaitingTermination );
\r
3676 #endif /* INCLUDE_vTaskDelete */
\r
3678 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3680 vListInitialise( &xSuspendedTaskList );
\r
3682 #endif /* INCLUDE_vTaskSuspend */
\r
3684 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3686 pxDelayedTaskList = &xDelayedTaskList1;
\r
3687 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3689 /*-----------------------------------------------------------*/
\r
3691 static void prvCheckTasksWaitingTermination( void )
\r
3693 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3695 #if ( INCLUDE_vTaskDelete == 1 )
\r
3699 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3700 * being called too often in the idle task. */
\r
3701 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3703 taskENTER_CRITICAL();
\r
3705 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3706 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3707 --uxCurrentNumberOfTasks;
\r
3708 --uxDeletedTasksWaitingCleanUp;
\r
3710 taskEXIT_CRITICAL();
\r
3712 prvDeleteTCB( pxTCB );
\r
3715 #endif /* INCLUDE_vTaskDelete */
\r
3717 /*-----------------------------------------------------------*/
\r
3719 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3721 void vTaskGetInfo( TaskHandle_t xTask,
\r
3722 TaskStatus_t * pxTaskStatus,
\r
3723 BaseType_t xGetFreeStackSpace,
\r
3724 eTaskState eState )
\r
3728 /* xTask is NULL then get the state of the calling task. */
\r
3729 pxTCB = prvGetTCBFromHandle( xTask );
\r
3731 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3732 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
\r
3733 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3734 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3735 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3737 #if ( configUSE_MUTEXES == 1 )
\r
3739 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3743 pxTaskStatus->uxBasePriority = 0;
\r
3747 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3749 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3753 pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
\r
3757 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3758 * value of eState passed into this function is eInvalid - otherwise the
\r
3759 * state is just set to whatever is passed in. */
\r
3760 if( eState != eInvalid )
\r
3762 if( pxTCB == pxCurrentTCB )
\r
3764 pxTaskStatus->eCurrentState = eRunning;
\r
3768 pxTaskStatus->eCurrentState = eState;
\r
3770 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3772 /* If the task is in the suspended list then there is a
\r
3773 * chance it is actually just blocked indefinitely - so really
\r
3774 * it should be reported as being in the Blocked state. */
\r
3775 if( eState == eSuspended )
\r
3777 vTaskSuspendAll();
\r
3779 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3781 pxTaskStatus->eCurrentState = eBlocked;
\r
3784 ( void ) xTaskResumeAll();
\r
3787 #endif /* INCLUDE_vTaskSuspend */
\r
3792 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3795 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3796 * parameter is provided to allow it to be skipped. */
\r
3797 if( xGetFreeStackSpace != pdFALSE )
\r
3799 #if ( portSTACK_GROWTH > 0 )
\r
3801 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3805 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3811 pxTaskStatus->usStackHighWaterMark = 0;
\r
3815 #endif /* configUSE_TRACE_FACILITY */
\r
3816 /*-----------------------------------------------------------*/
\r
3818 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3820 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
3822 eTaskState eState )
\r
3824 configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
\r
3825 UBaseType_t uxTask = 0;
\r
3827 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3829 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3831 /* Populate an TaskStatus_t structure within the
\r
3832 * pxTaskStatusArray array for each task that is referenced from
\r
3833 * pxList. See the definition of TaskStatus_t in task.h for the
\r
3834 * meaning of each TaskStatus_t structure member. */
\r
3837 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3838 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3840 } while( pxNextTCB != pxFirstTCB );
\r
3844 mtCOVERAGE_TEST_MARKER();
\r
3850 #endif /* configUSE_TRACE_FACILITY */
\r
3851 /*-----------------------------------------------------------*/
\r
3853 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3855 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3857 uint32_t ulCount = 0U;
\r
3859 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3861 pucStackByte -= portSTACK_GROWTH;
\r
3865 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3867 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3870 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3871 /*-----------------------------------------------------------*/
\r
3873 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3875 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3876 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3877 * user to determine the return type. It gets around the problem of the value
\r
3878 * overflowing on 8-bit types without breaking backward compatibility for
\r
3879 * applications that expect an 8-bit return type. */
\r
3880 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3883 uint8_t * pucEndOfStack;
\r
3884 configSTACK_DEPTH_TYPE uxReturn;
\r
3886 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3887 * the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3888 * allows the user to determine the return type. It gets around the
\r
3889 * problem of the value overflowing on 8-bit types without breaking
\r
3890 * backward compatibility for applications that expect an 8-bit return
\r
3893 pxTCB = prvGetTCBFromHandle( xTask );
\r
3895 #if portSTACK_GROWTH < 0
\r
3897 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3901 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3905 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3910 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3911 /*-----------------------------------------------------------*/
\r
3913 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3915 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3918 uint8_t * pucEndOfStack;
\r
3919 UBaseType_t uxReturn;
\r
3921 pxTCB = prvGetTCBFromHandle( xTask );
\r
3923 #if portSTACK_GROWTH < 0
\r
3925 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3929 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3933 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3938 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3939 /*-----------------------------------------------------------*/
\r
3941 #if ( INCLUDE_vTaskDelete == 1 )
\r
3943 static void prvDeleteTCB( TCB_t * pxTCB )
\r
3945 /* This call is required specifically for the TriCore port. It must be
\r
3946 * above the vPortFree() calls. The call is also used by ports/demos that
\r
3947 * want to allocate and clean RAM statically. */
\r
3948 portCLEAN_UP_TCB( pxTCB );
\r
3950 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3951 * to the task to free any memory allocated at the application level.
\r
3952 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3953 * for additional information. */
\r
3954 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3956 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3958 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3960 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3962 /* The task can only have been allocated dynamically - free both
\r
3963 * the stack and TCB. */
\r
3964 vPortFreeStack( pxTCB->pxStack );
\r
3965 vPortFree( pxTCB );
\r
3967 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3969 /* The task could have been allocated statically or dynamically, so
\r
3970 * check what was statically allocated before trying to free the
\r
3972 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3974 /* Both the stack and TCB were allocated dynamically, so both
\r
3975 * must be freed. */
\r
3976 vPortFreeStack( pxTCB->pxStack );
\r
3977 vPortFree( pxTCB );
\r
3979 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3981 /* Only the stack was statically allocated, so the TCB is the
\r
3982 * only memory that must be freed. */
\r
3983 vPortFree( pxTCB );
\r
3987 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3988 * nothing needs to be freed. */
\r
3989 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
3990 mtCOVERAGE_TEST_MARKER();
\r
3993 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3996 #endif /* INCLUDE_vTaskDelete */
\r
3997 /*-----------------------------------------------------------*/
\r
3999 static void prvResetNextTaskUnblockTime( void )
\r
4001 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
4003 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
4004 * the maximum possible value so it is extremely unlikely that the
\r
4005 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
4006 * there is an item in the delayed list. */
\r
4007 xNextTaskUnblockTime = portMAX_DELAY;
\r
4011 /* The new current delayed list is not empty, get the value of
\r
4012 * the item at the head of the delayed list. This is the time at
\r
4013 * which the task at the head of the delayed list should be removed
\r
4014 * from the Blocked state. */
\r
4015 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
4018 /*-----------------------------------------------------------*/
\r
4020 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
4022 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
4024 TaskHandle_t xReturn;
\r
4026 /* A critical section is not required as this is not called from
\r
4027 * an interrupt and the current TCB will always be the same for any
\r
4028 * individual execution thread. */
\r
4029 xReturn = pxCurrentTCB;
\r
4034 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
4035 /*-----------------------------------------------------------*/
\r
4037 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
4039 BaseType_t xTaskGetSchedulerState( void )
\r
4041 BaseType_t xReturn;
\r
4043 if( xSchedulerRunning == pdFALSE )
\r
4045 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4049 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4051 xReturn = taskSCHEDULER_RUNNING;
\r
4055 xReturn = taskSCHEDULER_SUSPENDED;
\r
4062 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4063 /*-----------------------------------------------------------*/
\r
4065 #if ( configUSE_MUTEXES == 1 )
\r
4067 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4069 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4070 BaseType_t xReturn = pdFALSE;
\r
4072 /* If the mutex was given back by an interrupt while the queue was
\r
4073 * locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4074 * needed as interrupts can no longer use mutexes? */
\r
4075 if( pxMutexHolder != NULL )
\r
4077 /* If the holder of the mutex has a priority below the priority of
\r
4078 * the task attempting to obtain the mutex then it will temporarily
\r
4079 * inherit the priority of the task attempting to obtain the mutex. */
\r
4080 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4082 /* Adjust the mutex holder state to account for its new
\r
4083 * priority. Only reset the event list item value if the value is
\r
4084 * not being used for anything else. */
\r
4085 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4087 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4091 mtCOVERAGE_TEST_MARKER();
\r
4094 /* If the task being modified is in the ready state it will need
\r
4095 * to be moved into a new list. */
\r
4096 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4098 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4100 /* It is known that the task is in its ready list so
\r
4101 * there is no need to check again and the port level
\r
4102 * reset macro can be called directly. */
\r
4103 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4107 mtCOVERAGE_TEST_MARKER();
\r
4110 /* Inherit the priority before being moved into the new list. */
\r
4111 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4112 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4116 /* Just inherit the priority. */
\r
4117 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4120 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4122 /* Inheritance occurred. */
\r
4127 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4129 /* The base priority of the mutex holder is lower than the
\r
4130 * priority of the task attempting to take the mutex, but the
\r
4131 * current priority of the mutex holder is not lower than the
\r
4132 * priority of the task attempting to take the mutex.
\r
4133 * Therefore the mutex holder must have already inherited a
\r
4134 * priority, but inheritance would have occurred if that had
\r
4135 * not been the case. */
\r
4140 mtCOVERAGE_TEST_MARKER();
\r
4146 mtCOVERAGE_TEST_MARKER();
\r
4152 #endif /* configUSE_MUTEXES */
\r
4153 /*-----------------------------------------------------------*/
\r
4155 #if ( configUSE_MUTEXES == 1 )
\r
4157 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4159 TCB_t * const pxTCB = pxMutexHolder;
\r
4160 BaseType_t xReturn = pdFALSE;
\r
4162 if( pxMutexHolder != NULL )
\r
4164 /* A task can only have an inherited priority if it holds the mutex.
\r
4165 * If the mutex is held by a task then it cannot be given from an
\r
4166 * interrupt, and if a mutex is given by the holding task then it must
\r
4167 * be the running state task. */
\r
4168 configASSERT( pxTCB == pxCurrentTCB );
\r
4169 configASSERT( pxTCB->uxMutexesHeld );
\r
4170 ( pxTCB->uxMutexesHeld )--;
\r
4172 /* Has the holder of the mutex inherited the priority of another
\r
4174 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4176 /* Only disinherit if no other mutexes are held. */
\r
4177 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4179 /* A task can only have an inherited priority if it holds
\r
4180 * the mutex. If the mutex is held by a task then it cannot be
\r
4181 * given from an interrupt, and if a mutex is given by the
\r
4182 * holding task then it must be the running state task. Remove
\r
4183 * the holding task from the ready list. */
\r
4184 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4186 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4190 mtCOVERAGE_TEST_MARKER();
\r
4193 /* Disinherit the priority before adding the task into the
\r
4194 * new ready list. */
\r
4195 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4196 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4198 /* Reset the event list item value. It cannot be in use for
\r
4199 * any other purpose if this task is running, and it must be
\r
4200 * running to give back the mutex. */
\r
4201 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4202 prvAddTaskToReadyList( pxTCB );
\r
4204 /* Return true to indicate that a context switch is required.
\r
4205 * This is only actually required in the corner case whereby
\r
4206 * multiple mutexes were held and the mutexes were given back
\r
4207 * in an order different to that in which they were taken.
\r
4208 * If a context switch did not occur when the first mutex was
\r
4209 * returned, even if a task was waiting on it, then a context
\r
4210 * switch should occur when the last mutex is returned whether
\r
4211 * a task is waiting on it or not. */
\r
4216 mtCOVERAGE_TEST_MARKER();
\r
4221 mtCOVERAGE_TEST_MARKER();
\r
4226 mtCOVERAGE_TEST_MARKER();
\r
4232 #endif /* configUSE_MUTEXES */
\r
4233 /*-----------------------------------------------------------*/
\r
4235 #if ( configUSE_MUTEXES == 1 )
\r
4237 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
\r
4238 UBaseType_t uxHighestPriorityWaitingTask )
\r
4240 TCB_t * const pxTCB = pxMutexHolder;
\r
4241 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4242 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4244 if( pxMutexHolder != NULL )
\r
4246 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4248 configASSERT( pxTCB->uxMutexesHeld );
\r
4250 /* Determine the priority to which the priority of the task that
\r
4251 * holds the mutex should be set. This will be the greater of the
\r
4252 * holding task's base priority and the priority of the highest
\r
4253 * priority task that is waiting to obtain the mutex. */
\r
4254 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4256 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4260 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4263 /* Does the priority need to change? */
\r
4264 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4266 /* Only disinherit if no other mutexes are held. This is a
\r
4267 * simplification in the priority inheritance implementation. If
\r
4268 * the task that holds the mutex is also holding other mutexes then
\r
4269 * the other mutexes may have caused the priority inheritance. */
\r
4270 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4272 /* If a task has timed out because it already holds the
\r
4273 * mutex it was trying to obtain then it cannot of inherited
\r
4274 * its own priority. */
\r
4275 configASSERT( pxTCB != pxCurrentTCB );
\r
4277 /* Disinherit the priority, remembering the previous
\r
4278 * priority to facilitate determining the subject task's
\r
4280 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
\r
4281 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4282 pxTCB->uxPriority = uxPriorityToUse;
\r
4284 /* Only reset the event list item value if the value is not
\r
4285 * being used for anything else. */
\r
4286 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4288 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4292 mtCOVERAGE_TEST_MARKER();
\r
4295 /* If the running task is not the task that holds the mutex
\r
4296 * then the task that holds the mutex could be in either the
\r
4297 * Ready, Blocked or Suspended states. Only remove the task
\r
4298 * from its current state list if it is in the Ready state as
\r
4299 * the task's priority is going to change and there is one
\r
4300 * Ready list per priority. */
\r
4301 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4303 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4305 /* It is known that the task is in its ready list so
\r
4306 * there is no need to check again and the port level
\r
4307 * reset macro can be called directly. */
\r
4308 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4312 mtCOVERAGE_TEST_MARKER();
\r
4315 prvAddTaskToReadyList( pxTCB );
\r
4319 mtCOVERAGE_TEST_MARKER();
\r
4324 mtCOVERAGE_TEST_MARKER();
\r
4329 mtCOVERAGE_TEST_MARKER();
\r
4334 mtCOVERAGE_TEST_MARKER();
\r
4338 #endif /* configUSE_MUTEXES */
\r
4339 /*-----------------------------------------------------------*/
\r
4341 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4343 void vTaskEnterCritical( void )
\r
4345 portDISABLE_INTERRUPTS();
\r
4347 if( xSchedulerRunning != pdFALSE )
\r
4349 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4351 /* This is not the interrupt safe version of the enter critical
\r
4352 * function so assert() if it is being called from an interrupt
\r
4353 * context. Only API functions that end in "FromISR" can be used in an
\r
4354 * interrupt. Only assert if the critical nesting count is 1 to
\r
4355 * protect against recursive calls if the assert function also uses a
\r
4356 * critical section. */
\r
4357 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4359 portASSERT_IF_IN_ISR();
\r
4364 mtCOVERAGE_TEST_MARKER();
\r
4368 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4369 /*-----------------------------------------------------------*/
\r
4371 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4373 void vTaskExitCritical( void )
\r
4375 if( xSchedulerRunning != pdFALSE )
\r
4377 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4379 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4381 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4383 portENABLE_INTERRUPTS();
\r
4387 mtCOVERAGE_TEST_MARKER();
\r
4392 mtCOVERAGE_TEST_MARKER();
\r
4397 mtCOVERAGE_TEST_MARKER();
\r
4401 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4402 /*-----------------------------------------------------------*/
\r
4404 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4406 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
4407 const char * pcTaskName )
\r
4411 /* Start by copying the entire string. */
\r
4412 strcpy( pcBuffer, pcTaskName );
\r
4414 /* Pad the end of the string with spaces to ensure columns line up when
\r
4416 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4418 pcBuffer[ x ] = ' ';
\r
4422 pcBuffer[ x ] = ( char ) 0x00;
\r
4424 /* Return the new end of string. */
\r
4425 return &( pcBuffer[ x ] );
\r
4428 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4429 /*-----------------------------------------------------------*/
\r
4431 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4433 void vTaskList( char * pcWriteBuffer )
\r
4435 TaskStatus_t * pxTaskStatusArray;
\r
4436 UBaseType_t uxArraySize, x;
\r
4442 * This function is provided for convenience only, and is used by many
\r
4443 * of the demo applications. Do not consider it to be part of the
\r
4446 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4447 * uxTaskGetSystemState() output into a human readable table that
\r
4448 * displays task: names, states, priority, stack usage and task number.
\r
4449 * Stack usage specified as the number of unused StackType_t words stack can hold
\r
4450 * on top of stack - not the number of bytes.
\r
4452 * vTaskList() has a dependency on the sprintf() C library function that
\r
4453 * might bloat the code size, use a lot of stack, and provide different
\r
4454 * results on different platforms. An alternative, tiny, third party,
\r
4455 * and limited functionality implementation of sprintf() is provided in
\r
4456 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4457 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4458 * snprintf() implementation!).
\r
4460 * It is recommended that production systems call uxTaskGetSystemState()
\r
4461 * directly to get access to raw stats data, rather than indirectly
\r
4462 * through a call to vTaskList().
\r
4466 /* Make sure the write buffer does not contain a string. */
\r
4467 *pcWriteBuffer = ( char ) 0x00;
\r
4469 /* Take a snapshot of the number of tasks in case it changes while this
\r
4470 * function is executing. */
\r
4471 uxArraySize = uxCurrentNumberOfTasks;
\r
4473 /* Allocate an array index for each task. NOTE! if
\r
4474 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4475 * equate to NULL. */
\r
4476 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4478 if( pxTaskStatusArray != NULL )
\r
4480 /* Generate the (binary) data. */
\r
4481 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4483 /* Create a human readable table from the binary data. */
\r
4484 for( x = 0; x < uxArraySize; x++ )
\r
4486 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4489 cStatus = tskRUNNING_CHAR;
\r
4493 cStatus = tskREADY_CHAR;
\r
4497 cStatus = tskBLOCKED_CHAR;
\r
4501 cStatus = tskSUSPENDED_CHAR;
\r
4505 cStatus = tskDELETED_CHAR;
\r
4508 case eInvalid: /* Fall through. */
\r
4509 default: /* Should not get here, but it is included
\r
4510 * to prevent static checking errors. */
\r
4511 cStatus = ( char ) 0x00;
\r
4515 /* Write the task name to the string, padding with spaces so it
\r
4516 * can be printed in tabular form more easily. */
\r
4517 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4519 /* Write the rest of the string. */
\r
4520 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4521 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4524 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4525 * is 0 then vPortFree() will be #defined to nothing. */
\r
4526 vPortFree( pxTaskStatusArray );
\r
4530 mtCOVERAGE_TEST_MARKER();
\r
4534 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4535 /*----------------------------------------------------------*/
\r
4537 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4539 void vTaskGetRunTimeStats( char * pcWriteBuffer )
\r
4541 TaskStatus_t * pxTaskStatusArray;
\r
4542 UBaseType_t uxArraySize, x;
\r
4543 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulStatsAsPercentage;
\r
4545 #if ( configUSE_TRACE_FACILITY != 1 )
\r
4547 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4554 * This function is provided for convenience only, and is used by many
\r
4555 * of the demo applications. Do not consider it to be part of the
\r
4558 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4559 * of the uxTaskGetSystemState() output into a human readable table that
\r
4560 * displays the amount of time each task has spent in the Running state
\r
4561 * in both absolute and percentage terms.
\r
4563 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4564 * function that might bloat the code size, use a lot of stack, and
\r
4565 * provide different results on different platforms. An alternative,
\r
4566 * tiny, third party, and limited functionality implementation of
\r
4567 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4568 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4569 * a full snprintf() implementation!).
\r
4571 * It is recommended that production systems call uxTaskGetSystemState()
\r
4572 * directly to get access to raw stats data, rather than indirectly
\r
4573 * through a call to vTaskGetRunTimeStats().
\r
4576 /* Make sure the write buffer does not contain a string. */
\r
4577 *pcWriteBuffer = ( char ) 0x00;
\r
4579 /* Take a snapshot of the number of tasks in case it changes while this
\r
4580 * function is executing. */
\r
4581 uxArraySize = uxCurrentNumberOfTasks;
\r
4583 /* Allocate an array index for each task. NOTE! If
\r
4584 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4585 * equate to NULL. */
\r
4586 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4588 if( pxTaskStatusArray != NULL )
\r
4590 /* Generate the (binary) data. */
\r
4591 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4593 /* For percentage calculations. */
\r
4594 ulTotalTime /= 100UL;
\r
4596 /* Avoid divide by zero errors. */
\r
4597 if( ulTotalTime > 0UL )
\r
4599 /* Create a human readable table from the binary data. */
\r
4600 for( x = 0; x < uxArraySize; x++ )
\r
4602 /* What percentage of the total run time has the task used?
\r
4603 * This will always be rounded down to the nearest integer.
\r
4604 * ulTotalRunTime has already been divided by 100. */
\r
4605 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4607 /* Write the task name to the string, padding with
\r
4608 * spaces so it can be printed in tabular form more
\r
4610 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4612 if( ulStatsAsPercentage > 0UL )
\r
4614 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4616 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4620 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4621 * printf() library can be used. */
\r
4622 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4628 /* If the percentage is zero here then the task has
\r
4629 * consumed less than 1% of the total run time. */
\r
4630 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4632 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4636 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4637 * printf() library can be used. */
\r
4638 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4643 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4648 mtCOVERAGE_TEST_MARKER();
\r
4651 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4652 * is 0 then vPortFree() will be #defined to nothing. */
\r
4653 vPortFree( pxTaskStatusArray );
\r
4657 mtCOVERAGE_TEST_MARKER();
\r
4661 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4662 /*-----------------------------------------------------------*/
\r
4664 TickType_t uxTaskResetEventItemValue( void )
\r
4666 TickType_t uxReturn;
\r
4668 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4670 /* Reset the event list item to its normal value - so it can be used with
\r
4671 * queues and semaphores. */
\r
4672 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4676 /*-----------------------------------------------------------*/
\r
4678 #if ( configUSE_MUTEXES == 1 )
\r
4680 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4682 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4683 * then pxCurrentTCB will be NULL. */
\r
4684 if( pxCurrentTCB != NULL )
\r
4686 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4689 return pxCurrentTCB;
\r
4692 #endif /* configUSE_MUTEXES */
\r
4693 /*-----------------------------------------------------------*/
\r
4695 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4697 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
\r
4698 BaseType_t xClearCountOnExit,
\r
4699 TickType_t xTicksToWait )
\r
4701 uint32_t ulReturn;
\r
4703 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4705 taskENTER_CRITICAL();
\r
4707 /* Only block if the notification count is not already non-zero. */
\r
4708 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
\r
4710 /* Mark this task as waiting for a notification. */
\r
4711 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4713 if( xTicksToWait > ( TickType_t ) 0 )
\r
4715 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4716 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
\r
4718 /* All ports are written to allow a yield in a critical
\r
4719 * section (some will yield immediately, others wait until the
\r
4720 * critical section exits) - but it is not something that
\r
4721 * application code should ever do. */
\r
4722 portYIELD_WITHIN_API();
\r
4726 mtCOVERAGE_TEST_MARKER();
\r
4731 mtCOVERAGE_TEST_MARKER();
\r
4734 taskEXIT_CRITICAL();
\r
4736 taskENTER_CRITICAL();
\r
4738 traceTASK_NOTIFY_TAKE( uxIndexToWait );
\r
4739 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4741 if( ulReturn != 0UL )
\r
4743 if( xClearCountOnExit != pdFALSE )
\r
4745 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
\r
4749 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
\r
4754 mtCOVERAGE_TEST_MARKER();
\r
4757 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4759 taskEXIT_CRITICAL();
\r
4764 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4765 /*-----------------------------------------------------------*/
\r
4767 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4769 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
\r
4770 uint32_t ulBitsToClearOnEntry,
\r
4771 uint32_t ulBitsToClearOnExit,
\r
4772 uint32_t * pulNotificationValue,
\r
4773 TickType_t xTicksToWait )
\r
4775 BaseType_t xReturn;
\r
4777 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4779 taskENTER_CRITICAL();
\r
4781 /* Only block if a notification is not already pending. */
\r
4782 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4784 /* Clear bits in the task's notification value as bits may get
\r
4785 * set by the notifying task or interrupt. This can be used to
\r
4786 * clear the value to zero. */
\r
4787 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
\r
4789 /* Mark this task as waiting for a notification. */
\r
4790 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4792 if( xTicksToWait > ( TickType_t ) 0 )
\r
4794 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4795 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
\r
4797 /* All ports are written to allow a yield in a critical
\r
4798 * section (some will yield immediately, others wait until the
\r
4799 * critical section exits) - but it is not something that
\r
4800 * application code should ever do. */
\r
4801 portYIELD_WITHIN_API();
\r
4805 mtCOVERAGE_TEST_MARKER();
\r
4810 mtCOVERAGE_TEST_MARKER();
\r
4813 taskEXIT_CRITICAL();
\r
4815 taskENTER_CRITICAL();
\r
4817 traceTASK_NOTIFY_WAIT( uxIndexToWait );
\r
4819 if( pulNotificationValue != NULL )
\r
4821 /* Output the current notification value, which may or may not
\r
4822 * have changed. */
\r
4823 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4826 /* If ucNotifyValue is set then either the task never entered the
\r
4827 * blocked state (because a notification was already pending) or the
\r
4828 * task unblocked because of a notification. Otherwise the task
\r
4829 * unblocked because of a timeout. */
\r
4830 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4832 /* A notification was not received. */
\r
4833 xReturn = pdFALSE;
\r
4837 /* A notification was already pending or a notification was
\r
4838 * received while the task was waiting. */
\r
4839 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
\r
4843 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4845 taskEXIT_CRITICAL();
\r
4850 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4851 /*-----------------------------------------------------------*/
\r
4853 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4855 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
\r
4856 UBaseType_t uxIndexToNotify,
\r
4858 eNotifyAction eAction,
\r
4859 uint32_t * pulPreviousNotificationValue )
\r
4862 BaseType_t xReturn = pdPASS;
\r
4863 uint8_t ucOriginalNotifyState;
\r
4865 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4866 configASSERT( xTaskToNotify );
\r
4867 pxTCB = xTaskToNotify;
\r
4869 taskENTER_CRITICAL();
\r
4871 if( pulPreviousNotificationValue != NULL )
\r
4873 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
4876 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
4878 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
4883 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
4887 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
4890 case eSetValueWithOverwrite:
\r
4891 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4894 case eSetValueWithoutOverwrite:
\r
4896 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4898 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4902 /* The value could not be written to the task. */
\r
4910 /* The task is being notified without its notify value being
\r
4916 /* Should not get here if all enums are handled.
\r
4917 * Artificially force an assert by testing a value the
\r
4918 * compiler can't assume is const. */
\r
4919 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
4924 traceTASK_NOTIFY( uxIndexToNotify );
\r
4926 /* If the task is in the blocked state specifically to wait for a
\r
4927 * notification then unblock it now. */
\r
4928 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4930 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
4931 prvAddTaskToReadyList( pxTCB );
\r
4933 /* The task should not have been on an event list. */
\r
4934 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4936 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
4938 /* If a task is blocked waiting for a notification then
\r
4939 * xNextTaskUnblockTime might be set to the blocked task's time
\r
4940 * out time. If the task is unblocked for a reason other than
\r
4941 * a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4942 * because it will automatically get reset to a new value when
\r
4943 * the tick count equals xNextTaskUnblockTime. However if
\r
4944 * tickless idling is used it might be more important to enter
\r
4945 * sleep mode at the earliest possible time - so reset
\r
4946 * xNextTaskUnblockTime here to ensure it is updated at the
\r
4947 * earliest possible time. */
\r
4948 prvResetNextTaskUnblockTime();
\r
4952 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4954 /* The notified task has a priority above the currently
\r
4955 * executing task so a yield is required. */
\r
4956 taskYIELD_IF_USING_PREEMPTION();
\r
4960 mtCOVERAGE_TEST_MARKER();
\r
4965 mtCOVERAGE_TEST_MARKER();
\r
4968 taskEXIT_CRITICAL();
\r
4973 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4974 /*-----------------------------------------------------------*/
\r
4976 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4978 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
\r
4979 UBaseType_t uxIndexToNotify,
\r
4981 eNotifyAction eAction,
\r
4982 uint32_t * pulPreviousNotificationValue,
\r
4983 BaseType_t * pxHigherPriorityTaskWoken )
\r
4986 uint8_t ucOriginalNotifyState;
\r
4987 BaseType_t xReturn = pdPASS;
\r
4988 UBaseType_t uxSavedInterruptStatus;
\r
4990 configASSERT( xTaskToNotify );
\r
4991 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4993 /* RTOS ports that support interrupt nesting have the concept of a
\r
4994 * maximum system call (or maximum API call) interrupt priority.
\r
4995 * Interrupts that are above the maximum system call priority are keep
\r
4996 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
4997 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4998 * is defined in FreeRTOSConfig.h then
\r
4999 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5000 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5001 * been assigned a priority above the configured maximum system call
\r
5002 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5003 * from interrupts that have been assigned a priority at or (logically)
\r
5004 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5005 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5006 * simple as possible. More information (albeit Cortex-M specific) is
\r
5007 * provided on the following link:
\r
5008 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5009 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5011 pxTCB = xTaskToNotify;
\r
5013 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5015 if( pulPreviousNotificationValue != NULL )
\r
5017 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
5020 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5021 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5026 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
5030 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5033 case eSetValueWithOverwrite:
\r
5034 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5037 case eSetValueWithoutOverwrite:
\r
5039 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
5041 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5045 /* The value could not be written to the task. */
\r
5053 /* The task is being notified without its notify value being
\r
5059 /* Should not get here if all enums are handled.
\r
5060 * Artificially force an assert by testing a value the
\r
5061 * compiler can't assume is const. */
\r
5062 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
5066 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
\r
5068 /* If the task is in the blocked state specifically to wait for a
\r
5069 * notification then unblock it now. */
\r
5070 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5072 /* The task should not have been on an event list. */
\r
5073 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5075 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5077 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5078 prvAddTaskToReadyList( pxTCB );
\r
5082 /* The delayed and ready lists cannot be accessed, so hold
\r
5083 * this task pending until the scheduler is resumed. */
\r
5084 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5087 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5089 /* The notified task has a priority above the currently
\r
5090 * executing task so a yield is required. */
\r
5091 if( pxHigherPriorityTaskWoken != NULL )
\r
5093 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5096 /* Mark that a yield is pending in case the user is not
\r
5097 * using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5098 * safe FreeRTOS function. */
\r
5099 xYieldPending = pdTRUE;
\r
5103 mtCOVERAGE_TEST_MARKER();
\r
5107 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5112 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5113 /*-----------------------------------------------------------*/
\r
5115 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5117 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
\r
5118 UBaseType_t uxIndexToNotify,
\r
5119 BaseType_t * pxHigherPriorityTaskWoken )
\r
5122 uint8_t ucOriginalNotifyState;
\r
5123 UBaseType_t uxSavedInterruptStatus;
\r
5125 configASSERT( xTaskToNotify );
\r
5126 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5128 /* RTOS ports that support interrupt nesting have the concept of a
\r
5129 * maximum system call (or maximum API call) interrupt priority.
\r
5130 * Interrupts that are above the maximum system call priority are keep
\r
5131 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5132 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5133 * is defined in FreeRTOSConfig.h then
\r
5134 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5135 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5136 * been assigned a priority above the configured maximum system call
\r
5137 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5138 * from interrupts that have been assigned a priority at or (logically)
\r
5139 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5140 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5141 * simple as possible. More information (albeit Cortex-M specific) is
\r
5142 * provided on the following link:
\r
5143 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5144 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5146 pxTCB = xTaskToNotify;
\r
5148 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5150 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5151 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5153 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5155 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5157 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
\r
5159 /* If the task is in the blocked state specifically to wait for a
\r
5160 * notification then unblock it now. */
\r
5161 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5163 /* The task should not have been on an event list. */
\r
5164 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5166 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5168 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5169 prvAddTaskToReadyList( pxTCB );
\r
5173 /* The delayed and ready lists cannot be accessed, so hold
\r
5174 * this task pending until the scheduler is resumed. */
\r
5175 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5178 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5180 /* The notified task has a priority above the currently
\r
5181 * executing task so a yield is required. */
\r
5182 if( pxHigherPriorityTaskWoken != NULL )
\r
5184 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5187 /* Mark that a yield is pending in case the user is not
\r
5188 * using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5189 * safe FreeRTOS function. */
\r
5190 xYieldPending = pdTRUE;
\r
5194 mtCOVERAGE_TEST_MARKER();
\r
5198 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5201 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5202 /*-----------------------------------------------------------*/
\r
5204 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5206 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
\r
5207 UBaseType_t uxIndexToClear )
\r
5210 BaseType_t xReturn;
\r
5212 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5214 /* If null is passed in here then it is the calling task that is having
\r
5215 * its notification state cleared. */
\r
5216 pxTCB = prvGetTCBFromHandle( xTask );
\r
5218 taskENTER_CRITICAL();
\r
5220 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
\r
5222 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
\r
5230 taskEXIT_CRITICAL();
\r
5235 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5236 /*-----------------------------------------------------------*/
\r
5238 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5240 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
\r
5241 UBaseType_t uxIndexToClear,
\r
5242 uint32_t ulBitsToClear )
\r
5245 uint32_t ulReturn;
\r
5247 /* If null is passed in here then it is the calling task that is having
\r
5248 * its notification state cleared. */
\r
5249 pxTCB = prvGetTCBFromHandle( xTask );
\r
5251 taskENTER_CRITICAL();
\r
5253 /* Return the notification as it was before the bits were cleared,
\r
5254 * then clear the bit mask. */
\r
5255 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
\r
5256 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
\r
5258 taskEXIT_CRITICAL();
\r
5263 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5264 /*-----------------------------------------------------------*/
\r
5266 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5268 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
\r
5270 return xIdleTaskHandle->ulRunTimeCounter;
\r
5274 /*-----------------------------------------------------------*/
\r
5276 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5278 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
\r
5280 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
\r
5282 ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
5284 /* For percentage calculations. */
\r
5285 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
\r
5287 /* Avoid divide by zero errors. */
\r
5288 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
\r
5290 ulReturn = xIdleTaskHandle->ulRunTimeCounter / ulTotalTime;
\r
5300 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
\r
5301 /*-----------------------------------------------------------*/
\r
5303 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
5304 const BaseType_t xCanBlockIndefinitely )
\r
5306 TickType_t xTimeToWake;
\r
5307 const TickType_t xConstTickCount = xTickCount;
\r
5309 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
5311 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5312 * reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5313 * when the task leaves the Blocked state. */
\r
5314 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5318 /* Remove the task from the ready list before adding it to the blocked list
\r
5319 * as the same list item is used for both lists. */
\r
5320 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5322 /* The current task must be in a ready list, so there is no need to
\r
5323 * check, and the port reset macro can be called directly. */
\r
5324 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5328 mtCOVERAGE_TEST_MARKER();
\r
5331 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5333 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5335 /* Add the task to the suspended task list instead of a delayed task
\r
5336 * list to ensure it is not woken by a timing event. It will block
\r
5337 * indefinitely. */
\r
5338 listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5342 /* Calculate the time at which the task should be woken if the event
\r
5343 * does not occur. This may overflow but this doesn't matter, the
\r
5344 * kernel will manage it correctly. */
\r
5345 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5347 /* The list item will be inserted in wake time order. */
\r
5348 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5350 if( xTimeToWake < xConstTickCount )
\r
5352 /* Wake time has overflowed. Place this item in the overflow
\r
5354 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5358 /* The wake time has not overflowed, so the current block list
\r
5360 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5362 /* If the task entering the blocked state was placed at the
\r
5363 * head of the list of blocked tasks then xNextTaskUnblockTime
\r
5364 * needs to be updated too. */
\r
5365 if( xTimeToWake < xNextTaskUnblockTime )
\r
5367 xNextTaskUnblockTime = xTimeToWake;
\r
5371 mtCOVERAGE_TEST_MARKER();
\r
5376 #else /* INCLUDE_vTaskSuspend */
\r
5378 /* Calculate the time at which the task should be woken if the event
\r
5379 * does not occur. This may overflow but this doesn't matter, the kernel
\r
5380 * will manage it correctly. */
\r
5381 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5383 /* The list item will be inserted in wake time order. */
\r
5384 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5386 if( xTimeToWake < xConstTickCount )
\r
5388 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5389 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5393 /* The wake time has not overflowed, so the current block list is used. */
\r
5394 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5396 /* If the task entering the blocked state was placed at the head of the
\r
5397 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5399 if( xTimeToWake < xNextTaskUnblockTime )
\r
5401 xNextTaskUnblockTime = xTimeToWake;
\r
5405 mtCOVERAGE_TEST_MARKER();
\r
5409 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5410 ( void ) xCanBlockIndefinitely;
\r
5412 #endif /* INCLUDE_vTaskSuspend */
\r
5415 /* Code below here allows additional code to be inserted into this source file,
\r
5416 * especially where access to file scope functions and data is needed (for example
\r
5417 * when performing module tests). */
\r
5419 #ifdef FREERTOS_MODULE_TEST
\r
5420 #include "tasks_test_access_functions.h"
\r
5424 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5426 #include "freertos_tasks_c_additions.h"
\r
5428 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5429 static void freertos_tasks_c_additions_init( void )
\r
5431 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r
5435 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
\r