2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 * SPDX-License-Identifier: MIT
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
29 /* Standard includes. */
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
34 * all the API functions to use the MPU wrappers. That should only be done when
35 * task.h is included from an application file. */
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
38 /* FreeRTOS includes. */
42 #include "stack_macros.h"
44 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
45 * for the header files above, but not in this file, in order to generate the
46 * correct privileged Vs unprivileged linkage and placement. */
47 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
49 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
50 * functions but without including stdio.h here. */
51 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
53 /* At the bottom of this file are two optional functions that can be used
54 * to generate human readable text from the raw data generated by the
55 * uxTaskGetSystemState() function. Note the formatting functions are provided
56 * for convenience only, and are NOT considered part of the kernel. */
58 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
60 #if ( configUSE_PREEMPTION == 0 )
62 /* If the cooperative scheduler is being used then a yield should not be
63 * performed just because a higher priority task has been woken. */
64 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )
65 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )
68 #if ( configNUMBER_OF_CORES == 1 )
70 /* This macro requests the running task pxTCB to yield. In single core
71 * scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API()
72 * can be used to request the task running on core 0 to yield. Therefore, pxTCB
73 * is not used in this macro. */
74 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \
77 portYIELD_WITHIN_API(); \
80 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \
82 if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority ) \
84 portYIELD_WITHIN_API(); \
88 mtCOVERAGE_TEST_MARKER(); \
92 #else /* if ( configNUMBER_OF_CORES == 1 ) */
94 /* Yield the core on which this task is running. */
95 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldCore( ( pxTCB )->xTaskRunState )
97 /* Yield for the task if a running task has priority lower than this task. */
98 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldForTask( pxTCB )
100 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
102 #endif /* if ( configUSE_PREEMPTION == 0 ) */
104 /* Values that can be assigned to the ucNotifyState member of the TCB. */
105 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
106 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
107 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
110 * The value used to fill the stack of a task when the task is created. This
111 * is used purely for checking the high water mark for tasks.
113 #define tskSTACK_FILL_BYTE ( 0xa5U )
115 /* Bits used to record how a task's stack and TCB were allocated. */
116 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
117 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
118 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
120 /* If any of the following are set then task stacks are filled with a known
121 * value so the high water mark can be determined. If none of the following are
122 * set then don't fill the stack so there is no unnecessary dependency on memset. */
123 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
124 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
126 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
130 * Macros used by vListTask to indicate which state a task is in.
132 #define tskRUNNING_CHAR ( 'X' )
133 #define tskBLOCKED_CHAR ( 'B' )
134 #define tskREADY_CHAR ( 'R' )
135 #define tskDELETED_CHAR ( 'D' )
136 #define tskSUSPENDED_CHAR ( 'S' )
139 * Some kernel aware debuggers require the data the debugger needs access to to
140 * be global, rather than file scope.
142 #ifdef portREMOVE_STATIC_QUALIFIER
146 /* The name allocated to the Idle task. This can be overridden by defining
147 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
148 #ifndef configIDLE_TASK_NAME
149 #define configIDLE_TASK_NAME "IDLE"
152 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
154 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
155 * performed in a generic way that is not optimised to any particular
156 * microcontroller architecture. */
158 /* uxTopReadyPriority holds the priority of the highest priority ready
160 #define taskRECORD_READY_PRIORITY( uxPriority ) \
162 if( ( uxPriority ) > uxTopReadyPriority ) \
164 uxTopReadyPriority = ( uxPriority ); \
166 } while( 0 ) /* taskRECORD_READY_PRIORITY */
168 /*-----------------------------------------------------------*/
170 #if ( configNUMBER_OF_CORES == 1 )
171 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
173 UBaseType_t uxTopPriority = uxTopReadyPriority; \
175 /* Find the highest priority queue that contains ready tasks. */ \
176 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
178 configASSERT( uxTopPriority ); \
182 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
183 * the same priority get an equal share of the processor time. */ \
184 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
185 uxTopReadyPriority = uxTopPriority; \
186 } while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */
187 #else /* if ( configNUMBER_OF_CORES == 1 ) */
189 #define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ) prvSelectHighestPriorityTask( xCoreID )
191 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
193 /*-----------------------------------------------------------*/
195 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
196 * they are only required when a port optimised method of task selection is
198 #define taskRESET_READY_PRIORITY( uxPriority )
199 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
201 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
203 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
204 * performed in a way that is tailored to the particular microcontroller
205 * architecture being used. */
207 /* A port optimised version is provided. Call the port defined macros. */
208 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
210 /*-----------------------------------------------------------*/
212 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
214 UBaseType_t uxTopPriority; \
216 /* Find the highest priority list that contains ready tasks. */ \
217 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
218 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
219 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
222 /*-----------------------------------------------------------*/
224 /* A port optimised version is provided, call it only if the TCB being reset
225 * is being referenced from a ready list. If it is referenced from a delayed
226 * or suspended list then it won't be in a ready list. */
227 #define taskRESET_READY_PRIORITY( uxPriority ) \
229 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
231 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
235 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
237 /*-----------------------------------------------------------*/
239 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
240 * count overflows. */
241 #define taskSWITCH_DELAYED_LISTS() \
245 /* The delayed tasks list should be empty when the lists are switched. */ \
246 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
248 pxTemp = pxDelayedTaskList; \
249 pxDelayedTaskList = pxOverflowDelayedTaskList; \
250 pxOverflowDelayedTaskList = pxTemp; \
252 prvResetNextTaskUnblockTime(); \
255 /*-----------------------------------------------------------*/
258 * Place the task represented by pxTCB into the appropriate ready list for
259 * the task. It is inserted at the end of the list.
261 #define prvAddTaskToReadyList( pxTCB ) \
263 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
264 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
265 listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
266 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ); \
268 /*-----------------------------------------------------------*/
271 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
272 * where NULL is used to indicate that the handle of the currently executing
273 * task should be used in place of the parameter. This macro simply checks to
274 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
276 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
278 /* The item value of the event list item is normally used to hold the priority
279 * of the task to which it belongs (coded to allow it to be held in reverse
280 * priority order). However, it is occasionally borrowed for other purposes. It
281 * is important its value is not updated due to a task priority change while it is
282 * being used for another purpose. The following bit definition is used to inform
283 * the scheduler that the value should not be changed - in which case it is the
284 * responsibility of whichever module is using the value to ensure it gets set back
285 * to its original value when it is released. */
286 #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
287 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint16_t ) 0x8000U )
288 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
289 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint32_t ) 0x80000000UL )
290 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS )
291 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint64_t ) 0x8000000000000000ULL )
294 /* Indicates that the task is not actively running on any core. */
295 #define taskTASK_NOT_RUNNING ( ( BaseType_t ) ( -1 ) )
297 /* Indicates that the task is actively running but scheduled to yield. */
298 #define taskTASK_SCHEDULED_TO_YIELD ( ( BaseType_t ) ( -2 ) )
300 /* Returns pdTRUE if the task is actively running and not scheduled to yield. */
301 #if ( configNUMBER_OF_CORES == 1 )
302 #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
303 #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
305 #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) )
306 #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) )
309 /* Indicates that the task is an Idle task. */
310 #define taskATTRIBUTE_IS_IDLE ( UBaseType_t ) ( 1UL << 0UL )
312 #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) )
313 #define portGET_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting )
314 #define portSET_CRITICAL_NESTING_COUNT( x ) ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) )
315 #define portINCREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ )
316 #define portDECREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- )
317 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */
319 #define taskBITS_PER_BYTE ( ( size_t ) 8 )
321 #if ( configNUMBER_OF_CORES > 1 )
323 /* Yields the given core. This must be called from a critical section and xCoreID
324 * must be valid. This macro is not required in single core since there is only
325 * one core to yield. */
326 #define prvYieldCore( xCoreID ) \
328 if( ( xCoreID ) == ( BaseType_t ) portGET_CORE_ID() ) \
330 /* Pending a yield for this core since it is in the critical section. */ \
331 xYieldPendings[ ( xCoreID ) ] = pdTRUE; \
335 /* Request other core to yield if it is not requested before. */ \
336 if( pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \
338 portYIELD_CORE( xCoreID ); \
339 pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD; \
343 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
344 /*-----------------------------------------------------------*/
347 * Task control block. A task control block (TCB) is allocated for each task,
348 * and stores task state information, including a pointer to the task's context
349 * (the task's run time environment, including register values)
351 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
353 volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
355 #if ( portUSING_MPU_WRAPPERS == 1 )
356 xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
359 #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
360 UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores. UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */
363 ListItem_t xStateListItem; /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
364 ListItem_t xEventListItem; /**< Used to reference a task from an event list. */
365 UBaseType_t uxPriority; /**< The priority of the task. 0 is the lowest priority. */
366 StackType_t * pxStack; /**< Points to the start of the stack. */
367 #if ( configNUMBER_OF_CORES > 1 )
368 volatile BaseType_t xTaskRunState; /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */
369 UBaseType_t uxTaskAttributes; /**< Task's attributes - currently used to identify the idle tasks. */
371 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created. Facilitates debugging only. */
373 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
374 BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */
377 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
378 StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */
381 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
382 UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
385 #if ( configUSE_TRACE_FACILITY == 1 )
386 UBaseType_t uxTCBNumber; /**< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
387 UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */
390 #if ( configUSE_MUTEXES == 1 )
391 UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */
392 UBaseType_t uxMutexesHeld;
395 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
396 TaskHookFunction_t pxTaskTag;
399 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
400 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
403 #if ( configGENERATE_RUN_TIME_STATS == 1 )
404 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */
407 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
408 configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */
411 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
412 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
413 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
416 /* See the comments in FreeRTOS.h with the definition of
417 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
418 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
419 uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
422 #if ( INCLUDE_xTaskAbortDelay == 1 )
423 uint8_t ucDelayAborted;
426 #if ( configUSE_POSIX_ERRNO == 1 )
431 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
432 * below to enable the use of older kernel aware debuggers. */
433 typedef tskTCB TCB_t;
435 #if ( configNUMBER_OF_CORES == 1 )
436 /* MISRA Ref 8.4.1 [Declaration shall be visible] */
437 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
438 /* coverity[misra_c_2012_rule_8_4_violation] */
439 portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
441 /* MISRA Ref 8.4.1 [Declaration shall be visible] */
442 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
443 /* coverity[misra_c_2012_rule_8_4_violation] */
444 portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ];
445 #define pxCurrentTCB xTaskGetCurrentTaskHandle()
448 /* Lists for ready and blocked tasks. --------------------
449 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
450 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
451 * the static qualifier. */
452 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */
453 PRIVILEGED_DATA static List_t xDelayedTaskList1; /**< Delayed tasks. */
454 PRIVILEGED_DATA static List_t xDelayedTaskList2; /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
455 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /**< Points to the delayed task list currently being used. */
456 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
457 PRIVILEGED_DATA static List_t xPendingReadyList; /**< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
459 #if ( INCLUDE_vTaskDelete == 1 )
461 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */
462 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
466 #if ( INCLUDE_vTaskSuspend == 1 )
468 PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */
472 /* Global POSIX errno. Its value is changed upon context switching to match
473 * the errno of the currently running task. */
474 #if ( configUSE_POSIX_ERRNO == 1 )
475 int FreeRTOS_errno = 0;
478 /* Other file private variables. --------------------------------*/
479 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
480 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
481 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
482 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
483 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
484 PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE };
485 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
486 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
487 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
488 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ]; /**< Holds the handles of the idle tasks. The idle tasks are created automatically when the scheduler is started. */
490 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
491 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
492 * to determine the number of priority lists to read back from the remote target. */
493 static const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
495 /* Context switches are held pending while the scheduler is suspended. Also,
496 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
497 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
498 * If an interrupt needs to unblock a task while the scheduler is suspended then it
499 * moves the task's event list item into the xPendingReadyList, ready for the
500 * kernel to move the task from the pending ready list into the real ready list
501 * when the scheduler is unsuspended. The pending ready list itself can only be
502 * accessed from a critical section.
504 * Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock
505 * and must not be done from an ISR. Reads must be protected by either lock and may be done
506 * from either an ISR or a task. */
507 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U;
509 #if ( configGENERATE_RUN_TIME_STATS == 1 )
511 /* Do not move these variables to function scope as doing so prevents the
512 * code working with debuggers that need to remove the static qualifier. */
513 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the value of a timer/counter the last time a task was switched in. */
514 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */
518 /*-----------------------------------------------------------*/
520 /* File private functions. --------------------------------*/
523 * Creates the idle tasks during scheduler start.
525 static BaseType_t prvCreateIdleTasks( void );
527 #if ( configNUMBER_OF_CORES > 1 )
530 * Checks to see if another task moved the current task out of the ready
531 * list while it was waiting to enter a critical section and yields, if so.
533 static void prvCheckForRunStateChange( void );
534 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
536 #if ( configNUMBER_OF_CORES > 1 )
539 * Yields a core, or cores if multiple priorities are not allowed to run
540 * simultaneously, to allow the task pxTCB to run.
542 static void prvYieldForTask( const TCB_t * pxTCB );
543 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
545 #if ( configNUMBER_OF_CORES > 1 )
548 * Selects the highest priority available task for the given core.
550 static void prvSelectHighestPriorityTask( BaseType_t xCoreID );
551 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
554 * Utility task that simply returns pdTRUE if the task referenced by xTask is
555 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
556 * is in any other state.
558 #if ( INCLUDE_vTaskSuspend == 1 )
560 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
562 #endif /* INCLUDE_vTaskSuspend */
565 * Utility to ready all the lists used by the scheduler. This is called
566 * automatically upon the creation of the first task.
568 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
571 * The idle task, which as all tasks is implemented as a never ending loop.
572 * The idle task is automatically created and added to the ready lists upon
573 * creation of the first user task.
575 * In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also
576 * created to ensure that each core has an idle task to run when no other
577 * task is available to run.
579 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
580 * language extensions. The equivalent prototype for these functions are:
582 * void prvIdleTask( void *pvParameters );
583 * void prvPassiveIdleTask( void *pvParameters );
586 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
587 #if ( configNUMBER_OF_CORES > 1 )
588 static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
592 * Utility to free all memory allocated by the scheduler to hold a TCB,
593 * including the stack pointed to by the TCB.
595 * This does not free memory allocated by the task itself (i.e. memory
596 * allocated by calls to pvPortMalloc from within the tasks application code).
598 #if ( INCLUDE_vTaskDelete == 1 )
600 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
605 * Used only by the idle task. This checks to see if anything has been placed
606 * in the list of tasks waiting to be deleted. If so the task is cleaned up
607 * and its TCB deleted.
609 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
612 * The currently executing task is entering the Blocked state. Add the task to
613 * either the current or the overflow delayed task list.
615 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
616 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
619 * Fills an TaskStatus_t structure with information on each task that is
620 * referenced from the pxList list (which may be a ready list, a delayed list,
621 * a suspended list, etc.).
623 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
624 * NORMAL APPLICATION CODE.
626 #if ( configUSE_TRACE_FACILITY == 1 )
628 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
630 eTaskState eState ) PRIVILEGED_FUNCTION;
635 * Searches pxList for a task with name pcNameToQuery - returning a handle to
636 * the task if it is found, or NULL if the task is not found.
638 #if ( INCLUDE_xTaskGetHandle == 1 )
640 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
641 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
646 * When a task is created, the stack of the task is filled with a known value.
647 * This function determines the 'high water mark' of the task stack by
648 * determining how much of the stack remains at the original preset value.
650 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
652 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
657 * Return the amount of time, in ticks, that will pass before the kernel will
658 * next move a task from the Blocked state to the Running state.
660 * This conditional compilation should use inequality to 0, not equality to 1.
661 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
662 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
663 * set to a value other than 1.
665 #if ( configUSE_TICKLESS_IDLE != 0 )
667 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
672 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
673 * will exit the Blocked state.
675 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
677 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
680 * Helper function used to pad task names with spaces when printing out
681 * human readable tables of task information.
683 static char * prvWriteNameToBuffer( char * pcBuffer,
684 const char * pcTaskName ) PRIVILEGED_FUNCTION;
689 * Called after a Task_t structure has been allocated either statically or
690 * dynamically to fill in the structure's members.
692 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
693 const char * const pcName,
694 const uint32_t ulStackDepth,
695 void * const pvParameters,
696 UBaseType_t uxPriority,
697 TaskHandle_t * const pxCreatedTask,
699 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
702 * Called after a new task has been created and initialised to place the task
703 * under the control of the scheduler.
705 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
708 * Create a task with static buffer for both TCB and stack. Returns a handle to
709 * the task if it is created successfully. Otherwise, returns NULL.
711 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
712 static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
713 const char * const pcName,
714 const uint32_t ulStackDepth,
715 void * const pvParameters,
716 UBaseType_t uxPriority,
717 StackType_t * const puxStackBuffer,
718 StaticTask_t * const pxTaskBuffer,
719 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
720 #endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
723 * Create a restricted task with static buffer for both TCB and stack. Returns
724 * a handle to the task if it is created successfully. Otherwise, returns NULL.
726 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
727 static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
728 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
729 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
732 * Create a restricted task with static buffer for task stack and allocated buffer
733 * for TCB. Returns a handle to the task if it is created successfully. Otherwise,
736 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
737 static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
738 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
739 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
742 * Create a task with allocated buffer for both TCB and stack. Returns a handle to
743 * the task if it is created successfully. Otherwise, returns NULL.
745 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
746 static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
747 const char * const pcName,
748 const configSTACK_DEPTH_TYPE usStackDepth,
749 void * const pvParameters,
750 UBaseType_t uxPriority,
751 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
752 #endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */
755 * freertos_tasks_c_additions_init() should only be called if the user definable
756 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
757 * called by the function.
759 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
761 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
765 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
766 extern void vApplicationPassiveIdleHook( void );
767 #endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */
769 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
772 * Convert the snprintf return value to the number of characters
773 * written. The following are the possible cases:
775 * 1. The buffer supplied to snprintf is large enough to hold the
776 * generated string. The return value in this case is the number
777 * of characters actually written, not counting the terminating
779 * 2. The buffer supplied to snprintf is NOT large enough to hold
780 * the generated string. The return value in this case is the
781 * number of characters that would have been written if the
782 * buffer had been sufficiently large, not counting the
783 * terminating null character.
784 * 3. Encoding error. The return value in this case is a negative
787 * From 1 and 2 above ==> Only when the return value is non-negative
788 * and less than the supplied buffer length, the string has been
789 * completely written.
791 static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
794 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
795 /*-----------------------------------------------------------*/
797 #if ( configNUMBER_OF_CORES > 1 )
798 static void prvCheckForRunStateChange( void )
800 UBaseType_t uxPrevCriticalNesting;
801 const TCB_t * pxThisTCB;
803 /* This must only be called from within a task. */
804 portASSERT_IF_IN_ISR();
806 /* This function is always called with interrupts disabled
807 * so this is safe. */
808 pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];
810 while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD )
812 /* We are only here if we just entered a critical section
813 * or if we just suspended the scheduler, and another task
814 * has requested that we yield.
816 * This is slightly complicated since we need to save and restore
817 * the suspension and critical nesting counts, as well as release
818 * and reacquire the correct locks. And then, do it all over again
819 * if our state changed again during the reacquisition. */
820 uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT();
822 if( uxPrevCriticalNesting > 0U )
824 portSET_CRITICAL_NESTING_COUNT( 0U );
825 portRELEASE_ISR_LOCK();
829 /* The scheduler is suspended. uxSchedulerSuspended is updated
830 * only when the task is not requested to yield. */
831 mtCOVERAGE_TEST_MARKER();
834 portRELEASE_TASK_LOCK();
835 portMEMORY_BARRIER();
836 configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD );
838 portENABLE_INTERRUPTS();
840 /* Enabling interrupts should cause this core to immediately
841 * service the pending interrupt and yield. If the run state is still
842 * yielding here then that is a problem. */
843 configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD );
845 portDISABLE_INTERRUPTS();
849 portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting );
851 if( uxPrevCriticalNesting == 0U )
853 portRELEASE_ISR_LOCK();
857 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
859 /*-----------------------------------------------------------*/
861 #if ( configNUMBER_OF_CORES > 1 )
862 static void prvYieldForTask( const TCB_t * pxTCB )
864 BaseType_t xLowestPriorityToPreempt;
865 BaseType_t xCurrentCoreTaskPriority;
866 BaseType_t xLowestPriorityCore = ( BaseType_t ) -1;
869 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
870 BaseType_t xYieldCount = 0;
871 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
873 /* This must be called from a critical section. */
874 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
876 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
878 /* No task should yield for this one if it is a lower priority
879 * than priority level of currently ready tasks. */
880 if( pxTCB->uxPriority >= uxTopReadyPriority )
882 /* Yield is not required for a task which is already running. */
883 if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
886 xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority;
888 /* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB
889 * is 0. This is ok as we will give system idle tasks a priority of -1 below. */
890 --xLowestPriorityToPreempt;
892 for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
894 xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority;
896 /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */
897 if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
899 xCurrentCoreTaskPriority = xCurrentCoreTaskPriority - 1;
902 if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) )
904 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
905 if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
908 if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt )
910 #if ( configUSE_CORE_AFFINITY == 1 )
911 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
914 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
915 if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
918 xLowestPriorityToPreempt = xCurrentCoreTaskPriority;
919 xLowestPriorityCore = xCoreID;
925 mtCOVERAGE_TEST_MARKER();
929 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
931 /* Yield all currently running non-idle tasks with a priority lower than
932 * the task that needs to run. */
933 if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) &&
934 ( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
936 prvYieldCore( xCoreID );
941 mtCOVERAGE_TEST_MARKER();
944 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
948 mtCOVERAGE_TEST_MARKER();
952 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
953 if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) )
954 #else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
955 if( xLowestPriorityCore >= 0 )
956 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
958 prvYieldCore( xLowestPriorityCore );
961 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
962 /* Verify that the calling core always yields to higher priority tasks. */
963 if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) &&
964 ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
966 configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) ||
967 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) );
972 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
973 /*-----------------------------------------------------------*/
975 #if ( configNUMBER_OF_CORES > 1 )
976 static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
978 UBaseType_t uxCurrentPriority = uxTopReadyPriority;
979 BaseType_t xTaskScheduled = pdFALSE;
980 BaseType_t xDecrementTopPriority = pdTRUE;
982 #if ( configUSE_CORE_AFFINITY == 1 )
983 const TCB_t * pxPreviousTCB = NULL;
985 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
986 BaseType_t xPriorityDropped = pdFALSE;
989 /* This function should be called when scheduler is running. */
990 configASSERT( xSchedulerRunning == pdTRUE );
992 /* A new task is created and a running task with the same priority yields
993 * itself to run the new task. When a running task yields itself, it is still
994 * in the ready list. This running task will be selected before the new task
995 * since the new task is always added to the end of the ready list.
996 * The other problem is that the running task still in the same position of
997 * the ready list when it yields itself. It is possible that it will be selected
998 * earlier then other tasks which waits longer than this task.
1000 * To fix these problems, the running task should be put to the end of the
1001 * ready list before searching for the ready task in the ready list. */
1002 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1003 &pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE )
1005 ( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1006 vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1007 &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1010 while( xTaskScheduled == pdFALSE )
1012 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1014 if( uxCurrentPriority < uxTopReadyPriority )
1016 /* We can't schedule any tasks, other than idle, that have a
1017 * priority lower than the priority of a task currently running
1018 * on another core. */
1019 uxCurrentPriority = tskIDLE_PRIORITY;
1024 if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
1026 const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
1027 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList );
1028 ListItem_t * pxIterator;
1030 /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
1031 * must not be decremented any further. */
1032 xDecrementTopPriority = pdFALSE;
1034 for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
1036 /* MISRA Ref 11.5.3 [Void pointer assignment] */
1037 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1038 /* coverity[misra_c_2012_rule_11_5_violation] */
1039 TCB_t * pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator );
1041 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1043 /* When falling back to the idle priority because only one priority
1044 * level is allowed to run at a time, we should ONLY schedule the true
1045 * idle tasks, not user tasks at the idle priority. */
1046 if( uxCurrentPriority < uxTopReadyPriority )
1048 if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U )
1054 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1056 if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
1058 #if ( configUSE_CORE_AFFINITY == 1 )
1059 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1062 /* If the task is not being executed by any core swap it in. */
1063 pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
1064 #if ( configUSE_CORE_AFFINITY == 1 )
1065 pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
1067 pxTCB->xTaskRunState = xCoreID;
1068 pxCurrentTCBs[ xCoreID ] = pxTCB;
1069 xTaskScheduled = pdTRUE;
1072 else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
1074 configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) );
1076 #if ( configUSE_CORE_AFFINITY == 1 )
1077 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1080 /* The task is already running on this core, mark it as scheduled. */
1081 pxTCB->xTaskRunState = xCoreID;
1082 xTaskScheduled = pdTRUE;
1087 /* This task is running on the core other than xCoreID. */
1088 mtCOVERAGE_TEST_MARKER();
1091 if( xTaskScheduled != pdFALSE )
1093 /* A task has been selected to run on this core. */
1100 if( xDecrementTopPriority != pdFALSE )
1102 uxTopReadyPriority--;
1103 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1105 xPriorityDropped = pdTRUE;
1111 /* There are configNUMBER_OF_CORES Idle tasks created when scheduler started.
1112 * The scheduler should be able to select a task to run when uxCurrentPriority
1113 * is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow
1114 * tskIDLE_PRIORITY. */
1115 if( uxCurrentPriority > tskIDLE_PRIORITY )
1117 uxCurrentPriority--;
1121 /* This function is called when idle task is not created. Break the
1122 * loop to prevent uxCurrentPriority overrun. */
1127 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1129 if( xTaskScheduled == pdTRUE )
1131 if( xPriorityDropped != pdFALSE )
1133 /* There may be several ready tasks that were being prevented from running because there was
1134 * a higher priority task running. Now that the last of the higher priority tasks is no longer
1135 * running, make sure all the other idle tasks yield. */
1138 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ )
1140 if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1148 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1150 #if ( configUSE_CORE_AFFINITY == 1 )
1152 if( xTaskScheduled == pdTRUE )
1154 if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
1156 /* A ready task was just evicted from this core. See if it can be
1157 * scheduled on any other core. */
1158 UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
1159 BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority;
1160 BaseType_t xLowestPriorityCore = -1;
1163 if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1165 xLowestPriority = xLowestPriority - 1;
1168 if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1170 /* pxPreviousTCB was removed from this core and this core is not excluded
1171 * from it's core affinity mask.
1173 * pxPreviousTCB is preempted by the new higher priority task
1174 * pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB,
1175 * we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ]
1176 * is allowed to run. The reason is - when more than one cores are
1177 * eligible for an incoming task, we preempt the core with the minimum
1178 * priority task. Because this core (i.e. xCoreID) was preempted for
1179 * pxCurrentTCBs[ xCoreID ], this means that all the others cores
1180 * where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority
1181 * no lower than pxPreviousTCB's priority. Therefore, the only cores where
1182 * which can be preempted for pxPreviousTCB are the ones where
1183 * pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously,
1184 * pxPreviousTCB is allowed to run).
1186 * This is an optimization which reduces the number of cores needed to be
1187 * searched for pxPreviousTCB to run. */
1188 uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
1192 /* pxPreviousTCB's core affinity mask is changed and it is no longer
1193 * allowed to run on this core. Searching all the cores in pxPreviousTCB's
1194 * new core affinity mask to find a core on which it can run. */
1197 uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U );
1199 for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- )
1201 UBaseType_t uxCore = ( UBaseType_t ) x;
1202 BaseType_t xTaskPriority;
1204 if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U )
1206 xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority;
1208 if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1210 xTaskPriority = xTaskPriority - ( BaseType_t ) 1;
1213 uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore );
1215 if( ( xTaskPriority < xLowestPriority ) &&
1216 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) &&
1217 ( xYieldPendings[ uxCore ] == pdFALSE ) )
1219 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
1220 if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
1223 xLowestPriority = xTaskPriority;
1224 xLowestPriorityCore = ( BaseType_t ) uxCore;
1230 if( xLowestPriorityCore >= 0 )
1232 prvYieldCore( xLowestPriorityCore );
1237 #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */
1240 #endif /* ( configNUMBER_OF_CORES > 1 ) */
1242 /*-----------------------------------------------------------*/
1244 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1246 static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
1247 const char * const pcName,
1248 const uint32_t ulStackDepth,
1249 void * const pvParameters,
1250 UBaseType_t uxPriority,
1251 StackType_t * const puxStackBuffer,
1252 StaticTask_t * const pxTaskBuffer,
1253 TaskHandle_t * const pxCreatedTask )
1257 configASSERT( puxStackBuffer != NULL );
1258 configASSERT( pxTaskBuffer != NULL );
1260 #if ( configASSERT_DEFINED == 1 )
1262 /* Sanity check that the size of the structure used to declare a
1263 * variable of type StaticTask_t equals the size of the real task
1265 volatile size_t xSize = sizeof( StaticTask_t );
1266 configASSERT( xSize == sizeof( TCB_t ) );
1267 ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not used. */
1269 #endif /* configASSERT_DEFINED */
1271 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
1273 /* The memory used for the task's TCB and stack are passed into this
1274 * function - use them. */
1275 /* MISRA Ref 11.3.1 [Misaligned access] */
1276 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
1277 /* coverity[misra_c_2012_rule_11_3_violation] */
1278 pxNewTCB = ( TCB_t * ) pxTaskBuffer;
1279 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1280 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
1282 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1284 /* Tasks can be created statically or dynamically, so note this
1285 * task was created statically in case the task is later deleted. */
1286 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1288 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1290 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1299 /*-----------------------------------------------------------*/
1301 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
1302 const char * const pcName,
1303 const uint32_t ulStackDepth,
1304 void * const pvParameters,
1305 UBaseType_t uxPriority,
1306 StackType_t * const puxStackBuffer,
1307 StaticTask_t * const pxTaskBuffer )
1309 TaskHandle_t xReturn = NULL;
1312 traceENTER_xTaskCreateStatic( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
1314 pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1316 if( pxNewTCB != NULL )
1318 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1320 /* Set the task's affinity before scheduling it. */
1321 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1325 prvAddNewTaskToReadyList( pxNewTCB );
1329 mtCOVERAGE_TEST_MARKER();
1332 traceRETURN_xTaskCreateStatic( xReturn );
1336 /*-----------------------------------------------------------*/
1338 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1339 TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
1340 const char * const pcName,
1341 const uint32_t ulStackDepth,
1342 void * const pvParameters,
1343 UBaseType_t uxPriority,
1344 StackType_t * const puxStackBuffer,
1345 StaticTask_t * const pxTaskBuffer,
1346 UBaseType_t uxCoreAffinityMask )
1348 TaskHandle_t xReturn = NULL;
1351 traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask );
1353 pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1355 if( pxNewTCB != NULL )
1357 /* Set the task's affinity before scheduling it. */
1358 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1360 prvAddNewTaskToReadyList( pxNewTCB );
1364 mtCOVERAGE_TEST_MARKER();
1367 traceRETURN_xTaskCreateStaticAffinitySet( xReturn );
1371 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1373 #endif /* SUPPORT_STATIC_ALLOCATION */
1374 /*-----------------------------------------------------------*/
1376 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
1377 static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
1378 TaskHandle_t * const pxCreatedTask )
1382 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
1383 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
1385 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
1387 /* Allocate space for the TCB. Where the memory comes from depends
1388 * on the implementation of the port malloc function and whether or
1389 * not static allocation is being used. */
1390 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
1391 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1393 /* Store the stack location in the TCB. */
1394 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1396 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1398 /* Tasks can be created statically or dynamically, so note this
1399 * task was created statically in case the task is later deleted. */
1400 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1402 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1404 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1405 pxTaskDefinition->pcName,
1406 ( uint32_t ) pxTaskDefinition->usStackDepth,
1407 pxTaskDefinition->pvParameters,
1408 pxTaskDefinition->uxPriority,
1409 pxCreatedTask, pxNewTCB,
1410 pxTaskDefinition->xRegions );
1419 /*-----------------------------------------------------------*/
1421 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
1422 TaskHandle_t * pxCreatedTask )
1427 traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask );
1429 configASSERT( pxTaskDefinition != NULL );
1431 pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1433 if( pxNewTCB != NULL )
1435 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1437 /* Set the task's affinity before scheduling it. */
1438 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1442 prvAddNewTaskToReadyList( pxNewTCB );
1447 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1450 traceRETURN_xTaskCreateRestrictedStatic( xReturn );
1454 /*-----------------------------------------------------------*/
1456 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1457 BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1458 UBaseType_t uxCoreAffinityMask,
1459 TaskHandle_t * pxCreatedTask )
1464 traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1466 configASSERT( pxTaskDefinition != NULL );
1468 pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1470 if( pxNewTCB != NULL )
1472 /* Set the task's affinity before scheduling it. */
1473 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1475 prvAddNewTaskToReadyList( pxNewTCB );
1480 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1483 traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn );
1487 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1489 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
1490 /*-----------------------------------------------------------*/
1492 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
1493 static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
1494 TaskHandle_t * const pxCreatedTask )
1498 configASSERT( pxTaskDefinition->puxStackBuffer );
1500 if( pxTaskDefinition->puxStackBuffer != NULL )
1502 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1503 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1504 /* coverity[misra_c_2012_rule_11_5_violation] */
1505 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1507 if( pxNewTCB != NULL )
1509 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1511 /* Store the stack location in the TCB. */
1512 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1514 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1516 /* Tasks can be created statically or dynamically, so note
1517 * this task had a statically allocated stack in case it is
1518 * later deleted. The TCB was allocated dynamically. */
1519 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
1521 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1523 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1524 pxTaskDefinition->pcName,
1525 ( uint32_t ) pxTaskDefinition->usStackDepth,
1526 pxTaskDefinition->pvParameters,
1527 pxTaskDefinition->uxPriority,
1528 pxCreatedTask, pxNewTCB,
1529 pxTaskDefinition->xRegions );
1539 /*-----------------------------------------------------------*/
1541 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
1542 TaskHandle_t * pxCreatedTask )
1547 traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask );
1549 pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1551 if( pxNewTCB != NULL )
1553 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1555 /* Set the task's affinity before scheduling it. */
1556 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1558 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1560 prvAddNewTaskToReadyList( pxNewTCB );
1566 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1569 traceRETURN_xTaskCreateRestricted( xReturn );
1573 /*-----------------------------------------------------------*/
1575 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1576 BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1577 UBaseType_t uxCoreAffinityMask,
1578 TaskHandle_t * pxCreatedTask )
1583 traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1585 pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1587 if( pxNewTCB != NULL )
1589 /* Set the task's affinity before scheduling it. */
1590 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1592 prvAddNewTaskToReadyList( pxNewTCB );
1598 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1601 traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn );
1605 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1608 #endif /* portUSING_MPU_WRAPPERS */
1609 /*-----------------------------------------------------------*/
1611 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
1612 static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
1613 const char * const pcName,
1614 const configSTACK_DEPTH_TYPE usStackDepth,
1615 void * const pvParameters,
1616 UBaseType_t uxPriority,
1617 TaskHandle_t * const pxCreatedTask )
1621 /* If the stack grows down then allocate the stack then the TCB so the stack
1622 * does not grow into the TCB. Likewise if the stack grows up then allocate
1623 * the TCB then the stack. */
1624 #if ( portSTACK_GROWTH > 0 )
1626 /* Allocate space for the TCB. Where the memory comes from depends on
1627 * the implementation of the port malloc function and whether or not static
1628 * allocation is being used. */
1629 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1630 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1631 /* coverity[misra_c_2012_rule_11_5_violation] */
1632 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1634 if( pxNewTCB != NULL )
1636 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1638 /* Allocate space for the stack used by the task being created.
1639 * The base of the stack memory stored in the TCB so the task can
1640 * be deleted later if required. */
1641 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1642 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1643 /* coverity[misra_c_2012_rule_11_5_violation] */
1644 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) );
1646 if( pxNewTCB->pxStack == NULL )
1648 /* Could not allocate the stack. Delete the allocated TCB. */
1649 vPortFree( pxNewTCB );
1654 #else /* portSTACK_GROWTH */
1656 StackType_t * pxStack;
1658 /* Allocate space for the stack used by the task being created. */
1659 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1660 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1661 /* coverity[misra_c_2012_rule_11_5_violation] */
1662 pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) );
1664 if( pxStack != NULL )
1666 /* Allocate space for the TCB. */
1667 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1668 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1669 /* coverity[misra_c_2012_rule_11_5_violation] */
1670 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1672 if( pxNewTCB != NULL )
1674 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1676 /* Store the stack location in the TCB. */
1677 pxNewTCB->pxStack = pxStack;
1681 /* The stack cannot be used as the TCB was not created. Free
1683 vPortFreeStack( pxStack );
1691 #endif /* portSTACK_GROWTH */
1693 if( pxNewTCB != NULL )
1695 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1697 /* Tasks can be created statically or dynamically, so note this
1698 * task was created dynamically in case it is later deleted. */
1699 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
1701 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1703 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1708 /*-----------------------------------------------------------*/
1710 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
1711 const char * const pcName,
1712 const configSTACK_DEPTH_TYPE usStackDepth,
1713 void * const pvParameters,
1714 UBaseType_t uxPriority,
1715 TaskHandle_t * const pxCreatedTask )
1720 traceENTER_xTaskCreate( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask );
1722 pxNewTCB = prvCreateTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask );
1724 if( pxNewTCB != NULL )
1726 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1728 /* Set the task's affinity before scheduling it. */
1729 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1733 prvAddNewTaskToReadyList( pxNewTCB );
1738 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1741 traceRETURN_xTaskCreate( xReturn );
1745 /*-----------------------------------------------------------*/
1747 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1748 BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
1749 const char * const pcName,
1750 const configSTACK_DEPTH_TYPE usStackDepth,
1751 void * const pvParameters,
1752 UBaseType_t uxPriority,
1753 UBaseType_t uxCoreAffinityMask,
1754 TaskHandle_t * const pxCreatedTask )
1759 traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask );
1761 pxNewTCB = prvCreateTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask );
1763 if( pxNewTCB != NULL )
1765 /* Set the task's affinity before scheduling it. */
1766 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1768 prvAddNewTaskToReadyList( pxNewTCB );
1773 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1776 traceRETURN_xTaskCreateAffinitySet( xReturn );
1780 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1782 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
1783 /*-----------------------------------------------------------*/
1785 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
1786 const char * const pcName,
1787 const uint32_t ulStackDepth,
1788 void * const pvParameters,
1789 UBaseType_t uxPriority,
1790 TaskHandle_t * const pxCreatedTask,
1792 const MemoryRegion_t * const xRegions )
1794 StackType_t * pxTopOfStack;
1797 #if ( portUSING_MPU_WRAPPERS == 1 )
1798 /* Should the task be created in privileged mode? */
1799 BaseType_t xRunPrivileged;
1801 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
1803 xRunPrivileged = pdTRUE;
1807 xRunPrivileged = pdFALSE;
1809 uxPriority &= ~portPRIVILEGE_BIT;
1810 #endif /* portUSING_MPU_WRAPPERS == 1 */
1812 /* Avoid dependency on memset() if it is not required. */
1813 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
1815 /* Fill the stack with a known value to assist debugging. */
1816 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
1818 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
1820 /* Calculate the top of stack address. This depends on whether the stack
1821 * grows from high memory to low (as per the 80x86) or vice versa.
1822 * portSTACK_GROWTH is used to make the result positive or negative as required
1824 #if ( portSTACK_GROWTH < 0 )
1826 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
1827 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1829 /* Check the alignment of the calculated top of stack is correct. */
1830 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
1832 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
1834 /* Also record the stack's high address, which may assist
1836 pxNewTCB->pxEndOfStack = pxTopOfStack;
1838 #endif /* configRECORD_STACK_HIGH_ADDRESS */
1840 #else /* portSTACK_GROWTH */
1842 pxTopOfStack = pxNewTCB->pxStack;
1843 pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1845 /* Check the alignment of the calculated top of stack is correct. */
1846 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
1848 /* The other extreme of the stack space is required if stack checking is
1850 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
1852 #endif /* portSTACK_GROWTH */
1854 /* Store the task name in the TCB. */
1855 if( pcName != NULL )
1857 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
1859 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
1861 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
1862 * configMAX_TASK_NAME_LEN characters just in case the memory after the
1863 * string is not accessible (extremely unlikely). */
1864 if( pcName[ x ] == ( char ) 0x00 )
1870 mtCOVERAGE_TEST_MARKER();
1874 /* Ensure the name string is terminated in the case that the string length
1875 * was greater or equal to configMAX_TASK_NAME_LEN. */
1876 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1U ] = '\0';
1880 mtCOVERAGE_TEST_MARKER();
1883 /* This is used as an array index so must ensure it's not too large. */
1884 configASSERT( uxPriority < configMAX_PRIORITIES );
1886 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
1888 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
1892 mtCOVERAGE_TEST_MARKER();
1895 pxNewTCB->uxPriority = uxPriority;
1896 #if ( configUSE_MUTEXES == 1 )
1898 pxNewTCB->uxBasePriority = uxPriority;
1900 #endif /* configUSE_MUTEXES */
1902 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
1903 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
1905 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
1906 * back to the containing TCB from a generic item in a list. */
1907 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
1909 /* Event lists are always in priority order. */
1910 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority );
1911 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
1913 #if ( portUSING_MPU_WRAPPERS == 1 )
1915 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
1919 /* Avoid compiler warning about unreferenced parameter. */
1924 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
1926 /* Allocate and initialize memory for the task's TLS Block. */
1927 configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack );
1931 /* Initialize the TCB stack to look as if the task was already running,
1932 * but had been interrupted by the scheduler. The return address is set
1933 * to the start of the task function. Once the stack has been initialised
1934 * the top of stack variable is updated. */
1935 #if ( portUSING_MPU_WRAPPERS == 1 )
1937 /* If the port has capability to detect stack overflow,
1938 * pass the stack end address to the stack initialization
1939 * function as well. */
1940 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1942 #if ( portSTACK_GROWTH < 0 )
1944 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1946 #else /* portSTACK_GROWTH */
1948 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1950 #endif /* portSTACK_GROWTH */
1952 #else /* portHAS_STACK_OVERFLOW_CHECKING */
1954 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1956 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1958 #else /* portUSING_MPU_WRAPPERS */
1960 /* If the port has capability to detect stack overflow,
1961 * pass the stack end address to the stack initialization
1962 * function as well. */
1963 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1965 #if ( portSTACK_GROWTH < 0 )
1967 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
1969 #else /* portSTACK_GROWTH */
1971 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
1973 #endif /* portSTACK_GROWTH */
1975 #else /* portHAS_STACK_OVERFLOW_CHECKING */
1977 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
1979 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1981 #endif /* portUSING_MPU_WRAPPERS */
1983 /* Initialize task state and task attributes. */
1984 #if ( configNUMBER_OF_CORES > 1 )
1986 pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;
1988 /* Is this an idle task? */
1989 if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) )
1991 pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE;
1994 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
1996 if( pxCreatedTask != NULL )
1998 /* Pass the handle out in an anonymous way. The handle can be used to
1999 * change the created task's priority, delete the created task, etc.*/
2000 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
2004 mtCOVERAGE_TEST_MARKER();
2007 /*-----------------------------------------------------------*/
2009 #if ( configNUMBER_OF_CORES == 1 )
2011 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2013 /* Ensure interrupts don't access the task lists while the lists are being
2015 taskENTER_CRITICAL();
2017 uxCurrentNumberOfTasks++;
2019 if( pxCurrentTCB == NULL )
2021 /* There are no other tasks, or all the other tasks are in
2022 * the suspended state - make this the current task. */
2023 pxCurrentTCB = pxNewTCB;
2025 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2027 /* This is the first task to be created so do the preliminary
2028 * initialisation required. We will not recover if this call
2029 * fails, but we will report the failure. */
2030 prvInitialiseTaskLists();
2034 mtCOVERAGE_TEST_MARKER();
2039 /* If the scheduler is not already running, make this task the
2040 * current task if it is the highest priority task to be created
2042 if( xSchedulerRunning == pdFALSE )
2044 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
2046 pxCurrentTCB = pxNewTCB;
2050 mtCOVERAGE_TEST_MARKER();
2055 mtCOVERAGE_TEST_MARKER();
2061 #if ( configUSE_TRACE_FACILITY == 1 )
2063 /* Add a counter into the TCB for tracing only. */
2064 pxNewTCB->uxTCBNumber = uxTaskNumber;
2066 #endif /* configUSE_TRACE_FACILITY */
2067 traceTASK_CREATE( pxNewTCB );
2069 prvAddTaskToReadyList( pxNewTCB );
2071 portSETUP_TCB( pxNewTCB );
2073 taskEXIT_CRITICAL();
2075 if( xSchedulerRunning != pdFALSE )
2077 /* If the created task is of a higher priority than the current task
2078 * then it should run now. */
2079 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2083 mtCOVERAGE_TEST_MARKER();
2087 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2089 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2091 /* Ensure interrupts don't access the task lists while the lists are being
2093 taskENTER_CRITICAL();
2095 uxCurrentNumberOfTasks++;
2097 if( xSchedulerRunning == pdFALSE )
2099 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2101 /* This is the first task to be created so do the preliminary
2102 * initialisation required. We will not recover if this call
2103 * fails, but we will report the failure. */
2104 prvInitialiseTaskLists();
2108 mtCOVERAGE_TEST_MARKER();
2111 /* All the cores start with idle tasks before the SMP scheduler
2112 * is running. Idle tasks are assigned to cores when they are
2113 * created in prvCreateIdleTasks(). */
2118 #if ( configUSE_TRACE_FACILITY == 1 )
2120 /* Add a counter into the TCB for tracing only. */
2121 pxNewTCB->uxTCBNumber = uxTaskNumber;
2123 #endif /* configUSE_TRACE_FACILITY */
2124 traceTASK_CREATE( pxNewTCB );
2126 prvAddTaskToReadyList( pxNewTCB );
2128 portSETUP_TCB( pxNewTCB );
2130 if( xSchedulerRunning != pdFALSE )
2132 /* If the created task is of a higher priority than another
2133 * currently running task and preemption is on then it should
2135 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2139 mtCOVERAGE_TEST_MARKER();
2142 taskEXIT_CRITICAL();
2145 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2146 /*-----------------------------------------------------------*/
2148 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
2150 static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
2153 size_t uxCharsWritten;
2155 if( iSnprintfReturnValue < 0 )
2157 /* Encoding error - Return 0 to indicate that nothing
2158 * was written to the buffer. */
2161 else if( iSnprintfReturnValue >= ( int ) n )
2163 /* This is the case when the supplied buffer is not
2164 * large to hold the generated string. Return the
2165 * number of characters actually written without
2166 * counting the terminating NULL character. */
2167 uxCharsWritten = n - 1U;
2171 /* Complete string was written to the buffer. */
2172 uxCharsWritten = ( size_t ) iSnprintfReturnValue;
2175 return uxCharsWritten;
2178 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
2179 /*-----------------------------------------------------------*/
2181 #if ( INCLUDE_vTaskDelete == 1 )
2183 void vTaskDelete( TaskHandle_t xTaskToDelete )
2187 traceENTER_vTaskDelete( xTaskToDelete );
2189 taskENTER_CRITICAL();
2191 /* If null is passed in here then it is the calling task that is
2193 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
2195 /* Remove task from the ready/delayed list. */
2196 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2198 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
2202 mtCOVERAGE_TEST_MARKER();
2205 /* Is the task waiting on an event also? */
2206 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
2208 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
2212 mtCOVERAGE_TEST_MARKER();
2215 /* Increment the uxTaskNumber also so kernel aware debuggers can
2216 * detect that the task lists need re-generating. This is done before
2217 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
2221 /* If the task is running (or yielding), we must add it to the
2222 * termination list so that an idle task can delete it when it is
2223 * no longer running. */
2224 if( taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) != pdFALSE )
2226 /* A running task or a task which is scheduled to yield is being
2227 * deleted. This cannot complete when the task is still running
2228 * on a core, as a context switch to another task is required.
2229 * Place the task in the termination list. The idle task will check
2230 * the termination list and free up any memory allocated by the
2231 * scheduler for the TCB and stack of the deleted task. */
2232 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
2234 /* Increment the ucTasksDeleted variable so the idle task knows
2235 * there is a task that has been deleted and that it should therefore
2236 * check the xTasksWaitingTermination list. */
2237 ++uxDeletedTasksWaitingCleanUp;
2239 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
2240 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
2241 traceTASK_DELETE( pxTCB );
2243 /* The pre-delete hook is primarily for the Windows simulator,
2244 * in which Windows specific clean up operations are performed,
2245 * after which it is not possible to yield away from this task -
2246 * hence xYieldPending is used to latch that a context switch is
2248 #if ( configNUMBER_OF_CORES == 1 )
2249 portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) );
2251 portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) );
2256 --uxCurrentNumberOfTasks;
2257 traceTASK_DELETE( pxTCB );
2259 /* Reset the next expected unblock time in case it referred to
2260 * the task that has just been deleted. */
2261 prvResetNextTaskUnblockTime();
2265 #if ( configNUMBER_OF_CORES == 1 )
2267 taskEXIT_CRITICAL();
2269 /* If the task is not deleting itself, call prvDeleteTCB from outside of
2270 * critical section. If a task deletes itself, prvDeleteTCB is called
2271 * from prvCheckTasksWaitingTermination which is called from Idle task. */
2272 if( pxTCB != pxCurrentTCB )
2274 prvDeleteTCB( pxTCB );
2277 /* Force a reschedule if it is the currently running task that has just
2279 if( xSchedulerRunning != pdFALSE )
2281 if( pxTCB == pxCurrentTCB )
2283 configASSERT( uxSchedulerSuspended == 0 );
2284 portYIELD_WITHIN_API();
2288 mtCOVERAGE_TEST_MARKER();
2292 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2294 /* If a running task is not deleting itself, call prvDeleteTCB. If a running
2295 * task deletes itself, prvDeleteTCB is called from prvCheckTasksWaitingTermination
2296 * which is called from Idle task. */
2297 if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
2299 prvDeleteTCB( pxTCB );
2302 /* Force a reschedule if the task that has just been deleted was running. */
2303 if( ( xSchedulerRunning != pdFALSE ) && ( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) )
2305 if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
2307 configASSERT( uxSchedulerSuspended == 0 );
2308 vTaskYieldWithinAPI();
2312 prvYieldCore( pxTCB->xTaskRunState );
2316 taskEXIT_CRITICAL();
2318 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2320 traceRETURN_vTaskDelete();
2323 #endif /* INCLUDE_vTaskDelete */
2324 /*-----------------------------------------------------------*/
2326 #if ( INCLUDE_xTaskDelayUntil == 1 )
2328 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
2329 const TickType_t xTimeIncrement )
2331 TickType_t xTimeToWake;
2332 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
2334 traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
2336 configASSERT( pxPreviousWakeTime );
2337 configASSERT( ( xTimeIncrement > 0U ) );
2341 /* Minor optimisation. The tick count cannot change in this
2343 const TickType_t xConstTickCount = xTickCount;
2345 configASSERT( uxSchedulerSuspended == 1U );
2347 /* Generate the tick time at which the task wants to wake. */
2348 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
2350 if( xConstTickCount < *pxPreviousWakeTime )
2352 /* The tick count has overflowed since this function was
2353 * lasted called. In this case the only time we should ever
2354 * actually delay is if the wake time has also overflowed,
2355 * and the wake time is greater than the tick time. When this
2356 * is the case it is as if neither time had overflowed. */
2357 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
2359 xShouldDelay = pdTRUE;
2363 mtCOVERAGE_TEST_MARKER();
2368 /* The tick time has not overflowed. In this case we will
2369 * delay if either the wake time has overflowed, and/or the
2370 * tick time is less than the wake time. */
2371 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
2373 xShouldDelay = pdTRUE;
2377 mtCOVERAGE_TEST_MARKER();
2381 /* Update the wake time ready for the next call. */
2382 *pxPreviousWakeTime = xTimeToWake;
2384 if( xShouldDelay != pdFALSE )
2386 traceTASK_DELAY_UNTIL( xTimeToWake );
2388 /* prvAddCurrentTaskToDelayedList() needs the block time, not
2389 * the time to wake, so subtract the current tick count. */
2390 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
2394 mtCOVERAGE_TEST_MARKER();
2397 xAlreadyYielded = xTaskResumeAll();
2399 /* Force a reschedule if xTaskResumeAll has not already done so, we may
2400 * have put ourselves to sleep. */
2401 if( xAlreadyYielded == pdFALSE )
2403 taskYIELD_WITHIN_API();
2407 mtCOVERAGE_TEST_MARKER();
2410 traceRETURN_xTaskDelayUntil( xShouldDelay );
2412 return xShouldDelay;
2415 #endif /* INCLUDE_xTaskDelayUntil */
2416 /*-----------------------------------------------------------*/
2418 #if ( INCLUDE_vTaskDelay == 1 )
2420 void vTaskDelay( const TickType_t xTicksToDelay )
2422 BaseType_t xAlreadyYielded = pdFALSE;
2424 traceENTER_vTaskDelay( xTicksToDelay );
2426 /* A delay time of zero just forces a reschedule. */
2427 if( xTicksToDelay > ( TickType_t ) 0U )
2431 configASSERT( uxSchedulerSuspended == 1U );
2435 /* A task that is removed from the event list while the
2436 * scheduler is suspended will not get placed in the ready
2437 * list or removed from the blocked list until the scheduler
2440 * This task cannot be in an event list as it is the currently
2441 * executing task. */
2442 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
2444 xAlreadyYielded = xTaskResumeAll();
2448 mtCOVERAGE_TEST_MARKER();
2451 /* Force a reschedule if xTaskResumeAll has not already done so, we may
2452 * have put ourselves to sleep. */
2453 if( xAlreadyYielded == pdFALSE )
2455 taskYIELD_WITHIN_API();
2459 mtCOVERAGE_TEST_MARKER();
2462 traceRETURN_vTaskDelay();
2465 #endif /* INCLUDE_vTaskDelay */
2466 /*-----------------------------------------------------------*/
2468 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
2470 eTaskState eTaskGetState( TaskHandle_t xTask )
2473 List_t const * pxStateList;
2474 List_t const * pxEventList;
2475 List_t const * pxDelayedList;
2476 List_t const * pxOverflowedDelayedList;
2477 const TCB_t * const pxTCB = xTask;
2479 traceENTER_eTaskGetState( xTask );
2481 configASSERT( pxTCB );
2483 #if ( configNUMBER_OF_CORES == 1 )
2484 if( pxTCB == pxCurrentTCB )
2486 /* The task calling this function is querying its own state. */
2492 taskENTER_CRITICAL();
2494 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
2495 pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) );
2496 pxDelayedList = pxDelayedTaskList;
2497 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
2499 taskEXIT_CRITICAL();
2501 if( pxEventList == &xPendingReadyList )
2503 /* The task has been placed on the pending ready list, so its
2504 * state is eReady regardless of what list the task's state list
2505 * item is currently placed on. */
2508 else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
2510 /* The task being queried is referenced from one of the Blocked
2515 #if ( INCLUDE_vTaskSuspend == 1 )
2516 else if( pxStateList == &xSuspendedTaskList )
2518 /* The task being queried is referenced from the suspended
2519 * list. Is it genuinely suspended or is it blocked
2521 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
2523 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
2527 /* The task does not appear on the event list item of
2528 * and of the RTOS objects, but could still be in the
2529 * blocked state if it is waiting on its notification
2530 * rather than waiting on an object. If not, is
2532 eReturn = eSuspended;
2534 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
2536 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
2543 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2545 eReturn = eSuspended;
2547 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2554 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
2556 #if ( INCLUDE_vTaskDelete == 1 )
2557 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
2559 /* The task being queried is referenced from the deleted
2560 * tasks list, or it is not referenced from any lists at
2568 #if ( configNUMBER_OF_CORES == 1 )
2570 /* If the task is not in any other state, it must be in the
2571 * Ready (including pending ready) state. */
2574 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2576 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2578 /* Is it actively running on a core? */
2583 /* If the task is not in any other state, it must be in the
2584 * Ready (including pending ready) state. */
2588 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2592 traceRETURN_eTaskGetState( eReturn );
2597 #endif /* INCLUDE_eTaskGetState */
2598 /*-----------------------------------------------------------*/
2600 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2602 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
2604 TCB_t const * pxTCB;
2605 UBaseType_t uxReturn;
2607 traceENTER_uxTaskPriorityGet( xTask );
2609 taskENTER_CRITICAL();
2611 /* If null is passed in here then it is the priority of the task
2612 * that called uxTaskPriorityGet() that is being queried. */
2613 pxTCB = prvGetTCBFromHandle( xTask );
2614 uxReturn = pxTCB->uxPriority;
2616 taskEXIT_CRITICAL();
2618 traceRETURN_uxTaskPriorityGet( uxReturn );
2623 #endif /* INCLUDE_uxTaskPriorityGet */
2624 /*-----------------------------------------------------------*/
2626 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2628 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
2630 TCB_t const * pxTCB;
2631 UBaseType_t uxReturn;
2632 UBaseType_t uxSavedInterruptStatus;
2634 traceENTER_uxTaskPriorityGetFromISR( xTask );
2636 /* RTOS ports that support interrupt nesting have the concept of a
2637 * maximum system call (or maximum API call) interrupt priority.
2638 * Interrupts that are above the maximum system call priority are keep
2639 * permanently enabled, even when the RTOS kernel is in a critical section,
2640 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
2641 * is defined in FreeRTOSConfig.h then
2642 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2643 * failure if a FreeRTOS API function is called from an interrupt that has
2644 * been assigned a priority above the configured maximum system call
2645 * priority. Only FreeRTOS functions that end in FromISR can be called
2646 * from interrupts that have been assigned a priority at or (logically)
2647 * below the maximum system call interrupt priority. FreeRTOS maintains a
2648 * separate interrupt safe API to ensure interrupt entry is as fast and as
2649 * simple as possible. More information (albeit Cortex-M specific) is
2650 * provided on the following link:
2651 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2652 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2654 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
2656 /* If null is passed in here then it is the priority of the calling
2657 * task that is being queried. */
2658 pxTCB = prvGetTCBFromHandle( xTask );
2659 uxReturn = pxTCB->uxPriority;
2661 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2663 traceRETURN_uxTaskPriorityGetFromISR( uxReturn );
2668 #endif /* INCLUDE_uxTaskPriorityGet */
2669 /*-----------------------------------------------------------*/
2671 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2673 UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask )
2675 TCB_t const * pxTCB;
2676 UBaseType_t uxReturn;
2678 traceENTER_uxTaskBasePriorityGet( xTask );
2680 taskENTER_CRITICAL();
2682 /* If null is passed in here then it is the base priority of the task
2683 * that called uxTaskBasePriorityGet() that is being queried. */
2684 pxTCB = prvGetTCBFromHandle( xTask );
2685 uxReturn = pxTCB->uxBasePriority;
2687 taskEXIT_CRITICAL();
2689 traceRETURN_uxTaskBasePriorityGet( uxReturn );
2694 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2695 /*-----------------------------------------------------------*/
2697 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2699 UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask )
2701 TCB_t const * pxTCB;
2702 UBaseType_t uxReturn;
2703 UBaseType_t uxSavedInterruptStatus;
2705 traceENTER_uxTaskBasePriorityGetFromISR( xTask );
2707 /* RTOS ports that support interrupt nesting have the concept of a
2708 * maximum system call (or maximum API call) interrupt priority.
2709 * Interrupts that are above the maximum system call priority are keep
2710 * permanently enabled, even when the RTOS kernel is in a critical section,
2711 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
2712 * is defined in FreeRTOSConfig.h then
2713 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2714 * failure if a FreeRTOS API function is called from an interrupt that has
2715 * been assigned a priority above the configured maximum system call
2716 * priority. Only FreeRTOS functions that end in FromISR can be called
2717 * from interrupts that have been assigned a priority at or (logically)
2718 * below the maximum system call interrupt priority. FreeRTOS maintains a
2719 * separate interrupt safe API to ensure interrupt entry is as fast and as
2720 * simple as possible. More information (albeit Cortex-M specific) is
2721 * provided on the following link:
2722 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2723 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2725 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
2727 /* If null is passed in here then it is the base priority of the calling
2728 * task that is being queried. */
2729 pxTCB = prvGetTCBFromHandle( xTask );
2730 uxReturn = pxTCB->uxBasePriority;
2732 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2734 traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn );
2739 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2740 /*-----------------------------------------------------------*/
2742 #if ( INCLUDE_vTaskPrioritySet == 1 )
2744 void vTaskPrioritySet( TaskHandle_t xTask,
2745 UBaseType_t uxNewPriority )
2748 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
2749 BaseType_t xYieldRequired = pdFALSE;
2751 #if ( configNUMBER_OF_CORES > 1 )
2752 BaseType_t xYieldForTask = pdFALSE;
2755 traceENTER_vTaskPrioritySet( xTask, uxNewPriority );
2757 configASSERT( uxNewPriority < configMAX_PRIORITIES );
2759 /* Ensure the new priority is valid. */
2760 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
2762 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
2766 mtCOVERAGE_TEST_MARKER();
2769 taskENTER_CRITICAL();
2771 /* If null is passed in here then it is the priority of the calling
2772 * task that is being changed. */
2773 pxTCB = prvGetTCBFromHandle( xTask );
2775 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
2777 #if ( configUSE_MUTEXES == 1 )
2779 uxCurrentBasePriority = pxTCB->uxBasePriority;
2783 uxCurrentBasePriority = pxTCB->uxPriority;
2787 if( uxCurrentBasePriority != uxNewPriority )
2789 /* The priority change may have readied a task of higher
2790 * priority than a running task. */
2791 if( uxNewPriority > uxCurrentBasePriority )
2793 #if ( configNUMBER_OF_CORES == 1 )
2795 if( pxTCB != pxCurrentTCB )
2797 /* The priority of a task other than the currently
2798 * running task is being raised. Is the priority being
2799 * raised above that of the running task? */
2800 if( uxNewPriority > pxCurrentTCB->uxPriority )
2802 xYieldRequired = pdTRUE;
2806 mtCOVERAGE_TEST_MARKER();
2811 /* The priority of the running task is being raised,
2812 * but the running task must already be the highest
2813 * priority task able to run so no yield is required. */
2816 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2818 /* The priority of a task is being raised so
2819 * perform a yield for this task later. */
2820 xYieldForTask = pdTRUE;
2822 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2824 else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2826 /* Setting the priority of a running task down means
2827 * there may now be another task of higher priority that
2828 * is ready to execute. */
2829 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
2830 if( pxTCB->xPreemptionDisable == pdFALSE )
2833 xYieldRequired = pdTRUE;
2838 /* Setting the priority of any other task down does not
2839 * require a yield as the running task must be above the
2840 * new priority of the task being modified. */
2843 /* Remember the ready list the task might be referenced from
2844 * before its uxPriority member is changed so the
2845 * taskRESET_READY_PRIORITY() macro can function correctly. */
2846 uxPriorityUsedOnEntry = pxTCB->uxPriority;
2848 #if ( configUSE_MUTEXES == 1 )
2850 /* Only change the priority being used if the task is not
2851 * currently using an inherited priority or the new priority
2852 * is bigger than the inherited priority. */
2853 if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) )
2855 pxTCB->uxPriority = uxNewPriority;
2859 mtCOVERAGE_TEST_MARKER();
2862 /* The base priority gets set whatever. */
2863 pxTCB->uxBasePriority = uxNewPriority;
2865 #else /* if ( configUSE_MUTEXES == 1 ) */
2867 pxTCB->uxPriority = uxNewPriority;
2869 #endif /* if ( configUSE_MUTEXES == 1 ) */
2871 /* Only reset the event list item value if the value is not
2872 * being used for anything else. */
2873 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
2875 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) );
2879 mtCOVERAGE_TEST_MARKER();
2882 /* If the task is in the blocked or suspended list we need do
2883 * nothing more than change its priority variable. However, if
2884 * the task is in a ready list it needs to be removed and placed
2885 * in the list appropriate to its new priority. */
2886 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
2888 /* The task is currently in its ready list - remove before
2889 * adding it to its new ready list. As we are in a critical
2890 * section we can do this even if the scheduler is suspended. */
2891 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2893 /* It is known that the task is in its ready list so
2894 * there is no need to check again and the port level
2895 * reset macro can be called directly. */
2896 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
2900 mtCOVERAGE_TEST_MARKER();
2903 prvAddTaskToReadyList( pxTCB );
2907 #if ( configNUMBER_OF_CORES == 1 )
2909 mtCOVERAGE_TEST_MARKER();
2913 /* It's possible that xYieldForTask was already set to pdTRUE because
2914 * its priority is being raised. However, since it is not in a ready list
2915 * we don't actually need to yield for it. */
2916 xYieldForTask = pdFALSE;
2921 if( xYieldRequired != pdFALSE )
2923 /* The running task priority is set down. Request the task to yield. */
2924 taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
2928 #if ( configNUMBER_OF_CORES > 1 )
2929 if( xYieldForTask != pdFALSE )
2931 /* The priority of the task is being raised. If a running
2932 * task has priority lower than this task, it should yield
2934 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
2937 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
2939 mtCOVERAGE_TEST_MARKER();
2943 /* Remove compiler warning about unused variables when the port
2944 * optimised task selection is not being used. */
2945 ( void ) uxPriorityUsedOnEntry;
2948 taskEXIT_CRITICAL();
2950 traceRETURN_vTaskPrioritySet();
2953 #endif /* INCLUDE_vTaskPrioritySet */
2954 /*-----------------------------------------------------------*/
2956 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
2957 void vTaskCoreAffinitySet( const TaskHandle_t xTask,
2958 UBaseType_t uxCoreAffinityMask )
2962 UBaseType_t uxPrevCoreAffinityMask;
2964 #if ( configUSE_PREEMPTION == 1 )
2965 UBaseType_t uxPrevNotAllowedCores;
2968 traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask );
2970 taskENTER_CRITICAL();
2972 pxTCB = prvGetTCBFromHandle( xTask );
2974 uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask;
2975 pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;
2977 if( xSchedulerRunning != pdFALSE )
2979 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2981 xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
2983 /* If the task can no longer run on the core it was running,
2984 * request the core to yield. */
2985 if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U )
2987 prvYieldCore( xCoreID );
2992 #if ( configUSE_PREEMPTION == 1 )
2994 /* Calculate the cores on which this task was not allowed to
2995 * run previously. */
2996 uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U );
2998 /* Does the new core mask enables this task to run on any of the
2999 * previously not allowed cores? If yes, check if this task can be
3000 * scheduled on any of those cores. */
3001 if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U )
3003 prvYieldForTask( pxTCB );
3006 #else /* #if( configUSE_PREEMPTION == 1 ) */
3008 mtCOVERAGE_TEST_MARKER();
3010 #endif /* #if( configUSE_PREEMPTION == 1 ) */
3014 taskEXIT_CRITICAL();
3016 traceRETURN_vTaskCoreAffinitySet();
3018 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3019 /*-----------------------------------------------------------*/
3021 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
3022 UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask )
3024 const TCB_t * pxTCB;
3025 UBaseType_t uxCoreAffinityMask;
3027 traceENTER_vTaskCoreAffinityGet( xTask );
3029 taskENTER_CRITICAL();
3031 pxTCB = prvGetTCBFromHandle( xTask );
3032 uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
3034 taskEXIT_CRITICAL();
3036 traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask );
3038 return uxCoreAffinityMask;
3040 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3042 /*-----------------------------------------------------------*/
3044 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3046 void vTaskPreemptionDisable( const TaskHandle_t xTask )
3050 traceENTER_vTaskPreemptionDisable( xTask );
3052 taskENTER_CRITICAL();
3054 pxTCB = prvGetTCBFromHandle( xTask );
3056 pxTCB->xPreemptionDisable = pdTRUE;
3058 taskEXIT_CRITICAL();
3060 traceRETURN_vTaskPreemptionDisable();
3063 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3064 /*-----------------------------------------------------------*/
3066 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3068 void vTaskPreemptionEnable( const TaskHandle_t xTask )
3073 traceENTER_vTaskPreemptionEnable( xTask );
3075 taskENTER_CRITICAL();
3077 pxTCB = prvGetTCBFromHandle( xTask );
3079 pxTCB->xPreemptionDisable = pdFALSE;
3081 if( xSchedulerRunning != pdFALSE )
3083 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3085 xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
3086 prvYieldCore( xCoreID );
3090 taskEXIT_CRITICAL();
3092 traceRETURN_vTaskPreemptionEnable();
3095 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3096 /*-----------------------------------------------------------*/
3098 #if ( INCLUDE_vTaskSuspend == 1 )
3100 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
3104 #if ( configNUMBER_OF_CORES > 1 )
3105 BaseType_t xTaskRunningOnCore;
3108 traceENTER_vTaskSuspend( xTaskToSuspend );
3110 taskENTER_CRITICAL();
3112 /* If null is passed in here then it is the running task that is
3113 * being suspended. */
3114 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
3116 traceTASK_SUSPEND( pxTCB );
3118 #if ( configNUMBER_OF_CORES > 1 )
3119 xTaskRunningOnCore = pxTCB->xTaskRunState;
3122 /* Remove task from the ready/delayed list and place in the
3123 * suspended list. */
3124 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
3126 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
3130 mtCOVERAGE_TEST_MARKER();
3133 /* Is the task waiting on an event also? */
3134 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
3136 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
3140 mtCOVERAGE_TEST_MARKER();
3143 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
3145 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3149 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3151 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3153 /* The task was blocked to wait for a notification, but is
3154 * now suspended, so no notification was received. */
3155 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
3159 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3162 #if ( configNUMBER_OF_CORES == 1 )
3164 taskEXIT_CRITICAL();
3166 if( xSchedulerRunning != pdFALSE )
3168 /* Reset the next expected unblock time in case it referred to the
3169 * task that is now in the Suspended state. */
3170 taskENTER_CRITICAL();
3172 prvResetNextTaskUnblockTime();
3174 taskEXIT_CRITICAL();
3178 mtCOVERAGE_TEST_MARKER();
3181 if( pxTCB == pxCurrentTCB )
3183 if( xSchedulerRunning != pdFALSE )
3185 /* The current task has just been suspended. */
3186 configASSERT( uxSchedulerSuspended == 0 );
3187 portYIELD_WITHIN_API();
3191 /* The scheduler is not running, but the task that was pointed
3192 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
3193 * must be adjusted to point to a different task. */
3194 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
3196 /* No other tasks are ready, so set pxCurrentTCB back to
3197 * NULL so when the next task is created pxCurrentTCB will
3198 * be set to point to it no matter what its relative priority
3200 pxCurrentTCB = NULL;
3204 vTaskSwitchContext();
3210 mtCOVERAGE_TEST_MARKER();
3213 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3215 if( xSchedulerRunning != pdFALSE )
3217 /* Reset the next expected unblock time in case it referred to the
3218 * task that is now in the Suspended state. */
3219 prvResetNextTaskUnblockTime();
3223 mtCOVERAGE_TEST_MARKER();
3226 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3228 if( xSchedulerRunning != pdFALSE )
3230 if( xTaskRunningOnCore == ( BaseType_t ) portGET_CORE_ID() )
3232 /* The current task has just been suspended. */
3233 configASSERT( uxSchedulerSuspended == 0 );
3234 vTaskYieldWithinAPI();
3238 prvYieldCore( xTaskRunningOnCore );
3243 /* This code path is not possible because only Idle tasks are
3244 * assigned a core before the scheduler is started ( i.e.
3245 * taskTASK_IS_RUNNING is only true for idle tasks before
3246 * the scheduler is started ) and idle tasks cannot be
3248 mtCOVERAGE_TEST_MARKER();
3253 mtCOVERAGE_TEST_MARKER();
3256 taskEXIT_CRITICAL();
3258 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3260 traceRETURN_vTaskSuspend();
3263 #endif /* INCLUDE_vTaskSuspend */
3264 /*-----------------------------------------------------------*/
3266 #if ( INCLUDE_vTaskSuspend == 1 )
3268 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
3270 BaseType_t xReturn = pdFALSE;
3271 const TCB_t * const pxTCB = xTask;
3273 /* Accesses xPendingReadyList so must be called from a critical
3276 /* It does not make sense to check if the calling task is suspended. */
3277 configASSERT( xTask );
3279 /* Is the task being resumed actually in the suspended list? */
3280 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
3282 /* Has the task already been resumed from within an ISR? */
3283 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
3285 /* Is it in the suspended list because it is in the Suspended
3286 * state, or because it is blocked with no timeout? */
3287 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
3289 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3293 /* The task does not appear on the event list item of
3294 * and of the RTOS objects, but could still be in the
3295 * blocked state if it is waiting on its notification
3296 * rather than waiting on an object. If not, is
3300 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3302 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3309 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3313 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3317 mtCOVERAGE_TEST_MARKER();
3322 mtCOVERAGE_TEST_MARKER();
3327 mtCOVERAGE_TEST_MARKER();
3333 #endif /* INCLUDE_vTaskSuspend */
3334 /*-----------------------------------------------------------*/
3336 #if ( INCLUDE_vTaskSuspend == 1 )
3338 void vTaskResume( TaskHandle_t xTaskToResume )
3340 TCB_t * const pxTCB = xTaskToResume;
3342 traceENTER_vTaskResume( xTaskToResume );
3344 /* It does not make sense to resume the calling task. */
3345 configASSERT( xTaskToResume );
3347 #if ( configNUMBER_OF_CORES == 1 )
3349 /* The parameter cannot be NULL as it is impossible to resume the
3350 * currently executing task. */
3351 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
3354 /* The parameter cannot be NULL as it is impossible to resume the
3355 * currently executing task. It is also impossible to resume a task
3356 * that is actively running on another core but it is not safe
3357 * to check their run state here. Therefore, we get into a critical
3358 * section and check if the task is actually suspended or not. */
3362 taskENTER_CRITICAL();
3364 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3366 traceTASK_RESUME( pxTCB );
3368 /* The ready list can be accessed even if the scheduler is
3369 * suspended because this is inside a critical section. */
3370 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3371 prvAddTaskToReadyList( pxTCB );
3373 /* This yield may not cause the task just resumed to run,
3374 * but will leave the lists in the correct state for the
3376 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
3380 mtCOVERAGE_TEST_MARKER();
3383 taskEXIT_CRITICAL();
3387 mtCOVERAGE_TEST_MARKER();
3390 traceRETURN_vTaskResume();
3393 #endif /* INCLUDE_vTaskSuspend */
3395 /*-----------------------------------------------------------*/
3397 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
3399 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
3401 BaseType_t xYieldRequired = pdFALSE;
3402 TCB_t * const pxTCB = xTaskToResume;
3403 UBaseType_t uxSavedInterruptStatus;
3405 traceENTER_xTaskResumeFromISR( xTaskToResume );
3407 configASSERT( xTaskToResume );
3409 /* RTOS ports that support interrupt nesting have the concept of a
3410 * maximum system call (or maximum API call) interrupt priority.
3411 * Interrupts that are above the maximum system call priority are keep
3412 * permanently enabled, even when the RTOS kernel is in a critical section,
3413 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
3414 * is defined in FreeRTOSConfig.h then
3415 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
3416 * failure if a FreeRTOS API function is called from an interrupt that has
3417 * been assigned a priority above the configured maximum system call
3418 * priority. Only FreeRTOS functions that end in FromISR can be called
3419 * from interrupts that have been assigned a priority at or (logically)
3420 * below the maximum system call interrupt priority. FreeRTOS maintains a
3421 * separate interrupt safe API to ensure interrupt entry is as fast and as
3422 * simple as possible. More information (albeit Cortex-M specific) is
3423 * provided on the following link:
3424 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
3425 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
3427 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
3429 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3431 traceTASK_RESUME_FROM_ISR( pxTCB );
3433 /* Check the ready lists can be accessed. */
3434 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3436 #if ( configNUMBER_OF_CORES == 1 )
3438 /* Ready lists can be accessed so move the task from the
3439 * suspended list to the ready list directly. */
3440 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3442 xYieldRequired = pdTRUE;
3444 /* Mark that a yield is pending in case the user is not
3445 * using the return value to initiate a context switch
3446 * from the ISR using the port specific portYIELD_FROM_ISR(). */
3447 xYieldPendings[ 0 ] = pdTRUE;
3451 mtCOVERAGE_TEST_MARKER();
3454 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3456 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3457 prvAddTaskToReadyList( pxTCB );
3461 /* The delayed or ready lists cannot be accessed so the task
3462 * is held in the pending ready list until the scheduler is
3464 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
3467 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) )
3469 prvYieldForTask( pxTCB );
3471 if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
3473 xYieldRequired = pdTRUE;
3476 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */
3480 mtCOVERAGE_TEST_MARKER();
3483 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
3485 traceRETURN_xTaskResumeFromISR( xYieldRequired );
3487 return xYieldRequired;
3490 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
3491 /*-----------------------------------------------------------*/
3493 static BaseType_t prvCreateIdleTasks( void )
3495 BaseType_t xReturn = pdPASS;
3497 char cIdleName[ configMAX_TASK_NAME_LEN ];
3498 TaskFunction_t pxIdleTaskFunction = NULL;
3499 BaseType_t xIdleTaskNameIndex;
3501 for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ )
3503 cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ];
3505 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
3506 * configMAX_TASK_NAME_LEN characters just in case the memory after the
3507 * string is not accessible (extremely unlikely). */
3508 if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 )
3514 mtCOVERAGE_TEST_MARKER();
3518 /* Add each idle task at the lowest priority. */
3519 for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3521 #if ( configNUMBER_OF_CORES == 1 )
3523 pxIdleTaskFunction = prvIdleTask;
3525 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3527 /* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks
3528 * are also created to ensure that each core has an idle task to
3529 * run when no other task is available to run. */
3532 pxIdleTaskFunction = prvIdleTask;
3536 pxIdleTaskFunction = prvPassiveIdleTask;
3539 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3541 /* Update the idle task name with suffix to differentiate the idle tasks.
3542 * This function is not required in single core FreeRTOS since there is
3543 * only one idle task. */
3544 #if ( configNUMBER_OF_CORES > 1 )
3546 /* Append the idle task number to the end of the name if there is space. */
3547 if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3549 cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' );
3551 /* And append a null character if there is space. */
3552 if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3554 cIdleName[ xIdleTaskNameIndex + 1 ] = '\0';
3558 mtCOVERAGE_TEST_MARKER();
3563 mtCOVERAGE_TEST_MARKER();
3566 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
3568 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
3570 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
3571 StackType_t * pxIdleTaskStackBuffer = NULL;
3572 uint32_t ulIdleTaskStackSize;
3574 /* The Idle task is created using user provided RAM - obtain the
3575 * address of the RAM then create the idle task. */
3576 #if ( configNUMBER_OF_CORES == 1 )
3578 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
3584 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
3588 vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize, xCoreID - 1 );
3591 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
3592 xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction,
3594 ulIdleTaskStackSize,
3596 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3597 pxIdleTaskStackBuffer,
3598 pxIdleTaskTCBBuffer );
3600 if( xIdleTaskHandles[ xCoreID ] != NULL )
3609 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
3611 /* The Idle task is being created using dynamically allocated RAM. */
3612 xReturn = xTaskCreate( pxIdleTaskFunction,
3614 configMINIMAL_STACK_SIZE,
3616 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3617 &xIdleTaskHandles[ xCoreID ] );
3619 #endif /* configSUPPORT_STATIC_ALLOCATION */
3621 /* Break the loop if any of the idle task is failed to be created. */
3622 if( xReturn == pdFAIL )
3628 #if ( configNUMBER_OF_CORES == 1 )
3630 mtCOVERAGE_TEST_MARKER();
3634 /* Assign idle task to each core before SMP scheduler is running. */
3635 xIdleTaskHandles[ xCoreID ]->xTaskRunState = xCoreID;
3636 pxCurrentTCBs[ xCoreID ] = xIdleTaskHandles[ xCoreID ];
3645 /*-----------------------------------------------------------*/
3647 void vTaskStartScheduler( void )
3651 traceENTER_vTaskStartScheduler();
3653 #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
3655 /* Sanity check that the UBaseType_t must have greater than or equal to
3656 * the number of bits as confNUMBER_OF_CORES. */
3657 configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES );
3659 #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
3661 xReturn = prvCreateIdleTasks();
3663 #if ( configUSE_TIMERS == 1 )
3665 if( xReturn == pdPASS )
3667 xReturn = xTimerCreateTimerTask();
3671 mtCOVERAGE_TEST_MARKER();
3674 #endif /* configUSE_TIMERS */
3676 if( xReturn == pdPASS )
3678 /* freertos_tasks_c_additions_init() should only be called if the user
3679 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
3680 * the only macro called by the function. */
3681 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
3683 freertos_tasks_c_additions_init();
3687 /* Interrupts are turned off here, to ensure a tick does not occur
3688 * before or during the call to xPortStartScheduler(). The stacks of
3689 * the created tasks contain a status word with interrupts switched on
3690 * so interrupts will automatically get re-enabled when the first task
3692 portDISABLE_INTERRUPTS();
3694 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
3696 /* Switch C-Runtime's TLS Block to point to the TLS
3697 * block specific to the task that will run first. */
3698 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
3702 xNextTaskUnblockTime = portMAX_DELAY;
3703 xSchedulerRunning = pdTRUE;
3704 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
3706 /* If configGENERATE_RUN_TIME_STATS is defined then the following
3707 * macro must be defined to configure the timer/counter used to generate
3708 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
3709 * is set to 0 and the following line fails to build then ensure you do not
3710 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
3711 * FreeRTOSConfig.h file. */
3712 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
3714 traceTASK_SWITCHED_IN();
3716 /* Setting up the timer tick is hardware specific and thus in the
3717 * portable interface. */
3719 /* The return value for xPortStartScheduler is not required
3720 * hence using a void datatype. */
3721 ( void ) xPortStartScheduler();
3723 /* In most cases, xPortStartScheduler() will not return. If it
3724 * returns pdTRUE then there was not enough heap memory available
3725 * to create either the Idle or the Timer task. If it returned
3726 * pdFALSE, then the application called xTaskEndScheduler().
3727 * Most ports don't implement xTaskEndScheduler() as there is
3728 * nothing to return to. */
3732 /* This line will only be reached if the kernel could not be started,
3733 * because there was not enough FreeRTOS heap to create the idle task
3734 * or the timer task. */
3735 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
3738 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
3739 * meaning xIdleTaskHandles are not used anywhere else. */
3740 ( void ) xIdleTaskHandles;
3742 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
3743 * from getting optimized out as it is no longer used by the kernel. */
3744 ( void ) uxTopUsedPriority;
3746 traceRETURN_vTaskStartScheduler();
3748 /*-----------------------------------------------------------*/
3750 void vTaskEndScheduler( void )
3752 traceENTER_vTaskEndScheduler();
3754 /* Stop the scheduler interrupts and call the portable scheduler end
3755 * routine so the original ISRs can be restored if necessary. The port
3756 * layer must ensure interrupts enable bit is left in the correct state. */
3757 portDISABLE_INTERRUPTS();
3758 xSchedulerRunning = pdFALSE;
3759 vPortEndScheduler();
3761 traceRETURN_vTaskEndScheduler();
3763 /*----------------------------------------------------------*/
3765 void vTaskSuspendAll( void )
3767 traceENTER_vTaskSuspendAll();
3769 #if ( configNUMBER_OF_CORES == 1 )
3771 /* A critical section is not required as the variable is of type
3772 * BaseType_t. Please read Richard Barry's reply in the following link to a
3773 * post in the FreeRTOS support forum before reporting this as a bug! -
3774 * https://goo.gl/wu4acr */
3776 /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
3777 * do not otherwise exhibit real time behaviour. */
3778 portSOFTWARE_BARRIER();
3780 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3781 * is used to allow calls to vTaskSuspendAll() to nest. */
3782 ++uxSchedulerSuspended;
3784 /* Enforces ordering for ports and optimised compilers that may otherwise place
3785 * the above increment elsewhere. */
3786 portMEMORY_BARRIER();
3788 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3790 UBaseType_t ulState;
3792 /* This must only be called from within a task. */
3793 portASSERT_IF_IN_ISR();
3795 if( xSchedulerRunning != pdFALSE )
3797 /* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks.
3798 * We must disable interrupts before we grab the locks in the event that this task is
3799 * interrupted and switches context before incrementing uxSchedulerSuspended.
3800 * It is safe to re-enable interrupts after releasing the ISR lock and incrementing
3801 * uxSchedulerSuspended since that will prevent context switches. */
3802 ulState = portSET_INTERRUPT_MASK();
3804 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
3805 * do not otherwise exhibit real time behaviour. */
3806 portSOFTWARE_BARRIER();
3808 portGET_TASK_LOCK();
3810 /* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The
3811 * purpose is to prevent altering the variable when fromISR APIs are readying
3813 if( uxSchedulerSuspended == 0U )
3815 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
3817 prvCheckForRunStateChange();
3821 mtCOVERAGE_TEST_MARKER();
3826 mtCOVERAGE_TEST_MARKER();
3831 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3832 * is used to allow calls to vTaskSuspendAll() to nest. */
3833 ++uxSchedulerSuspended;
3834 portRELEASE_ISR_LOCK();
3836 portCLEAR_INTERRUPT_MASK( ulState );
3840 mtCOVERAGE_TEST_MARKER();
3843 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3845 traceRETURN_vTaskSuspendAll();
3848 /*----------------------------------------------------------*/
3850 #if ( configUSE_TICKLESS_IDLE != 0 )
3852 static TickType_t prvGetExpectedIdleTime( void )
3855 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
3857 /* uxHigherPriorityReadyTasks takes care of the case where
3858 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
3859 * task that are in the Ready state, even though the idle task is
3861 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
3863 if( uxTopReadyPriority > tskIDLE_PRIORITY )
3865 uxHigherPriorityReadyTasks = pdTRUE;
3870 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
3872 /* When port optimised task selection is used the uxTopReadyPriority
3873 * variable is used as a bit map. If bits other than the least
3874 * significant bit are set then there are tasks that have a priority
3875 * above the idle priority that are in the Ready state. This takes
3876 * care of the case where the co-operative scheduler is in use. */
3877 if( uxTopReadyPriority > uxLeastSignificantBit )
3879 uxHigherPriorityReadyTasks = pdTRUE;
3882 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
3884 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
3888 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1U )
3890 /* There are other idle priority tasks in the ready state. If
3891 * time slicing is used then the very next tick interrupt must be
3895 else if( uxHigherPriorityReadyTasks != pdFALSE )
3897 /* There are tasks in the Ready state that have a priority above the
3898 * idle priority. This path can only be reached if
3899 * configUSE_PREEMPTION is 0. */
3904 xReturn = xNextTaskUnblockTime;
3905 xReturn -= xTickCount;
3911 #endif /* configUSE_TICKLESS_IDLE */
3912 /*----------------------------------------------------------*/
3914 BaseType_t xTaskResumeAll( void )
3916 TCB_t * pxTCB = NULL;
3917 BaseType_t xAlreadyYielded = pdFALSE;
3919 traceENTER_xTaskResumeAll();
3921 #if ( configNUMBER_OF_CORES > 1 )
3922 if( xSchedulerRunning != pdFALSE )
3925 /* It is possible that an ISR caused a task to be removed from an event
3926 * list while the scheduler was suspended. If this was the case then the
3927 * removed task will have been added to the xPendingReadyList. Once the
3928 * scheduler has been resumed it is safe to move all the pending ready
3929 * tasks from this list into their appropriate ready list. */
3930 taskENTER_CRITICAL();
3933 xCoreID = ( BaseType_t ) portGET_CORE_ID();
3935 /* If uxSchedulerSuspended is zero then this function does not match a
3936 * previous call to vTaskSuspendAll(). */
3937 configASSERT( uxSchedulerSuspended != 0U );
3939 --uxSchedulerSuspended;
3940 portRELEASE_TASK_LOCK();
3942 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3944 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
3946 /* Move any readied tasks from the pending list into the
3947 * appropriate ready list. */
3948 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
3950 /* MISRA Ref 11.5.3 [Void pointer assignment] */
3951 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
3952 /* coverity[misra_c_2012_rule_11_5_violation] */
3953 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
3954 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
3955 portMEMORY_BARRIER();
3956 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
3957 prvAddTaskToReadyList( pxTCB );
3959 #if ( configNUMBER_OF_CORES == 1 )
3961 /* If the moved task has a priority higher than the current
3962 * task then a yield must be performed. */
3963 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3965 xYieldPendings[ xCoreID ] = pdTRUE;
3969 mtCOVERAGE_TEST_MARKER();
3972 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3974 /* All appropriate tasks yield at the moment a task is added to xPendingReadyList.
3975 * If the current core yielded then vTaskSwitchContext() has already been called
3976 * which sets xYieldPendings for the current core to pdTRUE. */
3978 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3983 /* A task was unblocked while the scheduler was suspended,
3984 * which may have prevented the next unblock time from being
3985 * re-calculated, in which case re-calculate it now. Mainly
3986 * important for low power tickless implementations, where
3987 * this can prevent an unnecessary exit from low power
3989 prvResetNextTaskUnblockTime();
3992 /* If any ticks occurred while the scheduler was suspended then
3993 * they should be processed now. This ensures the tick count does
3994 * not slip, and that any delayed tasks are resumed at the correct
3997 * It should be safe to call xTaskIncrementTick here from any core
3998 * since we are in a critical section and xTaskIncrementTick itself
3999 * protects itself within a critical section. Suspending the scheduler
4000 * from any core causes xTaskIncrementTick to increment uxPendedCounts. */
4002 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
4004 if( xPendedCounts > ( TickType_t ) 0U )
4008 if( xTaskIncrementTick() != pdFALSE )
4010 /* Other cores are interrupted from
4011 * within xTaskIncrementTick(). */
4012 xYieldPendings[ xCoreID ] = pdTRUE;
4016 mtCOVERAGE_TEST_MARKER();
4020 } while( xPendedCounts > ( TickType_t ) 0U );
4026 mtCOVERAGE_TEST_MARKER();
4030 if( xYieldPendings[ xCoreID ] != pdFALSE )
4032 #if ( configUSE_PREEMPTION != 0 )
4034 xAlreadyYielded = pdTRUE;
4036 #endif /* #if ( configUSE_PREEMPTION != 0 ) */
4038 #if ( configNUMBER_OF_CORES == 1 )
4040 taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB );
4042 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4046 mtCOVERAGE_TEST_MARKER();
4052 mtCOVERAGE_TEST_MARKER();
4055 taskEXIT_CRITICAL();
4058 traceRETURN_xTaskResumeAll( xAlreadyYielded );
4060 return xAlreadyYielded;
4062 /*-----------------------------------------------------------*/
4064 TickType_t xTaskGetTickCount( void )
4068 traceENTER_xTaskGetTickCount();
4070 /* Critical section required if running on a 16 bit processor. */
4071 portTICK_TYPE_ENTER_CRITICAL();
4073 xTicks = xTickCount;
4075 portTICK_TYPE_EXIT_CRITICAL();
4077 traceRETURN_xTaskGetTickCount( xTicks );
4081 /*-----------------------------------------------------------*/
4083 TickType_t xTaskGetTickCountFromISR( void )
4086 UBaseType_t uxSavedInterruptStatus;
4088 traceENTER_xTaskGetTickCountFromISR();
4090 /* RTOS ports that support interrupt nesting have the concept of a maximum
4091 * system call (or maximum API call) interrupt priority. Interrupts that are
4092 * above the maximum system call priority are kept permanently enabled, even
4093 * when the RTOS kernel is in a critical section, but cannot make any calls to
4094 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
4095 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
4096 * failure if a FreeRTOS API function is called from an interrupt that has been
4097 * assigned a priority above the configured maximum system call priority.
4098 * Only FreeRTOS functions that end in FromISR can be called from interrupts
4099 * that have been assigned a priority at or (logically) below the maximum
4100 * system call interrupt priority. FreeRTOS maintains a separate interrupt
4101 * safe API to ensure interrupt entry is as fast and as simple as possible.
4102 * More information (albeit Cortex-M specific) is provided on the following
4103 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
4104 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
4106 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
4108 xReturn = xTickCount;
4110 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
4112 traceRETURN_xTaskGetTickCountFromISR( xReturn );
4116 /*-----------------------------------------------------------*/
4118 UBaseType_t uxTaskGetNumberOfTasks( void )
4120 traceENTER_uxTaskGetNumberOfTasks();
4122 /* A critical section is not required because the variables are of type
4124 traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks );
4126 return uxCurrentNumberOfTasks;
4128 /*-----------------------------------------------------------*/
4130 char * pcTaskGetName( TaskHandle_t xTaskToQuery )
4134 traceENTER_pcTaskGetName( xTaskToQuery );
4136 /* If null is passed in here then the name of the calling task is being
4138 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
4139 configASSERT( pxTCB );
4141 traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) );
4143 return &( pxTCB->pcTaskName[ 0 ] );
4145 /*-----------------------------------------------------------*/
4147 #if ( INCLUDE_xTaskGetHandle == 1 )
4149 #if ( configNUMBER_OF_CORES == 1 )
4150 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4151 const char pcNameToQuery[] )
4155 TCB_t * pxReturn = NULL;
4158 BaseType_t xBreakLoop;
4160 /* This function is called with the scheduler suspended. */
4162 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4164 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4165 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4166 /* coverity[misra_c_2012_rule_11_5_violation] */
4167 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
4171 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4172 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4173 /* coverity[misra_c_2012_rule_11_5_violation] */
4174 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
4176 /* Check each character in the name looking for a match or
4178 xBreakLoop = pdFALSE;
4180 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4182 cNextChar = pxNextTCB->pcTaskName[ x ];
4184 if( cNextChar != pcNameToQuery[ x ] )
4186 /* Characters didn't match. */
4187 xBreakLoop = pdTRUE;
4189 else if( cNextChar == ( char ) 0x00 )
4191 /* Both strings terminated, a match must have been
4193 pxReturn = pxNextTCB;
4194 xBreakLoop = pdTRUE;
4198 mtCOVERAGE_TEST_MARKER();
4201 if( xBreakLoop != pdFALSE )
4207 if( pxReturn != NULL )
4209 /* The handle has been found. */
4212 } while( pxNextTCB != pxFirstTCB );
4216 mtCOVERAGE_TEST_MARKER();
4221 #else /* if ( configNUMBER_OF_CORES == 1 ) */
4222 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4223 const char pcNameToQuery[] )
4225 TCB_t * pxReturn = NULL;
4228 BaseType_t xBreakLoop;
4229 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
4230 ListItem_t * pxIterator;
4232 /* This function is called with the scheduler suspended. */
4234 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4236 for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
4238 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4239 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4240 /* coverity[misra_c_2012_rule_11_5_violation] */
4241 TCB_t * pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
4243 /* Check each character in the name looking for a match or
4245 xBreakLoop = pdFALSE;
4247 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4249 cNextChar = pxTCB->pcTaskName[ x ];
4251 if( cNextChar != pcNameToQuery[ x ] )
4253 /* Characters didn't match. */
4254 xBreakLoop = pdTRUE;
4256 else if( cNextChar == ( char ) 0x00 )
4258 /* Both strings terminated, a match must have been
4261 xBreakLoop = pdTRUE;
4265 mtCOVERAGE_TEST_MARKER();
4268 if( xBreakLoop != pdFALSE )
4274 if( pxReturn != NULL )
4276 /* The handle has been found. */
4283 mtCOVERAGE_TEST_MARKER();
4288 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4290 #endif /* INCLUDE_xTaskGetHandle */
4291 /*-----------------------------------------------------------*/
4293 #if ( INCLUDE_xTaskGetHandle == 1 )
4295 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery )
4297 UBaseType_t uxQueue = configMAX_PRIORITIES;
4300 traceENTER_xTaskGetHandle( pcNameToQuery );
4302 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
4303 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
4307 /* Search the ready lists. */
4311 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
4315 /* Found the handle. */
4318 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4320 /* Search the delayed lists. */
4323 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
4328 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
4331 #if ( INCLUDE_vTaskSuspend == 1 )
4335 /* Search the suspended list. */
4336 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
4341 #if ( INCLUDE_vTaskDelete == 1 )
4345 /* Search the deleted list. */
4346 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
4351 ( void ) xTaskResumeAll();
4353 traceRETURN_xTaskGetHandle( pxTCB );
4358 #endif /* INCLUDE_xTaskGetHandle */
4359 /*-----------------------------------------------------------*/
4361 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
4363 BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
4364 StackType_t ** ppuxStackBuffer,
4365 StaticTask_t ** ppxTaskBuffer )
4370 traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer );
4372 configASSERT( ppuxStackBuffer != NULL );
4373 configASSERT( ppxTaskBuffer != NULL );
4375 pxTCB = prvGetTCBFromHandle( xTask );
4377 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
4379 if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
4381 *ppuxStackBuffer = pxTCB->pxStack;
4382 /* MISRA Ref 11.3.1 [Misaligned access] */
4383 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
4384 /* coverity[misra_c_2012_rule_11_3_violation] */
4385 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4388 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
4390 *ppuxStackBuffer = pxTCB->pxStack;
4391 *ppxTaskBuffer = NULL;
4399 #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4401 *ppuxStackBuffer = pxTCB->pxStack;
4402 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4405 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4407 traceRETURN_xTaskGetStaticBuffers( xReturn );
4412 #endif /* configSUPPORT_STATIC_ALLOCATION */
4413 /*-----------------------------------------------------------*/
4415 #if ( configUSE_TRACE_FACILITY == 1 )
4417 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
4418 const UBaseType_t uxArraySize,
4419 configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
4421 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
4423 traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime );
4427 /* Is there a space in the array for each task in the system? */
4428 if( uxArraySize >= uxCurrentNumberOfTasks )
4430 /* Fill in an TaskStatus_t structure with information on each
4431 * task in the Ready state. */
4435 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) );
4436 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4438 /* Fill in an TaskStatus_t structure with information on each
4439 * task in the Blocked state. */
4440 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) );
4441 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) );
4443 #if ( INCLUDE_vTaskDelete == 1 )
4445 /* Fill in an TaskStatus_t structure with information on
4446 * each task that has been deleted but not yet cleaned up. */
4447 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) );
4451 #if ( INCLUDE_vTaskSuspend == 1 )
4453 /* Fill in an TaskStatus_t structure with information on
4454 * each task in the Suspended state. */
4455 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) );
4459 #if ( configGENERATE_RUN_TIME_STATS == 1 )
4461 if( pulTotalRunTime != NULL )
4463 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
4464 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
4466 *pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
4470 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4472 if( pulTotalRunTime != NULL )
4474 *pulTotalRunTime = 0;
4477 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4481 mtCOVERAGE_TEST_MARKER();
4484 ( void ) xTaskResumeAll();
4486 traceRETURN_uxTaskGetSystemState( uxTask );
4491 #endif /* configUSE_TRACE_FACILITY */
4492 /*----------------------------------------------------------*/
4494 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
4496 #if ( configNUMBER_OF_CORES == 1 )
4497 TaskHandle_t xTaskGetIdleTaskHandle( void )
4499 traceENTER_xTaskGetIdleTaskHandle();
4501 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4502 * started, then xIdleTaskHandles will be NULL. */
4503 configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) );
4505 traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] );
4507 return xIdleTaskHandles[ 0 ];
4509 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
4511 TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID )
4513 traceENTER_xTaskGetIdleTaskHandleForCore( xCoreID );
4515 /* Ensure the core ID is valid. */
4516 configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
4518 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4519 * started, then xIdleTaskHandles will be NULL. */
4520 configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) );
4522 traceRETURN_xTaskGetIdleTaskHandleForCore( xIdleTaskHandles[ xCoreID ] );
4524 return xIdleTaskHandles[ xCoreID ];
4527 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
4528 /*----------------------------------------------------------*/
4530 /* This conditional compilation should use inequality to 0, not equality to 1.
4531 * This is to ensure vTaskStepTick() is available when user defined low power mode
4532 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
4534 #if ( configUSE_TICKLESS_IDLE != 0 )
4536 void vTaskStepTick( TickType_t xTicksToJump )
4538 TickType_t xUpdatedTickCount;
4540 traceENTER_vTaskStepTick( xTicksToJump );
4542 /* Correct the tick count value after a period during which the tick
4543 * was suppressed. Note this does *not* call the tick hook function for
4544 * each stepped tick. */
4545 xUpdatedTickCount = xTickCount + xTicksToJump;
4546 configASSERT( xUpdatedTickCount <= xNextTaskUnblockTime );
4548 if( xUpdatedTickCount == xNextTaskUnblockTime )
4550 /* Arrange for xTickCount to reach xNextTaskUnblockTime in
4551 * xTaskIncrementTick() when the scheduler resumes. This ensures
4552 * that any delayed tasks are resumed at the correct time. */
4553 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
4554 configASSERT( xTicksToJump != ( TickType_t ) 0 );
4556 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4557 taskENTER_CRITICAL();
4561 taskEXIT_CRITICAL();
4566 mtCOVERAGE_TEST_MARKER();
4569 xTickCount += xTicksToJump;
4571 traceINCREASE_TICK_COUNT( xTicksToJump );
4572 traceRETURN_vTaskStepTick();
4575 #endif /* configUSE_TICKLESS_IDLE */
4576 /*----------------------------------------------------------*/
4578 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
4580 BaseType_t xYieldOccurred;
4582 traceENTER_xTaskCatchUpTicks( xTicksToCatchUp );
4584 /* Must not be called with the scheduler suspended as the implementation
4585 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
4586 configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U );
4588 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
4589 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
4592 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4593 taskENTER_CRITICAL();
4595 xPendedTicks += xTicksToCatchUp;
4597 taskEXIT_CRITICAL();
4598 xYieldOccurred = xTaskResumeAll();
4600 traceRETURN_xTaskCatchUpTicks( xYieldOccurred );
4602 return xYieldOccurred;
4604 /*----------------------------------------------------------*/
4606 #if ( INCLUDE_xTaskAbortDelay == 1 )
4608 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
4610 TCB_t * pxTCB = xTask;
4613 traceENTER_xTaskAbortDelay( xTask );
4615 configASSERT( pxTCB );
4619 /* A task can only be prematurely removed from the Blocked state if
4620 * it is actually in the Blocked state. */
4621 if( eTaskGetState( xTask ) == eBlocked )
4625 /* Remove the reference to the task from the blocked list. An
4626 * interrupt won't touch the xStateListItem because the
4627 * scheduler is suspended. */
4628 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
4630 /* Is the task waiting on an event also? If so remove it from
4631 * the event list too. Interrupts can touch the event list item,
4632 * even though the scheduler is suspended, so a critical section
4634 taskENTER_CRITICAL();
4636 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4638 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
4640 /* This lets the task know it was forcibly removed from the
4641 * blocked state so it should not re-evaluate its block time and
4642 * then block again. */
4643 pxTCB->ucDelayAborted = pdTRUE;
4647 mtCOVERAGE_TEST_MARKER();
4650 taskEXIT_CRITICAL();
4652 /* Place the unblocked task into the appropriate ready list. */
4653 prvAddTaskToReadyList( pxTCB );
4655 /* A task being unblocked cannot cause an immediate context
4656 * switch if preemption is turned off. */
4657 #if ( configUSE_PREEMPTION == 1 )
4659 #if ( configNUMBER_OF_CORES == 1 )
4661 /* Preemption is on, but a context switch should only be
4662 * performed if the unblocked task has a priority that is
4663 * higher than the currently executing task. */
4664 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4666 /* Pend the yield to be performed when the scheduler
4667 * is unsuspended. */
4668 xYieldPendings[ 0 ] = pdTRUE;
4672 mtCOVERAGE_TEST_MARKER();
4675 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4677 taskENTER_CRITICAL();
4679 prvYieldForTask( pxTCB );
4681 taskEXIT_CRITICAL();
4683 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4685 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4692 ( void ) xTaskResumeAll();
4694 traceRETURN_xTaskAbortDelay( xReturn );
4699 #endif /* INCLUDE_xTaskAbortDelay */
4700 /*----------------------------------------------------------*/
4702 BaseType_t xTaskIncrementTick( void )
4705 TickType_t xItemValue;
4706 BaseType_t xSwitchRequired = pdFALSE;
4708 #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 )
4709 BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE };
4710 #endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
4712 traceENTER_xTaskIncrementTick();
4714 /* Called by the portable layer each time a tick interrupt occurs.
4715 * Increments the tick then checks to see if the new tick value will cause any
4716 * tasks to be unblocked. */
4717 traceTASK_INCREMENT_TICK( xTickCount );
4719 /* Tick increment should occur on every kernel timer event. Core 0 has the
4720 * responsibility to increment the tick, or increment the pended ticks if the
4721 * scheduler is suspended. If pended ticks is greater than zero, the core that
4722 * calls xTaskResumeAll has the responsibility to increment the tick. */
4723 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
4725 /* Minor optimisation. The tick count cannot change in this
4727 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
4729 /* Increment the RTOS tick, switching the delayed and overflowed
4730 * delayed lists if it wraps to 0. */
4731 xTickCount = xConstTickCount;
4733 if( xConstTickCount == ( TickType_t ) 0U )
4735 taskSWITCH_DELAYED_LISTS();
4739 mtCOVERAGE_TEST_MARKER();
4742 /* See if this tick has made a timeout expire. Tasks are stored in
4743 * the queue in the order of their wake time - meaning once one task
4744 * has been found whose block time has not expired there is no need to
4745 * look any further down the list. */
4746 if( xConstTickCount >= xNextTaskUnblockTime )
4750 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
4752 /* The delayed list is empty. Set xNextTaskUnblockTime
4753 * to the maximum possible value so it is extremely
4755 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
4756 * next time through. */
4757 xNextTaskUnblockTime = portMAX_DELAY;
4762 /* The delayed list is not empty, get the value of the
4763 * item at the head of the delayed list. This is the time
4764 * at which the task at the head of the delayed list must
4765 * be removed from the Blocked state. */
4766 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4767 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4768 /* coverity[misra_c_2012_rule_11_5_violation] */
4769 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
4770 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
4772 if( xConstTickCount < xItemValue )
4774 /* It is not time to unblock this item yet, but the
4775 * item value is the time at which the task at the head
4776 * of the blocked list must be removed from the Blocked
4777 * state - so record the item value in
4778 * xNextTaskUnblockTime. */
4779 xNextTaskUnblockTime = xItemValue;
4784 mtCOVERAGE_TEST_MARKER();
4787 /* It is time to remove the item from the Blocked state. */
4788 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
4790 /* Is the task waiting on an event also? If so remove
4791 * it from the event list. */
4792 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4794 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
4798 mtCOVERAGE_TEST_MARKER();
4801 /* Place the unblocked task into the appropriate ready
4803 prvAddTaskToReadyList( pxTCB );
4805 /* A task being unblocked cannot cause an immediate
4806 * context switch if preemption is turned off. */
4807 #if ( configUSE_PREEMPTION == 1 )
4809 #if ( configNUMBER_OF_CORES == 1 )
4811 /* Preemption is on, but a context switch should
4812 * only be performed if the unblocked task's
4813 * priority is higher than the currently executing
4815 * The case of equal priority tasks sharing
4816 * processing time (which happens when both
4817 * preemption and time slicing are on) is
4819 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4821 xSwitchRequired = pdTRUE;
4825 mtCOVERAGE_TEST_MARKER();
4828 #else /* #if( configNUMBER_OF_CORES == 1 ) */
4830 prvYieldForTask( pxTCB );
4832 #endif /* #if( configNUMBER_OF_CORES == 1 ) */
4834 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4839 /* Tasks of equal priority to the currently running task will share
4840 * processing time (time slice) if preemption is on, and the application
4841 * writer has not explicitly turned time slicing off. */
4842 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
4844 #if ( configNUMBER_OF_CORES == 1 )
4846 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > 1U )
4848 xSwitchRequired = pdTRUE;
4852 mtCOVERAGE_TEST_MARKER();
4855 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4859 for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ )
4861 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1U )
4863 xYieldRequiredForCore[ xCoreID ] = pdTRUE;
4867 mtCOVERAGE_TEST_MARKER();
4871 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4873 #endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
4875 #if ( configUSE_TICK_HOOK == 1 )
4877 /* Guard against the tick hook being called when the pended tick
4878 * count is being unwound (when the scheduler is being unlocked). */
4879 if( xPendedTicks == ( TickType_t ) 0 )
4881 vApplicationTickHook();
4885 mtCOVERAGE_TEST_MARKER();
4888 #endif /* configUSE_TICK_HOOK */
4890 #if ( configUSE_PREEMPTION == 1 )
4892 #if ( configNUMBER_OF_CORES == 1 )
4894 /* For single core the core ID is always 0. */
4895 if( xYieldPendings[ 0 ] != pdFALSE )
4897 xSwitchRequired = pdTRUE;
4901 mtCOVERAGE_TEST_MARKER();
4904 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4906 BaseType_t xCoreID, xCurrentCoreID;
4907 xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID();
4909 for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
4911 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
4912 if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
4915 if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) )
4917 if( xCoreID == xCurrentCoreID )
4919 xSwitchRequired = pdTRUE;
4923 prvYieldCore( xCoreID );
4928 mtCOVERAGE_TEST_MARKER();
4933 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4935 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4941 /* The tick hook gets called at regular intervals, even if the
4942 * scheduler is locked. */
4943 #if ( configUSE_TICK_HOOK == 1 )
4945 vApplicationTickHook();
4950 traceRETURN_xTaskIncrementTick( xSwitchRequired );
4952 return xSwitchRequired;
4954 /*-----------------------------------------------------------*/
4956 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4958 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
4959 TaskHookFunction_t pxHookFunction )
4963 traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction );
4965 /* If xTask is NULL then it is the task hook of the calling task that is
4969 xTCB = ( TCB_t * ) pxCurrentTCB;
4976 /* Save the hook function in the TCB. A critical section is required as
4977 * the value can be accessed from an interrupt. */
4978 taskENTER_CRITICAL();
4980 xTCB->pxTaskTag = pxHookFunction;
4982 taskEXIT_CRITICAL();
4984 traceRETURN_vTaskSetApplicationTaskTag();
4987 #endif /* configUSE_APPLICATION_TASK_TAG */
4988 /*-----------------------------------------------------------*/
4990 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4992 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
4995 TaskHookFunction_t xReturn;
4997 traceENTER_xTaskGetApplicationTaskTag( xTask );
4999 /* If xTask is NULL then set the calling task's hook. */
5000 pxTCB = prvGetTCBFromHandle( xTask );
5002 /* Save the hook function in the TCB. A critical section is required as
5003 * the value can be accessed from an interrupt. */
5004 taskENTER_CRITICAL();
5006 xReturn = pxTCB->pxTaskTag;
5008 taskEXIT_CRITICAL();
5010 traceRETURN_xTaskGetApplicationTaskTag( xReturn );
5015 #endif /* configUSE_APPLICATION_TASK_TAG */
5016 /*-----------------------------------------------------------*/
5018 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5020 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
5023 TaskHookFunction_t xReturn;
5024 UBaseType_t uxSavedInterruptStatus;
5026 traceENTER_xTaskGetApplicationTaskTagFromISR( xTask );
5028 /* If xTask is NULL then set the calling task's hook. */
5029 pxTCB = prvGetTCBFromHandle( xTask );
5031 /* Save the hook function in the TCB. A critical section is required as
5032 * the value can be accessed from an interrupt. */
5033 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
5035 xReturn = pxTCB->pxTaskTag;
5037 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
5039 traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn );
5044 #endif /* configUSE_APPLICATION_TASK_TAG */
5045 /*-----------------------------------------------------------*/
5047 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5049 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
5050 void * pvParameter )
5055 traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter );
5057 /* If xTask is NULL then we are calling our own task hook. */
5060 xTCB = pxCurrentTCB;
5067 if( xTCB->pxTaskTag != NULL )
5069 xReturn = xTCB->pxTaskTag( pvParameter );
5076 traceRETURN_xTaskCallApplicationTaskHook( xReturn );
5081 #endif /* configUSE_APPLICATION_TASK_TAG */
5082 /*-----------------------------------------------------------*/
5084 #if ( configNUMBER_OF_CORES == 1 )
5085 void vTaskSwitchContext( void )
5087 traceENTER_vTaskSwitchContext();
5089 if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5091 /* The scheduler is currently suspended - do not allow a context
5093 xYieldPendings[ 0 ] = pdTRUE;
5097 xYieldPendings[ 0 ] = pdFALSE;
5098 traceTASK_SWITCHED_OUT();
5100 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5102 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5103 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] );
5105 ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE();
5108 /* Add the amount of time the task has been running to the
5109 * accumulated time so far. The time the task started running was
5110 * stored in ulTaskSwitchedInTime. Note that there is no overflow
5111 * protection here so count values are only valid until the timer
5112 * overflows. The guard against negative values is to protect
5113 * against suspect run time stat counter implementations - which
5114 * are provided by the application, not the kernel. */
5115 if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] )
5117 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] );
5121 mtCOVERAGE_TEST_MARKER();
5124 ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ];
5126 #endif /* configGENERATE_RUN_TIME_STATS */
5128 /* Check for stack overflow, if configured. */
5129 taskCHECK_FOR_STACK_OVERFLOW();
5131 /* Before the currently running task is switched out, save its errno. */
5132 #if ( configUSE_POSIX_ERRNO == 1 )
5134 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
5138 /* Select a new task to run using either the generic C or port
5139 * optimised asm code. */
5140 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5141 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5142 /* coverity[misra_c_2012_rule_11_5_violation] */
5143 taskSELECT_HIGHEST_PRIORITY_TASK();
5144 traceTASK_SWITCHED_IN();
5146 /* Macro to inject port specific behaviour immediately after
5147 * switching tasks, such as setting an end of stack watchpoint
5148 * or reconfiguring the MPU. */
5149 portTASK_SWITCH_HOOK( pxCurrentTCB );
5151 /* After the new task is switched in, update the global errno. */
5152 #if ( configUSE_POSIX_ERRNO == 1 )
5154 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
5158 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5160 /* Switch C-Runtime's TLS Block to point to the TLS
5161 * Block specific to this task. */
5162 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
5167 traceRETURN_vTaskSwitchContext();
5169 #else /* if ( configNUMBER_OF_CORES == 1 ) */
5170 void vTaskSwitchContext( BaseType_t xCoreID )
5172 traceENTER_vTaskSwitchContext();
5174 /* Acquire both locks:
5175 * - The ISR lock protects the ready list from simultaneous access by
5176 * both other ISRs and tasks.
5177 * - We also take the task lock to pause here in case another core has
5178 * suspended the scheduler. We don't want to simply set xYieldPending
5179 * and move on if another core suspended the scheduler. We should only
5180 * do that if the current core has suspended the scheduler. */
5182 portGET_TASK_LOCK(); /* Must always acquire the task lock first. */
5185 /* vTaskSwitchContext() must never be called from within a critical section.
5186 * This is not necessarily true for single core FreeRTOS, but it is for this
5188 configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
5190 if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5192 /* The scheduler is currently suspended - do not allow a context
5194 xYieldPendings[ xCoreID ] = pdTRUE;
5198 xYieldPendings[ xCoreID ] = pdFALSE;
5199 traceTASK_SWITCHED_OUT();
5201 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5203 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5204 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] );
5206 ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE();
5209 /* Add the amount of time the task has been running to the
5210 * accumulated time so far. The time the task started running was
5211 * stored in ulTaskSwitchedInTime. Note that there is no overflow
5212 * protection here so count values are only valid until the timer
5213 * overflows. The guard against negative values is to protect
5214 * against suspect run time stat counter implementations - which
5215 * are provided by the application, not the kernel. */
5216 if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] )
5218 pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] );
5222 mtCOVERAGE_TEST_MARKER();
5225 ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ];
5227 #endif /* configGENERATE_RUN_TIME_STATS */
5229 /* Check for stack overflow, if configured. */
5230 taskCHECK_FOR_STACK_OVERFLOW();
5232 /* Before the currently running task is switched out, save its errno. */
5233 #if ( configUSE_POSIX_ERRNO == 1 )
5235 pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno;
5239 /* Select a new task to run. */
5240 taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID );
5241 traceTASK_SWITCHED_IN();
5243 /* Macro to inject port specific behaviour immediately after
5244 * switching tasks, such as setting an end of stack watchpoint
5245 * or reconfiguring the MPU. */
5246 portTASK_SWITCH_HOOK( pxCurrentTCBs[ portGET_CORE_ID() ] );
5248 /* After the new task is switched in, update the global errno. */
5249 #if ( configUSE_POSIX_ERRNO == 1 )
5251 FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno;
5255 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5257 /* Switch C-Runtime's TLS Block to point to the TLS
5258 * Block specific to this task. */
5259 configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock );
5264 portRELEASE_ISR_LOCK();
5265 portRELEASE_TASK_LOCK();
5267 traceRETURN_vTaskSwitchContext();
5269 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
5270 /*-----------------------------------------------------------*/
5272 void vTaskPlaceOnEventList( List_t * const pxEventList,
5273 const TickType_t xTicksToWait )
5275 traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait );
5277 configASSERT( pxEventList );
5279 /* THIS FUNCTION MUST BE CALLED WITH THE
5280 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
5282 /* Place the event list item of the TCB in the appropriate event list.
5283 * This is placed in the list in priority order so the highest priority task
5284 * is the first to be woken by the event.
5286 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
5287 * Normally, the xItemValue of a TCB's ListItem_t members is:
5288 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
5289 * Therefore, the event list is sorted in descending priority order.
5291 * The queue that contains the event list is locked, preventing
5292 * simultaneous access from interrupts. */
5293 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5295 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5297 traceRETURN_vTaskPlaceOnEventList();
5299 /*-----------------------------------------------------------*/
5301 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
5302 const TickType_t xItemValue,
5303 const TickType_t xTicksToWait )
5305 traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait );
5307 configASSERT( pxEventList );
5309 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
5310 * the event groups implementation. */
5311 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5313 /* Store the item value in the event list item. It is safe to access the
5314 * event list item here as interrupts won't access the event list item of a
5315 * task that is not in the Blocked state. */
5316 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5318 /* Place the event list item of the TCB at the end of the appropriate event
5319 * list. It is safe to access the event list here because it is part of an
5320 * event group implementation - and interrupts don't access event groups
5321 * directly (instead they access them indirectly by pending function calls to
5322 * the task level). */
5323 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5325 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5327 traceRETURN_vTaskPlaceOnUnorderedEventList();
5329 /*-----------------------------------------------------------*/
5331 #if ( configUSE_TIMERS == 1 )
5333 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
5334 TickType_t xTicksToWait,
5335 const BaseType_t xWaitIndefinitely )
5337 traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely );
5339 configASSERT( pxEventList );
5341 /* This function should not be called by application code hence the
5342 * 'Restricted' in its name. It is not part of the public API. It is
5343 * designed for use by kernel code, and has special calling requirements -
5344 * it should be called with the scheduler suspended. */
5347 /* Place the event list item of the TCB in the appropriate event list.
5348 * In this case it is assume that this is the only task that is going to
5349 * be waiting on this event list, so the faster vListInsertEnd() function
5350 * can be used in place of vListInsert. */
5351 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5353 /* If the task should block indefinitely then set the block time to a
5354 * value that will be recognised as an indefinite delay inside the
5355 * prvAddCurrentTaskToDelayedList() function. */
5356 if( xWaitIndefinitely != pdFALSE )
5358 xTicksToWait = portMAX_DELAY;
5361 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
5362 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
5364 traceRETURN_vTaskPlaceOnEventListRestricted();
5367 #endif /* configUSE_TIMERS */
5368 /*-----------------------------------------------------------*/
5370 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
5372 TCB_t * pxUnblockedTCB;
5375 traceENTER_xTaskRemoveFromEventList( pxEventList );
5377 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
5378 * called from a critical section within an ISR. */
5380 /* The event list is sorted in priority order, so the first in the list can
5381 * be removed as it is known to be the highest priority. Remove the TCB from
5382 * the delayed list, and add it to the ready list.
5384 * If an event is for a queue that is locked then this function will never
5385 * get called - the lock count on the queue will get modified instead. This
5386 * means exclusive access to the event list is guaranteed here.
5388 * This function assumes that a check has already been made to ensure that
5389 * pxEventList is not empty. */
5390 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5391 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5392 /* coverity[misra_c_2012_rule_11_5_violation] */
5393 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
5394 configASSERT( pxUnblockedTCB );
5395 listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
5397 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
5399 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5400 prvAddTaskToReadyList( pxUnblockedTCB );
5402 #if ( configUSE_TICKLESS_IDLE != 0 )
5404 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5405 * might be set to the blocked task's time out time. If the task is
5406 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5407 * normally left unchanged, because it is automatically reset to a new
5408 * value when the tick count equals xNextTaskUnblockTime. However if
5409 * tickless idling is used it might be more important to enter sleep mode
5410 * at the earliest possible time - so reset xNextTaskUnblockTime here to
5411 * ensure it is updated at the earliest possible time. */
5412 prvResetNextTaskUnblockTime();
5418 /* The delayed and ready lists cannot be accessed, so hold this task
5419 * pending until the scheduler is resumed. */
5420 listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
5423 #if ( configNUMBER_OF_CORES == 1 )
5425 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5427 /* Return true if the task removed from the event list has a higher
5428 * priority than the calling task. This allows the calling task to know if
5429 * it should force a context switch now. */
5432 /* Mark that a yield is pending in case the user is not using the
5433 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
5434 xYieldPendings[ 0 ] = pdTRUE;
5441 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5445 #if ( configUSE_PREEMPTION == 1 )
5447 prvYieldForTask( pxUnblockedTCB );
5449 if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5454 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
5456 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5458 traceRETURN_xTaskRemoveFromEventList( xReturn );
5461 /*-----------------------------------------------------------*/
5463 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
5464 const TickType_t xItemValue )
5466 TCB_t * pxUnblockedTCB;
5468 traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue );
5470 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
5471 * the event flags implementation. */
5472 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5474 /* Store the new item value in the event list. */
5475 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5477 /* Remove the event list form the event flag. Interrupts do not access
5479 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5480 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5481 /* coverity[misra_c_2012_rule_11_5_violation] */
5482 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem );
5483 configASSERT( pxUnblockedTCB );
5484 listREMOVE_ITEM( pxEventListItem );
5486 #if ( configUSE_TICKLESS_IDLE != 0 )
5488 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5489 * might be set to the blocked task's time out time. If the task is
5490 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5491 * normally left unchanged, because it is automatically reset to a new
5492 * value when the tick count equals xNextTaskUnblockTime. However if
5493 * tickless idling is used it might be more important to enter sleep mode
5494 * at the earliest possible time - so reset xNextTaskUnblockTime here to
5495 * ensure it is updated at the earliest possible time. */
5496 prvResetNextTaskUnblockTime();
5500 /* Remove the task from the delayed list and add it to the ready list. The
5501 * scheduler is suspended so interrupts will not be accessing the ready
5503 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5504 prvAddTaskToReadyList( pxUnblockedTCB );
5506 #if ( configNUMBER_OF_CORES == 1 )
5508 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5510 /* The unblocked task has a priority above that of the calling task, so
5511 * a context switch is required. This function is called with the
5512 * scheduler suspended so xYieldPending is set so the context switch
5513 * occurs immediately that the scheduler is resumed (unsuspended). */
5514 xYieldPendings[ 0 ] = pdTRUE;
5517 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5519 #if ( configUSE_PREEMPTION == 1 )
5521 taskENTER_CRITICAL();
5523 prvYieldForTask( pxUnblockedTCB );
5525 taskEXIT_CRITICAL();
5529 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5531 traceRETURN_vTaskRemoveFromUnorderedEventList();
5533 /*-----------------------------------------------------------*/
5535 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
5537 traceENTER_vTaskSetTimeOutState( pxTimeOut );
5539 configASSERT( pxTimeOut );
5540 taskENTER_CRITICAL();
5542 pxTimeOut->xOverflowCount = xNumOfOverflows;
5543 pxTimeOut->xTimeOnEntering = xTickCount;
5545 taskEXIT_CRITICAL();
5547 traceRETURN_vTaskSetTimeOutState();
5549 /*-----------------------------------------------------------*/
5551 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
5553 traceENTER_vTaskInternalSetTimeOutState( pxTimeOut );
5555 /* For internal use only as it does not use a critical section. */
5556 pxTimeOut->xOverflowCount = xNumOfOverflows;
5557 pxTimeOut->xTimeOnEntering = xTickCount;
5559 traceRETURN_vTaskInternalSetTimeOutState();
5561 /*-----------------------------------------------------------*/
5563 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
5564 TickType_t * const pxTicksToWait )
5568 traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait );
5570 configASSERT( pxTimeOut );
5571 configASSERT( pxTicksToWait );
5573 taskENTER_CRITICAL();
5575 /* Minor optimisation. The tick count cannot change in this block. */
5576 const TickType_t xConstTickCount = xTickCount;
5577 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
5579 #if ( INCLUDE_xTaskAbortDelay == 1 )
5580 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
5582 /* The delay was aborted, which is not the same as a time out,
5583 * but has the same result. */
5584 pxCurrentTCB->ucDelayAborted = pdFALSE;
5590 #if ( INCLUDE_vTaskSuspend == 1 )
5591 if( *pxTicksToWait == portMAX_DELAY )
5593 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
5594 * specified is the maximum block time then the task should block
5595 * indefinitely, and therefore never time out. */
5601 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) )
5603 /* The tick count is greater than the time at which
5604 * vTaskSetTimeout() was called, but has also overflowed since
5605 * vTaskSetTimeOut() was called. It must have wrapped all the way
5606 * around and gone past again. This passed since vTaskSetTimeout()
5609 *pxTicksToWait = ( TickType_t ) 0;
5611 else if( xElapsedTime < *pxTicksToWait )
5613 /* Not a genuine timeout. Adjust parameters for time remaining. */
5614 *pxTicksToWait -= xElapsedTime;
5615 vTaskInternalSetTimeOutState( pxTimeOut );
5620 *pxTicksToWait = ( TickType_t ) 0;
5624 taskEXIT_CRITICAL();
5626 traceRETURN_xTaskCheckForTimeOut( xReturn );
5630 /*-----------------------------------------------------------*/
5632 void vTaskMissedYield( void )
5634 traceENTER_vTaskMissedYield();
5636 /* Must be called from within a critical section. */
5637 xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
5639 traceRETURN_vTaskMissedYield();
5641 /*-----------------------------------------------------------*/
5643 #if ( configUSE_TRACE_FACILITY == 1 )
5645 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
5647 UBaseType_t uxReturn;
5648 TCB_t const * pxTCB;
5650 traceENTER_uxTaskGetTaskNumber( xTask );
5655 uxReturn = pxTCB->uxTaskNumber;
5662 traceRETURN_uxTaskGetTaskNumber( uxReturn );
5667 #endif /* configUSE_TRACE_FACILITY */
5668 /*-----------------------------------------------------------*/
5670 #if ( configUSE_TRACE_FACILITY == 1 )
5672 void vTaskSetTaskNumber( TaskHandle_t xTask,
5673 const UBaseType_t uxHandle )
5677 traceENTER_vTaskSetTaskNumber( xTask, uxHandle );
5682 pxTCB->uxTaskNumber = uxHandle;
5685 traceRETURN_vTaskSetTaskNumber();
5688 #endif /* configUSE_TRACE_FACILITY */
5689 /*-----------------------------------------------------------*/
5692 * -----------------------------------------------------------
5693 * The passive idle task.
5694 * ----------------------------------------------------------
5696 * The passive idle task is used for all the additional cores in a SMP
5697 * system. There must be only 1 active idle task and the rest are passive
5700 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5701 * language extensions. The equivalent prototype for this function is:
5703 * void prvPassiveIdleTask( void *pvParameters );
5706 #if ( configNUMBER_OF_CORES > 1 )
5707 static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters )
5709 ( void ) pvParameters;
5713 for( ; configCONTROL_INFINITE_LOOP(); )
5715 #if ( configUSE_PREEMPTION == 0 )
5717 /* If we are not using preemption we keep forcing a task switch to
5718 * see if any other task has become available. If we are using
5719 * preemption we don't need to do this as any task becoming available
5720 * will automatically get the processor anyway. */
5723 #endif /* configUSE_PREEMPTION */
5725 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5727 /* When using preemption tasks of equal priority will be
5728 * timesliced. If a task that is sharing the idle priority is ready
5729 * to run then the idle task should yield before the end of the
5732 * A critical region is not required here as we are just reading from
5733 * the list, and an occasional incorrect value will not matter. If
5734 * the ready list at the idle priority contains one more task than the
5735 * number of idle tasks, which is equal to the configured numbers of cores
5736 * then a task other than the idle task is ready to execute. */
5737 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5743 mtCOVERAGE_TEST_MARKER();
5746 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5748 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
5750 /* Call the user defined function from within the idle task. This
5751 * allows the application designer to add background functionality
5752 * without the overhead of a separate task.
5754 * This hook is intended to manage core activity such as disabling cores that go idle.
5756 * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5757 * CALL A FUNCTION THAT MIGHT BLOCK. */
5758 vApplicationPassiveIdleHook();
5760 #endif /* configUSE_PASSIVE_IDLE_HOOK */
5763 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5766 * -----------------------------------------------------------
5768 * ----------------------------------------------------------
5770 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5771 * language extensions. The equivalent prototype for this function is:
5773 * void prvIdleTask( void *pvParameters );
5777 static portTASK_FUNCTION( prvIdleTask, pvParameters )
5779 /* Stop warnings. */
5780 ( void ) pvParameters;
5782 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
5783 * SCHEDULER IS STARTED. **/
5785 /* In case a task that has a secure context deletes itself, in which case
5786 * the idle task is responsible for deleting the task's secure context, if
5788 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
5790 #if ( configNUMBER_OF_CORES > 1 )
5792 /* SMP all cores start up in the idle task. This initial yield gets the application
5796 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5798 for( ; configCONTROL_INFINITE_LOOP(); )
5800 /* See if any tasks have deleted themselves - if so then the idle task
5801 * is responsible for freeing the deleted task's TCB and stack. */
5802 prvCheckTasksWaitingTermination();
5804 #if ( configUSE_PREEMPTION == 0 )
5806 /* If we are not using preemption we keep forcing a task switch to
5807 * see if any other task has become available. If we are using
5808 * preemption we don't need to do this as any task becoming available
5809 * will automatically get the processor anyway. */
5812 #endif /* configUSE_PREEMPTION */
5814 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5816 /* When using preemption tasks of equal priority will be
5817 * timesliced. If a task that is sharing the idle priority is ready
5818 * to run then the idle task should yield before the end of the
5821 * A critical region is not required here as we are just reading from
5822 * the list, and an occasional incorrect value will not matter. If
5823 * the ready list at the idle priority contains one more task than the
5824 * number of idle tasks, which is equal to the configured numbers of cores
5825 * then a task other than the idle task is ready to execute. */
5826 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5832 mtCOVERAGE_TEST_MARKER();
5835 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5837 #if ( configUSE_IDLE_HOOK == 1 )
5839 /* Call the user defined function from within the idle task. */
5840 vApplicationIdleHook();
5842 #endif /* configUSE_IDLE_HOOK */
5844 /* This conditional compilation should use inequality to 0, not equality
5845 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
5846 * user defined low power mode implementations require
5847 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
5848 #if ( configUSE_TICKLESS_IDLE != 0 )
5850 TickType_t xExpectedIdleTime;
5852 /* It is not desirable to suspend then resume the scheduler on
5853 * each iteration of the idle task. Therefore, a preliminary
5854 * test of the expected idle time is performed without the
5855 * scheduler suspended. The result here is not necessarily
5857 xExpectedIdleTime = prvGetExpectedIdleTime();
5859 if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5863 /* Now the scheduler is suspended, the expected idle
5864 * time can be sampled again, and this time its value can
5866 configASSERT( xNextTaskUnblockTime >= xTickCount );
5867 xExpectedIdleTime = prvGetExpectedIdleTime();
5869 /* Define the following macro to set xExpectedIdleTime to 0
5870 * if the application does not want
5871 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
5872 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
5874 if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5876 traceLOW_POWER_IDLE_BEGIN();
5877 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
5878 traceLOW_POWER_IDLE_END();
5882 mtCOVERAGE_TEST_MARKER();
5885 ( void ) xTaskResumeAll();
5889 mtCOVERAGE_TEST_MARKER();
5892 #endif /* configUSE_TICKLESS_IDLE */
5894 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) )
5896 /* Call the user defined function from within the idle task. This
5897 * allows the application designer to add background functionality
5898 * without the overhead of a separate task.
5900 * This hook is intended to manage core activity such as disabling cores that go idle.
5902 * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5903 * CALL A FUNCTION THAT MIGHT BLOCK. */
5904 vApplicationPassiveIdleHook();
5906 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */
5909 /*-----------------------------------------------------------*/
5911 #if ( configUSE_TICKLESS_IDLE != 0 )
5913 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
5915 #if ( INCLUDE_vTaskSuspend == 1 )
5916 /* The idle task exists in addition to the application tasks. */
5917 const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES;
5918 #endif /* INCLUDE_vTaskSuspend */
5920 eSleepModeStatus eReturn = eStandardSleep;
5922 traceENTER_eTaskConfirmSleepModeStatus();
5924 /* This function must be called from a critical section. */
5926 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0U )
5928 /* A task was made ready while the scheduler was suspended. */
5929 eReturn = eAbortSleep;
5931 else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5933 /* A yield was pended while the scheduler was suspended. */
5934 eReturn = eAbortSleep;
5936 else if( xPendedTicks != 0U )
5938 /* A tick interrupt has already occurred but was held pending
5939 * because the scheduler is suspended. */
5940 eReturn = eAbortSleep;
5943 #if ( INCLUDE_vTaskSuspend == 1 )
5944 else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
5946 /* If all the tasks are in the suspended list (which might mean they
5947 * have an infinite block time rather than actually being suspended)
5948 * then it is safe to turn all clocks off and just wait for external
5950 eReturn = eNoTasksWaitingTimeout;
5952 #endif /* INCLUDE_vTaskSuspend */
5955 mtCOVERAGE_TEST_MARKER();
5958 traceRETURN_eTaskConfirmSleepModeStatus( eReturn );
5963 #endif /* configUSE_TICKLESS_IDLE */
5964 /*-----------------------------------------------------------*/
5966 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5968 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
5974 traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue );
5976 if( ( xIndex >= 0 ) &&
5977 ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
5979 pxTCB = prvGetTCBFromHandle( xTaskToSet );
5980 configASSERT( pxTCB != NULL );
5981 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
5984 traceRETURN_vTaskSetThreadLocalStoragePointer();
5987 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
5988 /*-----------------------------------------------------------*/
5990 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5992 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
5995 void * pvReturn = NULL;
5998 traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex );
6000 if( ( xIndex >= 0 ) &&
6001 ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
6003 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
6004 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
6011 traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn );
6016 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
6017 /*-----------------------------------------------------------*/
6019 #if ( portUSING_MPU_WRAPPERS == 1 )
6021 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
6022 const MemoryRegion_t * const pxRegions )
6026 traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions );
6028 /* If null is passed in here then we are modifying the MPU settings of
6029 * the calling task. */
6030 pxTCB = prvGetTCBFromHandle( xTaskToModify );
6032 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 );
6034 traceRETURN_vTaskAllocateMPURegions();
6037 #endif /* portUSING_MPU_WRAPPERS */
6038 /*-----------------------------------------------------------*/
6040 static void prvInitialiseTaskLists( void )
6042 UBaseType_t uxPriority;
6044 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
6046 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
6049 vListInitialise( &xDelayedTaskList1 );
6050 vListInitialise( &xDelayedTaskList2 );
6051 vListInitialise( &xPendingReadyList );
6053 #if ( INCLUDE_vTaskDelete == 1 )
6055 vListInitialise( &xTasksWaitingTermination );
6057 #endif /* INCLUDE_vTaskDelete */
6059 #if ( INCLUDE_vTaskSuspend == 1 )
6061 vListInitialise( &xSuspendedTaskList );
6063 #endif /* INCLUDE_vTaskSuspend */
6065 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
6067 pxDelayedTaskList = &xDelayedTaskList1;
6068 pxOverflowDelayedTaskList = &xDelayedTaskList2;
6070 /*-----------------------------------------------------------*/
6072 static void prvCheckTasksWaitingTermination( void )
6074 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
6076 #if ( INCLUDE_vTaskDelete == 1 )
6080 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
6081 * being called too often in the idle task. */
6082 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6084 #if ( configNUMBER_OF_CORES == 1 )
6086 taskENTER_CRITICAL();
6089 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6090 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6091 /* coverity[misra_c_2012_rule_11_5_violation] */
6092 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6093 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6094 --uxCurrentNumberOfTasks;
6095 --uxDeletedTasksWaitingCleanUp;
6098 taskEXIT_CRITICAL();
6100 prvDeleteTCB( pxTCB );
6102 #else /* #if( configNUMBER_OF_CORES == 1 ) */
6106 taskENTER_CRITICAL();
6108 /* For SMP, multiple idles can be running simultaneously
6109 * and we need to check that other idles did not cleanup while we were
6110 * waiting to enter the critical section. */
6111 if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6113 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6114 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6115 /* coverity[misra_c_2012_rule_11_5_violation] */
6116 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6118 if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
6120 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6121 --uxCurrentNumberOfTasks;
6122 --uxDeletedTasksWaitingCleanUp;
6126 /* The TCB to be deleted still has not yet been switched out
6127 * by the scheduler, so we will just exit this loop early and
6128 * try again next time. */
6129 taskEXIT_CRITICAL();
6134 taskEXIT_CRITICAL();
6138 prvDeleteTCB( pxTCB );
6141 #endif /* #if( configNUMBER_OF_CORES == 1 ) */
6144 #endif /* INCLUDE_vTaskDelete */
6146 /*-----------------------------------------------------------*/
6148 #if ( configUSE_TRACE_FACILITY == 1 )
6150 void vTaskGetInfo( TaskHandle_t xTask,
6151 TaskStatus_t * pxTaskStatus,
6152 BaseType_t xGetFreeStackSpace,
6157 traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState );
6159 /* xTask is NULL then get the state of the calling task. */
6160 pxTCB = prvGetTCBFromHandle( xTask );
6162 pxTaskStatus->xHandle = pxTCB;
6163 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
6164 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
6165 pxTaskStatus->pxStackBase = pxTCB->pxStack;
6166 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
6167 pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack;
6168 pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
6170 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
6172 #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
6174 pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
6178 #if ( configUSE_MUTEXES == 1 )
6180 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
6184 pxTaskStatus->uxBasePriority = 0;
6188 #if ( configGENERATE_RUN_TIME_STATS == 1 )
6190 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
6194 pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
6198 /* Obtaining the task state is a little fiddly, so is only done if the
6199 * value of eState passed into this function is eInvalid - otherwise the
6200 * state is just set to whatever is passed in. */
6201 if( eState != eInvalid )
6203 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6205 pxTaskStatus->eCurrentState = eRunning;
6209 pxTaskStatus->eCurrentState = eState;
6211 #if ( INCLUDE_vTaskSuspend == 1 )
6213 /* If the task is in the suspended list then there is a
6214 * chance it is actually just blocked indefinitely - so really
6215 * it should be reported as being in the Blocked state. */
6216 if( eState == eSuspended )
6220 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
6222 pxTaskStatus->eCurrentState = eBlocked;
6228 /* The task does not appear on the event list item of
6229 * and of the RTOS objects, but could still be in the
6230 * blocked state if it is waiting on its notification
6231 * rather than waiting on an object. If not, is
6233 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
6235 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
6237 pxTaskStatus->eCurrentState = eBlocked;
6243 ( void ) xTaskResumeAll();
6246 #endif /* INCLUDE_vTaskSuspend */
6248 /* Tasks can be in pending ready list and other state list at the
6249 * same time. These tasks are in ready state no matter what state
6250 * list the task is in. */
6251 taskENTER_CRITICAL();
6253 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE )
6255 pxTaskStatus->eCurrentState = eReady;
6258 taskEXIT_CRITICAL();
6263 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
6266 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
6267 * parameter is provided to allow it to be skipped. */
6268 if( xGetFreeStackSpace != pdFALSE )
6270 #if ( portSTACK_GROWTH > 0 )
6272 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
6276 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
6282 pxTaskStatus->usStackHighWaterMark = 0;
6285 traceRETURN_vTaskGetInfo();
6288 #endif /* configUSE_TRACE_FACILITY */
6289 /*-----------------------------------------------------------*/
6291 #if ( configUSE_TRACE_FACILITY == 1 )
6293 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
6297 configLIST_VOLATILE TCB_t * pxNextTCB;
6298 configLIST_VOLATILE TCB_t * pxFirstTCB;
6299 UBaseType_t uxTask = 0;
6301 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
6303 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6304 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6305 /* coverity[misra_c_2012_rule_11_5_violation] */
6306 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
6308 /* Populate an TaskStatus_t structure within the
6309 * pxTaskStatusArray array for each task that is referenced from
6310 * pxList. See the definition of TaskStatus_t in task.h for the
6311 * meaning of each TaskStatus_t structure member. */
6314 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6315 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6316 /* coverity[misra_c_2012_rule_11_5_violation] */
6317 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
6318 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
6320 } while( pxNextTCB != pxFirstTCB );
6324 mtCOVERAGE_TEST_MARKER();
6330 #endif /* configUSE_TRACE_FACILITY */
6331 /*-----------------------------------------------------------*/
6333 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
6335 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
6337 uint32_t ulCount = 0U;
6339 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
6341 pucStackByte -= portSTACK_GROWTH;
6345 ulCount /= ( uint32_t ) sizeof( StackType_t );
6347 return ( configSTACK_DEPTH_TYPE ) ulCount;
6350 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
6351 /*-----------------------------------------------------------*/
6353 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
6355 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
6356 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
6357 * user to determine the return type. It gets around the problem of the value
6358 * overflowing on 8-bit types without breaking backward compatibility for
6359 * applications that expect an 8-bit return type. */
6360 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
6363 uint8_t * pucEndOfStack;
6364 configSTACK_DEPTH_TYPE uxReturn;
6366 traceENTER_uxTaskGetStackHighWaterMark2( xTask );
6368 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
6369 * the same except for their return type. Using configSTACK_DEPTH_TYPE
6370 * allows the user to determine the return type. It gets around the
6371 * problem of the value overflowing on 8-bit types without breaking
6372 * backward compatibility for applications that expect an 8-bit return
6375 pxTCB = prvGetTCBFromHandle( xTask );
6377 #if portSTACK_GROWTH < 0
6379 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6383 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6387 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
6389 traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn );
6394 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
6395 /*-----------------------------------------------------------*/
6397 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
6399 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
6402 uint8_t * pucEndOfStack;
6403 UBaseType_t uxReturn;
6405 traceENTER_uxTaskGetStackHighWaterMark( xTask );
6407 pxTCB = prvGetTCBFromHandle( xTask );
6409 #if portSTACK_GROWTH < 0
6411 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6415 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6419 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
6421 traceRETURN_uxTaskGetStackHighWaterMark( uxReturn );
6426 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
6427 /*-----------------------------------------------------------*/
6429 #if ( INCLUDE_vTaskDelete == 1 )
6431 static void prvDeleteTCB( TCB_t * pxTCB )
6433 /* This call is required specifically for the TriCore port. It must be
6434 * above the vPortFree() calls. The call is also used by ports/demos that
6435 * want to allocate and clean RAM statically. */
6436 portCLEAN_UP_TCB( pxTCB );
6438 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
6440 /* Free up the memory allocated for the task's TLS Block. */
6441 configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock );
6445 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
6447 /* The task can only have been allocated dynamically - free both
6448 * the stack and TCB. */
6449 vPortFreeStack( pxTCB->pxStack );
6452 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
6454 /* The task could have been allocated statically or dynamically, so
6455 * check what was statically allocated before trying to free the
6457 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
6459 /* Both the stack and TCB were allocated dynamically, so both
6461 vPortFreeStack( pxTCB->pxStack );
6464 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
6466 /* Only the stack was statically allocated, so the TCB is the
6467 * only memory that must be freed. */
6472 /* Neither the stack nor the TCB were allocated dynamically, so
6473 * nothing needs to be freed. */
6474 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
6475 mtCOVERAGE_TEST_MARKER();
6478 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
6481 #endif /* INCLUDE_vTaskDelete */
6482 /*-----------------------------------------------------------*/
6484 static void prvResetNextTaskUnblockTime( void )
6486 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
6488 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
6489 * the maximum possible value so it is extremely unlikely that the
6490 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
6491 * there is an item in the delayed list. */
6492 xNextTaskUnblockTime = portMAX_DELAY;
6496 /* The new current delayed list is not empty, get the value of
6497 * the item at the head of the delayed list. This is the time at
6498 * which the task at the head of the delayed list should be removed
6499 * from the Blocked state. */
6500 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
6503 /*-----------------------------------------------------------*/
6505 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 )
6507 #if ( configNUMBER_OF_CORES == 1 )
6508 TaskHandle_t xTaskGetCurrentTaskHandle( void )
6510 TaskHandle_t xReturn;
6512 traceENTER_xTaskGetCurrentTaskHandle();
6514 /* A critical section is not required as this is not called from
6515 * an interrupt and the current TCB will always be the same for any
6516 * individual execution thread. */
6517 xReturn = pxCurrentTCB;
6519 traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6523 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
6524 TaskHandle_t xTaskGetCurrentTaskHandle( void )
6526 TaskHandle_t xReturn;
6527 UBaseType_t uxSavedInterruptStatus;
6529 traceENTER_xTaskGetCurrentTaskHandle();
6531 uxSavedInterruptStatus = portSET_INTERRUPT_MASK();
6533 xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
6535 portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus );
6537 traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6542 TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID )
6544 TaskHandle_t xReturn = NULL;
6546 traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID );
6548 if( taskVALID_CORE_ID( xCoreID ) != pdFALSE )
6550 xReturn = pxCurrentTCBs[ xCoreID ];
6553 traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn );
6557 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6559 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
6560 /*-----------------------------------------------------------*/
6562 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
6564 BaseType_t xTaskGetSchedulerState( void )
6568 traceENTER_xTaskGetSchedulerState();
6570 if( xSchedulerRunning == pdFALSE )
6572 xReturn = taskSCHEDULER_NOT_STARTED;
6576 #if ( configNUMBER_OF_CORES > 1 )
6577 taskENTER_CRITICAL();
6580 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
6582 xReturn = taskSCHEDULER_RUNNING;
6586 xReturn = taskSCHEDULER_SUSPENDED;
6589 #if ( configNUMBER_OF_CORES > 1 )
6590 taskEXIT_CRITICAL();
6594 traceRETURN_xTaskGetSchedulerState( xReturn );
6599 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
6600 /*-----------------------------------------------------------*/
6602 #if ( configUSE_MUTEXES == 1 )
6604 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
6606 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
6607 BaseType_t xReturn = pdFALSE;
6609 traceENTER_xTaskPriorityInherit( pxMutexHolder );
6611 /* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority
6612 * inheritance is not applied in this scenario. */
6613 if( pxMutexHolder != NULL )
6615 /* If the holder of the mutex has a priority below the priority of
6616 * the task attempting to obtain the mutex then it will temporarily
6617 * inherit the priority of the task attempting to obtain the mutex. */
6618 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
6620 /* Adjust the mutex holder state to account for its new
6621 * priority. Only reset the event list item value if the value is
6622 * not being used for anything else. */
6623 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
6625 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority );
6629 mtCOVERAGE_TEST_MARKER();
6632 /* If the task being modified is in the ready state it will need
6633 * to be moved into a new list. */
6634 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
6636 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6638 /* It is known that the task is in its ready list so
6639 * there is no need to check again and the port level
6640 * reset macro can be called directly. */
6641 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
6645 mtCOVERAGE_TEST_MARKER();
6648 /* Inherit the priority before being moved into the new list. */
6649 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6650 prvAddTaskToReadyList( pxMutexHolderTCB );
6651 #if ( configNUMBER_OF_CORES > 1 )
6653 /* The priority of the task is raised. Yield for this task
6654 * if it is not running. */
6655 if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE )
6657 prvYieldForTask( pxMutexHolderTCB );
6660 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6664 /* Just inherit the priority. */
6665 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6668 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
6670 /* Inheritance occurred. */
6675 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
6677 /* The base priority of the mutex holder is lower than the
6678 * priority of the task attempting to take the mutex, but the
6679 * current priority of the mutex holder is not lower than the
6680 * priority of the task attempting to take the mutex.
6681 * Therefore the mutex holder must have already inherited a
6682 * priority, but inheritance would have occurred if that had
6683 * not been the case. */
6688 mtCOVERAGE_TEST_MARKER();
6694 mtCOVERAGE_TEST_MARKER();
6697 traceRETURN_xTaskPriorityInherit( xReturn );
6702 #endif /* configUSE_MUTEXES */
6703 /*-----------------------------------------------------------*/
6705 #if ( configUSE_MUTEXES == 1 )
6707 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
6709 TCB_t * const pxTCB = pxMutexHolder;
6710 BaseType_t xReturn = pdFALSE;
6712 traceENTER_xTaskPriorityDisinherit( pxMutexHolder );
6714 if( pxMutexHolder != NULL )
6716 /* A task can only have an inherited priority if it holds the mutex.
6717 * If the mutex is held by a task then it cannot be given from an
6718 * interrupt, and if a mutex is given by the holding task then it must
6719 * be the running state task. */
6720 configASSERT( pxTCB == pxCurrentTCB );
6721 configASSERT( pxTCB->uxMutexesHeld );
6722 ( pxTCB->uxMutexesHeld )--;
6724 /* Has the holder of the mutex inherited the priority of another
6726 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
6728 /* Only disinherit if no other mutexes are held. */
6729 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
6731 /* A task can only have an inherited priority if it holds
6732 * the mutex. If the mutex is held by a task then it cannot be
6733 * given from an interrupt, and if a mutex is given by the
6734 * holding task then it must be the running state task. Remove
6735 * the holding task from the ready list. */
6736 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6738 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6742 mtCOVERAGE_TEST_MARKER();
6745 /* Disinherit the priority before adding the task into the
6746 * new ready list. */
6747 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
6748 pxTCB->uxPriority = pxTCB->uxBasePriority;
6750 /* Reset the event list item value. It cannot be in use for
6751 * any other purpose if this task is running, and it must be
6752 * running to give back the mutex. */
6753 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority );
6754 prvAddTaskToReadyList( pxTCB );
6755 #if ( configNUMBER_OF_CORES > 1 )
6757 /* The priority of the task is dropped. Yield the core on
6758 * which the task is running. */
6759 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6761 prvYieldCore( pxTCB->xTaskRunState );
6764 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6766 /* Return true to indicate that a context switch is required.
6767 * This is only actually required in the corner case whereby
6768 * multiple mutexes were held and the mutexes were given back
6769 * in an order different to that in which they were taken.
6770 * If a context switch did not occur when the first mutex was
6771 * returned, even if a task was waiting on it, then a context
6772 * switch should occur when the last mutex is returned whether
6773 * a task is waiting on it or not. */
6778 mtCOVERAGE_TEST_MARKER();
6783 mtCOVERAGE_TEST_MARKER();
6788 mtCOVERAGE_TEST_MARKER();
6791 traceRETURN_xTaskPriorityDisinherit( xReturn );
6796 #endif /* configUSE_MUTEXES */
6797 /*-----------------------------------------------------------*/
6799 #if ( configUSE_MUTEXES == 1 )
6801 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
6802 UBaseType_t uxHighestPriorityWaitingTask )
6804 TCB_t * const pxTCB = pxMutexHolder;
6805 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
6806 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
6808 traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask );
6810 if( pxMutexHolder != NULL )
6812 /* If pxMutexHolder is not NULL then the holder must hold at least
6814 configASSERT( pxTCB->uxMutexesHeld );
6816 /* Determine the priority to which the priority of the task that
6817 * holds the mutex should be set. This will be the greater of the
6818 * holding task's base priority and the priority of the highest
6819 * priority task that is waiting to obtain the mutex. */
6820 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
6822 uxPriorityToUse = uxHighestPriorityWaitingTask;
6826 uxPriorityToUse = pxTCB->uxBasePriority;
6829 /* Does the priority need to change? */
6830 if( pxTCB->uxPriority != uxPriorityToUse )
6832 /* Only disinherit if no other mutexes are held. This is a
6833 * simplification in the priority inheritance implementation. If
6834 * the task that holds the mutex is also holding other mutexes then
6835 * the other mutexes may have caused the priority inheritance. */
6836 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
6838 /* If a task has timed out because it already holds the
6839 * mutex it was trying to obtain then it cannot of inherited
6840 * its own priority. */
6841 configASSERT( pxTCB != pxCurrentTCB );
6843 /* Disinherit the priority, remembering the previous
6844 * priority to facilitate determining the subject task's
6846 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
6847 uxPriorityUsedOnEntry = pxTCB->uxPriority;
6848 pxTCB->uxPriority = uxPriorityToUse;
6850 /* Only reset the event list item value if the value is not
6851 * being used for anything else. */
6852 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
6854 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse );
6858 mtCOVERAGE_TEST_MARKER();
6861 /* If the running task is not the task that holds the mutex
6862 * then the task that holds the mutex could be in either the
6863 * Ready, Blocked or Suspended states. Only remove the task
6864 * from its current state list if it is in the Ready state as
6865 * the task's priority is going to change and there is one
6866 * Ready list per priority. */
6867 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
6869 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6871 /* It is known that the task is in its ready list so
6872 * there is no need to check again and the port level
6873 * reset macro can be called directly. */
6874 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6878 mtCOVERAGE_TEST_MARKER();
6881 prvAddTaskToReadyList( pxTCB );
6882 #if ( configNUMBER_OF_CORES > 1 )
6884 /* The priority of the task is dropped. Yield the core on
6885 * which the task is running. */
6886 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6888 prvYieldCore( pxTCB->xTaskRunState );
6891 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6895 mtCOVERAGE_TEST_MARKER();
6900 mtCOVERAGE_TEST_MARKER();
6905 mtCOVERAGE_TEST_MARKER();
6910 mtCOVERAGE_TEST_MARKER();
6913 traceRETURN_vTaskPriorityDisinheritAfterTimeout();
6916 #endif /* configUSE_MUTEXES */
6917 /*-----------------------------------------------------------*/
6919 #if ( configNUMBER_OF_CORES > 1 )
6921 /* If not in a critical section then yield immediately.
6922 * Otherwise set xYieldPendings to true to wait to
6923 * yield until exiting the critical section.
6925 void vTaskYieldWithinAPI( void )
6927 traceENTER_vTaskYieldWithinAPI();
6929 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6935 xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
6938 traceRETURN_vTaskYieldWithinAPI();
6940 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
6942 /*-----------------------------------------------------------*/
6944 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
6946 void vTaskEnterCritical( void )
6948 traceENTER_vTaskEnterCritical();
6950 portDISABLE_INTERRUPTS();
6952 if( xSchedulerRunning != pdFALSE )
6954 ( pxCurrentTCB->uxCriticalNesting )++;
6956 /* This is not the interrupt safe version of the enter critical
6957 * function so assert() if it is being called from an interrupt
6958 * context. Only API functions that end in "FromISR" can be used in an
6959 * interrupt. Only assert if the critical nesting count is 1 to
6960 * protect against recursive calls if the assert function also uses a
6961 * critical section. */
6962 if( pxCurrentTCB->uxCriticalNesting == 1U )
6964 portASSERT_IF_IN_ISR();
6969 mtCOVERAGE_TEST_MARKER();
6972 traceRETURN_vTaskEnterCritical();
6975 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
6976 /*-----------------------------------------------------------*/
6978 #if ( configNUMBER_OF_CORES > 1 )
6980 void vTaskEnterCritical( void )
6982 traceENTER_vTaskEnterCritical();
6984 portDISABLE_INTERRUPTS();
6986 if( xSchedulerRunning != pdFALSE )
6988 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6990 portGET_TASK_LOCK();
6994 portINCREMENT_CRITICAL_NESTING_COUNT();
6996 /* This is not the interrupt safe version of the enter critical
6997 * function so assert() if it is being called from an interrupt
6998 * context. Only API functions that end in "FromISR" can be used in an
6999 * interrupt. Only assert if the critical nesting count is 1 to
7000 * protect against recursive calls if the assert function also uses a
7001 * critical section. */
7002 if( portGET_CRITICAL_NESTING_COUNT() == 1U )
7004 portASSERT_IF_IN_ISR();
7006 if( uxSchedulerSuspended == 0U )
7008 /* The only time there would be a problem is if this is called
7009 * before a context switch and vTaskExitCritical() is called
7010 * after pxCurrentTCB changes. Therefore this should not be
7011 * used within vTaskSwitchContext(). */
7012 prvCheckForRunStateChange();
7018 mtCOVERAGE_TEST_MARKER();
7021 traceRETURN_vTaskEnterCritical();
7024 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7026 /*-----------------------------------------------------------*/
7028 #if ( configNUMBER_OF_CORES > 1 )
7030 UBaseType_t vTaskEnterCriticalFromISR( void )
7032 UBaseType_t uxSavedInterruptStatus = 0;
7034 traceENTER_vTaskEnterCriticalFromISR();
7036 if( xSchedulerRunning != pdFALSE )
7038 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
7040 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7045 portINCREMENT_CRITICAL_NESTING_COUNT();
7049 mtCOVERAGE_TEST_MARKER();
7052 traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus );
7054 return uxSavedInterruptStatus;
7057 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7058 /*-----------------------------------------------------------*/
7060 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
7062 void vTaskExitCritical( void )
7064 traceENTER_vTaskExitCritical();
7066 if( xSchedulerRunning != pdFALSE )
7068 /* If pxCurrentTCB->uxCriticalNesting is zero then this function
7069 * does not match a previous call to vTaskEnterCritical(). */
7070 configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );
7072 /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7073 * to exit critical section from ISR. */
7074 portASSERT_IF_IN_ISR();
7076 if( pxCurrentTCB->uxCriticalNesting > 0U )
7078 ( pxCurrentTCB->uxCriticalNesting )--;
7080 if( pxCurrentTCB->uxCriticalNesting == 0U )
7082 portENABLE_INTERRUPTS();
7086 mtCOVERAGE_TEST_MARKER();
7091 mtCOVERAGE_TEST_MARKER();
7096 mtCOVERAGE_TEST_MARKER();
7099 traceRETURN_vTaskExitCritical();
7102 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
7103 /*-----------------------------------------------------------*/
7105 #if ( configNUMBER_OF_CORES > 1 )
7107 void vTaskExitCritical( void )
7109 traceENTER_vTaskExitCritical();
7111 if( xSchedulerRunning != pdFALSE )
7113 /* If critical nesting count is zero then this function
7114 * does not match a previous call to vTaskEnterCritical(). */
7115 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7117 /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7118 * to exit critical section from ISR. */
7119 portASSERT_IF_IN_ISR();
7121 if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7123 portDECREMENT_CRITICAL_NESTING_COUNT();
7125 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7127 BaseType_t xYieldCurrentTask;
7129 /* Get the xYieldPending stats inside the critical section. */
7130 xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ];
7132 portRELEASE_ISR_LOCK();
7133 portRELEASE_TASK_LOCK();
7134 portENABLE_INTERRUPTS();
7136 /* When a task yields in a critical section it just sets
7137 * xYieldPending to true. So now that we have exited the
7138 * critical section check if xYieldPending is true, and
7140 if( xYieldCurrentTask != pdFALSE )
7147 mtCOVERAGE_TEST_MARKER();
7152 mtCOVERAGE_TEST_MARKER();
7157 mtCOVERAGE_TEST_MARKER();
7160 traceRETURN_vTaskExitCritical();
7163 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7164 /*-----------------------------------------------------------*/
7166 #if ( configNUMBER_OF_CORES > 1 )
7168 void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus )
7170 traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus );
7172 if( xSchedulerRunning != pdFALSE )
7174 /* If critical nesting count is zero then this function
7175 * does not match a previous call to vTaskEnterCritical(). */
7176 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7178 if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7180 portDECREMENT_CRITICAL_NESTING_COUNT();
7182 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7184 portRELEASE_ISR_LOCK();
7185 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
7189 mtCOVERAGE_TEST_MARKER();
7194 mtCOVERAGE_TEST_MARKER();
7199 mtCOVERAGE_TEST_MARKER();
7202 traceRETURN_vTaskExitCriticalFromISR();
7205 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7206 /*-----------------------------------------------------------*/
7208 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
7210 static char * prvWriteNameToBuffer( char * pcBuffer,
7211 const char * pcTaskName )
7215 /* Start by copying the entire string. */
7216 ( void ) strcpy( pcBuffer, pcTaskName );
7218 /* Pad the end of the string with spaces to ensure columns line up when
7220 for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ )
7222 pcBuffer[ x ] = ' ';
7226 pcBuffer[ x ] = ( char ) 0x00;
7228 /* Return the new end of string. */
7229 return &( pcBuffer[ x ] );
7232 #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
7233 /*-----------------------------------------------------------*/
7235 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
7237 void vTaskListTasks( char * pcWriteBuffer,
7238 size_t uxBufferLength )
7240 TaskStatus_t * pxTaskStatusArray;
7241 size_t uxConsumedBufferLength = 0;
7242 size_t uxCharsWrittenBySnprintf;
7243 int iSnprintfReturnValue;
7244 BaseType_t xOutputBufferFull = pdFALSE;
7245 UBaseType_t uxArraySize, x;
7248 traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength );
7253 * This function is provided for convenience only, and is used by many
7254 * of the demo applications. Do not consider it to be part of the
7257 * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the
7258 * uxTaskGetSystemState() output into a human readable table that
7259 * displays task: names, states, priority, stack usage and task number.
7260 * Stack usage specified as the number of unused StackType_t words stack can hold
7261 * on top of stack - not the number of bytes.
7263 * vTaskListTasks() has a dependency on the snprintf() C library function that
7264 * might bloat the code size, use a lot of stack, and provide different
7265 * results on different platforms. An alternative, tiny, third party,
7266 * and limited functionality implementation of snprintf() is provided in
7267 * many of the FreeRTOS/Demo sub-directories in a file called
7268 * printf-stdarg.c (note printf-stdarg.c does not provide a full
7269 * snprintf() implementation!).
7271 * It is recommended that production systems call uxTaskGetSystemState()
7272 * directly to get access to raw stats data, rather than indirectly
7273 * through a call to vTaskListTasks().
7277 /* Make sure the write buffer does not contain a string. */
7278 *pcWriteBuffer = ( char ) 0x00;
7280 /* Take a snapshot of the number of tasks in case it changes while this
7281 * function is executing. */
7282 uxArraySize = uxCurrentNumberOfTasks;
7284 /* Allocate an array index for each task. NOTE! if
7285 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7286 * equate to NULL. */
7287 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7288 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7289 /* coverity[misra_c_2012_rule_11_5_violation] */
7290 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7292 if( pxTaskStatusArray != NULL )
7294 /* Generate the (binary) data. */
7295 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
7297 /* Create a human readable table from the binary data. */
7298 for( x = 0; x < uxArraySize; x++ )
7300 switch( pxTaskStatusArray[ x ].eCurrentState )
7303 cStatus = tskRUNNING_CHAR;
7307 cStatus = tskREADY_CHAR;
7311 cStatus = tskBLOCKED_CHAR;
7315 cStatus = tskSUSPENDED_CHAR;
7319 cStatus = tskDELETED_CHAR;
7322 case eInvalid: /* Fall through. */
7323 default: /* Should not get here, but it is included
7324 * to prevent static checking errors. */
7325 cStatus = ( char ) 0x00;
7329 /* Is there enough space in the buffer to hold task name? */
7330 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7332 /* Write the task name to the string, padding with spaces so it
7333 * can be printed in tabular form more easily. */
7334 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7335 /* Do not count the terminating null character. */
7336 uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7338 /* Is there space left in the buffer? -1 is done because snprintf
7339 * writes a terminating null character. So we are essentially
7340 * checking if the buffer has space to write at least one non-null
7342 if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7344 /* Write the rest of the string. */
7345 #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
7346 /* MISRA Ref 21.6.1 [snprintf for utility] */
7347 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7348 /* coverity[misra_c_2012_rule_21_6_violation] */
7349 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7350 uxBufferLength - uxConsumedBufferLength,
7351 "\t%c\t%u\t%u\t%u\t0x%x\r\n",
7353 ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7354 ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7355 ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber,
7356 ( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask );
7357 #else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7358 /* MISRA Ref 21.6.1 [snprintf for utility] */
7359 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7360 /* coverity[misra_c_2012_rule_21_6_violation] */
7361 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7362 uxBufferLength - uxConsumedBufferLength,
7363 "\t%c\t%u\t%u\t%u\r\n",
7365 ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7366 ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7367 ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
7368 #endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7369 uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7371 uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7372 pcWriteBuffer += uxCharsWrittenBySnprintf;
7376 xOutputBufferFull = pdTRUE;
7381 xOutputBufferFull = pdTRUE;
7384 if( xOutputBufferFull == pdTRUE )
7390 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
7391 * is 0 then vPortFree() will be #defined to nothing. */
7392 vPortFree( pxTaskStatusArray );
7396 mtCOVERAGE_TEST_MARKER();
7399 traceRETURN_vTaskListTasks();
7402 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7403 /*----------------------------------------------------------*/
7405 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
7407 void vTaskGetRunTimeStatistics( char * pcWriteBuffer,
7408 size_t uxBufferLength )
7410 TaskStatus_t * pxTaskStatusArray;
7411 size_t uxConsumedBufferLength = 0;
7412 size_t uxCharsWrittenBySnprintf;
7413 int iSnprintfReturnValue;
7414 BaseType_t xOutputBufferFull = pdFALSE;
7415 UBaseType_t uxArraySize, x;
7416 configRUN_TIME_COUNTER_TYPE ulTotalTime = 0;
7417 configRUN_TIME_COUNTER_TYPE ulStatsAsPercentage;
7419 traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength );
7424 * This function is provided for convenience only, and is used by many
7425 * of the demo applications. Do not consider it to be part of the
7428 * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part
7429 * of the uxTaskGetSystemState() output into a human readable table that
7430 * displays the amount of time each task has spent in the Running state
7431 * in both absolute and percentage terms.
7433 * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library
7434 * function that might bloat the code size, use a lot of stack, and
7435 * provide different results on different platforms. An alternative,
7436 * tiny, third party, and limited functionality implementation of
7437 * snprintf() is provided in many of the FreeRTOS/Demo sub-directories in
7438 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
7439 * a full snprintf() implementation!).
7441 * It is recommended that production systems call uxTaskGetSystemState()
7442 * directly to get access to raw stats data, rather than indirectly
7443 * through a call to vTaskGetRunTimeStatistics().
7446 /* Make sure the write buffer does not contain a string. */
7447 *pcWriteBuffer = ( char ) 0x00;
7449 /* Take a snapshot of the number of tasks in case it changes while this
7450 * function is executing. */
7451 uxArraySize = uxCurrentNumberOfTasks;
7453 /* Allocate an array index for each task. NOTE! If
7454 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7455 * equate to NULL. */
7456 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7457 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7458 /* coverity[misra_c_2012_rule_11_5_violation] */
7459 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7461 if( pxTaskStatusArray != NULL )
7463 /* Generate the (binary) data. */
7464 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
7466 /* For percentage calculations. */
7467 ulTotalTime /= ( ( configRUN_TIME_COUNTER_TYPE ) 100UL );
7469 /* Avoid divide by zero errors. */
7470 if( ulTotalTime > 0UL )
7472 /* Create a human readable table from the binary data. */
7473 for( x = 0; x < uxArraySize; x++ )
7475 /* What percentage of the total run time has the task used?
7476 * This will always be rounded down to the nearest integer.
7477 * ulTotalRunTime has already been divided by 100. */
7478 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
7480 /* Is there enough space in the buffer to hold task name? */
7481 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7483 /* Write the task name to the string, padding with
7484 * spaces so it can be printed in tabular form more
7486 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7487 /* Do not count the terminating null character. */
7488 uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7490 /* Is there space left in the buffer? -1 is done because snprintf
7491 * writes a terminating null character. So we are essentially
7492 * checking if the buffer has space to write at least one non-null
7494 if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7496 if( ulStatsAsPercentage > 0UL )
7498 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7500 /* MISRA Ref 21.6.1 [snprintf for utility] */
7501 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7502 /* coverity[misra_c_2012_rule_21_6_violation] */
7503 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7504 uxBufferLength - uxConsumedBufferLength,
7505 "\t%lu\t\t%lu%%\r\n",
7506 pxTaskStatusArray[ x ].ulRunTimeCounter,
7507 ulStatsAsPercentage );
7509 #else /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7511 /* sizeof( int ) == sizeof( long ) so a smaller
7512 * printf() library can be used. */
7513 /* MISRA Ref 21.6.1 [snprintf for utility] */
7514 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7515 /* coverity[misra_c_2012_rule_21_6_violation] */
7516 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7517 uxBufferLength - uxConsumedBufferLength,
7519 ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter,
7520 ( unsigned int ) ulStatsAsPercentage );
7522 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7526 /* If the percentage is zero here then the task has
7527 * consumed less than 1% of the total run time. */
7528 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7530 /* MISRA Ref 21.6.1 [snprintf for utility] */
7531 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7532 /* coverity[misra_c_2012_rule_21_6_violation] */
7533 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7534 uxBufferLength - uxConsumedBufferLength,
7535 "\t%lu\t\t<1%%\r\n",
7536 pxTaskStatusArray[ x ].ulRunTimeCounter );
7540 /* sizeof( int ) == sizeof( long ) so a smaller
7541 * printf() library can be used. */
7542 /* MISRA Ref 21.6.1 [snprintf for utility] */
7543 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7544 /* coverity[misra_c_2012_rule_21_6_violation] */
7545 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7546 uxBufferLength - uxConsumedBufferLength,
7548 ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
7550 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7553 uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7554 uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7555 pcWriteBuffer += uxCharsWrittenBySnprintf;
7559 xOutputBufferFull = pdTRUE;
7564 xOutputBufferFull = pdTRUE;
7567 if( xOutputBufferFull == pdTRUE )
7575 mtCOVERAGE_TEST_MARKER();
7578 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
7579 * is 0 then vPortFree() will be #defined to nothing. */
7580 vPortFree( pxTaskStatusArray );
7584 mtCOVERAGE_TEST_MARKER();
7587 traceRETURN_vTaskGetRunTimeStatistics();
7590 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7591 /*-----------------------------------------------------------*/
7593 TickType_t uxTaskResetEventItemValue( void )
7595 TickType_t uxReturn;
7597 traceENTER_uxTaskResetEventItemValue();
7599 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
7601 /* Reset the event list item to its normal value - so it can be used with
7602 * queues and semaphores. */
7603 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) );
7605 traceRETURN_uxTaskResetEventItemValue( uxReturn );
7609 /*-----------------------------------------------------------*/
7611 #if ( configUSE_MUTEXES == 1 )
7613 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
7617 traceENTER_pvTaskIncrementMutexHeldCount();
7619 pxTCB = pxCurrentTCB;
7621 /* If xSemaphoreCreateMutex() is called before any tasks have been created
7622 * then pxCurrentTCB will be NULL. */
7625 ( pxTCB->uxMutexesHeld )++;
7628 traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB );
7633 #endif /* configUSE_MUTEXES */
7634 /*-----------------------------------------------------------*/
7636 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7638 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn,
7639 BaseType_t xClearCountOnExit,
7640 TickType_t xTicksToWait )
7643 BaseType_t xAlreadyYielded;
7645 traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait );
7647 configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7649 taskENTER_CRITICAL();
7651 /* Only block if the notification count is not already non-zero. */
7652 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0UL )
7654 /* Mark this task as waiting for a notification. */
7655 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7657 if( xTicksToWait > ( TickType_t ) 0 )
7659 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn );
7661 /* We MUST suspend the scheduler before exiting the critical
7662 * section (i.e. before enabling interrupts).
7664 * If we do not do so, a notification sent from an ISR, which
7665 * happens after exiting the critical section and before
7666 * suspending the scheduler, will get lost. The sequence of
7668 * 1. Exit critical section.
7669 * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7670 * task to the Ready list.
7671 * 3. Suspend scheduler.
7672 * 4. prvAddCurrentTaskToDelayedList moves the task to the
7673 * delayed or suspended list.
7674 * 5. Resume scheduler does not touch the task (because it is
7675 * not on the pendingReady list), effectively losing the
7676 * notification from the ISR.
7678 * The same does not happen when we suspend the scheduler before
7679 * exiting the critical section. The sequence of events in this
7681 * 1. Suspend scheduler.
7682 * 2. Exit critical section.
7683 * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7684 * task to the pendingReady list as the scheduler is
7686 * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or
7687 * suspended list. Note that this operation does not nullify
7688 * the add to pendingReady list done in the above step because
7689 * a different list item, namely xEventListItem, is used for
7690 * adding the task to the pendingReady list. In other words,
7691 * the task still remains on the pendingReady list.
7692 * 5. Resume scheduler moves the task from pendingReady list to
7697 taskEXIT_CRITICAL();
7699 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7701 xAlreadyYielded = xTaskResumeAll();
7703 if( xAlreadyYielded == pdFALSE )
7705 taskYIELD_WITHIN_API();
7709 mtCOVERAGE_TEST_MARKER();
7714 taskEXIT_CRITICAL();
7719 taskEXIT_CRITICAL();
7722 taskENTER_CRITICAL();
7724 traceTASK_NOTIFY_TAKE( uxIndexToWaitOn );
7725 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7727 if( ulReturn != 0UL )
7729 if( xClearCountOnExit != pdFALSE )
7731 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ( uint32_t ) 0UL;
7735 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1;
7740 mtCOVERAGE_TEST_MARKER();
7743 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7745 taskEXIT_CRITICAL();
7747 traceRETURN_ulTaskGenericNotifyTake( ulReturn );
7752 #endif /* configUSE_TASK_NOTIFICATIONS */
7753 /*-----------------------------------------------------------*/
7755 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7757 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn,
7758 uint32_t ulBitsToClearOnEntry,
7759 uint32_t ulBitsToClearOnExit,
7760 uint32_t * pulNotificationValue,
7761 TickType_t xTicksToWait )
7763 BaseType_t xReturn, xAlreadyYielded;
7765 traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait );
7767 configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7769 taskENTER_CRITICAL();
7771 /* Only block if a notification is not already pending. */
7772 if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7774 /* Clear bits in the task's notification value as bits may get
7775 * set by the notifying task or interrupt. This can be used to
7776 * clear the value to zero. */
7777 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry;
7779 /* Mark this task as waiting for a notification. */
7780 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7782 if( xTicksToWait > ( TickType_t ) 0 )
7784 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn );
7786 /* We MUST suspend the scheduler before exiting the critical
7787 * section (i.e. before enabling interrupts).
7789 * If we do not do so, a notification sent from an ISR, which
7790 * happens after exiting the critical section and before
7791 * suspending the scheduler, will get lost. The sequence of
7793 * 1. Exit critical section.
7794 * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7795 * task to the Ready list.
7796 * 3. Suspend scheduler.
7797 * 4. prvAddCurrentTaskToDelayedList moves the task to the
7798 * delayed or suspended list.
7799 * 5. Resume scheduler does not touch the task (because it is
7800 * not on the pendingReady list), effectively losing the
7801 * notification from the ISR.
7803 * The same does not happen when we suspend the scheduler before
7804 * exiting the critical section. The sequence of events in this
7806 * 1. Suspend scheduler.
7807 * 2. Exit critical section.
7808 * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7809 * task to the pendingReady list as the scheduler is
7811 * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or
7812 * suspended list. Note that this operation does not nullify
7813 * the add to pendingReady list done in the above step because
7814 * a different list item, namely xEventListItem, is used for
7815 * adding the task to the pendingReady list. In other words,
7816 * the task still remains on the pendingReady list.
7817 * 5. Resume scheduler moves the task from pendingReady list to
7822 taskEXIT_CRITICAL();
7824 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7826 xAlreadyYielded = xTaskResumeAll();
7828 if( xAlreadyYielded == pdFALSE )
7830 taskYIELD_WITHIN_API();
7834 mtCOVERAGE_TEST_MARKER();
7839 taskEXIT_CRITICAL();
7844 taskEXIT_CRITICAL();
7847 taskENTER_CRITICAL();
7849 traceTASK_NOTIFY_WAIT( uxIndexToWaitOn );
7851 if( pulNotificationValue != NULL )
7853 /* Output the current notification value, which may or may not
7855 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7858 /* If ucNotifyValue is set then either the task never entered the
7859 * blocked state (because a notification was already pending) or the
7860 * task unblocked because of a notification. Otherwise the task
7861 * unblocked because of a timeout. */
7862 if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7864 /* A notification was not received. */
7869 /* A notification was already pending or a notification was
7870 * received while the task was waiting. */
7871 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit;
7875 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7877 taskEXIT_CRITICAL();
7879 traceRETURN_xTaskGenericNotifyWait( xReturn );
7884 #endif /* configUSE_TASK_NOTIFICATIONS */
7885 /*-----------------------------------------------------------*/
7887 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7889 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
7890 UBaseType_t uxIndexToNotify,
7892 eNotifyAction eAction,
7893 uint32_t * pulPreviousNotificationValue )
7896 BaseType_t xReturn = pdPASS;
7897 uint8_t ucOriginalNotifyState;
7899 traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue );
7901 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7902 configASSERT( xTaskToNotify );
7903 pxTCB = xTaskToNotify;
7905 taskENTER_CRITICAL();
7907 if( pulPreviousNotificationValue != NULL )
7909 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
7912 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
7914 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
7919 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
7923 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
7926 case eSetValueWithOverwrite:
7927 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7930 case eSetValueWithoutOverwrite:
7932 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
7934 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7938 /* The value could not be written to the task. */
7946 /* The task is being notified without its notify value being
7952 /* Should not get here if all enums are handled.
7953 * Artificially force an assert by testing a value the
7954 * compiler can't assume is const. */
7955 configASSERT( xTickCount == ( TickType_t ) 0 );
7960 traceTASK_NOTIFY( uxIndexToNotify );
7962 /* If the task is in the blocked state specifically to wait for a
7963 * notification then unblock it now. */
7964 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
7966 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
7967 prvAddTaskToReadyList( pxTCB );
7969 /* The task should not have been on an event list. */
7970 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
7972 #if ( configUSE_TICKLESS_IDLE != 0 )
7974 /* If a task is blocked waiting for a notification then
7975 * xNextTaskUnblockTime might be set to the blocked task's time
7976 * out time. If the task is unblocked for a reason other than
7977 * a timeout xNextTaskUnblockTime is normally left unchanged,
7978 * because it will automatically get reset to a new value when
7979 * the tick count equals xNextTaskUnblockTime. However if
7980 * tickless idling is used it might be more important to enter
7981 * sleep mode at the earliest possible time - so reset
7982 * xNextTaskUnblockTime here to ensure it is updated at the
7983 * earliest possible time. */
7984 prvResetNextTaskUnblockTime();
7988 /* Check if the notified task has a priority above the currently
7989 * executing task. */
7990 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
7994 mtCOVERAGE_TEST_MARKER();
7997 taskEXIT_CRITICAL();
7999 traceRETURN_xTaskGenericNotify( xReturn );
8004 #endif /* configUSE_TASK_NOTIFICATIONS */
8005 /*-----------------------------------------------------------*/
8007 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8009 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
8010 UBaseType_t uxIndexToNotify,
8012 eNotifyAction eAction,
8013 uint32_t * pulPreviousNotificationValue,
8014 BaseType_t * pxHigherPriorityTaskWoken )
8017 uint8_t ucOriginalNotifyState;
8018 BaseType_t xReturn = pdPASS;
8019 UBaseType_t uxSavedInterruptStatus;
8021 traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken );
8023 configASSERT( xTaskToNotify );
8024 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8026 /* RTOS ports that support interrupt nesting have the concept of a
8027 * maximum system call (or maximum API call) interrupt priority.
8028 * Interrupts that are above the maximum system call priority are keep
8029 * permanently enabled, even when the RTOS kernel is in a critical section,
8030 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
8031 * is defined in FreeRTOSConfig.h then
8032 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8033 * failure if a FreeRTOS API function is called from an interrupt that has
8034 * been assigned a priority above the configured maximum system call
8035 * priority. Only FreeRTOS functions that end in FromISR can be called
8036 * from interrupts that have been assigned a priority at or (logically)
8037 * below the maximum system call interrupt priority. FreeRTOS maintains a
8038 * separate interrupt safe API to ensure interrupt entry is as fast and as
8039 * simple as possible. More information (albeit Cortex-M specific) is
8040 * provided on the following link:
8041 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8042 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8044 pxTCB = xTaskToNotify;
8046 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
8048 if( pulPreviousNotificationValue != NULL )
8050 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
8053 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8054 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8059 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
8063 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8066 case eSetValueWithOverwrite:
8067 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8070 case eSetValueWithoutOverwrite:
8072 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
8074 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8078 /* The value could not be written to the task. */
8086 /* The task is being notified without its notify value being
8092 /* Should not get here if all enums are handled.
8093 * Artificially force an assert by testing a value the
8094 * compiler can't assume is const. */
8095 configASSERT( xTickCount == ( TickType_t ) 0 );
8099 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
8101 /* If the task is in the blocked state specifically to wait for a
8102 * notification then unblock it now. */
8103 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8105 /* The task should not have been on an event list. */
8106 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8108 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8110 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8111 prvAddTaskToReadyList( pxTCB );
8115 /* The delayed and ready lists cannot be accessed, so hold
8116 * this task pending until the scheduler is resumed. */
8117 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8120 #if ( configNUMBER_OF_CORES == 1 )
8122 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8124 /* The notified task has a priority above the currently
8125 * executing task so a yield is required. */
8126 if( pxHigherPriorityTaskWoken != NULL )
8128 *pxHigherPriorityTaskWoken = pdTRUE;
8131 /* Mark that a yield is pending in case the user is not
8132 * using the "xHigherPriorityTaskWoken" parameter to an ISR
8133 * safe FreeRTOS function. */
8134 xYieldPendings[ 0 ] = pdTRUE;
8138 mtCOVERAGE_TEST_MARKER();
8141 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8143 #if ( configUSE_PREEMPTION == 1 )
8145 prvYieldForTask( pxTCB );
8147 if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8149 if( pxHigherPriorityTaskWoken != NULL )
8151 *pxHigherPriorityTaskWoken = pdTRUE;
8155 #endif /* if ( configUSE_PREEMPTION == 1 ) */
8157 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8160 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8162 traceRETURN_xTaskGenericNotifyFromISR( xReturn );
8167 #endif /* configUSE_TASK_NOTIFICATIONS */
8168 /*-----------------------------------------------------------*/
8170 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8172 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
8173 UBaseType_t uxIndexToNotify,
8174 BaseType_t * pxHigherPriorityTaskWoken )
8177 uint8_t ucOriginalNotifyState;
8178 UBaseType_t uxSavedInterruptStatus;
8180 traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken );
8182 configASSERT( xTaskToNotify );
8183 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8185 /* RTOS ports that support interrupt nesting have the concept of a
8186 * maximum system call (or maximum API call) interrupt priority.
8187 * Interrupts that are above the maximum system call priority are keep
8188 * permanently enabled, even when the RTOS kernel is in a critical section,
8189 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
8190 * is defined in FreeRTOSConfig.h then
8191 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8192 * failure if a FreeRTOS API function is called from an interrupt that has
8193 * been assigned a priority above the configured maximum system call
8194 * priority. Only FreeRTOS functions that end in FromISR can be called
8195 * from interrupts that have been assigned a priority at or (logically)
8196 * below the maximum system call interrupt priority. FreeRTOS maintains a
8197 * separate interrupt safe API to ensure interrupt entry is as fast and as
8198 * simple as possible. More information (albeit Cortex-M specific) is
8199 * provided on the following link:
8200 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8201 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8203 pxTCB = xTaskToNotify;
8205 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
8207 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8208 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8210 /* 'Giving' is equivalent to incrementing a count in a counting
8212 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8214 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
8216 /* If the task is in the blocked state specifically to wait for a
8217 * notification then unblock it now. */
8218 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8220 /* The task should not have been on an event list. */
8221 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8223 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8225 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8226 prvAddTaskToReadyList( pxTCB );
8230 /* The delayed and ready lists cannot be accessed, so hold
8231 * this task pending until the scheduler is resumed. */
8232 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8235 #if ( configNUMBER_OF_CORES == 1 )
8237 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8239 /* The notified task has a priority above the currently
8240 * executing task so a yield is required. */
8241 if( pxHigherPriorityTaskWoken != NULL )
8243 *pxHigherPriorityTaskWoken = pdTRUE;
8246 /* Mark that a yield is pending in case the user is not
8247 * using the "xHigherPriorityTaskWoken" parameter in an ISR
8248 * safe FreeRTOS function. */
8249 xYieldPendings[ 0 ] = pdTRUE;
8253 mtCOVERAGE_TEST_MARKER();
8256 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8258 #if ( configUSE_PREEMPTION == 1 )
8260 prvYieldForTask( pxTCB );
8262 if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8264 if( pxHigherPriorityTaskWoken != NULL )
8266 *pxHigherPriorityTaskWoken = pdTRUE;
8270 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
8272 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8275 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8277 traceRETURN_vTaskGenericNotifyGiveFromISR();
8280 #endif /* configUSE_TASK_NOTIFICATIONS */
8281 /*-----------------------------------------------------------*/
8283 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8285 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
8286 UBaseType_t uxIndexToClear )
8291 traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear );
8293 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8295 /* If null is passed in here then it is the calling task that is having
8296 * its notification state cleared. */
8297 pxTCB = prvGetTCBFromHandle( xTask );
8299 taskENTER_CRITICAL();
8301 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
8303 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
8311 taskEXIT_CRITICAL();
8313 traceRETURN_xTaskGenericNotifyStateClear( xReturn );
8318 #endif /* configUSE_TASK_NOTIFICATIONS */
8319 /*-----------------------------------------------------------*/
8321 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8323 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
8324 UBaseType_t uxIndexToClear,
8325 uint32_t ulBitsToClear )
8330 traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear );
8332 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8334 /* If null is passed in here then it is the calling task that is having
8335 * its notification state cleared. */
8336 pxTCB = prvGetTCBFromHandle( xTask );
8338 taskENTER_CRITICAL();
8340 /* Return the notification as it was before the bits were cleared,
8341 * then clear the bit mask. */
8342 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
8343 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
8345 taskEXIT_CRITICAL();
8347 traceRETURN_ulTaskGenericNotifyValueClear( ulReturn );
8352 #endif /* configUSE_TASK_NOTIFICATIONS */
8353 /*-----------------------------------------------------------*/
8355 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8357 configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask )
8361 traceENTER_ulTaskGetRunTimeCounter( xTask );
8363 pxTCB = prvGetTCBFromHandle( xTask );
8365 traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter );
8367 return pxTCB->ulRunTimeCounter;
8370 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8371 /*-----------------------------------------------------------*/
8373 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8375 configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask )
8378 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8380 traceENTER_ulTaskGetRunTimePercent( xTask );
8382 ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
8384 /* For percentage calculations. */
8385 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8387 /* Avoid divide by zero errors. */
8388 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8390 pxTCB = prvGetTCBFromHandle( xTask );
8391 ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime;
8398 traceRETURN_ulTaskGetRunTimePercent( ulReturn );
8403 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8404 /*-----------------------------------------------------------*/
8406 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8408 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
8410 configRUN_TIME_COUNTER_TYPE ulReturn = 0;
8413 traceENTER_ulTaskGetIdleRunTimeCounter();
8415 for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8417 ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8420 traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn );
8425 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8426 /*-----------------------------------------------------------*/
8428 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8430 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
8432 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8433 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0;
8436 traceENTER_ulTaskGetIdleRunTimePercent();
8438 ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES;
8440 /* For percentage calculations. */
8441 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8443 /* Avoid divide by zero errors. */
8444 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8446 for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8448 ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8451 ulReturn = ulRunTimeCounter / ulTotalTime;
8458 traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn );
8463 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8464 /*-----------------------------------------------------------*/
8466 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
8467 const BaseType_t xCanBlockIndefinitely )
8469 TickType_t xTimeToWake;
8470 const TickType_t xConstTickCount = xTickCount;
8471 List_t * const pxDelayedList = pxDelayedTaskList;
8472 List_t * const pxOverflowDelayedList = pxOverflowDelayedTaskList;
8474 #if ( INCLUDE_xTaskAbortDelay == 1 )
8476 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
8477 * reset to pdFALSE so it can be detected as having been set to pdTRUE
8478 * when the task leaves the Blocked state. */
8479 pxCurrentTCB->ucDelayAborted = pdFALSE;
8483 /* Remove the task from the ready list before adding it to the blocked list
8484 * as the same list item is used for both lists. */
8485 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
8487 /* The current task must be in a ready list, so there is no need to
8488 * check, and the port reset macro can be called directly. */
8489 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
8493 mtCOVERAGE_TEST_MARKER();
8496 #if ( INCLUDE_vTaskSuspend == 1 )
8498 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
8500 /* Add the task to the suspended task list instead of a delayed task
8501 * list to ensure it is not woken by a timing event. It will block
8503 listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
8507 /* Calculate the time at which the task should be woken if the event
8508 * does not occur. This may overflow but this doesn't matter, the
8509 * kernel will manage it correctly. */
8510 xTimeToWake = xConstTickCount + xTicksToWait;
8512 /* The list item will be inserted in wake time order. */
8513 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8515 if( xTimeToWake < xConstTickCount )
8517 /* Wake time has overflowed. Place this item in the overflow
8519 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8520 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8524 /* The wake time has not overflowed, so the current block list
8526 traceMOVED_TASK_TO_DELAYED_LIST();
8527 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8529 /* If the task entering the blocked state was placed at the
8530 * head of the list of blocked tasks then xNextTaskUnblockTime
8531 * needs to be updated too. */
8532 if( xTimeToWake < xNextTaskUnblockTime )
8534 xNextTaskUnblockTime = xTimeToWake;
8538 mtCOVERAGE_TEST_MARKER();
8543 #else /* INCLUDE_vTaskSuspend */
8545 /* Calculate the time at which the task should be woken if the event
8546 * does not occur. This may overflow but this doesn't matter, the kernel
8547 * will manage it correctly. */
8548 xTimeToWake = xConstTickCount + xTicksToWait;
8550 /* The list item will be inserted in wake time order. */
8551 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8553 if( xTimeToWake < xConstTickCount )
8555 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8556 /* Wake time has overflowed. Place this item in the overflow list. */
8557 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8561 traceMOVED_TASK_TO_DELAYED_LIST();
8562 /* The wake time has not overflowed, so the current block list is used. */
8563 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8565 /* If the task entering the blocked state was placed at the head of the
8566 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
8568 if( xTimeToWake < xNextTaskUnblockTime )
8570 xNextTaskUnblockTime = xTimeToWake;
8574 mtCOVERAGE_TEST_MARKER();
8578 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
8579 ( void ) xCanBlockIndefinitely;
8581 #endif /* INCLUDE_vTaskSuspend */
8583 /*-----------------------------------------------------------*/
8585 #if ( portUSING_MPU_WRAPPERS == 1 )
8587 xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask )
8591 traceENTER_xTaskGetMPUSettings( xTask );
8593 pxTCB = prvGetTCBFromHandle( xTask );
8595 traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) );
8597 return &( pxTCB->xMPUSettings );
8600 #endif /* portUSING_MPU_WRAPPERS */
8601 /*-----------------------------------------------------------*/
8603 /* Code below here allows additional code to be inserted into this source file,
8604 * especially where access to file scope functions and data is needed (for example
8605 * when performing module tests). */
8607 #ifdef FREERTOS_MODULE_TEST
8608 #include "tasks_test_access_functions.h"
8612 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
8614 #include "freertos_tasks_c_additions.h"
8616 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
8617 static void freertos_tasks_c_additions_init( void )
8619 FREERTOS_TASKS_C_ADDITIONS_INIT();
8623 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
8624 /*-----------------------------------------------------------*/
8626 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8629 * This is the kernel provided implementation of vApplicationGetIdleTaskMemory()
8630 * to provide the memory that is used by the Idle task. It is used when
8631 * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8632 * it's own implementation of vApplicationGetIdleTaskMemory by setting
8633 * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8635 void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8636 StackType_t ** ppxIdleTaskStackBuffer,
8637 uint32_t * pulIdleTaskStackSize )
8639 static StaticTask_t xIdleTaskTCB;
8640 static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
8642 *ppxIdleTaskTCBBuffer = &( xIdleTaskTCB );
8643 *ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] );
8644 *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8647 #if ( configNUMBER_OF_CORES > 1 )
8649 void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8650 StackType_t ** ppxIdleTaskStackBuffer,
8651 uint32_t * pulIdleTaskStackSize,
8652 BaseType_t xPassiveIdleTaskIndex )
8654 static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ];
8655 static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ];
8657 *ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] );
8658 *ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] );
8659 *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8662 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
8664 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8665 /*-----------------------------------------------------------*/
8667 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8670 * This is the kernel provided implementation of vApplicationGetTimerTaskMemory()
8671 * to provide the memory that is used by the Timer service task. It is used when
8672 * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8673 * it's own implementation of vApplicationGetTimerTaskMemory by setting
8674 * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8676 void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
8677 StackType_t ** ppxTimerTaskStackBuffer,
8678 uint32_t * pulTimerTaskStackSize )
8680 static StaticTask_t xTimerTaskTCB;
8681 static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
8683 *ppxTimerTaskTCBBuffer = &( xTimerTaskTCB );
8684 *ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] );
8685 *pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
8688 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8689 /*-----------------------------------------------------------*/