]> begriffs open source - freertos/blob - tasks.c
Update XMOS xcore.ai port to be compatible with v11.x (#1096)
[freertos] / tasks.c
1 /*
2  * FreeRTOS Kernel <DEVELOPMENT BRANCH>
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28
29 /* Standard includes. */
30 #include <stdlib.h>
31 #include <string.h>
32
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
34  * all the API functions to use the MPU wrappers.  That should only be done when
35  * task.h is included from an application file. */
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
37
38 /* FreeRTOS includes. */
39 #include "FreeRTOS.h"
40 #include "task.h"
41 #include "timers.h"
42 #include "stack_macros.h"
43
44 /* The default definitions are only available for non-MPU ports. The
45  * reason is that the stack alignment requirements vary for different
46  * architectures.*/
47 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS != 0 ) )
48     #error configKERNEL_PROVIDED_STATIC_MEMORY cannot be set to 1 when using an MPU port. The vApplicationGet*TaskMemory() functions must be provided manually.
49 #endif
50
51 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
52  * for the header files above, but not in this file, in order to generate the
53  * correct privileged Vs unprivileged linkage and placement. */
54 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
55
56 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
57  * functions but without including stdio.h here. */
58 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
59
60 /* At the bottom of this file are two optional functions that can be used
61  * to generate human readable text from the raw data generated by the
62  * uxTaskGetSystemState() function.  Note the formatting functions are provided
63  * for convenience only, and are NOT considered part of the kernel. */
64     #include <stdio.h>
65 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
66
67 #if ( configUSE_PREEMPTION == 0 )
68
69 /* If the cooperative scheduler is being used then a yield should not be
70  * performed just because a higher priority task has been woken. */
71     #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )
72     #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )
73 #else
74
75     #if ( configNUMBER_OF_CORES == 1 )
76
77 /* This macro requests the running task pxTCB to yield. In single core
78  * scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API()
79  * can be used to request the task running on core 0 to yield. Therefore, pxTCB
80  * is not used in this macro. */
81         #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \
82     do {                                                         \
83         ( void ) ( pxTCB );                                      \
84         portYIELD_WITHIN_API();                                  \
85     } while( 0 )
86
87         #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \
88     do {                                                        \
89         if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority )  \
90         {                                                       \
91             portYIELD_WITHIN_API();                             \
92         }                                                       \
93         else                                                    \
94         {                                                       \
95             mtCOVERAGE_TEST_MARKER();                           \
96         }                                                       \
97     } while( 0 )
98
99     #else /* if ( configNUMBER_OF_CORES == 1 ) */
100
101 /* Yield the core on which this task is running. */
102         #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )    prvYieldCore( ( pxTCB )->xTaskRunState )
103
104 /* Yield for the task if a running task has priority lower than this task. */
105         #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )     prvYieldForTask( pxTCB )
106
107     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
108
109 #endif /* if ( configUSE_PREEMPTION == 0 ) */
110
111 /* Values that can be assigned to the ucNotifyState member of the TCB. */
112 #define taskNOT_WAITING_NOTIFICATION              ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
113 #define taskWAITING_NOTIFICATION                  ( ( uint8_t ) 1 )
114 #define taskNOTIFICATION_RECEIVED                 ( ( uint8_t ) 2 )
115
116 /*
117  * The value used to fill the stack of a task when the task is created.  This
118  * is used purely for checking the high water mark for tasks.
119  */
120 #define tskSTACK_FILL_BYTE                        ( 0xa5U )
121
122 /* Bits used to record how a task's stack and TCB were allocated. */
123 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB    ( ( uint8_t ) 0 )
124 #define tskSTATICALLY_ALLOCATED_STACK_ONLY        ( ( uint8_t ) 1 )
125 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB     ( ( uint8_t ) 2 )
126
127 /* If any of the following are set then task stacks are filled with a known
128  * value so the high water mark can be determined.  If none of the following are
129  * set then don't fill the stack so there is no unnecessary dependency on memset. */
130 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
131     #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    1
132 #else
133     #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    0
134 #endif
135
136 /*
137  * Macros used by vListTask to indicate which state a task is in.
138  */
139 #define tskRUNNING_CHAR      ( 'X' )
140 #define tskBLOCKED_CHAR      ( 'B' )
141 #define tskREADY_CHAR        ( 'R' )
142 #define tskDELETED_CHAR      ( 'D' )
143 #define tskSUSPENDED_CHAR    ( 'S' )
144
145 /*
146  * Some kernel aware debuggers require the data the debugger needs access to be
147  * global, rather than file scope.
148  */
149 #ifdef portREMOVE_STATIC_QUALIFIER
150     #define static
151 #endif
152
153 /* The name allocated to the Idle task.  This can be overridden by defining
154  * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
155 #ifndef configIDLE_TASK_NAME
156     #define configIDLE_TASK_NAME    "IDLE"
157 #endif
158
159 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
160
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
162  * performed in a generic way that is not optimised to any particular
163  * microcontroller architecture. */
164
165 /* uxTopReadyPriority holds the priority of the highest priority ready
166  * state task. */
167     #define taskRECORD_READY_PRIORITY( uxPriority ) \
168     do {                                            \
169         if( ( uxPriority ) > uxTopReadyPriority )   \
170         {                                           \
171             uxTopReadyPriority = ( uxPriority );    \
172         }                                           \
173     } while( 0 ) /* taskRECORD_READY_PRIORITY */
174
175 /*-----------------------------------------------------------*/
176
177     #if ( configNUMBER_OF_CORES == 1 )
178         #define taskSELECT_HIGHEST_PRIORITY_TASK()                                       \
179     do {                                                                                 \
180         UBaseType_t uxTopPriority = uxTopReadyPriority;                                  \
181                                                                                          \
182         /* Find the highest priority queue that contains ready tasks. */                 \
183         while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) != pdFALSE ) \
184         {                                                                                \
185             configASSERT( uxTopPriority );                                               \
186             --uxTopPriority;                                                             \
187         }                                                                                \
188                                                                                          \
189         /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
190          * the  same priority get an equal share of the processor time. */                    \
191         listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
192         uxTopReadyPriority = uxTopPriority;                                                   \
193     } while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */
194     #else /* if ( configNUMBER_OF_CORES == 1 ) */
195
196         #define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID )    prvSelectHighestPriorityTask( xCoreID )
197
198     #endif /* if ( configNUMBER_OF_CORES == 1 ) */
199
200 /*-----------------------------------------------------------*/
201
202 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
203  * they are only required when a port optimised method of task selection is
204  * being used. */
205     #define taskRESET_READY_PRIORITY( uxPriority )
206     #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
207
208 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
209
210 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
211  * performed in a way that is tailored to the particular microcontroller
212  * architecture being used. */
213
214 /* A port optimised version is provided.  Call the port defined macros. */
215     #define taskRECORD_READY_PRIORITY( uxPriority )    portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
216
217 /*-----------------------------------------------------------*/
218
219     #define taskSELECT_HIGHEST_PRIORITY_TASK()                                                  \
220     do {                                                                                        \
221         UBaseType_t uxTopPriority;                                                              \
222                                                                                                 \
223         /* Find the highest priority list that contains ready tasks. */                         \
224         portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );                          \
225         configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
226         listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );   \
227     } while( 0 )
228
229 /*-----------------------------------------------------------*/
230
231 /* A port optimised version is provided, call it only if the TCB being reset
232  * is being referenced from a ready list.  If it is referenced from a delayed
233  * or suspended list then it won't be in a ready list. */
234     #define taskRESET_READY_PRIORITY( uxPriority )                                                     \
235     do {                                                                                               \
236         if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
237         {                                                                                              \
238             portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );                        \
239         }                                                                                              \
240     } while( 0 )
241
242 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
243
244 /*-----------------------------------------------------------*/
245
246 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
247  * count overflows. */
248 #define taskSWITCH_DELAYED_LISTS()                                                \
249     do {                                                                          \
250         List_t * pxTemp;                                                          \
251                                                                                   \
252         /* The delayed tasks list should be empty when the lists are switched. */ \
253         configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) );               \
254                                                                                   \
255         pxTemp = pxDelayedTaskList;                                               \
256         pxDelayedTaskList = pxOverflowDelayedTaskList;                            \
257         pxOverflowDelayedTaskList = pxTemp;                                       \
258         xNumOfOverflows = ( BaseType_t ) ( xNumOfOverflows + 1 );                 \
259         prvResetNextTaskUnblockTime();                                            \
260     } while( 0 )
261
262 /*-----------------------------------------------------------*/
263
264 /*
265  * Place the task represented by pxTCB into the appropriate ready list for
266  * the task.  It is inserted at the end of the list.
267  */
268 #define prvAddTaskToReadyList( pxTCB )                                                                     \
269     do {                                                                                                   \
270         traceMOVED_TASK_TO_READY_STATE( pxTCB );                                                           \
271         taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );                                                \
272         listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
273         tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB );                                                      \
274     } while( 0 )
275 /*-----------------------------------------------------------*/
276
277 /*
278  * Several functions take a TaskHandle_t parameter that can optionally be NULL,
279  * where NULL is used to indicate that the handle of the currently executing
280  * task should be used in place of the parameter.  This macro simply checks to
281  * see if the parameter is NULL and returns a pointer to the appropriate TCB.
282  */
283 #define prvGetTCBFromHandle( pxHandle )    ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
284
285 /* The item value of the event list item is normally used to hold the priority
286  * of the task to which it belongs (coded to allow it to be held in reverse
287  * priority order).  However, it is occasionally borrowed for other purposes.  It
288  * is important its value is not updated due to a task priority change while it is
289  * being used for another purpose.  The following bit definition is used to inform
290  * the scheduler that the value should not be changed - in which case it is the
291  * responsibility of whichever module is using the value to ensure it gets set back
292  * to its original value when it is released. */
293 #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
294     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint16_t ) 0x8000U )
295 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
296     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint32_t ) 0x80000000U )
297 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS )
298     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint64_t ) 0x8000000000000000U )
299 #endif
300
301 /* Indicates that the task is not actively running on any core. */
302 #define taskTASK_NOT_RUNNING           ( ( BaseType_t ) ( -1 ) )
303
304 /* Indicates that the task is actively running but scheduled to yield. */
305 #define taskTASK_SCHEDULED_TO_YIELD    ( ( BaseType_t ) ( -2 ) )
306
307 /* Returns pdTRUE if the task is actively running and not scheduled to yield. */
308 #if ( configNUMBER_OF_CORES == 1 )
309     #define taskTASK_IS_RUNNING( pxTCB )                          ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
310     #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB )    ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
311 #else
312     #define taskTASK_IS_RUNNING( pxTCB )                          ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) )
313     #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB )    ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) )
314 #endif
315
316 /* Indicates that the task is an Idle task. */
317 #define taskATTRIBUTE_IS_IDLE    ( UBaseType_t ) ( 1U << 0U )
318
319 #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) )
320     #define portGET_CRITICAL_NESTING_COUNT()          ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting )
321     #define portSET_CRITICAL_NESTING_COUNT( x )       ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) )
322     #define portINCREMENT_CRITICAL_NESTING_COUNT()    ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ )
323     #define portDECREMENT_CRITICAL_NESTING_COUNT()    ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- )
324 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */
325
326 #define taskBITS_PER_BYTE    ( ( size_t ) 8 )
327
328 #if ( configNUMBER_OF_CORES > 1 )
329
330 /* Yields the given core. This must be called from a critical section and xCoreID
331  * must be valid. This macro is not required in single core since there is only
332  * one core to yield. */
333     #define prvYieldCore( xCoreID )                                                          \
334     do {                                                                                     \
335         if( ( xCoreID ) == ( BaseType_t ) portGET_CORE_ID() )                                \
336         {                                                                                    \
337             /* Pending a yield for this core since it is in the critical section. */         \
338             xYieldPendings[ ( xCoreID ) ] = pdTRUE;                                          \
339         }                                                                                    \
340         else                                                                                 \
341         {                                                                                    \
342             /* Request other core to yield if it is not requested before. */                 \
343             if( pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \
344             {                                                                                \
345                 portYIELD_CORE( xCoreID );                                                   \
346                 pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD;   \
347             }                                                                                \
348         }                                                                                    \
349     } while( 0 )
350 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
351 /*-----------------------------------------------------------*/
352
353 /*
354  * Task control block.  A task control block (TCB) is allocated for each task,
355  * and stores task state information, including a pointer to the task's context
356  * (the task's run time environment, including register values)
357  */
358 typedef struct tskTaskControlBlock       /* The old naming convention is used to prevent breaking kernel aware debuggers. */
359 {
360     volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack.  THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
361
362     #if ( portUSING_MPU_WRAPPERS == 1 )
363         xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer.  THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
364     #endif
365
366     #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
367         UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores.  UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */
368     #endif
369
370     ListItem_t xStateListItem;                  /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
371     ListItem_t xEventListItem;                  /**< Used to reference a task from an event list. */
372     UBaseType_t uxPriority;                     /**< The priority of the task.  0 is the lowest priority. */
373     StackType_t * pxStack;                      /**< Points to the start of the stack. */
374     #if ( configNUMBER_OF_CORES > 1 )
375         volatile BaseType_t xTaskRunState;      /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */
376         UBaseType_t uxTaskAttributes;           /**< Task's attributes - currently used to identify the idle tasks. */
377     #endif
378     char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created.  Facilitates debugging only. */
379
380     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
381         BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */
382     #endif
383
384     #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
385         StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */
386     #endif
387
388     #if ( portCRITICAL_NESTING_IN_TCB == 1 )
389         UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
390     #endif
391
392     #if ( configUSE_TRACE_FACILITY == 1 )
393         UBaseType_t uxTCBNumber;  /**< Stores a number that increments each time a TCB is created.  It allows debuggers to determine when a task has been deleted and then recreated. */
394         UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */
395     #endif
396
397     #if ( configUSE_MUTEXES == 1 )
398         UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */
399         UBaseType_t uxMutexesHeld;
400     #endif
401
402     #if ( configUSE_APPLICATION_TASK_TAG == 1 )
403         TaskHookFunction_t pxTaskTag;
404     #endif
405
406     #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
407         void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
408     #endif
409
410     #if ( configGENERATE_RUN_TIME_STATS == 1 )
411         configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */
412     #endif
413
414     #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
415         configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */
416     #endif
417
418     #if ( configUSE_TASK_NOTIFICATIONS == 1 )
419         volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
420         volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
421     #endif
422
423     /* See the comments in FreeRTOS.h with the definition of
424      * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
425     #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
426         uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
427     #endif
428
429     #if ( INCLUDE_xTaskAbortDelay == 1 )
430         uint8_t ucDelayAborted;
431     #endif
432
433     #if ( configUSE_POSIX_ERRNO == 1 )
434         int iTaskErrno;
435     #endif
436 } tskTCB;
437
438 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
439  * below to enable the use of older kernel aware debuggers. */
440 typedef tskTCB TCB_t;
441
442 #if ( configNUMBER_OF_CORES == 1 )
443     /* MISRA Ref 8.4.1 [Declaration shall be visible] */
444     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
445     /* coverity[misra_c_2012_rule_8_4_violation] */
446     portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
447 #else
448     /* MISRA Ref 8.4.1 [Declaration shall be visible] */
449     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
450     /* coverity[misra_c_2012_rule_8_4_violation] */
451     portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ];
452     #define pxCurrentTCB    xTaskGetCurrentTaskHandle()
453 #endif
454
455 /* Lists for ready and blocked tasks. --------------------
456  * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
457  * doing so breaks some kernel aware debuggers and debuggers that rely on removing
458  * the static qualifier. */
459 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */
460 PRIVILEGED_DATA static List_t xDelayedTaskList1;                         /**< Delayed tasks. */
461 PRIVILEGED_DATA static List_t xDelayedTaskList2;                         /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
462 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList;              /**< Points to the delayed task list currently being used. */
463 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList;      /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
464 PRIVILEGED_DATA static List_t xPendingReadyList;                         /**< Tasks that have been readied while the scheduler was suspended.  They will be moved to the ready list when the scheduler is resumed. */
465
466 #if ( INCLUDE_vTaskDelete == 1 )
467
468     PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */
469     PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
470
471 #endif
472
473 #if ( INCLUDE_vTaskSuspend == 1 )
474
475     PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */
476
477 #endif
478
479 /* Global POSIX errno. Its value is changed upon context switching to match
480  * the errno of the currently running task. */
481 #if ( configUSE_POSIX_ERRNO == 1 )
482     int FreeRTOS_errno = 0;
483 #endif
484
485 /* Other file private variables. --------------------------------*/
486 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
487 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
488 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
489 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
490 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
491 PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE };
492 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
493 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
494 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
495 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ];       /**< Holds the handles of the idle tasks.  The idle tasks are created automatically when the scheduler is started. */
496
497 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
498  * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
499  * to determine the number of priority lists to read back from the remote target. */
500 static const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
501
502 /* Context switches are held pending while the scheduler is suspended.  Also,
503  * interrupts must not manipulate the xStateListItem of a TCB, or any of the
504  * lists the xStateListItem can be referenced from, if the scheduler is suspended.
505  * If an interrupt needs to unblock a task while the scheduler is suspended then it
506  * moves the task's event list item into the xPendingReadyList, ready for the
507  * kernel to move the task from the pending ready list into the real ready list
508  * when the scheduler is unsuspended.  The pending ready list itself can only be
509  * accessed from a critical section.
510  *
511  * Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock
512  * and must not be done from an ISR. Reads must be protected by either lock and may be done
513  * from either an ISR or a task. */
514 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U;
515
516 #if ( configGENERATE_RUN_TIME_STATS == 1 )
517
518 /* Do not move these variables to function scope as doing so prevents the
519  * code working with debuggers that need to remove the static qualifier. */
520 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U };    /**< Holds the value of a timer/counter the last time a task was switched in. */
521 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */
522
523 #endif
524
525 /*-----------------------------------------------------------*/
526
527 /* File private functions. --------------------------------*/
528
529 /*
530  * Creates the idle tasks during scheduler start.
531  */
532 static BaseType_t prvCreateIdleTasks( void );
533
534 #if ( configNUMBER_OF_CORES > 1 )
535
536 /*
537  * Checks to see if another task moved the current task out of the ready
538  * list while it was waiting to enter a critical section and yields, if so.
539  */
540     static void prvCheckForRunStateChange( void );
541 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
542
543 #if ( configNUMBER_OF_CORES > 1 )
544
545 /*
546  * Yields a core, or cores if multiple priorities are not allowed to run
547  * simultaneously, to allow the task pxTCB to run.
548  */
549     static void prvYieldForTask( const TCB_t * pxTCB );
550 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
551
552 #if ( configNUMBER_OF_CORES > 1 )
553
554 /*
555  * Selects the highest priority available task for the given core.
556  */
557     static void prvSelectHighestPriorityTask( BaseType_t xCoreID );
558 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
559
560 /**
561  * Utility task that simply returns pdTRUE if the task referenced by xTask is
562  * currently in the Suspended state, or pdFALSE if the task referenced by xTask
563  * is in any other state.
564  */
565 #if ( INCLUDE_vTaskSuspend == 1 )
566
567     static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
568
569 #endif /* INCLUDE_vTaskSuspend */
570
571 /*
572  * Utility to ready all the lists used by the scheduler.  This is called
573  * automatically upon the creation of the first task.
574  */
575 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
576
577 /*
578  * The idle task, which as all tasks is implemented as a never ending loop.
579  * The idle task is automatically created and added to the ready lists upon
580  * creation of the first user task.
581  *
582  * In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also
583  * created to ensure that each core has an idle task to run when no other
584  * task is available to run.
585  *
586  * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
587  * language extensions.  The equivalent prototype for these functions are:
588  *
589  * void prvIdleTask( void *pvParameters );
590  * void prvPassiveIdleTask( void *pvParameters );
591  *
592  */
593 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
594 #if ( configNUMBER_OF_CORES > 1 )
595     static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
596 #endif
597
598 /*
599  * Utility to free all memory allocated by the scheduler to hold a TCB,
600  * including the stack pointed to by the TCB.
601  *
602  * This does not free memory allocated by the task itself (i.e. memory
603  * allocated by calls to pvPortMalloc from within the tasks application code).
604  */
605 #if ( INCLUDE_vTaskDelete == 1 )
606
607     static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
608
609 #endif
610
611 /*
612  * Used only by the idle task.  This checks to see if anything has been placed
613  * in the list of tasks waiting to be deleted.  If so the task is cleaned up
614  * and its TCB deleted.
615  */
616 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
617
618 /*
619  * The currently executing task is entering the Blocked state.  Add the task to
620  * either the current or the overflow delayed task list.
621  */
622 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
623                                             const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
624
625 /*
626  * Fills an TaskStatus_t structure with information on each task that is
627  * referenced from the pxList list (which may be a ready list, a delayed list,
628  * a suspended list, etc.).
629  *
630  * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
631  * NORMAL APPLICATION CODE.
632  */
633 #if ( configUSE_TRACE_FACILITY == 1 )
634
635     static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
636                                                      List_t * pxList,
637                                                      eTaskState eState ) PRIVILEGED_FUNCTION;
638
639 #endif
640
641 /*
642  * Searches pxList for a task with name pcNameToQuery - returning a handle to
643  * the task if it is found, or NULL if the task is not found.
644  */
645 #if ( INCLUDE_xTaskGetHandle == 1 )
646
647     static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
648                                                      const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
649
650 #endif
651
652 /*
653  * When a task is created, the stack of the task is filled with a known value.
654  * This function determines the 'high water mark' of the task stack by
655  * determining how much of the stack remains at the original preset value.
656  */
657 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
658
659     static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
660
661 #endif
662
663 /*
664  * Return the amount of time, in ticks, that will pass before the kernel will
665  * next move a task from the Blocked state to the Running state or before the
666  * tick count overflows (whichever is earlier).
667  *
668  * This conditional compilation should use inequality to 0, not equality to 1.
669  * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
670  * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
671  * set to a value other than 1.
672  */
673 #if ( configUSE_TICKLESS_IDLE != 0 )
674
675     static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
676
677 #endif
678
679 /*
680  * Set xNextTaskUnblockTime to the time at which the next Blocked state task
681  * will exit the Blocked state.
682  */
683 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
684
685 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
686
687 /*
688  * Helper function used to pad task names with spaces when printing out
689  * human readable tables of task information.
690  */
691     static char * prvWriteNameToBuffer( char * pcBuffer,
692                                         const char * pcTaskName ) PRIVILEGED_FUNCTION;
693
694 #endif
695
696 /*
697  * Called after a Task_t structure has been allocated either statically or
698  * dynamically to fill in the structure's members.
699  */
700 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
701                                   const char * const pcName,
702                                   const configSTACK_DEPTH_TYPE uxStackDepth,
703                                   void * const pvParameters,
704                                   UBaseType_t uxPriority,
705                                   TaskHandle_t * const pxCreatedTask,
706                                   TCB_t * pxNewTCB,
707                                   const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
708
709 /*
710  * Called after a new task has been created and initialised to place the task
711  * under the control of the scheduler.
712  */
713 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
714
715 /*
716  * Create a task with static buffer for both TCB and stack. Returns a handle to
717  * the task if it is created successfully. Otherwise, returns NULL.
718  */
719 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
720     static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
721                                         const char * const pcName,
722                                         const configSTACK_DEPTH_TYPE uxStackDepth,
723                                         void * const pvParameters,
724                                         UBaseType_t uxPriority,
725                                         StackType_t * const puxStackBuffer,
726                                         StaticTask_t * const pxTaskBuffer,
727                                         TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
728 #endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
729
730 /*
731  * Create a restricted task with static buffer for both TCB and stack. Returns
732  * a handle to the task if it is created successfully. Otherwise, returns NULL.
733  */
734 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
735     static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
736                                                   TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
737 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
738
739 /*
740  * Create a restricted task with static buffer for task stack and allocated buffer
741  * for TCB. Returns a handle to the task if it is created successfully. Otherwise,
742  * returns NULL.
743  */
744 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
745     static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
746                                             TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
747 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
748
749 /*
750  * Create a task with allocated buffer for both TCB and stack. Returns a handle to
751  * the task if it is created successfully. Otherwise, returns NULL.
752  */
753 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
754     static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
755                                   const char * const pcName,
756                                   const configSTACK_DEPTH_TYPE uxStackDepth,
757                                   void * const pvParameters,
758                                   UBaseType_t uxPriority,
759                                   TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
760 #endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */
761
762 /*
763  * freertos_tasks_c_additions_init() should only be called if the user definable
764  * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
765  * called by the function.
766  */
767 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
768
769     static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
770
771 #endif
772
773 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
774     extern void vApplicationPassiveIdleHook( void );
775 #endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */
776
777 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
778
779 /*
780  * Convert the snprintf return value to the number of characters
781  * written. The following are the possible cases:
782  *
783  * 1. The buffer supplied to snprintf is large enough to hold the
784  *    generated string. The return value in this case is the number
785  *    of characters actually written, not counting the terminating
786  *    null character.
787  * 2. The buffer supplied to snprintf is NOT large enough to hold
788  *    the generated string. The return value in this case is the
789  *    number of characters that would have been written if the
790  *    buffer had been sufficiently large, not counting the
791  *    terminating null character.
792  * 3. Encoding error. The return value in this case is a negative
793  *    number.
794  *
795  * From 1 and 2 above ==> Only when the return value is non-negative
796  * and less than the supplied buffer length, the string has been
797  * completely written.
798  */
799     static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
800                                                         size_t n );
801
802 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
803 /*-----------------------------------------------------------*/
804
805 #if ( configNUMBER_OF_CORES > 1 )
806     static void prvCheckForRunStateChange( void )
807     {
808         UBaseType_t uxPrevCriticalNesting;
809         const TCB_t * pxThisTCB;
810
811         /* This must only be called from within a task. */
812         portASSERT_IF_IN_ISR();
813
814         /* This function is always called with interrupts disabled
815          * so this is safe. */
816         pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];
817
818         while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD )
819         {
820             /* We are only here if we just entered a critical section
821             * or if we just suspended the scheduler, and another task
822             * has requested that we yield.
823             *
824             * This is slightly complicated since we need to save and restore
825             * the suspension and critical nesting counts, as well as release
826             * and reacquire the correct locks. And then, do it all over again
827             * if our state changed again during the reacquisition. */
828             uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT();
829
830             if( uxPrevCriticalNesting > 0U )
831             {
832                 portSET_CRITICAL_NESTING_COUNT( 0U );
833                 portRELEASE_ISR_LOCK();
834             }
835             else
836             {
837                 /* The scheduler is suspended. uxSchedulerSuspended is updated
838                  * only when the task is not requested to yield. */
839                 mtCOVERAGE_TEST_MARKER();
840             }
841
842             portRELEASE_TASK_LOCK();
843             portMEMORY_BARRIER();
844             configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD );
845
846             portENABLE_INTERRUPTS();
847
848             /* Enabling interrupts should cause this core to immediately service
849              * the pending interrupt and yield. After servicing the pending interrupt,
850              * the task needs to re-evaluate its run state within this loop, as
851              * other cores may have requested this task to yield, potentially altering
852              * its run state. */
853
854             portDISABLE_INTERRUPTS();
855             portGET_TASK_LOCK();
856             portGET_ISR_LOCK();
857
858             portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting );
859
860             if( uxPrevCriticalNesting == 0U )
861             {
862                 portRELEASE_ISR_LOCK();
863             }
864         }
865     }
866 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
867
868 /*-----------------------------------------------------------*/
869
870 #if ( configNUMBER_OF_CORES > 1 )
871     static void prvYieldForTask( const TCB_t * pxTCB )
872     {
873         BaseType_t xLowestPriorityToPreempt;
874         BaseType_t xCurrentCoreTaskPriority;
875         BaseType_t xLowestPriorityCore = ( BaseType_t ) -1;
876         BaseType_t xCoreID;
877
878         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
879             BaseType_t xYieldCount = 0;
880         #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
881
882         /* This must be called from a critical section. */
883         configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
884
885         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
886
887             /* No task should yield for this one if it is a lower priority
888              * than priority level of currently ready tasks. */
889             if( pxTCB->uxPriority >= uxTopReadyPriority )
890         #else
891             /* Yield is not required for a task which is already running. */
892             if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
893         #endif
894         {
895             xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority;
896
897             /* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB
898              * is 0. This is ok as we will give system idle tasks a priority of -1 below. */
899             --xLowestPriorityToPreempt;
900
901             for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
902             {
903                 xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority;
904
905                 /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */
906                 if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
907                 {
908                     xCurrentCoreTaskPriority = ( BaseType_t ) ( xCurrentCoreTaskPriority - 1 );
909                 }
910
911                 if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) )
912                 {
913                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
914                         if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
915                     #endif
916                     {
917                         if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt )
918                         {
919                             #if ( configUSE_CORE_AFFINITY == 1 )
920                                 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
921                             #endif
922                             {
923                                 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
924                                     if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
925                                 #endif
926                                 {
927                                     xLowestPriorityToPreempt = xCurrentCoreTaskPriority;
928                                     xLowestPriorityCore = xCoreID;
929                                 }
930                             }
931                         }
932                         else
933                         {
934                             mtCOVERAGE_TEST_MARKER();
935                         }
936                     }
937
938                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
939                     {
940                         /* Yield all currently running non-idle tasks with a priority lower than
941                          * the task that needs to run. */
942                         if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) &&
943                             ( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
944                         {
945                             prvYieldCore( xCoreID );
946                             xYieldCount++;
947                         }
948                         else
949                         {
950                             mtCOVERAGE_TEST_MARKER();
951                         }
952                     }
953                     #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
954                 }
955                 else
956                 {
957                     mtCOVERAGE_TEST_MARKER();
958                 }
959             }
960
961             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
962                 if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) )
963             #else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
964                 if( xLowestPriorityCore >= 0 )
965             #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
966             {
967                 prvYieldCore( xLowestPriorityCore );
968             }
969
970             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
971                 /* Verify that the calling core always yields to higher priority tasks. */
972                 if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) &&
973                     ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
974                 {
975                     configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) ||
976                                   ( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) );
977                 }
978             #endif
979         }
980     }
981 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
982 /*-----------------------------------------------------------*/
983
984 #if ( configNUMBER_OF_CORES > 1 )
985     static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
986     {
987         UBaseType_t uxCurrentPriority = uxTopReadyPriority;
988         BaseType_t xTaskScheduled = pdFALSE;
989         BaseType_t xDecrementTopPriority = pdTRUE;
990         TCB_t * pxTCB = NULL;
991
992         #if ( configUSE_CORE_AFFINITY == 1 )
993             const TCB_t * pxPreviousTCB = NULL;
994         #endif
995         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
996             BaseType_t xPriorityDropped = pdFALSE;
997         #endif
998
999         /* This function should be called when scheduler is running. */
1000         configASSERT( xSchedulerRunning == pdTRUE );
1001
1002         /* A new task is created and a running task with the same priority yields
1003          * itself to run the new task. When a running task yields itself, it is still
1004          * in the ready list. This running task will be selected before the new task
1005          * since the new task is always added to the end of the ready list.
1006          * The other problem is that the running task still in the same position of
1007          * the ready list when it yields itself. It is possible that it will be selected
1008          * earlier then other tasks which waits longer than this task.
1009          *
1010          * To fix these problems, the running task should be put to the end of the
1011          * ready list before searching for the ready task in the ready list. */
1012         if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1013                                      &pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE )
1014         {
1015             ( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1016             vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1017                             &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1018         }
1019
1020         while( xTaskScheduled == pdFALSE )
1021         {
1022             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1023             {
1024                 if( uxCurrentPriority < uxTopReadyPriority )
1025                 {
1026                     /* We can't schedule any tasks, other than idle, that have a
1027                      * priority lower than the priority of a task currently running
1028                      * on another core. */
1029                     uxCurrentPriority = tskIDLE_PRIORITY;
1030                 }
1031             }
1032             #endif
1033
1034             if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
1035             {
1036                 const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
1037                 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList );
1038                 ListItem_t * pxIterator;
1039
1040                 /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
1041                  * must not be decremented any further. */
1042                 xDecrementTopPriority = pdFALSE;
1043
1044                 for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
1045                 {
1046                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
1047                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1048                     /* coverity[misra_c_2012_rule_11_5_violation] */
1049                     pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator );
1050
1051                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1052                     {
1053                         /* When falling back to the idle priority because only one priority
1054                          * level is allowed to run at a time, we should ONLY schedule the true
1055                          * idle tasks, not user tasks at the idle priority. */
1056                         if( uxCurrentPriority < uxTopReadyPriority )
1057                         {
1058                             if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U )
1059                             {
1060                                 continue;
1061                             }
1062                         }
1063                     }
1064                     #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1065
1066                     if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
1067                     {
1068                         #if ( configUSE_CORE_AFFINITY == 1 )
1069                             if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1070                         #endif
1071                         {
1072                             /* If the task is not being executed by any core swap it in. */
1073                             pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
1074                             #if ( configUSE_CORE_AFFINITY == 1 )
1075                                 pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
1076                             #endif
1077                             pxTCB->xTaskRunState = xCoreID;
1078                             pxCurrentTCBs[ xCoreID ] = pxTCB;
1079                             xTaskScheduled = pdTRUE;
1080                         }
1081                     }
1082                     else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
1083                     {
1084                         configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) );
1085
1086                         #if ( configUSE_CORE_AFFINITY == 1 )
1087                             if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1088                         #endif
1089                         {
1090                             /* The task is already running on this core, mark it as scheduled. */
1091                             pxTCB->xTaskRunState = xCoreID;
1092                             xTaskScheduled = pdTRUE;
1093                         }
1094                     }
1095                     else
1096                     {
1097                         /* This task is running on the core other than xCoreID. */
1098                         mtCOVERAGE_TEST_MARKER();
1099                     }
1100
1101                     if( xTaskScheduled != pdFALSE )
1102                     {
1103                         /* A task has been selected to run on this core. */
1104                         break;
1105                     }
1106                 }
1107             }
1108             else
1109             {
1110                 if( xDecrementTopPriority != pdFALSE )
1111                 {
1112                     uxTopReadyPriority--;
1113                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1114                     {
1115                         xPriorityDropped = pdTRUE;
1116                     }
1117                     #endif
1118                 }
1119             }
1120
1121             /* There are configNUMBER_OF_CORES Idle tasks created when scheduler started.
1122              * The scheduler should be able to select a task to run when uxCurrentPriority
1123              * is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow
1124              * tskIDLE_PRIORITY. */
1125             if( uxCurrentPriority > tskIDLE_PRIORITY )
1126             {
1127                 uxCurrentPriority--;
1128             }
1129             else
1130             {
1131                 /* This function is called when idle task is not created. Break the
1132                  * loop to prevent uxCurrentPriority overrun. */
1133                 break;
1134             }
1135         }
1136
1137         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1138         {
1139             if( xTaskScheduled == pdTRUE )
1140             {
1141                 if( xPriorityDropped != pdFALSE )
1142                 {
1143                     /* There may be several ready tasks that were being prevented from running because there was
1144                      * a higher priority task running. Now that the last of the higher priority tasks is no longer
1145                      * running, make sure all the other idle tasks yield. */
1146                     BaseType_t x;
1147
1148                     for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ )
1149                     {
1150                         if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1151                         {
1152                             prvYieldCore( x );
1153                         }
1154                     }
1155                 }
1156             }
1157         }
1158         #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1159
1160         #if ( configUSE_CORE_AFFINITY == 1 )
1161         {
1162             if( xTaskScheduled == pdTRUE )
1163             {
1164                 if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
1165                 {
1166                     /* A ready task was just evicted from this core. See if it can be
1167                      * scheduled on any other core. */
1168                     UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
1169                     BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority;
1170                     BaseType_t xLowestPriorityCore = -1;
1171                     BaseType_t x;
1172
1173                     if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1174                     {
1175                         xLowestPriority = xLowestPriority - 1;
1176                     }
1177
1178                     if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1179                     {
1180                         /* pxPreviousTCB was removed from this core and this core is not excluded
1181                          * from it's core affinity mask.
1182                          *
1183                          * pxPreviousTCB is preempted by the new higher priority task
1184                          * pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB,
1185                          * we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ]
1186                          * is allowed to run. The reason is - when more than one cores are
1187                          * eligible for an incoming task, we preempt the core with the minimum
1188                          * priority task. Because this core (i.e. xCoreID) was preempted for
1189                          * pxCurrentTCBs[ xCoreID ], this means that all the others cores
1190                          * where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority
1191                          * no lower than pxPreviousTCB's priority. Therefore, the only cores where
1192                          * which can be preempted for pxPreviousTCB are the ones where
1193                          * pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously,
1194                          * pxPreviousTCB is allowed to run).
1195                          *
1196                          * This is an optimization which reduces the number of cores needed to be
1197                          * searched for pxPreviousTCB to run. */
1198                         uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
1199                     }
1200                     else
1201                     {
1202                         /* pxPreviousTCB's core affinity mask is changed and it is no longer
1203                          * allowed to run on this core. Searching all the cores in pxPreviousTCB's
1204                          * new core affinity mask to find a core on which it can run. */
1205                     }
1206
1207                     uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U );
1208
1209                     for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- )
1210                     {
1211                         UBaseType_t uxCore = ( UBaseType_t ) x;
1212                         BaseType_t xTaskPriority;
1213
1214                         if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U )
1215                         {
1216                             xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority;
1217
1218                             if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1219                             {
1220                                 xTaskPriority = xTaskPriority - ( BaseType_t ) 1;
1221                             }
1222
1223                             uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore );
1224
1225                             if( ( xTaskPriority < xLowestPriority ) &&
1226                                 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) &&
1227                                 ( xYieldPendings[ uxCore ] == pdFALSE ) )
1228                             {
1229                                 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
1230                                     if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
1231                                 #endif
1232                                 {
1233                                     xLowestPriority = xTaskPriority;
1234                                     xLowestPriorityCore = ( BaseType_t ) uxCore;
1235                                 }
1236                             }
1237                         }
1238                     }
1239
1240                     if( xLowestPriorityCore >= 0 )
1241                     {
1242                         prvYieldCore( xLowestPriorityCore );
1243                     }
1244                 }
1245             }
1246         }
1247         #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */
1248     }
1249
1250 #endif /* ( configNUMBER_OF_CORES > 1 ) */
1251
1252 /*-----------------------------------------------------------*/
1253
1254 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1255
1256     static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
1257                                         const char * const pcName,
1258                                         const configSTACK_DEPTH_TYPE uxStackDepth,
1259                                         void * const pvParameters,
1260                                         UBaseType_t uxPriority,
1261                                         StackType_t * const puxStackBuffer,
1262                                         StaticTask_t * const pxTaskBuffer,
1263                                         TaskHandle_t * const pxCreatedTask )
1264     {
1265         TCB_t * pxNewTCB;
1266
1267         configASSERT( puxStackBuffer != NULL );
1268         configASSERT( pxTaskBuffer != NULL );
1269
1270         #if ( configASSERT_DEFINED == 1 )
1271         {
1272             /* Sanity check that the size of the structure used to declare a
1273              * variable of type StaticTask_t equals the size of the real task
1274              * structure. */
1275             volatile size_t xSize = sizeof( StaticTask_t );
1276             configASSERT( xSize == sizeof( TCB_t ) );
1277             ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not used. */
1278         }
1279         #endif /* configASSERT_DEFINED */
1280
1281         if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
1282         {
1283             /* The memory used for the task's TCB and stack are passed into this
1284              * function - use them. */
1285             /* MISRA Ref 11.3.1 [Misaligned access] */
1286             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
1287             /* coverity[misra_c_2012_rule_11_3_violation] */
1288             pxNewTCB = ( TCB_t * ) pxTaskBuffer;
1289             ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1290             pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
1291
1292             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1293             {
1294                 /* Tasks can be created statically or dynamically, so note this
1295                  * task was created statically in case the task is later deleted. */
1296                 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1297             }
1298             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1299
1300             prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1301         }
1302         else
1303         {
1304             pxNewTCB = NULL;
1305         }
1306
1307         return pxNewTCB;
1308     }
1309 /*-----------------------------------------------------------*/
1310
1311     TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
1312                                     const char * const pcName,
1313                                     const configSTACK_DEPTH_TYPE uxStackDepth,
1314                                     void * const pvParameters,
1315                                     UBaseType_t uxPriority,
1316                                     StackType_t * const puxStackBuffer,
1317                                     StaticTask_t * const pxTaskBuffer )
1318     {
1319         TaskHandle_t xReturn = NULL;
1320         TCB_t * pxNewTCB;
1321
1322         traceENTER_xTaskCreateStatic( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
1323
1324         pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1325
1326         if( pxNewTCB != NULL )
1327         {
1328             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1329             {
1330                 /* Set the task's affinity before scheduling it. */
1331                 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1332             }
1333             #endif
1334
1335             prvAddNewTaskToReadyList( pxNewTCB );
1336         }
1337         else
1338         {
1339             mtCOVERAGE_TEST_MARKER();
1340         }
1341
1342         traceRETURN_xTaskCreateStatic( xReturn );
1343
1344         return xReturn;
1345     }
1346 /*-----------------------------------------------------------*/
1347
1348     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1349         TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
1350                                                    const char * const pcName,
1351                                                    const configSTACK_DEPTH_TYPE uxStackDepth,
1352                                                    void * const pvParameters,
1353                                                    UBaseType_t uxPriority,
1354                                                    StackType_t * const puxStackBuffer,
1355                                                    StaticTask_t * const pxTaskBuffer,
1356                                                    UBaseType_t uxCoreAffinityMask )
1357         {
1358             TaskHandle_t xReturn = NULL;
1359             TCB_t * pxNewTCB;
1360
1361             traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask );
1362
1363             pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1364
1365             if( pxNewTCB != NULL )
1366             {
1367                 /* Set the task's affinity before scheduling it. */
1368                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1369
1370                 prvAddNewTaskToReadyList( pxNewTCB );
1371             }
1372             else
1373             {
1374                 mtCOVERAGE_TEST_MARKER();
1375             }
1376
1377             traceRETURN_xTaskCreateStaticAffinitySet( xReturn );
1378
1379             return xReturn;
1380         }
1381     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1382
1383 #endif /* SUPPORT_STATIC_ALLOCATION */
1384 /*-----------------------------------------------------------*/
1385
1386 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
1387     static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
1388                                                   TaskHandle_t * const pxCreatedTask )
1389     {
1390         TCB_t * pxNewTCB;
1391
1392         configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
1393         configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
1394
1395         if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
1396         {
1397             /* Allocate space for the TCB.  Where the memory comes from depends
1398              * on the implementation of the port malloc function and whether or
1399              * not static allocation is being used. */
1400             pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
1401             ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1402
1403             /* Store the stack location in the TCB. */
1404             pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1405
1406             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1407             {
1408                 /* Tasks can be created statically or dynamically, so note this
1409                  * task was created statically in case the task is later deleted. */
1410                 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1411             }
1412             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1413
1414             prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1415                                   pxTaskDefinition->pcName,
1416                                   pxTaskDefinition->usStackDepth,
1417                                   pxTaskDefinition->pvParameters,
1418                                   pxTaskDefinition->uxPriority,
1419                                   pxCreatedTask, pxNewTCB,
1420                                   pxTaskDefinition->xRegions );
1421         }
1422         else
1423         {
1424             pxNewTCB = NULL;
1425         }
1426
1427         return pxNewTCB;
1428     }
1429 /*-----------------------------------------------------------*/
1430
1431     BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
1432                                             TaskHandle_t * pxCreatedTask )
1433     {
1434         TCB_t * pxNewTCB;
1435         BaseType_t xReturn;
1436
1437         traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask );
1438
1439         configASSERT( pxTaskDefinition != NULL );
1440
1441         pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1442
1443         if( pxNewTCB != NULL )
1444         {
1445             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1446             {
1447                 /* Set the task's affinity before scheduling it. */
1448                 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1449             }
1450             #endif
1451
1452             prvAddNewTaskToReadyList( pxNewTCB );
1453             xReturn = pdPASS;
1454         }
1455         else
1456         {
1457             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1458         }
1459
1460         traceRETURN_xTaskCreateRestrictedStatic( xReturn );
1461
1462         return xReturn;
1463     }
1464 /*-----------------------------------------------------------*/
1465
1466     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1467         BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1468                                                            UBaseType_t uxCoreAffinityMask,
1469                                                            TaskHandle_t * pxCreatedTask )
1470         {
1471             TCB_t * pxNewTCB;
1472             BaseType_t xReturn;
1473
1474             traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1475
1476             configASSERT( pxTaskDefinition != NULL );
1477
1478             pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1479
1480             if( pxNewTCB != NULL )
1481             {
1482                 /* Set the task's affinity before scheduling it. */
1483                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1484
1485                 prvAddNewTaskToReadyList( pxNewTCB );
1486                 xReturn = pdPASS;
1487             }
1488             else
1489             {
1490                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1491             }
1492
1493             traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn );
1494
1495             return xReturn;
1496         }
1497     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1498
1499 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
1500 /*-----------------------------------------------------------*/
1501
1502 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
1503     static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
1504                                             TaskHandle_t * const pxCreatedTask )
1505     {
1506         TCB_t * pxNewTCB;
1507
1508         configASSERT( pxTaskDefinition->puxStackBuffer );
1509
1510         if( pxTaskDefinition->puxStackBuffer != NULL )
1511         {
1512             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1513             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1514             /* coverity[misra_c_2012_rule_11_5_violation] */
1515             pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1516
1517             if( pxNewTCB != NULL )
1518             {
1519                 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1520
1521                 /* Store the stack location in the TCB. */
1522                 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1523
1524                 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1525                 {
1526                     /* Tasks can be created statically or dynamically, so note
1527                      * this task had a statically allocated stack in case it is
1528                      * later deleted.  The TCB was allocated dynamically. */
1529                     pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
1530                 }
1531                 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1532
1533                 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1534                                       pxTaskDefinition->pcName,
1535                                       pxTaskDefinition->usStackDepth,
1536                                       pxTaskDefinition->pvParameters,
1537                                       pxTaskDefinition->uxPriority,
1538                                       pxCreatedTask, pxNewTCB,
1539                                       pxTaskDefinition->xRegions );
1540             }
1541         }
1542         else
1543         {
1544             pxNewTCB = NULL;
1545         }
1546
1547         return pxNewTCB;
1548     }
1549 /*-----------------------------------------------------------*/
1550
1551     BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
1552                                       TaskHandle_t * pxCreatedTask )
1553     {
1554         TCB_t * pxNewTCB;
1555         BaseType_t xReturn;
1556
1557         traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask );
1558
1559         pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1560
1561         if( pxNewTCB != NULL )
1562         {
1563             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1564             {
1565                 /* Set the task's affinity before scheduling it. */
1566                 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1567             }
1568             #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1569
1570             prvAddNewTaskToReadyList( pxNewTCB );
1571
1572             xReturn = pdPASS;
1573         }
1574         else
1575         {
1576             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1577         }
1578
1579         traceRETURN_xTaskCreateRestricted( xReturn );
1580
1581         return xReturn;
1582     }
1583 /*-----------------------------------------------------------*/
1584
1585     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1586         BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1587                                                      UBaseType_t uxCoreAffinityMask,
1588                                                      TaskHandle_t * pxCreatedTask )
1589         {
1590             TCB_t * pxNewTCB;
1591             BaseType_t xReturn;
1592
1593             traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1594
1595             pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1596
1597             if( pxNewTCB != NULL )
1598             {
1599                 /* Set the task's affinity before scheduling it. */
1600                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1601
1602                 prvAddNewTaskToReadyList( pxNewTCB );
1603
1604                 xReturn = pdPASS;
1605             }
1606             else
1607             {
1608                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1609             }
1610
1611             traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn );
1612
1613             return xReturn;
1614         }
1615     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1616
1617
1618 #endif /* portUSING_MPU_WRAPPERS */
1619 /*-----------------------------------------------------------*/
1620
1621 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
1622     static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
1623                                   const char * const pcName,
1624                                   const configSTACK_DEPTH_TYPE uxStackDepth,
1625                                   void * const pvParameters,
1626                                   UBaseType_t uxPriority,
1627                                   TaskHandle_t * const pxCreatedTask )
1628     {
1629         TCB_t * pxNewTCB;
1630
1631         /* If the stack grows down then allocate the stack then the TCB so the stack
1632          * does not grow into the TCB.  Likewise if the stack grows up then allocate
1633          * the TCB then the stack. */
1634         #if ( portSTACK_GROWTH > 0 )
1635         {
1636             /* Allocate space for the TCB.  Where the memory comes from depends on
1637              * the implementation of the port malloc function and whether or not static
1638              * allocation is being used. */
1639             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1640             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1641             /* coverity[misra_c_2012_rule_11_5_violation] */
1642             pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1643
1644             if( pxNewTCB != NULL )
1645             {
1646                 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1647
1648                 /* Allocate space for the stack used by the task being created.
1649                  * The base of the stack memory stored in the TCB so the task can
1650                  * be deleted later if required. */
1651                 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1652                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1653                 /* coverity[misra_c_2012_rule_11_5_violation] */
1654                 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
1655
1656                 if( pxNewTCB->pxStack == NULL )
1657                 {
1658                     /* Could not allocate the stack.  Delete the allocated TCB. */
1659                     vPortFree( pxNewTCB );
1660                     pxNewTCB = NULL;
1661                 }
1662             }
1663         }
1664         #else /* portSTACK_GROWTH */
1665         {
1666             StackType_t * pxStack;
1667
1668             /* Allocate space for the stack used by the task being created. */
1669             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1670             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1671             /* coverity[misra_c_2012_rule_11_5_violation] */
1672             pxStack = pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
1673
1674             if( pxStack != NULL )
1675             {
1676                 /* Allocate space for the TCB. */
1677                 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1678                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1679                 /* coverity[misra_c_2012_rule_11_5_violation] */
1680                 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1681
1682                 if( pxNewTCB != NULL )
1683                 {
1684                     ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1685
1686                     /* Store the stack location in the TCB. */
1687                     pxNewTCB->pxStack = pxStack;
1688                 }
1689                 else
1690                 {
1691                     /* The stack cannot be used as the TCB was not created.  Free
1692                      * it again. */
1693                     vPortFreeStack( pxStack );
1694                 }
1695             }
1696             else
1697             {
1698                 pxNewTCB = NULL;
1699             }
1700         }
1701         #endif /* portSTACK_GROWTH */
1702
1703         if( pxNewTCB != NULL )
1704         {
1705             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1706             {
1707                 /* Tasks can be created statically or dynamically, so note this
1708                  * task was created dynamically in case it is later deleted. */
1709                 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
1710             }
1711             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1712
1713             prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1714         }
1715
1716         return pxNewTCB;
1717     }
1718 /*-----------------------------------------------------------*/
1719
1720     BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
1721                             const char * const pcName,
1722                             const configSTACK_DEPTH_TYPE uxStackDepth,
1723                             void * const pvParameters,
1724                             UBaseType_t uxPriority,
1725                             TaskHandle_t * const pxCreatedTask )
1726     {
1727         TCB_t * pxNewTCB;
1728         BaseType_t xReturn;
1729
1730         traceENTER_xTaskCreate( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1731
1732         pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1733
1734         if( pxNewTCB != NULL )
1735         {
1736             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1737             {
1738                 /* Set the task's affinity before scheduling it. */
1739                 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1740             }
1741             #endif
1742
1743             prvAddNewTaskToReadyList( pxNewTCB );
1744             xReturn = pdPASS;
1745         }
1746         else
1747         {
1748             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1749         }
1750
1751         traceRETURN_xTaskCreate( xReturn );
1752
1753         return xReturn;
1754     }
1755 /*-----------------------------------------------------------*/
1756
1757     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1758         BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
1759                                            const char * const pcName,
1760                                            const configSTACK_DEPTH_TYPE uxStackDepth,
1761                                            void * const pvParameters,
1762                                            UBaseType_t uxPriority,
1763                                            UBaseType_t uxCoreAffinityMask,
1764                                            TaskHandle_t * const pxCreatedTask )
1765         {
1766             TCB_t * pxNewTCB;
1767             BaseType_t xReturn;
1768
1769             traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask );
1770
1771             pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1772
1773             if( pxNewTCB != NULL )
1774             {
1775                 /* Set the task's affinity before scheduling it. */
1776                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1777
1778                 prvAddNewTaskToReadyList( pxNewTCB );
1779                 xReturn = pdPASS;
1780             }
1781             else
1782             {
1783                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1784             }
1785
1786             traceRETURN_xTaskCreateAffinitySet( xReturn );
1787
1788             return xReturn;
1789         }
1790     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1791
1792 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
1793 /*-----------------------------------------------------------*/
1794
1795 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
1796                                   const char * const pcName,
1797                                   const configSTACK_DEPTH_TYPE uxStackDepth,
1798                                   void * const pvParameters,
1799                                   UBaseType_t uxPriority,
1800                                   TaskHandle_t * const pxCreatedTask,
1801                                   TCB_t * pxNewTCB,
1802                                   const MemoryRegion_t * const xRegions )
1803 {
1804     StackType_t * pxTopOfStack;
1805     UBaseType_t x;
1806
1807     #if ( portUSING_MPU_WRAPPERS == 1 )
1808         /* Should the task be created in privileged mode? */
1809         BaseType_t xRunPrivileged;
1810
1811         if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
1812         {
1813             xRunPrivileged = pdTRUE;
1814         }
1815         else
1816         {
1817             xRunPrivileged = pdFALSE;
1818         }
1819         uxPriority &= ~portPRIVILEGE_BIT;
1820     #endif /* portUSING_MPU_WRAPPERS == 1 */
1821
1822     /* Avoid dependency on memset() if it is not required. */
1823     #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
1824     {
1825         /* Fill the stack with a known value to assist debugging. */
1826         ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) uxStackDepth * sizeof( StackType_t ) );
1827     }
1828     #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
1829
1830     /* Calculate the top of stack address.  This depends on whether the stack
1831      * grows from high memory to low (as per the 80x86) or vice versa.
1832      * portSTACK_GROWTH is used to make the result positive or negative as required
1833      * by the port. */
1834     #if ( portSTACK_GROWTH < 0 )
1835     {
1836         pxTopOfStack = &( pxNewTCB->pxStack[ uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 ] );
1837         pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1838
1839         /* Check the alignment of the calculated top of stack is correct. */
1840         configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0U ) );
1841
1842         #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
1843         {
1844             /* Also record the stack's high address, which may assist
1845              * debugging. */
1846             pxNewTCB->pxEndOfStack = pxTopOfStack;
1847         }
1848         #endif /* configRECORD_STACK_HIGH_ADDRESS */
1849     }
1850     #else /* portSTACK_GROWTH */
1851     {
1852         pxTopOfStack = pxNewTCB->pxStack;
1853         pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1854
1855         /* Check the alignment of the calculated top of stack is correct. */
1856         configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0U ) );
1857
1858         /* The other extreme of the stack space is required if stack checking is
1859          * performed. */
1860         pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 );
1861     }
1862     #endif /* portSTACK_GROWTH */
1863
1864     /* Store the task name in the TCB. */
1865     if( pcName != NULL )
1866     {
1867         for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
1868         {
1869             pxNewTCB->pcTaskName[ x ] = pcName[ x ];
1870
1871             /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
1872              * configMAX_TASK_NAME_LEN characters just in case the memory after the
1873              * string is not accessible (extremely unlikely). */
1874             if( pcName[ x ] == ( char ) 0x00 )
1875             {
1876                 break;
1877             }
1878             else
1879             {
1880                 mtCOVERAGE_TEST_MARKER();
1881             }
1882         }
1883
1884         /* Ensure the name string is terminated in the case that the string length
1885          * was greater or equal to configMAX_TASK_NAME_LEN. */
1886         pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1U ] = '\0';
1887     }
1888     else
1889     {
1890         mtCOVERAGE_TEST_MARKER();
1891     }
1892
1893     /* This is used as an array index so must ensure it's not too large. */
1894     configASSERT( uxPriority < configMAX_PRIORITIES );
1895
1896     if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
1897     {
1898         uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
1899     }
1900     else
1901     {
1902         mtCOVERAGE_TEST_MARKER();
1903     }
1904
1905     pxNewTCB->uxPriority = uxPriority;
1906     #if ( configUSE_MUTEXES == 1 )
1907     {
1908         pxNewTCB->uxBasePriority = uxPriority;
1909     }
1910     #endif /* configUSE_MUTEXES */
1911
1912     vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
1913     vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
1914
1915     /* Set the pxNewTCB as a link back from the ListItem_t.  This is so we can get
1916      * back to  the containing TCB from a generic item in a list. */
1917     listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
1918
1919     /* Event lists are always in priority order. */
1920     listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority );
1921     listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
1922
1923     #if ( portUSING_MPU_WRAPPERS == 1 )
1924     {
1925         vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, uxStackDepth );
1926     }
1927     #else
1928     {
1929         /* Avoid compiler warning about unreferenced parameter. */
1930         ( void ) xRegions;
1931     }
1932     #endif
1933
1934     #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
1935     {
1936         /* Allocate and initialize memory for the task's TLS Block. */
1937         configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack );
1938     }
1939     #endif
1940
1941     /* Initialize the TCB stack to look as if the task was already running,
1942      * but had been interrupted by the scheduler.  The return address is set
1943      * to the start of the task function. Once the stack has been initialised
1944      * the top of stack variable is updated. */
1945     #if ( portUSING_MPU_WRAPPERS == 1 )
1946     {
1947         /* If the port has capability to detect stack overflow,
1948          * pass the stack end address to the stack initialization
1949          * function as well. */
1950         #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1951         {
1952             #if ( portSTACK_GROWTH < 0 )
1953             {
1954                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1955             }
1956             #else /* portSTACK_GROWTH */
1957             {
1958                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1959             }
1960             #endif /* portSTACK_GROWTH */
1961         }
1962         #else /* portHAS_STACK_OVERFLOW_CHECKING */
1963         {
1964             pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1965         }
1966         #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1967     }
1968     #else /* portUSING_MPU_WRAPPERS */
1969     {
1970         /* If the port has capability to detect stack overflow,
1971          * pass the stack end address to the stack initialization
1972          * function as well. */
1973         #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1974         {
1975             #if ( portSTACK_GROWTH < 0 )
1976             {
1977                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
1978             }
1979             #else /* portSTACK_GROWTH */
1980             {
1981                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
1982             }
1983             #endif /* portSTACK_GROWTH */
1984         }
1985         #else /* portHAS_STACK_OVERFLOW_CHECKING */
1986         {
1987             pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
1988         }
1989         #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1990     }
1991     #endif /* portUSING_MPU_WRAPPERS */
1992
1993     /* Initialize task state and task attributes. */
1994     #if ( configNUMBER_OF_CORES > 1 )
1995     {
1996         pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;
1997
1998         /* Is this an idle task? */
1999         if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) )
2000         {
2001             pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE;
2002         }
2003     }
2004     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2005
2006     if( pxCreatedTask != NULL )
2007     {
2008         /* Pass the handle out in an anonymous way.  The handle can be used to
2009          * change the created task's priority, delete the created task, etc.*/
2010         *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
2011     }
2012     else
2013     {
2014         mtCOVERAGE_TEST_MARKER();
2015     }
2016 }
2017 /*-----------------------------------------------------------*/
2018
2019 #if ( configNUMBER_OF_CORES == 1 )
2020
2021     static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2022     {
2023         /* Ensure interrupts don't access the task lists while the lists are being
2024          * updated. */
2025         taskENTER_CRITICAL();
2026         {
2027             uxCurrentNumberOfTasks = ( UBaseType_t ) ( uxCurrentNumberOfTasks + 1U );
2028
2029             if( pxCurrentTCB == NULL )
2030             {
2031                 /* There are no other tasks, or all the other tasks are in
2032                  * the suspended state - make this the current task. */
2033                 pxCurrentTCB = pxNewTCB;
2034
2035                 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2036                 {
2037                     /* This is the first task to be created so do the preliminary
2038                      * initialisation required.  We will not recover if this call
2039                      * fails, but we will report the failure. */
2040                     prvInitialiseTaskLists();
2041                 }
2042                 else
2043                 {
2044                     mtCOVERAGE_TEST_MARKER();
2045                 }
2046             }
2047             else
2048             {
2049                 /* If the scheduler is not already running, make this task the
2050                  * current task if it is the highest priority task to be created
2051                  * so far. */
2052                 if( xSchedulerRunning == pdFALSE )
2053                 {
2054                     if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
2055                     {
2056                         pxCurrentTCB = pxNewTCB;
2057                     }
2058                     else
2059                     {
2060                         mtCOVERAGE_TEST_MARKER();
2061                     }
2062                 }
2063                 else
2064                 {
2065                     mtCOVERAGE_TEST_MARKER();
2066                 }
2067             }
2068
2069             uxTaskNumber++;
2070
2071             #if ( configUSE_TRACE_FACILITY == 1 )
2072             {
2073                 /* Add a counter into the TCB for tracing only. */
2074                 pxNewTCB->uxTCBNumber = uxTaskNumber;
2075             }
2076             #endif /* configUSE_TRACE_FACILITY */
2077             traceTASK_CREATE( pxNewTCB );
2078
2079             prvAddTaskToReadyList( pxNewTCB );
2080
2081             portSETUP_TCB( pxNewTCB );
2082         }
2083         taskEXIT_CRITICAL();
2084
2085         if( xSchedulerRunning != pdFALSE )
2086         {
2087             /* If the created task is of a higher priority than the current task
2088              * then it should run now. */
2089             taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2090         }
2091         else
2092         {
2093             mtCOVERAGE_TEST_MARKER();
2094         }
2095     }
2096
2097 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2098
2099     static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2100     {
2101         /* Ensure interrupts don't access the task lists while the lists are being
2102          * updated. */
2103         taskENTER_CRITICAL();
2104         {
2105             uxCurrentNumberOfTasks++;
2106
2107             if( xSchedulerRunning == pdFALSE )
2108             {
2109                 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2110                 {
2111                     /* This is the first task to be created so do the preliminary
2112                      * initialisation required.  We will not recover if this call
2113                      * fails, but we will report the failure. */
2114                     prvInitialiseTaskLists();
2115                 }
2116                 else
2117                 {
2118                     mtCOVERAGE_TEST_MARKER();
2119                 }
2120
2121                 /* All the cores start with idle tasks before the SMP scheduler
2122                  * is running. Idle tasks are assigned to cores when they are
2123                  * created in prvCreateIdleTasks(). */
2124             }
2125
2126             uxTaskNumber++;
2127
2128             #if ( configUSE_TRACE_FACILITY == 1 )
2129             {
2130                 /* Add a counter into the TCB for tracing only. */
2131                 pxNewTCB->uxTCBNumber = uxTaskNumber;
2132             }
2133             #endif /* configUSE_TRACE_FACILITY */
2134             traceTASK_CREATE( pxNewTCB );
2135
2136             prvAddTaskToReadyList( pxNewTCB );
2137
2138             portSETUP_TCB( pxNewTCB );
2139
2140             if( xSchedulerRunning != pdFALSE )
2141             {
2142                 /* If the created task is of a higher priority than another
2143                  * currently running task and preemption is on then it should
2144                  * run now. */
2145                 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2146             }
2147             else
2148             {
2149                 mtCOVERAGE_TEST_MARKER();
2150             }
2151         }
2152         taskEXIT_CRITICAL();
2153     }
2154
2155 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2156 /*-----------------------------------------------------------*/
2157
2158 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
2159
2160     static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
2161                                                         size_t n )
2162     {
2163         size_t uxCharsWritten;
2164
2165         if( iSnprintfReturnValue < 0 )
2166         {
2167             /* Encoding error - Return 0 to indicate that nothing
2168              * was written to the buffer. */
2169             uxCharsWritten = 0;
2170         }
2171         else if( iSnprintfReturnValue >= ( int ) n )
2172         {
2173             /* This is the case when the supplied buffer is not
2174              * large to hold the generated string. Return the
2175              * number of characters actually written without
2176              * counting the terminating NULL character. */
2177             uxCharsWritten = n - 1U;
2178         }
2179         else
2180         {
2181             /* Complete string was written to the buffer. */
2182             uxCharsWritten = ( size_t ) iSnprintfReturnValue;
2183         }
2184
2185         return uxCharsWritten;
2186     }
2187
2188 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
2189 /*-----------------------------------------------------------*/
2190
2191 #if ( INCLUDE_vTaskDelete == 1 )
2192
2193     void vTaskDelete( TaskHandle_t xTaskToDelete )
2194     {
2195         TCB_t * pxTCB;
2196         BaseType_t xDeleteTCBInIdleTask = pdFALSE;
2197         BaseType_t xTaskIsRunningOrYielding;
2198
2199         traceENTER_vTaskDelete( xTaskToDelete );
2200
2201         taskENTER_CRITICAL();
2202         {
2203             /* If null is passed in here then it is the calling task that is
2204              * being deleted. */
2205             pxTCB = prvGetTCBFromHandle( xTaskToDelete );
2206
2207             /* Remove task from the ready/delayed list. */
2208             if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2209             {
2210                 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
2211             }
2212             else
2213             {
2214                 mtCOVERAGE_TEST_MARKER();
2215             }
2216
2217             /* Is the task waiting on an event also? */
2218             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
2219             {
2220                 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
2221             }
2222             else
2223             {
2224                 mtCOVERAGE_TEST_MARKER();
2225             }
2226
2227             /* Increment the uxTaskNumber also so kernel aware debuggers can
2228              * detect that the task lists need re-generating.  This is done before
2229              * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
2230              * not return. */
2231             uxTaskNumber++;
2232
2233             /* Use temp variable as distinct sequence points for reading volatile
2234              * variables prior to a logical operator to ensure compliance with
2235              * MISRA C 2012 Rule 13.5. */
2236             xTaskIsRunningOrYielding = taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB );
2237
2238             /* If the task is running (or yielding), we must add it to the
2239              * termination list so that an idle task can delete it when it is
2240              * no longer running. */
2241             if( ( xSchedulerRunning != pdFALSE ) && ( xTaskIsRunningOrYielding != pdFALSE ) )
2242             {
2243                 /* A running task or a task which is scheduled to yield is being
2244                  * deleted. This cannot complete when the task is still running
2245                  * on a core, as a context switch to another task is required.
2246                  * Place the task in the termination list. The idle task will check
2247                  * the termination list and free up any memory allocated by the
2248                  * scheduler for the TCB and stack of the deleted task. */
2249                 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
2250
2251                 /* Increment the ucTasksDeleted variable so the idle task knows
2252                  * there is a task that has been deleted and that it should therefore
2253                  * check the xTasksWaitingTermination list. */
2254                 ++uxDeletedTasksWaitingCleanUp;
2255
2256                 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
2257                  * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
2258                 traceTASK_DELETE( pxTCB );
2259
2260                 /* Delete the task TCB in idle task. */
2261                 xDeleteTCBInIdleTask = pdTRUE;
2262
2263                 /* The pre-delete hook is primarily for the Windows simulator,
2264                  * in which Windows specific clean up operations are performed,
2265                  * after which it is not possible to yield away from this task -
2266                  * hence xYieldPending is used to latch that a context switch is
2267                  * required. */
2268                 #if ( configNUMBER_OF_CORES == 1 )
2269                     portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) );
2270                 #else
2271                     portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) );
2272                 #endif
2273
2274                 /* In the case of SMP, it is possible that the task being deleted
2275                  * is running on another core. We must evict the task before
2276                  * exiting the critical section to ensure that the task cannot
2277                  * take an action which puts it back on ready/state/event list,
2278                  * thereby nullifying the delete operation. Once evicted, the
2279                  * task won't be scheduled ever as it will no longer be on the
2280                  * ready list. */
2281                 #if ( configNUMBER_OF_CORES > 1 )
2282                 {
2283                     if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2284                     {
2285                         if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
2286                         {
2287                             configASSERT( uxSchedulerSuspended == 0 );
2288                             taskYIELD_WITHIN_API();
2289                         }
2290                         else
2291                         {
2292                             prvYieldCore( pxTCB->xTaskRunState );
2293                         }
2294                     }
2295                 }
2296                 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2297             }
2298             else
2299             {
2300                 --uxCurrentNumberOfTasks;
2301                 traceTASK_DELETE( pxTCB );
2302
2303                 /* Reset the next expected unblock time in case it referred to
2304                  * the task that has just been deleted. */
2305                 prvResetNextTaskUnblockTime();
2306             }
2307         }
2308         taskEXIT_CRITICAL();
2309
2310         /* If the task is not deleting itself, call prvDeleteTCB from outside of
2311          * critical section. If a task deletes itself, prvDeleteTCB is called
2312          * from prvCheckTasksWaitingTermination which is called from Idle task. */
2313         if( xDeleteTCBInIdleTask != pdTRUE )
2314         {
2315             prvDeleteTCB( pxTCB );
2316         }
2317
2318         /* Force a reschedule if it is the currently running task that has just
2319          * been deleted. */
2320         #if ( configNUMBER_OF_CORES == 1 )
2321         {
2322             if( xSchedulerRunning != pdFALSE )
2323             {
2324                 if( pxTCB == pxCurrentTCB )
2325                 {
2326                     configASSERT( uxSchedulerSuspended == 0 );
2327                     taskYIELD_WITHIN_API();
2328                 }
2329                 else
2330                 {
2331                     mtCOVERAGE_TEST_MARKER();
2332                 }
2333             }
2334         }
2335         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2336
2337         traceRETURN_vTaskDelete();
2338     }
2339
2340 #endif /* INCLUDE_vTaskDelete */
2341 /*-----------------------------------------------------------*/
2342
2343 #if ( INCLUDE_xTaskDelayUntil == 1 )
2344
2345     BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
2346                                 const TickType_t xTimeIncrement )
2347     {
2348         TickType_t xTimeToWake;
2349         BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
2350
2351         traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
2352
2353         configASSERT( pxPreviousWakeTime );
2354         configASSERT( ( xTimeIncrement > 0U ) );
2355
2356         vTaskSuspendAll();
2357         {
2358             /* Minor optimisation.  The tick count cannot change in this
2359              * block. */
2360             const TickType_t xConstTickCount = xTickCount;
2361
2362             configASSERT( uxSchedulerSuspended == 1U );
2363
2364             /* Generate the tick time at which the task wants to wake. */
2365             xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
2366
2367             if( xConstTickCount < *pxPreviousWakeTime )
2368             {
2369                 /* The tick count has overflowed since this function was
2370                  * lasted called.  In this case the only time we should ever
2371                  * actually delay is if the wake time has also  overflowed,
2372                  * and the wake time is greater than the tick time.  When this
2373                  * is the case it is as if neither time had overflowed. */
2374                 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
2375                 {
2376                     xShouldDelay = pdTRUE;
2377                 }
2378                 else
2379                 {
2380                     mtCOVERAGE_TEST_MARKER();
2381                 }
2382             }
2383             else
2384             {
2385                 /* The tick time has not overflowed.  In this case we will
2386                  * delay if either the wake time has overflowed, and/or the
2387                  * tick time is less than the wake time. */
2388                 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
2389                 {
2390                     xShouldDelay = pdTRUE;
2391                 }
2392                 else
2393                 {
2394                     mtCOVERAGE_TEST_MARKER();
2395                 }
2396             }
2397
2398             /* Update the wake time ready for the next call. */
2399             *pxPreviousWakeTime = xTimeToWake;
2400
2401             if( xShouldDelay != pdFALSE )
2402             {
2403                 traceTASK_DELAY_UNTIL( xTimeToWake );
2404
2405                 /* prvAddCurrentTaskToDelayedList() needs the block time, not
2406                  * the time to wake, so subtract the current tick count. */
2407                 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
2408             }
2409             else
2410             {
2411                 mtCOVERAGE_TEST_MARKER();
2412             }
2413         }
2414         xAlreadyYielded = xTaskResumeAll();
2415
2416         /* Force a reschedule if xTaskResumeAll has not already done so, we may
2417          * have put ourselves to sleep. */
2418         if( xAlreadyYielded == pdFALSE )
2419         {
2420             taskYIELD_WITHIN_API();
2421         }
2422         else
2423         {
2424             mtCOVERAGE_TEST_MARKER();
2425         }
2426
2427         traceRETURN_xTaskDelayUntil( xShouldDelay );
2428
2429         return xShouldDelay;
2430     }
2431
2432 #endif /* INCLUDE_xTaskDelayUntil */
2433 /*-----------------------------------------------------------*/
2434
2435 #if ( INCLUDE_vTaskDelay == 1 )
2436
2437     void vTaskDelay( const TickType_t xTicksToDelay )
2438     {
2439         BaseType_t xAlreadyYielded = pdFALSE;
2440
2441         traceENTER_vTaskDelay( xTicksToDelay );
2442
2443         /* A delay time of zero just forces a reschedule. */
2444         if( xTicksToDelay > ( TickType_t ) 0U )
2445         {
2446             vTaskSuspendAll();
2447             {
2448                 configASSERT( uxSchedulerSuspended == 1U );
2449
2450                 traceTASK_DELAY();
2451
2452                 /* A task that is removed from the event list while the
2453                  * scheduler is suspended will not get placed in the ready
2454                  * list or removed from the blocked list until the scheduler
2455                  * is resumed.
2456                  *
2457                  * This task cannot be in an event list as it is the currently
2458                  * executing task. */
2459                 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
2460             }
2461             xAlreadyYielded = xTaskResumeAll();
2462         }
2463         else
2464         {
2465             mtCOVERAGE_TEST_MARKER();
2466         }
2467
2468         /* Force a reschedule if xTaskResumeAll has not already done so, we may
2469          * have put ourselves to sleep. */
2470         if( xAlreadyYielded == pdFALSE )
2471         {
2472             taskYIELD_WITHIN_API();
2473         }
2474         else
2475         {
2476             mtCOVERAGE_TEST_MARKER();
2477         }
2478
2479         traceRETURN_vTaskDelay();
2480     }
2481
2482 #endif /* INCLUDE_vTaskDelay */
2483 /*-----------------------------------------------------------*/
2484
2485 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
2486
2487     eTaskState eTaskGetState( TaskHandle_t xTask )
2488     {
2489         eTaskState eReturn;
2490         List_t const * pxStateList;
2491         List_t const * pxEventList;
2492         List_t const * pxDelayedList;
2493         List_t const * pxOverflowedDelayedList;
2494         const TCB_t * const pxTCB = xTask;
2495
2496         traceENTER_eTaskGetState( xTask );
2497
2498         configASSERT( pxTCB );
2499
2500         #if ( configNUMBER_OF_CORES == 1 )
2501             if( pxTCB == pxCurrentTCB )
2502             {
2503                 /* The task calling this function is querying its own state. */
2504                 eReturn = eRunning;
2505             }
2506             else
2507         #endif
2508         {
2509             taskENTER_CRITICAL();
2510             {
2511                 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
2512                 pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) );
2513                 pxDelayedList = pxDelayedTaskList;
2514                 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
2515             }
2516             taskEXIT_CRITICAL();
2517
2518             if( pxEventList == &xPendingReadyList )
2519             {
2520                 /* The task has been placed on the pending ready list, so its
2521                  * state is eReady regardless of what list the task's state list
2522                  * item is currently placed on. */
2523                 eReturn = eReady;
2524             }
2525             else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
2526             {
2527                 /* The task being queried is referenced from one of the Blocked
2528                  * lists. */
2529                 eReturn = eBlocked;
2530             }
2531
2532             #if ( INCLUDE_vTaskSuspend == 1 )
2533                 else if( pxStateList == &xSuspendedTaskList )
2534                 {
2535                     /* The task being queried is referenced from the suspended
2536                      * list.  Is it genuinely suspended or is it blocked
2537                      * indefinitely? */
2538                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
2539                     {
2540                         #if ( configUSE_TASK_NOTIFICATIONS == 1 )
2541                         {
2542                             BaseType_t x;
2543
2544                             /* The task does not appear on the event list item of
2545                              * and of the RTOS objects, but could still be in the
2546                              * blocked state if it is waiting on its notification
2547                              * rather than waiting on an object.  If not, is
2548                              * suspended. */
2549                             eReturn = eSuspended;
2550
2551                             for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
2552                             {
2553                                 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
2554                                 {
2555                                     eReturn = eBlocked;
2556                                     break;
2557                                 }
2558                             }
2559                         }
2560                         #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2561                         {
2562                             eReturn = eSuspended;
2563                         }
2564                         #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2565                     }
2566                     else
2567                     {
2568                         eReturn = eBlocked;
2569                     }
2570                 }
2571             #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
2572
2573             #if ( INCLUDE_vTaskDelete == 1 )
2574                 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
2575                 {
2576                     /* The task being queried is referenced from the deleted
2577                      * tasks list, or it is not referenced from any lists at
2578                      * all. */
2579                     eReturn = eDeleted;
2580                 }
2581             #endif
2582
2583             else
2584             {
2585                 #if ( configNUMBER_OF_CORES == 1 )
2586                 {
2587                     /* If the task is not in any other state, it must be in the
2588                      * Ready (including pending ready) state. */
2589                     eReturn = eReady;
2590                 }
2591                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2592                 {
2593                     if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2594                     {
2595                         /* Is it actively running on a core? */
2596                         eReturn = eRunning;
2597                     }
2598                     else
2599                     {
2600                         /* If the task is not in any other state, it must be in the
2601                          * Ready (including pending ready) state. */
2602                         eReturn = eReady;
2603                     }
2604                 }
2605                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2606             }
2607         }
2608
2609         traceRETURN_eTaskGetState( eReturn );
2610
2611         return eReturn;
2612     }
2613
2614 #endif /* INCLUDE_eTaskGetState */
2615 /*-----------------------------------------------------------*/
2616
2617 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2618
2619     UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
2620     {
2621         TCB_t const * pxTCB;
2622         UBaseType_t uxReturn;
2623
2624         traceENTER_uxTaskPriorityGet( xTask );
2625
2626         taskENTER_CRITICAL();
2627         {
2628             /* If null is passed in here then it is the priority of the task
2629              * that called uxTaskPriorityGet() that is being queried. */
2630             pxTCB = prvGetTCBFromHandle( xTask );
2631             uxReturn = pxTCB->uxPriority;
2632         }
2633         taskEXIT_CRITICAL();
2634
2635         traceRETURN_uxTaskPriorityGet( uxReturn );
2636
2637         return uxReturn;
2638     }
2639
2640 #endif /* INCLUDE_uxTaskPriorityGet */
2641 /*-----------------------------------------------------------*/
2642
2643 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2644
2645     UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
2646     {
2647         TCB_t const * pxTCB;
2648         UBaseType_t uxReturn;
2649         UBaseType_t uxSavedInterruptStatus;
2650
2651         traceENTER_uxTaskPriorityGetFromISR( xTask );
2652
2653         /* RTOS ports that support interrupt nesting have the concept of a
2654          * maximum  system call (or maximum API call) interrupt priority.
2655          * Interrupts that are  above the maximum system call priority are keep
2656          * permanently enabled, even when the RTOS kernel is in a critical section,
2657          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
2658          * is defined in FreeRTOSConfig.h then
2659          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2660          * failure if a FreeRTOS API function is called from an interrupt that has
2661          * been assigned a priority above the configured maximum system call
2662          * priority.  Only FreeRTOS functions that end in FromISR can be called
2663          * from interrupts  that have been assigned a priority at or (logically)
2664          * below the maximum system call interrupt priority.  FreeRTOS maintains a
2665          * separate interrupt safe API to ensure interrupt entry is as fast and as
2666          * simple as possible.  More information (albeit Cortex-M specific) is
2667          * provided on the following link:
2668          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2669         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2670
2671         /* MISRA Ref 4.7.1 [Return value shall be checked] */
2672         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
2673         /* coverity[misra_c_2012_directive_4_7_violation] */
2674         uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2675         {
2676             /* If null is passed in here then it is the priority of the calling
2677              * task that is being queried. */
2678             pxTCB = prvGetTCBFromHandle( xTask );
2679             uxReturn = pxTCB->uxPriority;
2680         }
2681         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2682
2683         traceRETURN_uxTaskPriorityGetFromISR( uxReturn );
2684
2685         return uxReturn;
2686     }
2687
2688 #endif /* INCLUDE_uxTaskPriorityGet */
2689 /*-----------------------------------------------------------*/
2690
2691 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2692
2693     UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask )
2694     {
2695         TCB_t const * pxTCB;
2696         UBaseType_t uxReturn;
2697
2698         traceENTER_uxTaskBasePriorityGet( xTask );
2699
2700         taskENTER_CRITICAL();
2701         {
2702             /* If null is passed in here then it is the base priority of the task
2703              * that called uxTaskBasePriorityGet() that is being queried. */
2704             pxTCB = prvGetTCBFromHandle( xTask );
2705             uxReturn = pxTCB->uxBasePriority;
2706         }
2707         taskEXIT_CRITICAL();
2708
2709         traceRETURN_uxTaskBasePriorityGet( uxReturn );
2710
2711         return uxReturn;
2712     }
2713
2714 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2715 /*-----------------------------------------------------------*/
2716
2717 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2718
2719     UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask )
2720     {
2721         TCB_t const * pxTCB;
2722         UBaseType_t uxReturn;
2723         UBaseType_t uxSavedInterruptStatus;
2724
2725         traceENTER_uxTaskBasePriorityGetFromISR( xTask );
2726
2727         /* RTOS ports that support interrupt nesting have the concept of a
2728          * maximum  system call (or maximum API call) interrupt priority.
2729          * Interrupts that are  above the maximum system call priority are keep
2730          * permanently enabled, even when the RTOS kernel is in a critical section,
2731          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
2732          * is defined in FreeRTOSConfig.h then
2733          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2734          * failure if a FreeRTOS API function is called from an interrupt that has
2735          * been assigned a priority above the configured maximum system call
2736          * priority.  Only FreeRTOS functions that end in FromISR can be called
2737          * from interrupts  that have been assigned a priority at or (logically)
2738          * below the maximum system call interrupt priority.  FreeRTOS maintains a
2739          * separate interrupt safe API to ensure interrupt entry is as fast and as
2740          * simple as possible.  More information (albeit Cortex-M specific) is
2741          * provided on the following link:
2742          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2743         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2744
2745         /* MISRA Ref 4.7.1 [Return value shall be checked] */
2746         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
2747         /* coverity[misra_c_2012_directive_4_7_violation] */
2748         uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2749         {
2750             /* If null is passed in here then it is the base priority of the calling
2751              * task that is being queried. */
2752             pxTCB = prvGetTCBFromHandle( xTask );
2753             uxReturn = pxTCB->uxBasePriority;
2754         }
2755         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2756
2757         traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn );
2758
2759         return uxReturn;
2760     }
2761
2762 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2763 /*-----------------------------------------------------------*/
2764
2765 #if ( INCLUDE_vTaskPrioritySet == 1 )
2766
2767     void vTaskPrioritySet( TaskHandle_t xTask,
2768                            UBaseType_t uxNewPriority )
2769     {
2770         TCB_t * pxTCB;
2771         UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
2772         BaseType_t xYieldRequired = pdFALSE;
2773
2774         #if ( configNUMBER_OF_CORES > 1 )
2775             BaseType_t xYieldForTask = pdFALSE;
2776         #endif
2777
2778         traceENTER_vTaskPrioritySet( xTask, uxNewPriority );
2779
2780         configASSERT( uxNewPriority < configMAX_PRIORITIES );
2781
2782         /* Ensure the new priority is valid. */
2783         if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
2784         {
2785             uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
2786         }
2787         else
2788         {
2789             mtCOVERAGE_TEST_MARKER();
2790         }
2791
2792         taskENTER_CRITICAL();
2793         {
2794             /* If null is passed in here then it is the priority of the calling
2795              * task that is being changed. */
2796             pxTCB = prvGetTCBFromHandle( xTask );
2797
2798             traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
2799
2800             #if ( configUSE_MUTEXES == 1 )
2801             {
2802                 uxCurrentBasePriority = pxTCB->uxBasePriority;
2803             }
2804             #else
2805             {
2806                 uxCurrentBasePriority = pxTCB->uxPriority;
2807             }
2808             #endif
2809
2810             if( uxCurrentBasePriority != uxNewPriority )
2811             {
2812                 /* The priority change may have readied a task of higher
2813                  * priority than a running task. */
2814                 if( uxNewPriority > uxCurrentBasePriority )
2815                 {
2816                     #if ( configNUMBER_OF_CORES == 1 )
2817                     {
2818                         if( pxTCB != pxCurrentTCB )
2819                         {
2820                             /* The priority of a task other than the currently
2821                              * running task is being raised.  Is the priority being
2822                              * raised above that of the running task? */
2823                             if( uxNewPriority > pxCurrentTCB->uxPriority )
2824                             {
2825                                 xYieldRequired = pdTRUE;
2826                             }
2827                             else
2828                             {
2829                                 mtCOVERAGE_TEST_MARKER();
2830                             }
2831                         }
2832                         else
2833                         {
2834                             /* The priority of the running task is being raised,
2835                              * but the running task must already be the highest
2836                              * priority task able to run so no yield is required. */
2837                         }
2838                     }
2839                     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2840                     {
2841                         /* The priority of a task is being raised so
2842                          * perform a yield for this task later. */
2843                         xYieldForTask = pdTRUE;
2844                     }
2845                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2846                 }
2847                 else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2848                 {
2849                     /* Setting the priority of a running task down means
2850                      * there may now be another task of higher priority that
2851                      * is ready to execute. */
2852                     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
2853                         if( pxTCB->xPreemptionDisable == pdFALSE )
2854                     #endif
2855                     {
2856                         xYieldRequired = pdTRUE;
2857                     }
2858                 }
2859                 else
2860                 {
2861                     /* Setting the priority of any other task down does not
2862                      * require a yield as the running task must be above the
2863                      * new priority of the task being modified. */
2864                 }
2865
2866                 /* Remember the ready list the task might be referenced from
2867                  * before its uxPriority member is changed so the
2868                  * taskRESET_READY_PRIORITY() macro can function correctly. */
2869                 uxPriorityUsedOnEntry = pxTCB->uxPriority;
2870
2871                 #if ( configUSE_MUTEXES == 1 )
2872                 {
2873                     /* Only change the priority being used if the task is not
2874                      * currently using an inherited priority or the new priority
2875                      * is bigger than the inherited priority. */
2876                     if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) )
2877                     {
2878                         pxTCB->uxPriority = uxNewPriority;
2879                     }
2880                     else
2881                     {
2882                         mtCOVERAGE_TEST_MARKER();
2883                     }
2884
2885                     /* The base priority gets set whatever. */
2886                     pxTCB->uxBasePriority = uxNewPriority;
2887                 }
2888                 #else /* if ( configUSE_MUTEXES == 1 ) */
2889                 {
2890                     pxTCB->uxPriority = uxNewPriority;
2891                 }
2892                 #endif /* if ( configUSE_MUTEXES == 1 ) */
2893
2894                 /* Only reset the event list item value if the value is not
2895                  * being used for anything else. */
2896                 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
2897                 {
2898                     listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) );
2899                 }
2900                 else
2901                 {
2902                     mtCOVERAGE_TEST_MARKER();
2903                 }
2904
2905                 /* If the task is in the blocked or suspended list we need do
2906                  * nothing more than change its priority variable. However, if
2907                  * the task is in a ready list it needs to be removed and placed
2908                  * in the list appropriate to its new priority. */
2909                 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
2910                 {
2911                     /* The task is currently in its ready list - remove before
2912                      * adding it to its new ready list.  As we are in a critical
2913                      * section we can do this even if the scheduler is suspended. */
2914                     if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2915                     {
2916                         /* It is known that the task is in its ready list so
2917                          * there is no need to check again and the port level
2918                          * reset macro can be called directly. */
2919                         portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
2920                     }
2921                     else
2922                     {
2923                         mtCOVERAGE_TEST_MARKER();
2924                     }
2925
2926                     prvAddTaskToReadyList( pxTCB );
2927                 }
2928                 else
2929                 {
2930                     #if ( configNUMBER_OF_CORES == 1 )
2931                     {
2932                         mtCOVERAGE_TEST_MARKER();
2933                     }
2934                     #else
2935                     {
2936                         /* It's possible that xYieldForTask was already set to pdTRUE because
2937                          * its priority is being raised. However, since it is not in a ready list
2938                          * we don't actually need to yield for it. */
2939                         xYieldForTask = pdFALSE;
2940                     }
2941                     #endif
2942                 }
2943
2944                 if( xYieldRequired != pdFALSE )
2945                 {
2946                     /* The running task priority is set down. Request the task to yield. */
2947                     taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
2948                 }
2949                 else
2950                 {
2951                     #if ( configNUMBER_OF_CORES > 1 )
2952                         if( xYieldForTask != pdFALSE )
2953                         {
2954                             /* The priority of the task is being raised. If a running
2955                              * task has priority lower than this task, it should yield
2956                              * for this task. */
2957                             taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
2958                         }
2959                         else
2960                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
2961                     {
2962                         mtCOVERAGE_TEST_MARKER();
2963                     }
2964                 }
2965
2966                 /* Remove compiler warning about unused variables when the port
2967                  * optimised task selection is not being used. */
2968                 ( void ) uxPriorityUsedOnEntry;
2969             }
2970         }
2971         taskEXIT_CRITICAL();
2972
2973         traceRETURN_vTaskPrioritySet();
2974     }
2975
2976 #endif /* INCLUDE_vTaskPrioritySet */
2977 /*-----------------------------------------------------------*/
2978
2979 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
2980     void vTaskCoreAffinitySet( const TaskHandle_t xTask,
2981                                UBaseType_t uxCoreAffinityMask )
2982     {
2983         TCB_t * pxTCB;
2984         BaseType_t xCoreID;
2985         UBaseType_t uxPrevCoreAffinityMask;
2986
2987         #if ( configUSE_PREEMPTION == 1 )
2988             UBaseType_t uxPrevNotAllowedCores;
2989         #endif
2990
2991         traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask );
2992
2993         taskENTER_CRITICAL();
2994         {
2995             pxTCB = prvGetTCBFromHandle( xTask );
2996
2997             uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask;
2998             pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;
2999
3000             if( xSchedulerRunning != pdFALSE )
3001             {
3002                 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3003                 {
3004                     xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
3005
3006                     /* If the task can no longer run on the core it was running,
3007                      * request the core to yield. */
3008                     if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U )
3009                     {
3010                         prvYieldCore( xCoreID );
3011                     }
3012                 }
3013                 else
3014                 {
3015                     #if ( configUSE_PREEMPTION == 1 )
3016                     {
3017                         /* Calculate the cores on which this task was not allowed to
3018                          * run previously. */
3019                         uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U );
3020
3021                         /* Does the new core mask enables this task to run on any of the
3022                          * previously not allowed cores? If yes, check if this task can be
3023                          * scheduled on any of those cores. */
3024                         if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U )
3025                         {
3026                             prvYieldForTask( pxTCB );
3027                         }
3028                     }
3029                     #else /* #if( configUSE_PREEMPTION == 1 ) */
3030                     {
3031                         mtCOVERAGE_TEST_MARKER();
3032                     }
3033                     #endif /* #if( configUSE_PREEMPTION == 1 ) */
3034                 }
3035             }
3036         }
3037         taskEXIT_CRITICAL();
3038
3039         traceRETURN_vTaskCoreAffinitySet();
3040     }
3041 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3042 /*-----------------------------------------------------------*/
3043
3044 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
3045     UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask )
3046     {
3047         const TCB_t * pxTCB;
3048         UBaseType_t uxCoreAffinityMask;
3049
3050         traceENTER_vTaskCoreAffinityGet( xTask );
3051
3052         taskENTER_CRITICAL();
3053         {
3054             pxTCB = prvGetTCBFromHandle( xTask );
3055             uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
3056         }
3057         taskEXIT_CRITICAL();
3058
3059         traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask );
3060
3061         return uxCoreAffinityMask;
3062     }
3063 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3064
3065 /*-----------------------------------------------------------*/
3066
3067 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3068
3069     void vTaskPreemptionDisable( const TaskHandle_t xTask )
3070     {
3071         TCB_t * pxTCB;
3072
3073         traceENTER_vTaskPreemptionDisable( xTask );
3074
3075         taskENTER_CRITICAL();
3076         {
3077             pxTCB = prvGetTCBFromHandle( xTask );
3078
3079             pxTCB->xPreemptionDisable = pdTRUE;
3080         }
3081         taskEXIT_CRITICAL();
3082
3083         traceRETURN_vTaskPreemptionDisable();
3084     }
3085
3086 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3087 /*-----------------------------------------------------------*/
3088
3089 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3090
3091     void vTaskPreemptionEnable( const TaskHandle_t xTask )
3092     {
3093         TCB_t * pxTCB;
3094         BaseType_t xCoreID;
3095
3096         traceENTER_vTaskPreemptionEnable( xTask );
3097
3098         taskENTER_CRITICAL();
3099         {
3100             pxTCB = prvGetTCBFromHandle( xTask );
3101
3102             pxTCB->xPreemptionDisable = pdFALSE;
3103
3104             if( xSchedulerRunning != pdFALSE )
3105             {
3106                 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3107                 {
3108                     xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
3109                     prvYieldCore( xCoreID );
3110                 }
3111             }
3112         }
3113         taskEXIT_CRITICAL();
3114
3115         traceRETURN_vTaskPreemptionEnable();
3116     }
3117
3118 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3119 /*-----------------------------------------------------------*/
3120
3121 #if ( INCLUDE_vTaskSuspend == 1 )
3122
3123     void vTaskSuspend( TaskHandle_t xTaskToSuspend )
3124     {
3125         TCB_t * pxTCB;
3126
3127         traceENTER_vTaskSuspend( xTaskToSuspend );
3128
3129         taskENTER_CRITICAL();
3130         {
3131             /* If null is passed in here then it is the running task that is
3132              * being suspended. */
3133             pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
3134
3135             traceTASK_SUSPEND( pxTCB );
3136
3137             /* Remove task from the ready/delayed list and place in the
3138              * suspended list. */
3139             if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
3140             {
3141                 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
3142             }
3143             else
3144             {
3145                 mtCOVERAGE_TEST_MARKER();
3146             }
3147
3148             /* Is the task waiting on an event also? */
3149             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
3150             {
3151                 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
3152             }
3153             else
3154             {
3155                 mtCOVERAGE_TEST_MARKER();
3156             }
3157
3158             vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
3159
3160             #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3161             {
3162                 BaseType_t x;
3163
3164                 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3165                 {
3166                     if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3167                     {
3168                         /* The task was blocked to wait for a notification, but is
3169                          * now suspended, so no notification was received. */
3170                         pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
3171                     }
3172                 }
3173             }
3174             #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3175
3176             /* In the case of SMP, it is possible that the task being suspended
3177              * is running on another core. We must evict the task before
3178              * exiting the critical section to ensure that the task cannot
3179              * take an action which puts it back on ready/state/event list,
3180              * thereby nullifying the suspend operation. Once evicted, the
3181              * task won't be scheduled before it is resumed as it will no longer
3182              * be on the ready list. */
3183             #if ( configNUMBER_OF_CORES > 1 )
3184             {
3185                 if( xSchedulerRunning != pdFALSE )
3186                 {
3187                     /* Reset the next expected unblock time in case it referred to the
3188                      * task that is now in the Suspended state. */
3189                     prvResetNextTaskUnblockTime();
3190
3191                     if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3192                     {
3193                         if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
3194                         {
3195                             /* The current task has just been suspended. */
3196                             configASSERT( uxSchedulerSuspended == 0 );
3197                             vTaskYieldWithinAPI();
3198                         }
3199                         else
3200                         {
3201                             prvYieldCore( pxTCB->xTaskRunState );
3202                         }
3203                     }
3204                     else
3205                     {
3206                         mtCOVERAGE_TEST_MARKER();
3207                     }
3208                 }
3209                 else
3210                 {
3211                     mtCOVERAGE_TEST_MARKER();
3212                 }
3213             }
3214             #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
3215         }
3216         taskEXIT_CRITICAL();
3217
3218         #if ( configNUMBER_OF_CORES == 1 )
3219         {
3220             UBaseType_t uxCurrentListLength;
3221
3222             if( xSchedulerRunning != pdFALSE )
3223             {
3224                 /* Reset the next expected unblock time in case it referred to the
3225                  * task that is now in the Suspended state. */
3226                 taskENTER_CRITICAL();
3227                 {
3228                     prvResetNextTaskUnblockTime();
3229                 }
3230                 taskEXIT_CRITICAL();
3231             }
3232             else
3233             {
3234                 mtCOVERAGE_TEST_MARKER();
3235             }
3236
3237             if( pxTCB == pxCurrentTCB )
3238             {
3239                 if( xSchedulerRunning != pdFALSE )
3240                 {
3241                     /* The current task has just been suspended. */
3242                     configASSERT( uxSchedulerSuspended == 0 );
3243                     portYIELD_WITHIN_API();
3244                 }
3245                 else
3246                 {
3247                     /* The scheduler is not running, but the task that was pointed
3248                      * to by pxCurrentTCB has just been suspended and pxCurrentTCB
3249                      * must be adjusted to point to a different task. */
3250
3251                     /* Use a temp variable as a distinct sequence point for reading
3252                      * volatile variables prior to a comparison to ensure compliance
3253                      * with MISRA C 2012 Rule 13.2. */
3254                     uxCurrentListLength = listCURRENT_LIST_LENGTH( &xSuspendedTaskList );
3255
3256                     if( uxCurrentListLength == uxCurrentNumberOfTasks )
3257                     {
3258                         /* No other tasks are ready, so set pxCurrentTCB back to
3259                          * NULL so when the next task is created pxCurrentTCB will
3260                          * be set to point to it no matter what its relative priority
3261                          * is. */
3262                         pxCurrentTCB = NULL;
3263                     }
3264                     else
3265                     {
3266                         vTaskSwitchContext();
3267                     }
3268                 }
3269             }
3270             else
3271             {
3272                 mtCOVERAGE_TEST_MARKER();
3273             }
3274         }
3275         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3276
3277         traceRETURN_vTaskSuspend();
3278     }
3279
3280 #endif /* INCLUDE_vTaskSuspend */
3281 /*-----------------------------------------------------------*/
3282
3283 #if ( INCLUDE_vTaskSuspend == 1 )
3284
3285     static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
3286     {
3287         BaseType_t xReturn = pdFALSE;
3288         const TCB_t * const pxTCB = xTask;
3289
3290         /* Accesses xPendingReadyList so must be called from a critical
3291          * section. */
3292
3293         /* It does not make sense to check if the calling task is suspended. */
3294         configASSERT( xTask );
3295
3296         /* Is the task being resumed actually in the suspended list? */
3297         if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
3298         {
3299             /* Has the task already been resumed from within an ISR? */
3300             if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
3301             {
3302                 /* Is it in the suspended list because it is in the Suspended
3303                  * state, or because it is blocked with no timeout? */
3304                 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
3305                 {
3306                     #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3307                     {
3308                         BaseType_t x;
3309
3310                         /* The task does not appear on the event list item of
3311                          * and of the RTOS objects, but could still be in the
3312                          * blocked state if it is waiting on its notification
3313                          * rather than waiting on an object.  If not, is
3314                          * suspended. */
3315                         xReturn = pdTRUE;
3316
3317                         for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3318                         {
3319                             if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3320                             {
3321                                 xReturn = pdFALSE;
3322                                 break;
3323                             }
3324                         }
3325                     }
3326                     #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3327                     {
3328                         xReturn = pdTRUE;
3329                     }
3330                     #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3331                 }
3332                 else
3333                 {
3334                     mtCOVERAGE_TEST_MARKER();
3335                 }
3336             }
3337             else
3338             {
3339                 mtCOVERAGE_TEST_MARKER();
3340             }
3341         }
3342         else
3343         {
3344             mtCOVERAGE_TEST_MARKER();
3345         }
3346
3347         return xReturn;
3348     }
3349
3350 #endif /* INCLUDE_vTaskSuspend */
3351 /*-----------------------------------------------------------*/
3352
3353 #if ( INCLUDE_vTaskSuspend == 1 )
3354
3355     void vTaskResume( TaskHandle_t xTaskToResume )
3356     {
3357         TCB_t * const pxTCB = xTaskToResume;
3358
3359         traceENTER_vTaskResume( xTaskToResume );
3360
3361         /* It does not make sense to resume the calling task. */
3362         configASSERT( xTaskToResume );
3363
3364         #if ( configNUMBER_OF_CORES == 1 )
3365
3366             /* The parameter cannot be NULL as it is impossible to resume the
3367              * currently executing task. */
3368             if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
3369         #else
3370
3371             /* The parameter cannot be NULL as it is impossible to resume the
3372              * currently executing task. It is also impossible to resume a task
3373              * that is actively running on another core but it is not safe
3374              * to check their run state here. Therefore, we get into a critical
3375              * section and check if the task is actually suspended or not. */
3376             if( pxTCB != NULL )
3377         #endif
3378         {
3379             taskENTER_CRITICAL();
3380             {
3381                 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3382                 {
3383                     traceTASK_RESUME( pxTCB );
3384
3385                     /* The ready list can be accessed even if the scheduler is
3386                      * suspended because this is inside a critical section. */
3387                     ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3388                     prvAddTaskToReadyList( pxTCB );
3389
3390                     /* This yield may not cause the task just resumed to run,
3391                      * but will leave the lists in the correct state for the
3392                      * next yield. */
3393                     taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
3394                 }
3395                 else
3396                 {
3397                     mtCOVERAGE_TEST_MARKER();
3398                 }
3399             }
3400             taskEXIT_CRITICAL();
3401         }
3402         else
3403         {
3404             mtCOVERAGE_TEST_MARKER();
3405         }
3406
3407         traceRETURN_vTaskResume();
3408     }
3409
3410 #endif /* INCLUDE_vTaskSuspend */
3411
3412 /*-----------------------------------------------------------*/
3413
3414 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
3415
3416     BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
3417     {
3418         BaseType_t xYieldRequired = pdFALSE;
3419         TCB_t * const pxTCB = xTaskToResume;
3420         UBaseType_t uxSavedInterruptStatus;
3421
3422         traceENTER_xTaskResumeFromISR( xTaskToResume );
3423
3424         configASSERT( xTaskToResume );
3425
3426         /* RTOS ports that support interrupt nesting have the concept of a
3427          * maximum  system call (or maximum API call) interrupt priority.
3428          * Interrupts that are  above the maximum system call priority are keep
3429          * permanently enabled, even when the RTOS kernel is in a critical section,
3430          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
3431          * is defined in FreeRTOSConfig.h then
3432          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
3433          * failure if a FreeRTOS API function is called from an interrupt that has
3434          * been assigned a priority above the configured maximum system call
3435          * priority.  Only FreeRTOS functions that end in FromISR can be called
3436          * from interrupts  that have been assigned a priority at or (logically)
3437          * below the maximum system call interrupt priority.  FreeRTOS maintains a
3438          * separate interrupt safe API to ensure interrupt entry is as fast and as
3439          * simple as possible.  More information (albeit Cortex-M specific) is
3440          * provided on the following link:
3441          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
3442         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
3443
3444         /* MISRA Ref 4.7.1 [Return value shall be checked] */
3445         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
3446         /* coverity[misra_c_2012_directive_4_7_violation] */
3447         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
3448         {
3449             if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3450             {
3451                 traceTASK_RESUME_FROM_ISR( pxTCB );
3452
3453                 /* Check the ready lists can be accessed. */
3454                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3455                 {
3456                     #if ( configNUMBER_OF_CORES == 1 )
3457                     {
3458                         /* Ready lists can be accessed so move the task from the
3459                          * suspended list to the ready list directly. */
3460                         if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3461                         {
3462                             xYieldRequired = pdTRUE;
3463
3464                             /* Mark that a yield is pending in case the user is not
3465                              * using the return value to initiate a context switch
3466                              * from the ISR using the port specific portYIELD_FROM_ISR(). */
3467                             xYieldPendings[ 0 ] = pdTRUE;
3468                         }
3469                         else
3470                         {
3471                             mtCOVERAGE_TEST_MARKER();
3472                         }
3473                     }
3474                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3475
3476                     ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3477                     prvAddTaskToReadyList( pxTCB );
3478                 }
3479                 else
3480                 {
3481                     /* The delayed or ready lists cannot be accessed so the task
3482                      * is held in the pending ready list until the scheduler is
3483                      * unsuspended. */
3484                     vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
3485                 }
3486
3487                 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) )
3488                 {
3489                     prvYieldForTask( pxTCB );
3490
3491                     if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
3492                     {
3493                         xYieldRequired = pdTRUE;
3494                     }
3495                 }
3496                 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */
3497             }
3498             else
3499             {
3500                 mtCOVERAGE_TEST_MARKER();
3501             }
3502         }
3503         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
3504
3505         traceRETURN_xTaskResumeFromISR( xYieldRequired );
3506
3507         return xYieldRequired;
3508     }
3509
3510 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
3511 /*-----------------------------------------------------------*/
3512
3513 static BaseType_t prvCreateIdleTasks( void )
3514 {
3515     BaseType_t xReturn = pdPASS;
3516     BaseType_t xCoreID;
3517     char cIdleName[ configMAX_TASK_NAME_LEN ];
3518     TaskFunction_t pxIdleTaskFunction = NULL;
3519     BaseType_t xIdleTaskNameIndex;
3520
3521     for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ )
3522     {
3523         cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ];
3524
3525         /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
3526          * configMAX_TASK_NAME_LEN characters just in case the memory after the
3527          * string is not accessible (extremely unlikely). */
3528         if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 )
3529         {
3530             break;
3531         }
3532         else
3533         {
3534             mtCOVERAGE_TEST_MARKER();
3535         }
3536     }
3537
3538     /* Add each idle task at the lowest priority. */
3539     for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3540     {
3541         #if ( configNUMBER_OF_CORES == 1 )
3542         {
3543             pxIdleTaskFunction = prvIdleTask;
3544         }
3545         #else /* #if (  configNUMBER_OF_CORES == 1 ) */
3546         {
3547             /* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks
3548              * are also created to ensure that each core has an idle task to
3549              * run when no other task is available to run. */
3550             if( xCoreID == 0 )
3551             {
3552                 pxIdleTaskFunction = prvIdleTask;
3553             }
3554             else
3555             {
3556                 pxIdleTaskFunction = prvPassiveIdleTask;
3557             }
3558         }
3559         #endif /* #if (  configNUMBER_OF_CORES == 1 ) */
3560
3561         /* Update the idle task name with suffix to differentiate the idle tasks.
3562          * This function is not required in single core FreeRTOS since there is
3563          * only one idle task. */
3564         #if ( configNUMBER_OF_CORES > 1 )
3565         {
3566             /* Append the idle task number to the end of the name if there is space. */
3567             if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3568             {
3569                 cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' );
3570
3571                 /* And append a null character if there is space. */
3572                 if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3573                 {
3574                     cIdleName[ xIdleTaskNameIndex + 1 ] = '\0';
3575                 }
3576                 else
3577                 {
3578                     mtCOVERAGE_TEST_MARKER();
3579                 }
3580             }
3581             else
3582             {
3583                 mtCOVERAGE_TEST_MARKER();
3584             }
3585         }
3586         #endif /* if ( configNUMBER_OF_CORES > 1 ) */
3587
3588         #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
3589         {
3590             StaticTask_t * pxIdleTaskTCBBuffer = NULL;
3591             StackType_t * pxIdleTaskStackBuffer = NULL;
3592             configSTACK_DEPTH_TYPE uxIdleTaskStackSize;
3593
3594             /* The Idle task is created using user provided RAM - obtain the
3595              * address of the RAM then create the idle task. */
3596             #if ( configNUMBER_OF_CORES == 1 )
3597             {
3598                 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
3599             }
3600             #else
3601             {
3602                 if( xCoreID == 0 )
3603                 {
3604                     vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
3605                 }
3606                 else
3607                 {
3608                     vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize, ( BaseType_t ) ( xCoreID - 1 ) );
3609                 }
3610             }
3611             #endif /* if ( configNUMBER_OF_CORES == 1 ) */
3612             xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction,
3613                                                              cIdleName,
3614                                                              uxIdleTaskStackSize,
3615                                                              ( void * ) NULL,
3616                                                              portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3617                                                              pxIdleTaskStackBuffer,
3618                                                              pxIdleTaskTCBBuffer );
3619
3620             if( xIdleTaskHandles[ xCoreID ] != NULL )
3621             {
3622                 xReturn = pdPASS;
3623             }
3624             else
3625             {
3626                 xReturn = pdFAIL;
3627             }
3628         }
3629         #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
3630         {
3631             /* The Idle task is being created using dynamically allocated RAM. */
3632             xReturn = xTaskCreate( pxIdleTaskFunction,
3633                                    cIdleName,
3634                                    configMINIMAL_STACK_SIZE,
3635                                    ( void * ) NULL,
3636                                    portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3637                                    &xIdleTaskHandles[ xCoreID ] );
3638         }
3639         #endif /* configSUPPORT_STATIC_ALLOCATION */
3640
3641         /* Break the loop if any of the idle task is failed to be created. */
3642         if( xReturn == pdFAIL )
3643         {
3644             break;
3645         }
3646         else
3647         {
3648             #if ( configNUMBER_OF_CORES == 1 )
3649             {
3650                 mtCOVERAGE_TEST_MARKER();
3651             }
3652             #else
3653             {
3654                 /* Assign idle task to each core before SMP scheduler is running. */
3655                 xIdleTaskHandles[ xCoreID ]->xTaskRunState = xCoreID;
3656                 pxCurrentTCBs[ xCoreID ] = xIdleTaskHandles[ xCoreID ];
3657             }
3658             #endif
3659         }
3660     }
3661
3662     return xReturn;
3663 }
3664
3665 /*-----------------------------------------------------------*/
3666
3667 void vTaskStartScheduler( void )
3668 {
3669     BaseType_t xReturn;
3670
3671     traceENTER_vTaskStartScheduler();
3672
3673     #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
3674     {
3675         /* Sanity check that the UBaseType_t must have greater than or equal to
3676          * the number of bits as confNUMBER_OF_CORES. */
3677         configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES );
3678     }
3679     #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
3680
3681     xReturn = prvCreateIdleTasks();
3682
3683     #if ( configUSE_TIMERS == 1 )
3684     {
3685         if( xReturn == pdPASS )
3686         {
3687             xReturn = xTimerCreateTimerTask();
3688         }
3689         else
3690         {
3691             mtCOVERAGE_TEST_MARKER();
3692         }
3693     }
3694     #endif /* configUSE_TIMERS */
3695
3696     if( xReturn == pdPASS )
3697     {
3698         /* freertos_tasks_c_additions_init() should only be called if the user
3699          * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
3700          * the only macro called by the function. */
3701         #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
3702         {
3703             freertos_tasks_c_additions_init();
3704         }
3705         #endif
3706
3707         /* Interrupts are turned off here, to ensure a tick does not occur
3708          * before or during the call to xPortStartScheduler().  The stacks of
3709          * the created tasks contain a status word with interrupts switched on
3710          * so interrupts will automatically get re-enabled when the first task
3711          * starts to run. */
3712         portDISABLE_INTERRUPTS();
3713
3714         #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
3715         {
3716             /* Switch C-Runtime's TLS Block to point to the TLS
3717              * block specific to the task that will run first. */
3718             configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
3719         }
3720         #endif
3721
3722         xNextTaskUnblockTime = portMAX_DELAY;
3723         xSchedulerRunning = pdTRUE;
3724         xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
3725
3726         /* If configGENERATE_RUN_TIME_STATS is defined then the following
3727          * macro must be defined to configure the timer/counter used to generate
3728          * the run time counter time base.   NOTE:  If configGENERATE_RUN_TIME_STATS
3729          * is set to 0 and the following line fails to build then ensure you do not
3730          * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
3731          * FreeRTOSConfig.h file. */
3732         portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
3733
3734         traceTASK_SWITCHED_IN();
3735
3736         traceSTARTING_SCHEDULER( xIdleTaskHandles );
3737
3738         /* Setting up the timer tick is hardware specific and thus in the
3739          * portable interface. */
3740
3741         /* The return value for xPortStartScheduler is not required
3742          * hence using a void datatype. */
3743         ( void ) xPortStartScheduler();
3744
3745         /* In most cases, xPortStartScheduler() will not return. If it
3746          * returns pdTRUE then there was not enough heap memory available
3747          * to create either the Idle or the Timer task. If it returned
3748          * pdFALSE, then the application called xTaskEndScheduler().
3749          * Most ports don't implement xTaskEndScheduler() as there is
3750          * nothing to return to. */
3751     }
3752     else
3753     {
3754         /* This line will only be reached if the kernel could not be started,
3755          * because there was not enough FreeRTOS heap to create the idle task
3756          * or the timer task. */
3757         configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
3758     }
3759
3760     /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
3761      * meaning xIdleTaskHandles are not used anywhere else. */
3762     ( void ) xIdleTaskHandles;
3763
3764     /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
3765      * from getting optimized out as it is no longer used by the kernel. */
3766     ( void ) uxTopUsedPriority;
3767
3768     traceRETURN_vTaskStartScheduler();
3769 }
3770 /*-----------------------------------------------------------*/
3771
3772 void vTaskEndScheduler( void )
3773 {
3774     traceENTER_vTaskEndScheduler();
3775
3776     #if ( INCLUDE_vTaskDelete == 1 )
3777     {
3778         BaseType_t xCoreID;
3779
3780         #if ( configUSE_TIMERS == 1 )
3781         {
3782             /* Delete the timer task created by the kernel. */
3783             vTaskDelete( xTimerGetTimerDaemonTaskHandle() );
3784         }
3785         #endif /* #if ( configUSE_TIMERS == 1 ) */
3786
3787         /* Delete Idle tasks created by the kernel.*/
3788         for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3789         {
3790             vTaskDelete( xIdleTaskHandles[ xCoreID ] );
3791         }
3792
3793         /* Idle task is responsible for reclaiming the resources of the tasks in
3794          * xTasksWaitingTermination list. Since the idle task is now deleted and
3795          * no longer going to run, we need to reclaim resources of all the tasks
3796          * in the xTasksWaitingTermination list. */
3797         prvCheckTasksWaitingTermination();
3798     }
3799     #endif /* #if ( INCLUDE_vTaskDelete == 1 ) */
3800
3801     /* Stop the scheduler interrupts and call the portable scheduler end
3802      * routine so the original ISRs can be restored if necessary.  The port
3803      * layer must ensure interrupts enable  bit is left in the correct state. */
3804     portDISABLE_INTERRUPTS();
3805     xSchedulerRunning = pdFALSE;
3806
3807     /* This function must be called from a task and the application is
3808      * responsible for deleting that task after the scheduler is stopped. */
3809     vPortEndScheduler();
3810
3811     traceRETURN_vTaskEndScheduler();
3812 }
3813 /*----------------------------------------------------------*/
3814
3815 void vTaskSuspendAll( void )
3816 {
3817     traceENTER_vTaskSuspendAll();
3818
3819     #if ( configNUMBER_OF_CORES == 1 )
3820     {
3821         /* A critical section is not required as the variable is of type
3822          * BaseType_t.  Please read Richard Barry's reply in the following link to a
3823          * post in the FreeRTOS support forum before reporting this as a bug! -
3824          * https://goo.gl/wu4acr */
3825
3826         /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
3827          * do not otherwise exhibit real time behaviour. */
3828         portSOFTWARE_BARRIER();
3829
3830         /* The scheduler is suspended if uxSchedulerSuspended is non-zero.  An increment
3831          * is used to allow calls to vTaskSuspendAll() to nest. */
3832         uxSchedulerSuspended = ( UBaseType_t ) ( uxSchedulerSuspended + 1U );
3833
3834         /* Enforces ordering for ports and optimised compilers that may otherwise place
3835          * the above increment elsewhere. */
3836         portMEMORY_BARRIER();
3837     }
3838     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3839     {
3840         UBaseType_t ulState;
3841
3842         /* This must only be called from within a task. */
3843         portASSERT_IF_IN_ISR();
3844
3845         if( xSchedulerRunning != pdFALSE )
3846         {
3847             /* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks.
3848              * We must disable interrupts before we grab the locks in the event that this task is
3849              * interrupted and switches context before incrementing uxSchedulerSuspended.
3850              * It is safe to re-enable interrupts after releasing the ISR lock and incrementing
3851              * uxSchedulerSuspended since that will prevent context switches. */
3852             ulState = portSET_INTERRUPT_MASK();
3853
3854             /* This must never be called from inside a critical section. */
3855             configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
3856
3857             /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
3858              * do not otherwise exhibit real time behaviour. */
3859             portSOFTWARE_BARRIER();
3860
3861             portGET_TASK_LOCK();
3862
3863             /* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The
3864              * purpose is to prevent altering the variable when fromISR APIs are readying
3865              * it. */
3866             if( uxSchedulerSuspended == 0U )
3867             {
3868                 prvCheckForRunStateChange();
3869             }
3870             else
3871             {
3872                 mtCOVERAGE_TEST_MARKER();
3873             }
3874
3875             portGET_ISR_LOCK();
3876
3877             /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3878              * is used to allow calls to vTaskSuspendAll() to nest. */
3879             ++uxSchedulerSuspended;
3880             portRELEASE_ISR_LOCK();
3881
3882             portCLEAR_INTERRUPT_MASK( ulState );
3883         }
3884         else
3885         {
3886             mtCOVERAGE_TEST_MARKER();
3887         }
3888     }
3889     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3890
3891     traceRETURN_vTaskSuspendAll();
3892 }
3893
3894 /*----------------------------------------------------------*/
3895
3896 #if ( configUSE_TICKLESS_IDLE != 0 )
3897
3898     static TickType_t prvGetExpectedIdleTime( void )
3899     {
3900         TickType_t xReturn;
3901         BaseType_t xHigherPriorityReadyTasks = pdFALSE;
3902
3903         /* xHigherPriorityReadyTasks takes care of the case where
3904          * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
3905          * task that are in the Ready state, even though the idle task is
3906          * running. */
3907         #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
3908         {
3909             if( uxTopReadyPriority > tskIDLE_PRIORITY )
3910             {
3911                 xHigherPriorityReadyTasks = pdTRUE;
3912             }
3913         }
3914         #else
3915         {
3916             const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
3917
3918             /* When port optimised task selection is used the uxTopReadyPriority
3919              * variable is used as a bit map.  If bits other than the least
3920              * significant bit are set then there are tasks that have a priority
3921              * above the idle priority that are in the Ready state.  This takes
3922              * care of the case where the co-operative scheduler is in use. */
3923             if( uxTopReadyPriority > uxLeastSignificantBit )
3924             {
3925                 xHigherPriorityReadyTasks = pdTRUE;
3926             }
3927         }
3928         #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
3929
3930         if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
3931         {
3932             xReturn = 0;
3933         }
3934         else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1U )
3935         {
3936             /* There are other idle priority tasks in the ready state.  If
3937              * time slicing is used then the very next tick interrupt must be
3938              * processed. */
3939             xReturn = 0;
3940         }
3941         else if( xHigherPriorityReadyTasks != pdFALSE )
3942         {
3943             /* There are tasks in the Ready state that have a priority above the
3944              * idle priority.  This path can only be reached if
3945              * configUSE_PREEMPTION is 0. */
3946             xReturn = 0;
3947         }
3948         else
3949         {
3950             xReturn = xNextTaskUnblockTime;
3951             xReturn -= xTickCount;
3952         }
3953
3954         return xReturn;
3955     }
3956
3957 #endif /* configUSE_TICKLESS_IDLE */
3958 /*----------------------------------------------------------*/
3959
3960 BaseType_t xTaskResumeAll( void )
3961 {
3962     TCB_t * pxTCB = NULL;
3963     BaseType_t xAlreadyYielded = pdFALSE;
3964
3965     traceENTER_xTaskResumeAll();
3966
3967     #if ( configNUMBER_OF_CORES > 1 )
3968         if( xSchedulerRunning != pdFALSE )
3969     #endif
3970     {
3971         /* It is possible that an ISR caused a task to be removed from an event
3972          * list while the scheduler was suspended.  If this was the case then the
3973          * removed task will have been added to the xPendingReadyList.  Once the
3974          * scheduler has been resumed it is safe to move all the pending ready
3975          * tasks from this list into their appropriate ready list. */
3976         taskENTER_CRITICAL();
3977         {
3978             BaseType_t xCoreID;
3979             xCoreID = ( BaseType_t ) portGET_CORE_ID();
3980
3981             /* If uxSchedulerSuspended is zero then this function does not match a
3982              * previous call to vTaskSuspendAll(). */
3983             configASSERT( uxSchedulerSuspended != 0U );
3984
3985             uxSchedulerSuspended = ( UBaseType_t ) ( uxSchedulerSuspended - 1U );
3986             portRELEASE_TASK_LOCK();
3987
3988             if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3989             {
3990                 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
3991                 {
3992                     /* Move any readied tasks from the pending list into the
3993                      * appropriate ready list. */
3994                     while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
3995                     {
3996                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
3997                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
3998                         /* coverity[misra_c_2012_rule_11_5_violation] */
3999                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
4000                         listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
4001                         portMEMORY_BARRIER();
4002                         listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
4003                         prvAddTaskToReadyList( pxTCB );
4004
4005                         #if ( configNUMBER_OF_CORES == 1 )
4006                         {
4007                             /* If the moved task has a priority higher than the current
4008                              * task then a yield must be performed. */
4009                             if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4010                             {
4011                                 xYieldPendings[ xCoreID ] = pdTRUE;
4012                             }
4013                             else
4014                             {
4015                                 mtCOVERAGE_TEST_MARKER();
4016                             }
4017                         }
4018                         #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4019                         {
4020                             /* All appropriate tasks yield at the moment a task is added to xPendingReadyList.
4021                              * If the current core yielded then vTaskSwitchContext() has already been called
4022                              * which sets xYieldPendings for the current core to pdTRUE. */
4023                         }
4024                         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4025                     }
4026
4027                     if( pxTCB != NULL )
4028                     {
4029                         /* A task was unblocked while the scheduler was suspended,
4030                          * which may have prevented the next unblock time from being
4031                          * re-calculated, in which case re-calculate it now.  Mainly
4032                          * important for low power tickless implementations, where
4033                          * this can prevent an unnecessary exit from low power
4034                          * state. */
4035                         prvResetNextTaskUnblockTime();
4036                     }
4037
4038                     /* If any ticks occurred while the scheduler was suspended then
4039                      * they should be processed now.  This ensures the tick count does
4040                      * not  slip, and that any delayed tasks are resumed at the correct
4041                      * time.
4042                      *
4043                      * It should be safe to call xTaskIncrementTick here from any core
4044                      * since we are in a critical section and xTaskIncrementTick itself
4045                      * protects itself within a critical section. Suspending the scheduler
4046                      * from any core causes xTaskIncrementTick to increment uxPendedCounts. */
4047                     {
4048                         TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
4049
4050                         if( xPendedCounts > ( TickType_t ) 0U )
4051                         {
4052                             do
4053                             {
4054                                 if( xTaskIncrementTick() != pdFALSE )
4055                                 {
4056                                     /* Other cores are interrupted from
4057                                      * within xTaskIncrementTick(). */
4058                                     xYieldPendings[ xCoreID ] = pdTRUE;
4059                                 }
4060                                 else
4061                                 {
4062                                     mtCOVERAGE_TEST_MARKER();
4063                                 }
4064
4065                                 --xPendedCounts;
4066                             } while( xPendedCounts > ( TickType_t ) 0U );
4067
4068                             xPendedTicks = 0;
4069                         }
4070                         else
4071                         {
4072                             mtCOVERAGE_TEST_MARKER();
4073                         }
4074                     }
4075
4076                     if( xYieldPendings[ xCoreID ] != pdFALSE )
4077                     {
4078                         #if ( configUSE_PREEMPTION != 0 )
4079                         {
4080                             xAlreadyYielded = pdTRUE;
4081                         }
4082                         #endif /* #if ( configUSE_PREEMPTION != 0 ) */
4083
4084                         #if ( configNUMBER_OF_CORES == 1 )
4085                         {
4086                             taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB );
4087                         }
4088                         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4089                     }
4090                     else
4091                     {
4092                         mtCOVERAGE_TEST_MARKER();
4093                     }
4094                 }
4095             }
4096             else
4097             {
4098                 mtCOVERAGE_TEST_MARKER();
4099             }
4100         }
4101         taskEXIT_CRITICAL();
4102     }
4103
4104     traceRETURN_xTaskResumeAll( xAlreadyYielded );
4105
4106     return xAlreadyYielded;
4107 }
4108 /*-----------------------------------------------------------*/
4109
4110 TickType_t xTaskGetTickCount( void )
4111 {
4112     TickType_t xTicks;
4113
4114     traceENTER_xTaskGetTickCount();
4115
4116     /* Critical section required if running on a 16 bit processor. */
4117     portTICK_TYPE_ENTER_CRITICAL();
4118     {
4119         xTicks = xTickCount;
4120     }
4121     portTICK_TYPE_EXIT_CRITICAL();
4122
4123     traceRETURN_xTaskGetTickCount( xTicks );
4124
4125     return xTicks;
4126 }
4127 /*-----------------------------------------------------------*/
4128
4129 TickType_t xTaskGetTickCountFromISR( void )
4130 {
4131     TickType_t xReturn;
4132     UBaseType_t uxSavedInterruptStatus;
4133
4134     traceENTER_xTaskGetTickCountFromISR();
4135
4136     /* RTOS ports that support interrupt nesting have the concept of a maximum
4137      * system call (or maximum API call) interrupt priority.  Interrupts that are
4138      * above the maximum system call priority are kept permanently enabled, even
4139      * when the RTOS kernel is in a critical section, but cannot make any calls to
4140      * FreeRTOS API functions.  If configASSERT() is defined in FreeRTOSConfig.h
4141      * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
4142      * failure if a FreeRTOS API function is called from an interrupt that has been
4143      * assigned a priority above the configured maximum system call priority.
4144      * Only FreeRTOS functions that end in FromISR can be called from interrupts
4145      * that have been assigned a priority at or (logically) below the maximum
4146      * system call  interrupt priority.  FreeRTOS maintains a separate interrupt
4147      * safe API to ensure interrupt entry is as fast and as simple as possible.
4148      * More information (albeit Cortex-M specific) is provided on the following
4149      * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
4150     portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
4151
4152     uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
4153     {
4154         xReturn = xTickCount;
4155     }
4156     portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
4157
4158     traceRETURN_xTaskGetTickCountFromISR( xReturn );
4159
4160     return xReturn;
4161 }
4162 /*-----------------------------------------------------------*/
4163
4164 UBaseType_t uxTaskGetNumberOfTasks( void )
4165 {
4166     traceENTER_uxTaskGetNumberOfTasks();
4167
4168     /* A critical section is not required because the variables are of type
4169      * BaseType_t. */
4170     traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks );
4171
4172     return uxCurrentNumberOfTasks;
4173 }
4174 /*-----------------------------------------------------------*/
4175
4176 char * pcTaskGetName( TaskHandle_t xTaskToQuery )
4177 {
4178     TCB_t * pxTCB;
4179
4180     traceENTER_pcTaskGetName( xTaskToQuery );
4181
4182     /* If null is passed in here then the name of the calling task is being
4183      * queried. */
4184     pxTCB = prvGetTCBFromHandle( xTaskToQuery );
4185     configASSERT( pxTCB );
4186
4187     traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) );
4188
4189     return &( pxTCB->pcTaskName[ 0 ] );
4190 }
4191 /*-----------------------------------------------------------*/
4192
4193 #if ( INCLUDE_xTaskGetHandle == 1 )
4194     static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4195                                                      const char pcNameToQuery[] )
4196     {
4197         TCB_t * pxReturn = NULL;
4198         TCB_t * pxTCB = NULL;
4199         UBaseType_t x;
4200         char cNextChar;
4201         BaseType_t xBreakLoop;
4202         const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
4203         ListItem_t * pxIterator;
4204
4205         /* This function is called with the scheduler suspended. */
4206
4207         if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4208         {
4209             for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
4210             {
4211                 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4212                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4213                 /* coverity[misra_c_2012_rule_11_5_violation] */
4214                 pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
4215
4216                 /* Check each character in the name looking for a match or
4217                  * mismatch. */
4218                 xBreakLoop = pdFALSE;
4219
4220                 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4221                 {
4222                     cNextChar = pxTCB->pcTaskName[ x ];
4223
4224                     if( cNextChar != pcNameToQuery[ x ] )
4225                     {
4226                         /* Characters didn't match. */
4227                         xBreakLoop = pdTRUE;
4228                     }
4229                     else if( cNextChar == ( char ) 0x00 )
4230                     {
4231                         /* Both strings terminated, a match must have been
4232                          * found. */
4233                         pxReturn = pxTCB;
4234                         xBreakLoop = pdTRUE;
4235                     }
4236                     else
4237                     {
4238                         mtCOVERAGE_TEST_MARKER();
4239                     }
4240
4241                     if( xBreakLoop != pdFALSE )
4242                     {
4243                         break;
4244                     }
4245                 }
4246
4247                 if( pxReturn != NULL )
4248                 {
4249                     /* The handle has been found. */
4250                     break;
4251                 }
4252             }
4253         }
4254         else
4255         {
4256             mtCOVERAGE_TEST_MARKER();
4257         }
4258
4259         return pxReturn;
4260     }
4261
4262 #endif /* INCLUDE_xTaskGetHandle */
4263 /*-----------------------------------------------------------*/
4264
4265 #if ( INCLUDE_xTaskGetHandle == 1 )
4266
4267     TaskHandle_t xTaskGetHandle( const char * pcNameToQuery )
4268     {
4269         UBaseType_t uxQueue = configMAX_PRIORITIES;
4270         TCB_t * pxTCB;
4271
4272         traceENTER_xTaskGetHandle( pcNameToQuery );
4273
4274         /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
4275         configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
4276
4277         vTaskSuspendAll();
4278         {
4279             /* Search the ready lists. */
4280             do
4281             {
4282                 uxQueue--;
4283                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
4284
4285                 if( pxTCB != NULL )
4286                 {
4287                     /* Found the handle. */
4288                     break;
4289                 }
4290             } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4291
4292             /* Search the delayed lists. */
4293             if( pxTCB == NULL )
4294             {
4295                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
4296             }
4297
4298             if( pxTCB == NULL )
4299             {
4300                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
4301             }
4302
4303             #if ( INCLUDE_vTaskSuspend == 1 )
4304             {
4305                 if( pxTCB == NULL )
4306                 {
4307                     /* Search the suspended list. */
4308                     pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
4309                 }
4310             }
4311             #endif
4312
4313             #if ( INCLUDE_vTaskDelete == 1 )
4314             {
4315                 if( pxTCB == NULL )
4316                 {
4317                     /* Search the deleted list. */
4318                     pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
4319                 }
4320             }
4321             #endif
4322         }
4323         ( void ) xTaskResumeAll();
4324
4325         traceRETURN_xTaskGetHandle( pxTCB );
4326
4327         return pxTCB;
4328     }
4329
4330 #endif /* INCLUDE_xTaskGetHandle */
4331 /*-----------------------------------------------------------*/
4332
4333 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
4334
4335     BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
4336                                       StackType_t ** ppuxStackBuffer,
4337                                       StaticTask_t ** ppxTaskBuffer )
4338     {
4339         BaseType_t xReturn;
4340         TCB_t * pxTCB;
4341
4342         traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer );
4343
4344         configASSERT( ppuxStackBuffer != NULL );
4345         configASSERT( ppxTaskBuffer != NULL );
4346
4347         pxTCB = prvGetTCBFromHandle( xTask );
4348
4349         #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
4350         {
4351             if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
4352             {
4353                 *ppuxStackBuffer = pxTCB->pxStack;
4354                 /* MISRA Ref 11.3.1 [Misaligned access] */
4355                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
4356                 /* coverity[misra_c_2012_rule_11_3_violation] */
4357                 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4358                 xReturn = pdTRUE;
4359             }
4360             else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
4361             {
4362                 *ppuxStackBuffer = pxTCB->pxStack;
4363                 *ppxTaskBuffer = NULL;
4364                 xReturn = pdTRUE;
4365             }
4366             else
4367             {
4368                 xReturn = pdFALSE;
4369             }
4370         }
4371         #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4372         {
4373             *ppuxStackBuffer = pxTCB->pxStack;
4374             *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4375             xReturn = pdTRUE;
4376         }
4377         #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4378
4379         traceRETURN_xTaskGetStaticBuffers( xReturn );
4380
4381         return xReturn;
4382     }
4383
4384 #endif /* configSUPPORT_STATIC_ALLOCATION */
4385 /*-----------------------------------------------------------*/
4386
4387 #if ( configUSE_TRACE_FACILITY == 1 )
4388
4389     UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
4390                                       const UBaseType_t uxArraySize,
4391                                       configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
4392     {
4393         UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
4394
4395         traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime );
4396
4397         vTaskSuspendAll();
4398         {
4399             /* Is there a space in the array for each task in the system? */
4400             if( uxArraySize >= uxCurrentNumberOfTasks )
4401             {
4402                 /* Fill in an TaskStatus_t structure with information on each
4403                  * task in the Ready state. */
4404                 do
4405                 {
4406                     uxQueue--;
4407                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) );
4408                 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4409
4410                 /* Fill in an TaskStatus_t structure with information on each
4411                  * task in the Blocked state. */
4412                 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) );
4413                 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) );
4414
4415                 #if ( INCLUDE_vTaskDelete == 1 )
4416                 {
4417                     /* Fill in an TaskStatus_t structure with information on
4418                      * each task that has been deleted but not yet cleaned up. */
4419                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) );
4420                 }
4421                 #endif
4422
4423                 #if ( INCLUDE_vTaskSuspend == 1 )
4424                 {
4425                     /* Fill in an TaskStatus_t structure with information on
4426                      * each task in the Suspended state. */
4427                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) );
4428                 }
4429                 #endif
4430
4431                 #if ( configGENERATE_RUN_TIME_STATS == 1 )
4432                 {
4433                     if( pulTotalRunTime != NULL )
4434                     {
4435                         #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
4436                             portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
4437                         #else
4438                             *pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
4439                         #endif
4440                     }
4441                 }
4442                 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4443                 {
4444                     if( pulTotalRunTime != NULL )
4445                     {
4446                         *pulTotalRunTime = 0;
4447                     }
4448                 }
4449                 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4450             }
4451             else
4452             {
4453                 mtCOVERAGE_TEST_MARKER();
4454             }
4455         }
4456         ( void ) xTaskResumeAll();
4457
4458         traceRETURN_uxTaskGetSystemState( uxTask );
4459
4460         return uxTask;
4461     }
4462
4463 #endif /* configUSE_TRACE_FACILITY */
4464 /*----------------------------------------------------------*/
4465
4466 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
4467
4468     #if ( configNUMBER_OF_CORES == 1 )
4469         TaskHandle_t xTaskGetIdleTaskHandle( void )
4470         {
4471             traceENTER_xTaskGetIdleTaskHandle();
4472
4473             /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4474              * started, then xIdleTaskHandles will be NULL. */
4475             configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) );
4476
4477             traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] );
4478
4479             return xIdleTaskHandles[ 0 ];
4480         }
4481     #endif /* if ( configNUMBER_OF_CORES == 1 ) */
4482
4483     TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID )
4484     {
4485         traceENTER_xTaskGetIdleTaskHandleForCore( xCoreID );
4486
4487         /* Ensure the core ID is valid. */
4488         configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
4489
4490         /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4491          * started, then xIdleTaskHandles will be NULL. */
4492         configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) );
4493
4494         traceRETURN_xTaskGetIdleTaskHandleForCore( xIdleTaskHandles[ xCoreID ] );
4495
4496         return xIdleTaskHandles[ xCoreID ];
4497     }
4498
4499 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
4500 /*----------------------------------------------------------*/
4501
4502 /* This conditional compilation should use inequality to 0, not equality to 1.
4503  * This is to ensure vTaskStepTick() is available when user defined low power mode
4504  * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
4505  * 1. */
4506 #if ( configUSE_TICKLESS_IDLE != 0 )
4507
4508     void vTaskStepTick( TickType_t xTicksToJump )
4509     {
4510         TickType_t xUpdatedTickCount;
4511
4512         traceENTER_vTaskStepTick( xTicksToJump );
4513
4514         /* Correct the tick count value after a period during which the tick
4515          * was suppressed.  Note this does *not* call the tick hook function for
4516          * each stepped tick. */
4517         xUpdatedTickCount = xTickCount + xTicksToJump;
4518         configASSERT( xUpdatedTickCount <= xNextTaskUnblockTime );
4519
4520         if( xUpdatedTickCount == xNextTaskUnblockTime )
4521         {
4522             /* Arrange for xTickCount to reach xNextTaskUnblockTime in
4523              * xTaskIncrementTick() when the scheduler resumes.  This ensures
4524              * that any delayed tasks are resumed at the correct time. */
4525             configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
4526             configASSERT( xTicksToJump != ( TickType_t ) 0 );
4527
4528             /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4529             taskENTER_CRITICAL();
4530             {
4531                 xPendedTicks++;
4532             }
4533             taskEXIT_CRITICAL();
4534             xTicksToJump--;
4535         }
4536         else
4537         {
4538             mtCOVERAGE_TEST_MARKER();
4539         }
4540
4541         xTickCount += xTicksToJump;
4542
4543         traceINCREASE_TICK_COUNT( xTicksToJump );
4544         traceRETURN_vTaskStepTick();
4545     }
4546
4547 #endif /* configUSE_TICKLESS_IDLE */
4548 /*----------------------------------------------------------*/
4549
4550 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
4551 {
4552     BaseType_t xYieldOccurred;
4553
4554     traceENTER_xTaskCatchUpTicks( xTicksToCatchUp );
4555
4556     /* Must not be called with the scheduler suspended as the implementation
4557      * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
4558     configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U );
4559
4560     /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
4561      * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
4562     vTaskSuspendAll();
4563
4564     /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4565     taskENTER_CRITICAL();
4566     {
4567         xPendedTicks += xTicksToCatchUp;
4568     }
4569     taskEXIT_CRITICAL();
4570     xYieldOccurred = xTaskResumeAll();
4571
4572     traceRETURN_xTaskCatchUpTicks( xYieldOccurred );
4573
4574     return xYieldOccurred;
4575 }
4576 /*----------------------------------------------------------*/
4577
4578 #if ( INCLUDE_xTaskAbortDelay == 1 )
4579
4580     BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
4581     {
4582         TCB_t * pxTCB = xTask;
4583         BaseType_t xReturn;
4584
4585         traceENTER_xTaskAbortDelay( xTask );
4586
4587         configASSERT( pxTCB );
4588
4589         vTaskSuspendAll();
4590         {
4591             /* A task can only be prematurely removed from the Blocked state if
4592              * it is actually in the Blocked state. */
4593             if( eTaskGetState( xTask ) == eBlocked )
4594             {
4595                 xReturn = pdPASS;
4596
4597                 /* Remove the reference to the task from the blocked list.  An
4598                  * interrupt won't touch the xStateListItem because the
4599                  * scheduler is suspended. */
4600                 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
4601
4602                 /* Is the task waiting on an event also?  If so remove it from
4603                  * the event list too.  Interrupts can touch the event list item,
4604                  * even though the scheduler is suspended, so a critical section
4605                  * is used. */
4606                 taskENTER_CRITICAL();
4607                 {
4608                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4609                     {
4610                         ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
4611
4612                         /* This lets the task know it was forcibly removed from the
4613                          * blocked state so it should not re-evaluate its block time and
4614                          * then block again. */
4615                         pxTCB->ucDelayAborted = ( uint8_t ) pdTRUE;
4616                     }
4617                     else
4618                     {
4619                         mtCOVERAGE_TEST_MARKER();
4620                     }
4621                 }
4622                 taskEXIT_CRITICAL();
4623
4624                 /* Place the unblocked task into the appropriate ready list. */
4625                 prvAddTaskToReadyList( pxTCB );
4626
4627                 /* A task being unblocked cannot cause an immediate context
4628                  * switch if preemption is turned off. */
4629                 #if ( configUSE_PREEMPTION == 1 )
4630                 {
4631                     #if ( configNUMBER_OF_CORES == 1 )
4632                     {
4633                         /* Preemption is on, but a context switch should only be
4634                          * performed if the unblocked task has a priority that is
4635                          * higher than the currently executing task. */
4636                         if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4637                         {
4638                             /* Pend the yield to be performed when the scheduler
4639                              * is unsuspended. */
4640                             xYieldPendings[ 0 ] = pdTRUE;
4641                         }
4642                         else
4643                         {
4644                             mtCOVERAGE_TEST_MARKER();
4645                         }
4646                     }
4647                     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4648                     {
4649                         taskENTER_CRITICAL();
4650                         {
4651                             prvYieldForTask( pxTCB );
4652                         }
4653                         taskEXIT_CRITICAL();
4654                     }
4655                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4656                 }
4657                 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4658             }
4659             else
4660             {
4661                 xReturn = pdFAIL;
4662             }
4663         }
4664         ( void ) xTaskResumeAll();
4665
4666         traceRETURN_xTaskAbortDelay( xReturn );
4667
4668         return xReturn;
4669     }
4670
4671 #endif /* INCLUDE_xTaskAbortDelay */
4672 /*----------------------------------------------------------*/
4673
4674 BaseType_t xTaskIncrementTick( void )
4675 {
4676     TCB_t * pxTCB;
4677     TickType_t xItemValue;
4678     BaseType_t xSwitchRequired = pdFALSE;
4679
4680     #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 )
4681     BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE };
4682     #endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
4683
4684     traceENTER_xTaskIncrementTick();
4685
4686     /* Called by the portable layer each time a tick interrupt occurs.
4687      * Increments the tick then checks to see if the new tick value will cause any
4688      * tasks to be unblocked. */
4689     traceTASK_INCREMENT_TICK( xTickCount );
4690
4691     /* Tick increment should occur on every kernel timer event. Core 0 has the
4692      * responsibility to increment the tick, or increment the pended ticks if the
4693      * scheduler is suspended.  If pended ticks is greater than zero, the core that
4694      * calls xTaskResumeAll has the responsibility to increment the tick. */
4695     if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
4696     {
4697         /* Minor optimisation.  The tick count cannot change in this
4698          * block. */
4699         const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
4700
4701         /* Increment the RTOS tick, switching the delayed and overflowed
4702          * delayed lists if it wraps to 0. */
4703         xTickCount = xConstTickCount;
4704
4705         if( xConstTickCount == ( TickType_t ) 0U )
4706         {
4707             taskSWITCH_DELAYED_LISTS();
4708         }
4709         else
4710         {
4711             mtCOVERAGE_TEST_MARKER();
4712         }
4713
4714         /* See if this tick has made a timeout expire.  Tasks are stored in
4715          * the  queue in the order of their wake time - meaning once one task
4716          * has been found whose block time has not expired there is no need to
4717          * look any further down the list. */
4718         if( xConstTickCount >= xNextTaskUnblockTime )
4719         {
4720             for( ; ; )
4721             {
4722                 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
4723                 {
4724                     /* The delayed list is empty.  Set xNextTaskUnblockTime
4725                      * to the maximum possible value so it is extremely
4726                      * unlikely that the
4727                      * if( xTickCount >= xNextTaskUnblockTime ) test will pass
4728                      * next time through. */
4729                     xNextTaskUnblockTime = portMAX_DELAY;
4730                     break;
4731                 }
4732                 else
4733                 {
4734                     /* The delayed list is not empty, get the value of the
4735                      * item at the head of the delayed list.  This is the time
4736                      * at which the task at the head of the delayed list must
4737                      * be removed from the Blocked state. */
4738                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
4739                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4740                     /* coverity[misra_c_2012_rule_11_5_violation] */
4741                     pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
4742                     xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
4743
4744                     if( xConstTickCount < xItemValue )
4745                     {
4746                         /* It is not time to unblock this item yet, but the
4747                          * item value is the time at which the task at the head
4748                          * of the blocked list must be removed from the Blocked
4749                          * state -  so record the item value in
4750                          * xNextTaskUnblockTime. */
4751                         xNextTaskUnblockTime = xItemValue;
4752                         break;
4753                     }
4754                     else
4755                     {
4756                         mtCOVERAGE_TEST_MARKER();
4757                     }
4758
4759                     /* It is time to remove the item from the Blocked state. */
4760                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
4761
4762                     /* Is the task waiting on an event also?  If so remove
4763                      * it from the event list. */
4764                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4765                     {
4766                         listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
4767                     }
4768                     else
4769                     {
4770                         mtCOVERAGE_TEST_MARKER();
4771                     }
4772
4773                     /* Place the unblocked task into the appropriate ready
4774                      * list. */
4775                     prvAddTaskToReadyList( pxTCB );
4776
4777                     /* A task being unblocked cannot cause an immediate
4778                      * context switch if preemption is turned off. */
4779                     #if ( configUSE_PREEMPTION == 1 )
4780                     {
4781                         #if ( configNUMBER_OF_CORES == 1 )
4782                         {
4783                             /* Preemption is on, but a context switch should
4784                              * only be performed if the unblocked task's
4785                              * priority is higher than the currently executing
4786                              * task.
4787                              * The case of equal priority tasks sharing
4788                              * processing time (which happens when both
4789                              * preemption and time slicing are on) is
4790                              * handled below.*/
4791                             if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4792                             {
4793                                 xSwitchRequired = pdTRUE;
4794                             }
4795                             else
4796                             {
4797                                 mtCOVERAGE_TEST_MARKER();
4798                             }
4799                         }
4800                         #else /* #if( configNUMBER_OF_CORES == 1 ) */
4801                         {
4802                             prvYieldForTask( pxTCB );
4803                         }
4804                         #endif /* #if( configNUMBER_OF_CORES == 1 ) */
4805                     }
4806                     #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4807                 }
4808             }
4809         }
4810
4811         /* Tasks of equal priority to the currently running task will share
4812          * processing time (time slice) if preemption is on, and the application
4813          * writer has not explicitly turned time slicing off. */
4814         #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
4815         {
4816             #if ( configNUMBER_OF_CORES == 1 )
4817             {
4818                 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > 1U )
4819                 {
4820                     xSwitchRequired = pdTRUE;
4821                 }
4822                 else
4823                 {
4824                     mtCOVERAGE_TEST_MARKER();
4825                 }
4826             }
4827             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4828             {
4829                 BaseType_t xCoreID;
4830
4831                 for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ )
4832                 {
4833                     if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1U )
4834                     {
4835                         xYieldRequiredForCore[ xCoreID ] = pdTRUE;
4836                     }
4837                     else
4838                     {
4839                         mtCOVERAGE_TEST_MARKER();
4840                     }
4841                 }
4842             }
4843             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4844         }
4845         #endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
4846
4847         #if ( configUSE_TICK_HOOK == 1 )
4848         {
4849             /* Guard against the tick hook being called when the pended tick
4850              * count is being unwound (when the scheduler is being unlocked). */
4851             if( xPendedTicks == ( TickType_t ) 0 )
4852             {
4853                 vApplicationTickHook();
4854             }
4855             else
4856             {
4857                 mtCOVERAGE_TEST_MARKER();
4858             }
4859         }
4860         #endif /* configUSE_TICK_HOOK */
4861
4862         #if ( configUSE_PREEMPTION == 1 )
4863         {
4864             #if ( configNUMBER_OF_CORES == 1 )
4865             {
4866                 /* For single core the core ID is always 0. */
4867                 if( xYieldPendings[ 0 ] != pdFALSE )
4868                 {
4869                     xSwitchRequired = pdTRUE;
4870                 }
4871                 else
4872                 {
4873                     mtCOVERAGE_TEST_MARKER();
4874                 }
4875             }
4876             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4877             {
4878                 BaseType_t xCoreID, xCurrentCoreID;
4879                 xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID();
4880
4881                 for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
4882                 {
4883                     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
4884                         if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
4885                     #endif
4886                     {
4887                         if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) )
4888                         {
4889                             if( xCoreID == xCurrentCoreID )
4890                             {
4891                                 xSwitchRequired = pdTRUE;
4892                             }
4893                             else
4894                             {
4895                                 prvYieldCore( xCoreID );
4896                             }
4897                         }
4898                         else
4899                         {
4900                             mtCOVERAGE_TEST_MARKER();
4901                         }
4902                     }
4903                 }
4904             }
4905             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4906         }
4907         #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4908     }
4909     else
4910     {
4911         xPendedTicks += 1U;
4912
4913         /* The tick hook gets called at regular intervals, even if the
4914          * scheduler is locked. */
4915         #if ( configUSE_TICK_HOOK == 1 )
4916         {
4917             vApplicationTickHook();
4918         }
4919         #endif
4920     }
4921
4922     traceRETURN_xTaskIncrementTick( xSwitchRequired );
4923
4924     return xSwitchRequired;
4925 }
4926 /*-----------------------------------------------------------*/
4927
4928 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4929
4930     void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
4931                                      TaskHookFunction_t pxHookFunction )
4932     {
4933         TCB_t * xTCB;
4934
4935         traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction );
4936
4937         /* If xTask is NULL then it is the task hook of the calling task that is
4938          * getting set. */
4939         if( xTask == NULL )
4940         {
4941             xTCB = ( TCB_t * ) pxCurrentTCB;
4942         }
4943         else
4944         {
4945             xTCB = xTask;
4946         }
4947
4948         /* Save the hook function in the TCB.  A critical section is required as
4949          * the value can be accessed from an interrupt. */
4950         taskENTER_CRITICAL();
4951         {
4952             xTCB->pxTaskTag = pxHookFunction;
4953         }
4954         taskEXIT_CRITICAL();
4955
4956         traceRETURN_vTaskSetApplicationTaskTag();
4957     }
4958
4959 #endif /* configUSE_APPLICATION_TASK_TAG */
4960 /*-----------------------------------------------------------*/
4961
4962 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4963
4964     TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
4965     {
4966         TCB_t * pxTCB;
4967         TaskHookFunction_t xReturn;
4968
4969         traceENTER_xTaskGetApplicationTaskTag( xTask );
4970
4971         /* If xTask is NULL then set the calling task's hook. */
4972         pxTCB = prvGetTCBFromHandle( xTask );
4973
4974         /* Save the hook function in the TCB.  A critical section is required as
4975          * the value can be accessed from an interrupt. */
4976         taskENTER_CRITICAL();
4977         {
4978             xReturn = pxTCB->pxTaskTag;
4979         }
4980         taskEXIT_CRITICAL();
4981
4982         traceRETURN_xTaskGetApplicationTaskTag( xReturn );
4983
4984         return xReturn;
4985     }
4986
4987 #endif /* configUSE_APPLICATION_TASK_TAG */
4988 /*-----------------------------------------------------------*/
4989
4990 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4991
4992     TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
4993     {
4994         TCB_t * pxTCB;
4995         TaskHookFunction_t xReturn;
4996         UBaseType_t uxSavedInterruptStatus;
4997
4998         traceENTER_xTaskGetApplicationTaskTagFromISR( xTask );
4999
5000         /* If xTask is NULL then set the calling task's hook. */
5001         pxTCB = prvGetTCBFromHandle( xTask );
5002
5003         /* Save the hook function in the TCB.  A critical section is required as
5004          * the value can be accessed from an interrupt. */
5005         /* MISRA Ref 4.7.1 [Return value shall be checked] */
5006         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
5007         /* coverity[misra_c_2012_directive_4_7_violation] */
5008         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
5009         {
5010             xReturn = pxTCB->pxTaskTag;
5011         }
5012         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
5013
5014         traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn );
5015
5016         return xReturn;
5017     }
5018
5019 #endif /* configUSE_APPLICATION_TASK_TAG */
5020 /*-----------------------------------------------------------*/
5021
5022 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5023
5024     BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
5025                                              void * pvParameter )
5026     {
5027         TCB_t * xTCB;
5028         BaseType_t xReturn;
5029
5030         traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter );
5031
5032         /* If xTask is NULL then we are calling our own task hook. */
5033         if( xTask == NULL )
5034         {
5035             xTCB = pxCurrentTCB;
5036         }
5037         else
5038         {
5039             xTCB = xTask;
5040         }
5041
5042         if( xTCB->pxTaskTag != NULL )
5043         {
5044             xReturn = xTCB->pxTaskTag( pvParameter );
5045         }
5046         else
5047         {
5048             xReturn = pdFAIL;
5049         }
5050
5051         traceRETURN_xTaskCallApplicationTaskHook( xReturn );
5052
5053         return xReturn;
5054     }
5055
5056 #endif /* configUSE_APPLICATION_TASK_TAG */
5057 /*-----------------------------------------------------------*/
5058
5059 #if ( configNUMBER_OF_CORES == 1 )
5060     void vTaskSwitchContext( void )
5061     {
5062         traceENTER_vTaskSwitchContext();
5063
5064         if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5065         {
5066             /* The scheduler is currently suspended - do not allow a context
5067              * switch. */
5068             xYieldPendings[ 0 ] = pdTRUE;
5069         }
5070         else
5071         {
5072             xYieldPendings[ 0 ] = pdFALSE;
5073             traceTASK_SWITCHED_OUT();
5074
5075             #if ( configGENERATE_RUN_TIME_STATS == 1 )
5076             {
5077                 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5078                     portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] );
5079                 #else
5080                     ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE();
5081                 #endif
5082
5083                 /* Add the amount of time the task has been running to the
5084                  * accumulated time so far.  The time the task started running was
5085                  * stored in ulTaskSwitchedInTime.  Note that there is no overflow
5086                  * protection here so count values are only valid until the timer
5087                  * overflows.  The guard against negative values is to protect
5088                  * against suspect run time stat counter implementations - which
5089                  * are provided by the application, not the kernel. */
5090                 if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] )
5091                 {
5092                     pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] );
5093                 }
5094                 else
5095                 {
5096                     mtCOVERAGE_TEST_MARKER();
5097                 }
5098
5099                 ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ];
5100             }
5101             #endif /* configGENERATE_RUN_TIME_STATS */
5102
5103             /* Check for stack overflow, if configured. */
5104             taskCHECK_FOR_STACK_OVERFLOW();
5105
5106             /* Before the currently running task is switched out, save its errno. */
5107             #if ( configUSE_POSIX_ERRNO == 1 )
5108             {
5109                 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
5110             }
5111             #endif
5112
5113             /* Select a new task to run using either the generic C or port
5114              * optimised asm code. */
5115             /* MISRA Ref 11.5.3 [Void pointer assignment] */
5116             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5117             /* coverity[misra_c_2012_rule_11_5_violation] */
5118             taskSELECT_HIGHEST_PRIORITY_TASK();
5119             traceTASK_SWITCHED_IN();
5120
5121             /* Macro to inject port specific behaviour immediately after
5122              * switching tasks, such as setting an end of stack watchpoint
5123              * or reconfiguring the MPU. */
5124             portTASK_SWITCH_HOOK( pxCurrentTCB );
5125
5126             /* After the new task is switched in, update the global errno. */
5127             #if ( configUSE_POSIX_ERRNO == 1 )
5128             {
5129                 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
5130             }
5131             #endif
5132
5133             #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5134             {
5135                 /* Switch C-Runtime's TLS Block to point to the TLS
5136                  * Block specific to this task. */
5137                 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
5138             }
5139             #endif
5140         }
5141
5142         traceRETURN_vTaskSwitchContext();
5143     }
5144 #else /* if ( configNUMBER_OF_CORES == 1 ) */
5145     void vTaskSwitchContext( BaseType_t xCoreID )
5146     {
5147         traceENTER_vTaskSwitchContext();
5148
5149         /* Acquire both locks:
5150          * - The ISR lock protects the ready list from simultaneous access by
5151          *   both other ISRs and tasks.
5152          * - We also take the task lock to pause here in case another core has
5153          *   suspended the scheduler. We don't want to simply set xYieldPending
5154          *   and move on if another core suspended the scheduler. We should only
5155          *   do that if the current core has suspended the scheduler. */
5156
5157         portGET_TASK_LOCK(); /* Must always acquire the task lock first. */
5158         portGET_ISR_LOCK();
5159         {
5160             /* vTaskSwitchContext() must never be called from within a critical section.
5161              * This is not necessarily true for single core FreeRTOS, but it is for this
5162              * SMP port. */
5163             configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
5164
5165             if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5166             {
5167                 /* The scheduler is currently suspended - do not allow a context
5168                  * switch. */
5169                 xYieldPendings[ xCoreID ] = pdTRUE;
5170             }
5171             else
5172             {
5173                 xYieldPendings[ xCoreID ] = pdFALSE;
5174                 traceTASK_SWITCHED_OUT();
5175
5176                 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5177                 {
5178                     #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5179                         portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] );
5180                     #else
5181                         ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE();
5182                     #endif
5183
5184                     /* Add the amount of time the task has been running to the
5185                      * accumulated time so far.  The time the task started running was
5186                      * stored in ulTaskSwitchedInTime.  Note that there is no overflow
5187                      * protection here so count values are only valid until the timer
5188                      * overflows.  The guard against negative values is to protect
5189                      * against suspect run time stat counter implementations - which
5190                      * are provided by the application, not the kernel. */
5191                     if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] )
5192                     {
5193                         pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] );
5194                     }
5195                     else
5196                     {
5197                         mtCOVERAGE_TEST_MARKER();
5198                     }
5199
5200                     ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ];
5201                 }
5202                 #endif /* configGENERATE_RUN_TIME_STATS */
5203
5204                 /* Check for stack overflow, if configured. */
5205                 taskCHECK_FOR_STACK_OVERFLOW();
5206
5207                 /* Before the currently running task is switched out, save its errno. */
5208                 #if ( configUSE_POSIX_ERRNO == 1 )
5209                 {
5210                     pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno;
5211                 }
5212                 #endif
5213
5214                 /* Select a new task to run. */
5215                 taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID );
5216                 traceTASK_SWITCHED_IN();
5217
5218                 /* Macro to inject port specific behaviour immediately after
5219                  * switching tasks, such as setting an end of stack watchpoint
5220                  * or reconfiguring the MPU. */
5221                 portTASK_SWITCH_HOOK( pxCurrentTCBs[ portGET_CORE_ID() ] );
5222
5223                 /* After the new task is switched in, update the global errno. */
5224                 #if ( configUSE_POSIX_ERRNO == 1 )
5225                 {
5226                     FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno;
5227                 }
5228                 #endif
5229
5230                 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5231                 {
5232                     /* Switch C-Runtime's TLS Block to point to the TLS
5233                      * Block specific to this task. */
5234                     configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock );
5235                 }
5236                 #endif
5237             }
5238         }
5239         portRELEASE_ISR_LOCK();
5240         portRELEASE_TASK_LOCK();
5241
5242         traceRETURN_vTaskSwitchContext();
5243     }
5244 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
5245 /*-----------------------------------------------------------*/
5246
5247 void vTaskPlaceOnEventList( List_t * const pxEventList,
5248                             const TickType_t xTicksToWait )
5249 {
5250     traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait );
5251
5252     configASSERT( pxEventList );
5253
5254     /* THIS FUNCTION MUST BE CALLED WITH THE
5255      * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
5256
5257     /* Place the event list item of the TCB in the appropriate event list.
5258      * This is placed in the list in priority order so the highest priority task
5259      * is the first to be woken by the event.
5260      *
5261      * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
5262      * Normally, the xItemValue of a TCB's ListItem_t members is:
5263      *      xItemValue = ( configMAX_PRIORITIES - uxPriority )
5264      * Therefore, the event list is sorted in descending priority order.
5265      *
5266      * The queue that contains the event list is locked, preventing
5267      * simultaneous access from interrupts. */
5268     vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5269
5270     prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5271
5272     traceRETURN_vTaskPlaceOnEventList();
5273 }
5274 /*-----------------------------------------------------------*/
5275
5276 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
5277                                      const TickType_t xItemValue,
5278                                      const TickType_t xTicksToWait )
5279 {
5280     traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait );
5281
5282     configASSERT( pxEventList );
5283
5284     /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
5285      * the event groups implementation. */
5286     configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5287
5288     /* Store the item value in the event list item.  It is safe to access the
5289      * event list item here as interrupts won't access the event list item of a
5290      * task that is not in the Blocked state. */
5291     listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5292
5293     /* Place the event list item of the TCB at the end of the appropriate event
5294      * list.  It is safe to access the event list here because it is part of an
5295      * event group implementation - and interrupts don't access event groups
5296      * directly (instead they access them indirectly by pending function calls to
5297      * the task level). */
5298     listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5299
5300     prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5301
5302     traceRETURN_vTaskPlaceOnUnorderedEventList();
5303 }
5304 /*-----------------------------------------------------------*/
5305
5306 #if ( configUSE_TIMERS == 1 )
5307
5308     void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
5309                                           TickType_t xTicksToWait,
5310                                           const BaseType_t xWaitIndefinitely )
5311     {
5312         traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely );
5313
5314         configASSERT( pxEventList );
5315
5316         /* This function should not be called by application code hence the
5317          * 'Restricted' in its name.  It is not part of the public API.  It is
5318          * designed for use by kernel code, and has special calling requirements -
5319          * it should be called with the scheduler suspended. */
5320
5321
5322         /* Place the event list item of the TCB in the appropriate event list.
5323          * In this case it is assume that this is the only task that is going to
5324          * be waiting on this event list, so the faster vListInsertEnd() function
5325          * can be used in place of vListInsert. */
5326         listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5327
5328         /* If the task should block indefinitely then set the block time to a
5329          * value that will be recognised as an indefinite delay inside the
5330          * prvAddCurrentTaskToDelayedList() function. */
5331         if( xWaitIndefinitely != pdFALSE )
5332         {
5333             xTicksToWait = portMAX_DELAY;
5334         }
5335
5336         traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
5337         prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
5338
5339         traceRETURN_vTaskPlaceOnEventListRestricted();
5340     }
5341
5342 #endif /* configUSE_TIMERS */
5343 /*-----------------------------------------------------------*/
5344
5345 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
5346 {
5347     TCB_t * pxUnblockedTCB;
5348     BaseType_t xReturn;
5349
5350     traceENTER_xTaskRemoveFromEventList( pxEventList );
5351
5352     /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION.  It can also be
5353      * called from a critical section within an ISR. */
5354
5355     /* The event list is sorted in priority order, so the first in the list can
5356      * be removed as it is known to be the highest priority.  Remove the TCB from
5357      * the delayed list, and add it to the ready list.
5358      *
5359      * If an event is for a queue that is locked then this function will never
5360      * get called - the lock count on the queue will get modified instead.  This
5361      * means exclusive access to the event list is guaranteed here.
5362      *
5363      * This function assumes that a check has already been made to ensure that
5364      * pxEventList is not empty. */
5365     /* MISRA Ref 11.5.3 [Void pointer assignment] */
5366     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5367     /* coverity[misra_c_2012_rule_11_5_violation] */
5368     pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
5369     configASSERT( pxUnblockedTCB );
5370     listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
5371
5372     if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
5373     {
5374         listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5375         prvAddTaskToReadyList( pxUnblockedTCB );
5376
5377         #if ( configUSE_TICKLESS_IDLE != 0 )
5378         {
5379             /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5380              * might be set to the blocked task's time out time.  If the task is
5381              * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5382              * normally left unchanged, because it is automatically reset to a new
5383              * value when the tick count equals xNextTaskUnblockTime.  However if
5384              * tickless idling is used it might be more important to enter sleep mode
5385              * at the earliest possible time - so reset xNextTaskUnblockTime here to
5386              * ensure it is updated at the earliest possible time. */
5387             prvResetNextTaskUnblockTime();
5388         }
5389         #endif
5390     }
5391     else
5392     {
5393         /* The delayed and ready lists cannot be accessed, so hold this task
5394          * pending until the scheduler is resumed. */
5395         listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
5396     }
5397
5398     #if ( configNUMBER_OF_CORES == 1 )
5399     {
5400         if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5401         {
5402             /* Return true if the task removed from the event list has a higher
5403              * priority than the calling task.  This allows the calling task to know if
5404              * it should force a context switch now. */
5405             xReturn = pdTRUE;
5406
5407             /* Mark that a yield is pending in case the user is not using the
5408              * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
5409             xYieldPendings[ 0 ] = pdTRUE;
5410         }
5411         else
5412         {
5413             xReturn = pdFALSE;
5414         }
5415     }
5416     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5417     {
5418         xReturn = pdFALSE;
5419
5420         #if ( configUSE_PREEMPTION == 1 )
5421         {
5422             prvYieldForTask( pxUnblockedTCB );
5423
5424             if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5425             {
5426                 xReturn = pdTRUE;
5427             }
5428         }
5429         #endif /* #if ( configUSE_PREEMPTION == 1 ) */
5430     }
5431     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5432
5433     traceRETURN_xTaskRemoveFromEventList( xReturn );
5434     return xReturn;
5435 }
5436 /*-----------------------------------------------------------*/
5437
5438 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
5439                                         const TickType_t xItemValue )
5440 {
5441     TCB_t * pxUnblockedTCB;
5442
5443     traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue );
5444
5445     /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
5446      * the event flags implementation. */
5447     configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5448
5449     /* Store the new item value in the event list. */
5450     listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5451
5452     /* Remove the event list form the event flag.  Interrupts do not access
5453      * event flags. */
5454     /* MISRA Ref 11.5.3 [Void pointer assignment] */
5455     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5456     /* coverity[misra_c_2012_rule_11_5_violation] */
5457     pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem );
5458     configASSERT( pxUnblockedTCB );
5459     listREMOVE_ITEM( pxEventListItem );
5460
5461     #if ( configUSE_TICKLESS_IDLE != 0 )
5462     {
5463         /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5464          * might be set to the blocked task's time out time.  If the task is
5465          * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5466          * normally left unchanged, because it is automatically reset to a new
5467          * value when the tick count equals xNextTaskUnblockTime.  However if
5468          * tickless idling is used it might be more important to enter sleep mode
5469          * at the earliest possible time - so reset xNextTaskUnblockTime here to
5470          * ensure it is updated at the earliest possible time. */
5471         prvResetNextTaskUnblockTime();
5472     }
5473     #endif
5474
5475     /* Remove the task from the delayed list and add it to the ready list.  The
5476      * scheduler is suspended so interrupts will not be accessing the ready
5477      * lists. */
5478     listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5479     prvAddTaskToReadyList( pxUnblockedTCB );
5480
5481     #if ( configNUMBER_OF_CORES == 1 )
5482     {
5483         if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5484         {
5485             /* The unblocked task has a priority above that of the calling task, so
5486              * a context switch is required.  This function is called with the
5487              * scheduler suspended so xYieldPending is set so the context switch
5488              * occurs immediately that the scheduler is resumed (unsuspended). */
5489             xYieldPendings[ 0 ] = pdTRUE;
5490         }
5491     }
5492     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5493     {
5494         #if ( configUSE_PREEMPTION == 1 )
5495         {
5496             taskENTER_CRITICAL();
5497             {
5498                 prvYieldForTask( pxUnblockedTCB );
5499             }
5500             taskEXIT_CRITICAL();
5501         }
5502         #endif
5503     }
5504     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5505
5506     traceRETURN_vTaskRemoveFromUnorderedEventList();
5507 }
5508 /*-----------------------------------------------------------*/
5509
5510 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
5511 {
5512     traceENTER_vTaskSetTimeOutState( pxTimeOut );
5513
5514     configASSERT( pxTimeOut );
5515     taskENTER_CRITICAL();
5516     {
5517         pxTimeOut->xOverflowCount = xNumOfOverflows;
5518         pxTimeOut->xTimeOnEntering = xTickCount;
5519     }
5520     taskEXIT_CRITICAL();
5521
5522     traceRETURN_vTaskSetTimeOutState();
5523 }
5524 /*-----------------------------------------------------------*/
5525
5526 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
5527 {
5528     traceENTER_vTaskInternalSetTimeOutState( pxTimeOut );
5529
5530     /* For internal use only as it does not use a critical section. */
5531     pxTimeOut->xOverflowCount = xNumOfOverflows;
5532     pxTimeOut->xTimeOnEntering = xTickCount;
5533
5534     traceRETURN_vTaskInternalSetTimeOutState();
5535 }
5536 /*-----------------------------------------------------------*/
5537
5538 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
5539                                  TickType_t * const pxTicksToWait )
5540 {
5541     BaseType_t xReturn;
5542
5543     traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait );
5544
5545     configASSERT( pxTimeOut );
5546     configASSERT( pxTicksToWait );
5547
5548     taskENTER_CRITICAL();
5549     {
5550         /* Minor optimisation.  The tick count cannot change in this block. */
5551         const TickType_t xConstTickCount = xTickCount;
5552         const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
5553
5554         #if ( INCLUDE_xTaskAbortDelay == 1 )
5555             if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
5556             {
5557                 /* The delay was aborted, which is not the same as a time out,
5558                  * but has the same result. */
5559                 pxCurrentTCB->ucDelayAborted = ( uint8_t ) pdFALSE;
5560                 xReturn = pdTRUE;
5561             }
5562             else
5563         #endif
5564
5565         #if ( INCLUDE_vTaskSuspend == 1 )
5566             if( *pxTicksToWait == portMAX_DELAY )
5567             {
5568                 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
5569                  * specified is the maximum block time then the task should block
5570                  * indefinitely, and therefore never time out. */
5571                 xReturn = pdFALSE;
5572             }
5573             else
5574         #endif
5575
5576         if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) )
5577         {
5578             /* The tick count is greater than the time at which
5579              * vTaskSetTimeout() was called, but has also overflowed since
5580              * vTaskSetTimeOut() was called.  It must have wrapped all the way
5581              * around and gone past again. This passed since vTaskSetTimeout()
5582              * was called. */
5583             xReturn = pdTRUE;
5584             *pxTicksToWait = ( TickType_t ) 0;
5585         }
5586         else if( xElapsedTime < *pxTicksToWait )
5587         {
5588             /* Not a genuine timeout. Adjust parameters for time remaining. */
5589             *pxTicksToWait -= xElapsedTime;
5590             vTaskInternalSetTimeOutState( pxTimeOut );
5591             xReturn = pdFALSE;
5592         }
5593         else
5594         {
5595             *pxTicksToWait = ( TickType_t ) 0;
5596             xReturn = pdTRUE;
5597         }
5598     }
5599     taskEXIT_CRITICAL();
5600
5601     traceRETURN_xTaskCheckForTimeOut( xReturn );
5602
5603     return xReturn;
5604 }
5605 /*-----------------------------------------------------------*/
5606
5607 void vTaskMissedYield( void )
5608 {
5609     traceENTER_vTaskMissedYield();
5610
5611     /* Must be called from within a critical section. */
5612     xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
5613
5614     traceRETURN_vTaskMissedYield();
5615 }
5616 /*-----------------------------------------------------------*/
5617
5618 #if ( configUSE_TRACE_FACILITY == 1 )
5619
5620     UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
5621     {
5622         UBaseType_t uxReturn;
5623         TCB_t const * pxTCB;
5624
5625         traceENTER_uxTaskGetTaskNumber( xTask );
5626
5627         if( xTask != NULL )
5628         {
5629             pxTCB = xTask;
5630             uxReturn = pxTCB->uxTaskNumber;
5631         }
5632         else
5633         {
5634             uxReturn = 0U;
5635         }
5636
5637         traceRETURN_uxTaskGetTaskNumber( uxReturn );
5638
5639         return uxReturn;
5640     }
5641
5642 #endif /* configUSE_TRACE_FACILITY */
5643 /*-----------------------------------------------------------*/
5644
5645 #if ( configUSE_TRACE_FACILITY == 1 )
5646
5647     void vTaskSetTaskNumber( TaskHandle_t xTask,
5648                              const UBaseType_t uxHandle )
5649     {
5650         TCB_t * pxTCB;
5651
5652         traceENTER_vTaskSetTaskNumber( xTask, uxHandle );
5653
5654         if( xTask != NULL )
5655         {
5656             pxTCB = xTask;
5657             pxTCB->uxTaskNumber = uxHandle;
5658         }
5659
5660         traceRETURN_vTaskSetTaskNumber();
5661     }
5662
5663 #endif /* configUSE_TRACE_FACILITY */
5664 /*-----------------------------------------------------------*/
5665
5666 /*
5667  * -----------------------------------------------------------
5668  * The passive idle task.
5669  * ----------------------------------------------------------
5670  *
5671  * The passive idle task is used for all the additional cores in a SMP
5672  * system. There must be only 1 active idle task and the rest are passive
5673  * idle tasks.
5674  *
5675  * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5676  * language extensions.  The equivalent prototype for this function is:
5677  *
5678  * void prvPassiveIdleTask( void *pvParameters );
5679  */
5680
5681 #if ( configNUMBER_OF_CORES > 1 )
5682     static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters )
5683     {
5684         ( void ) pvParameters;
5685
5686         taskYIELD();
5687
5688         for( ; configCONTROL_INFINITE_LOOP(); )
5689         {
5690             #if ( configUSE_PREEMPTION == 0 )
5691             {
5692                 /* If we are not using preemption we keep forcing a task switch to
5693                  * see if any other task has become available.  If we are using
5694                  * preemption we don't need to do this as any task becoming available
5695                  * will automatically get the processor anyway. */
5696                 taskYIELD();
5697             }
5698             #endif /* configUSE_PREEMPTION */
5699
5700             #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5701             {
5702                 /* When using preemption tasks of equal priority will be
5703                  * timesliced.  If a task that is sharing the idle priority is ready
5704                  * to run then the idle task should yield before the end of the
5705                  * timeslice.
5706                  *
5707                  * A critical region is not required here as we are just reading from
5708                  * the list, and an occasional incorrect value will not matter.  If
5709                  * the ready list at the idle priority contains one more task than the
5710                  * number of idle tasks, which is equal to the configured numbers of cores
5711                  * then a task other than the idle task is ready to execute. */
5712                 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5713                 {
5714                     taskYIELD();
5715                 }
5716                 else
5717                 {
5718                     mtCOVERAGE_TEST_MARKER();
5719                 }
5720             }
5721             #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5722
5723             #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
5724             {
5725                 /* Call the user defined function from within the idle task.  This
5726                  * allows the application designer to add background functionality
5727                  * without the overhead of a separate task.
5728                  *
5729                  * This hook is intended to manage core activity such as disabling cores that go idle.
5730                  *
5731                  * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5732                  * CALL A FUNCTION THAT MIGHT BLOCK. */
5733                 vApplicationPassiveIdleHook();
5734             }
5735             #endif /* configUSE_PASSIVE_IDLE_HOOK */
5736         }
5737     }
5738 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5739
5740 /*
5741  * -----------------------------------------------------------
5742  * The idle task.
5743  * ----------------------------------------------------------
5744  *
5745  * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5746  * language extensions.  The equivalent prototype for this function is:
5747  *
5748  * void prvIdleTask( void *pvParameters );
5749  *
5750  */
5751
5752 static portTASK_FUNCTION( prvIdleTask, pvParameters )
5753 {
5754     /* Stop warnings. */
5755     ( void ) pvParameters;
5756
5757     /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
5758      * SCHEDULER IS STARTED. **/
5759
5760     /* In case a task that has a secure context deletes itself, in which case
5761      * the idle task is responsible for deleting the task's secure context, if
5762      * any. */
5763     portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
5764
5765     #if ( configNUMBER_OF_CORES > 1 )
5766     {
5767         /* SMP all cores start up in the idle task. This initial yield gets the application
5768          * tasks started. */
5769         taskYIELD();
5770     }
5771     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5772
5773     for( ; configCONTROL_INFINITE_LOOP(); )
5774     {
5775         /* See if any tasks have deleted themselves - if so then the idle task
5776          * is responsible for freeing the deleted task's TCB and stack. */
5777         prvCheckTasksWaitingTermination();
5778
5779         #if ( configUSE_PREEMPTION == 0 )
5780         {
5781             /* If we are not using preemption we keep forcing a task switch to
5782              * see if any other task has become available.  If we are using
5783              * preemption we don't need to do this as any task becoming available
5784              * will automatically get the processor anyway. */
5785             taskYIELD();
5786         }
5787         #endif /* configUSE_PREEMPTION */
5788
5789         #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5790         {
5791             /* When using preemption tasks of equal priority will be
5792              * timesliced.  If a task that is sharing the idle priority is ready
5793              * to run then the idle task should yield before the end of the
5794              * timeslice.
5795              *
5796              * A critical region is not required here as we are just reading from
5797              * the list, and an occasional incorrect value will not matter.  If
5798              * the ready list at the idle priority contains one more task than the
5799              * number of idle tasks, which is equal to the configured numbers of cores
5800              * then a task other than the idle task is ready to execute. */
5801             if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5802             {
5803                 taskYIELD();
5804             }
5805             else
5806             {
5807                 mtCOVERAGE_TEST_MARKER();
5808             }
5809         }
5810         #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5811
5812         #if ( configUSE_IDLE_HOOK == 1 )
5813         {
5814             /* Call the user defined function from within the idle task. */
5815             vApplicationIdleHook();
5816         }
5817         #endif /* configUSE_IDLE_HOOK */
5818
5819         /* This conditional compilation should use inequality to 0, not equality
5820          * to 1.  This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
5821          * user defined low power mode  implementations require
5822          * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
5823         #if ( configUSE_TICKLESS_IDLE != 0 )
5824         {
5825             TickType_t xExpectedIdleTime;
5826
5827             /* It is not desirable to suspend then resume the scheduler on
5828              * each iteration of the idle task.  Therefore, a preliminary
5829              * test of the expected idle time is performed without the
5830              * scheduler suspended.  The result here is not necessarily
5831              * valid. */
5832             xExpectedIdleTime = prvGetExpectedIdleTime();
5833
5834             if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5835             {
5836                 vTaskSuspendAll();
5837                 {
5838                     /* Now the scheduler is suspended, the expected idle
5839                      * time can be sampled again, and this time its value can
5840                      * be used. */
5841                     configASSERT( xNextTaskUnblockTime >= xTickCount );
5842                     xExpectedIdleTime = prvGetExpectedIdleTime();
5843
5844                     /* Define the following macro to set xExpectedIdleTime to 0
5845                      * if the application does not want
5846                      * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
5847                     configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
5848
5849                     if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5850                     {
5851                         traceLOW_POWER_IDLE_BEGIN();
5852                         portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
5853                         traceLOW_POWER_IDLE_END();
5854                     }
5855                     else
5856                     {
5857                         mtCOVERAGE_TEST_MARKER();
5858                     }
5859                 }
5860                 ( void ) xTaskResumeAll();
5861             }
5862             else
5863             {
5864                 mtCOVERAGE_TEST_MARKER();
5865             }
5866         }
5867         #endif /* configUSE_TICKLESS_IDLE */
5868
5869         #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) )
5870         {
5871             /* Call the user defined function from within the idle task.  This
5872              * allows the application designer to add background functionality
5873              * without the overhead of a separate task.
5874              *
5875              * This hook is intended to manage core activity such as disabling cores that go idle.
5876              *
5877              * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5878              * CALL A FUNCTION THAT MIGHT BLOCK. */
5879             vApplicationPassiveIdleHook();
5880         }
5881         #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */
5882     }
5883 }
5884 /*-----------------------------------------------------------*/
5885
5886 #if ( configUSE_TICKLESS_IDLE != 0 )
5887
5888     eSleepModeStatus eTaskConfirmSleepModeStatus( void )
5889     {
5890         #if ( INCLUDE_vTaskSuspend == 1 )
5891             /* The idle task exists in addition to the application tasks. */
5892             const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES;
5893         #endif /* INCLUDE_vTaskSuspend */
5894
5895         eSleepModeStatus eReturn = eStandardSleep;
5896
5897         traceENTER_eTaskConfirmSleepModeStatus();
5898
5899         /* This function must be called from a critical section. */
5900
5901         if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0U )
5902         {
5903             /* A task was made ready while the scheduler was suspended. */
5904             eReturn = eAbortSleep;
5905         }
5906         else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5907         {
5908             /* A yield was pended while the scheduler was suspended. */
5909             eReturn = eAbortSleep;
5910         }
5911         else if( xPendedTicks != 0U )
5912         {
5913             /* A tick interrupt has already occurred but was held pending
5914              * because the scheduler is suspended. */
5915             eReturn = eAbortSleep;
5916         }
5917
5918         #if ( INCLUDE_vTaskSuspend == 1 )
5919             else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
5920             {
5921                 /* If all the tasks are in the suspended list (which might mean they
5922                  * have an infinite block time rather than actually being suspended)
5923                  * then it is safe to turn all clocks off and just wait for external
5924                  * interrupts. */
5925                 eReturn = eNoTasksWaitingTimeout;
5926             }
5927         #endif /* INCLUDE_vTaskSuspend */
5928         else
5929         {
5930             mtCOVERAGE_TEST_MARKER();
5931         }
5932
5933         traceRETURN_eTaskConfirmSleepModeStatus( eReturn );
5934
5935         return eReturn;
5936     }
5937
5938 #endif /* configUSE_TICKLESS_IDLE */
5939 /*-----------------------------------------------------------*/
5940
5941 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5942
5943     void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
5944                                             BaseType_t xIndex,
5945                                             void * pvValue )
5946     {
5947         TCB_t * pxTCB;
5948
5949         traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue );
5950
5951         if( ( xIndex >= 0 ) &&
5952             ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
5953         {
5954             pxTCB = prvGetTCBFromHandle( xTaskToSet );
5955             configASSERT( pxTCB != NULL );
5956             pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
5957         }
5958
5959         traceRETURN_vTaskSetThreadLocalStoragePointer();
5960     }
5961
5962 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
5963 /*-----------------------------------------------------------*/
5964
5965 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5966
5967     void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
5968                                                BaseType_t xIndex )
5969     {
5970         void * pvReturn = NULL;
5971         TCB_t * pxTCB;
5972
5973         traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex );
5974
5975         if( ( xIndex >= 0 ) &&
5976             ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
5977         {
5978             pxTCB = prvGetTCBFromHandle( xTaskToQuery );
5979             pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
5980         }
5981         else
5982         {
5983             pvReturn = NULL;
5984         }
5985
5986         traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn );
5987
5988         return pvReturn;
5989     }
5990
5991 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
5992 /*-----------------------------------------------------------*/
5993
5994 #if ( portUSING_MPU_WRAPPERS == 1 )
5995
5996     void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
5997                                   const MemoryRegion_t * const pxRegions )
5998     {
5999         TCB_t * pxTCB;
6000
6001         traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions );
6002
6003         /* If null is passed in here then we are modifying the MPU settings of
6004          * the calling task. */
6005         pxTCB = prvGetTCBFromHandle( xTaskToModify );
6006
6007         vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 );
6008
6009         traceRETURN_vTaskAllocateMPURegions();
6010     }
6011
6012 #endif /* portUSING_MPU_WRAPPERS */
6013 /*-----------------------------------------------------------*/
6014
6015 static void prvInitialiseTaskLists( void )
6016 {
6017     UBaseType_t uxPriority;
6018
6019     for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
6020     {
6021         vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
6022     }
6023
6024     vListInitialise( &xDelayedTaskList1 );
6025     vListInitialise( &xDelayedTaskList2 );
6026     vListInitialise( &xPendingReadyList );
6027
6028     #if ( INCLUDE_vTaskDelete == 1 )
6029     {
6030         vListInitialise( &xTasksWaitingTermination );
6031     }
6032     #endif /* INCLUDE_vTaskDelete */
6033
6034     #if ( INCLUDE_vTaskSuspend == 1 )
6035     {
6036         vListInitialise( &xSuspendedTaskList );
6037     }
6038     #endif /* INCLUDE_vTaskSuspend */
6039
6040     /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
6041      * using list2. */
6042     pxDelayedTaskList = &xDelayedTaskList1;
6043     pxOverflowDelayedTaskList = &xDelayedTaskList2;
6044 }
6045 /*-----------------------------------------------------------*/
6046
6047 static void prvCheckTasksWaitingTermination( void )
6048 {
6049     /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
6050
6051     #if ( INCLUDE_vTaskDelete == 1 )
6052     {
6053         TCB_t * pxTCB;
6054
6055         /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
6056          * being called too often in the idle task. */
6057         while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6058         {
6059             #if ( configNUMBER_OF_CORES == 1 )
6060             {
6061                 taskENTER_CRITICAL();
6062                 {
6063                     {
6064                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
6065                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6066                         /* coverity[misra_c_2012_rule_11_5_violation] */
6067                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6068                         ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6069                         --uxCurrentNumberOfTasks;
6070                         --uxDeletedTasksWaitingCleanUp;
6071                     }
6072                 }
6073                 taskEXIT_CRITICAL();
6074
6075                 prvDeleteTCB( pxTCB );
6076             }
6077             #else /* #if( configNUMBER_OF_CORES == 1 ) */
6078             {
6079                 pxTCB = NULL;
6080
6081                 taskENTER_CRITICAL();
6082                 {
6083                     /* For SMP, multiple idles can be running simultaneously
6084                      * and we need to check that other idles did not cleanup while we were
6085                      * waiting to enter the critical section. */
6086                     if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6087                     {
6088                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
6089                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6090                         /* coverity[misra_c_2012_rule_11_5_violation] */
6091                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6092
6093                         if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
6094                         {
6095                             ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6096                             --uxCurrentNumberOfTasks;
6097                             --uxDeletedTasksWaitingCleanUp;
6098                         }
6099                         else
6100                         {
6101                             /* The TCB to be deleted still has not yet been switched out
6102                              * by the scheduler, so we will just exit this loop early and
6103                              * try again next time. */
6104                             taskEXIT_CRITICAL();
6105                             break;
6106                         }
6107                     }
6108                 }
6109                 taskEXIT_CRITICAL();
6110
6111                 if( pxTCB != NULL )
6112                 {
6113                     prvDeleteTCB( pxTCB );
6114                 }
6115             }
6116             #endif /* #if( configNUMBER_OF_CORES == 1 ) */
6117         }
6118     }
6119     #endif /* INCLUDE_vTaskDelete */
6120 }
6121 /*-----------------------------------------------------------*/
6122
6123 #if ( configUSE_TRACE_FACILITY == 1 )
6124
6125     void vTaskGetInfo( TaskHandle_t xTask,
6126                        TaskStatus_t * pxTaskStatus,
6127                        BaseType_t xGetFreeStackSpace,
6128                        eTaskState eState )
6129     {
6130         TCB_t * pxTCB;
6131
6132         traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState );
6133
6134         /* xTask is NULL then get the state of the calling task. */
6135         pxTCB = prvGetTCBFromHandle( xTask );
6136
6137         pxTaskStatus->xHandle = pxTCB;
6138         pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
6139         pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
6140         pxTaskStatus->pxStackBase = pxTCB->pxStack;
6141         #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
6142             pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack;
6143             pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
6144         #endif
6145         pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
6146
6147         #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
6148         {
6149             pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
6150         }
6151         #endif
6152
6153         #if ( configUSE_MUTEXES == 1 )
6154         {
6155             pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
6156         }
6157         #else
6158         {
6159             pxTaskStatus->uxBasePriority = 0;
6160         }
6161         #endif
6162
6163         #if ( configGENERATE_RUN_TIME_STATS == 1 )
6164         {
6165             pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
6166         }
6167         #else
6168         {
6169             pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
6170         }
6171         #endif
6172
6173         /* Obtaining the task state is a little fiddly, so is only done if the
6174          * value of eState passed into this function is eInvalid - otherwise the
6175          * state is just set to whatever is passed in. */
6176         if( eState != eInvalid )
6177         {
6178             if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6179             {
6180                 pxTaskStatus->eCurrentState = eRunning;
6181             }
6182             else
6183             {
6184                 pxTaskStatus->eCurrentState = eState;
6185
6186                 #if ( INCLUDE_vTaskSuspend == 1 )
6187                 {
6188                     /* If the task is in the suspended list then there is a
6189                      *  chance it is actually just blocked indefinitely - so really
6190                      *  it should be reported as being in the Blocked state. */
6191                     if( eState == eSuspended )
6192                     {
6193                         vTaskSuspendAll();
6194                         {
6195                             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
6196                             {
6197                                 pxTaskStatus->eCurrentState = eBlocked;
6198                             }
6199                             else
6200                             {
6201                                 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
6202                                 {
6203                                     BaseType_t x;
6204
6205                                     /* The task does not appear on the event list item of
6206                                      * and of the RTOS objects, but could still be in the
6207                                      * blocked state if it is waiting on its notification
6208                                      * rather than waiting on an object.  If not, is
6209                                      * suspended. */
6210                                     for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
6211                                     {
6212                                         if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
6213                                         {
6214                                             pxTaskStatus->eCurrentState = eBlocked;
6215                                             break;
6216                                         }
6217                                     }
6218                                 }
6219                                 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
6220                             }
6221                         }
6222                         ( void ) xTaskResumeAll();
6223                     }
6224                 }
6225                 #endif /* INCLUDE_vTaskSuspend */
6226
6227                 /* Tasks can be in pending ready list and other state list at the
6228                  * same time. These tasks are in ready state no matter what state
6229                  * list the task is in. */
6230                 taskENTER_CRITICAL();
6231                 {
6232                     if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE )
6233                     {
6234                         pxTaskStatus->eCurrentState = eReady;
6235                     }
6236                 }
6237                 taskEXIT_CRITICAL();
6238             }
6239         }
6240         else
6241         {
6242             pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
6243         }
6244
6245         /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
6246          * parameter is provided to allow it to be skipped. */
6247         if( xGetFreeStackSpace != pdFALSE )
6248         {
6249             #if ( portSTACK_GROWTH > 0 )
6250             {
6251                 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
6252             }
6253             #else
6254             {
6255                 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
6256             }
6257             #endif
6258         }
6259         else
6260         {
6261             pxTaskStatus->usStackHighWaterMark = 0;
6262         }
6263
6264         traceRETURN_vTaskGetInfo();
6265     }
6266
6267 #endif /* configUSE_TRACE_FACILITY */
6268 /*-----------------------------------------------------------*/
6269
6270 #if ( configUSE_TRACE_FACILITY == 1 )
6271
6272     static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
6273                                                      List_t * pxList,
6274                                                      eTaskState eState )
6275     {
6276         UBaseType_t uxTask = 0;
6277         const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
6278         ListItem_t * pxIterator;
6279         TCB_t * pxTCB = NULL;
6280
6281         if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
6282         {
6283             /* Populate an TaskStatus_t structure within the
6284              * pxTaskStatusArray array for each task that is referenced from
6285              * pxList.  See the definition of TaskStatus_t in task.h for the
6286              * meaning of each TaskStatus_t structure member. */
6287             for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
6288             {
6289                 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6290                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6291                 /* coverity[misra_c_2012_rule_11_5_violation] */
6292                 pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
6293
6294                 vTaskGetInfo( ( TaskHandle_t ) pxTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
6295                 uxTask++;
6296             }
6297         }
6298         else
6299         {
6300             mtCOVERAGE_TEST_MARKER();
6301         }
6302
6303         return uxTask;
6304     }
6305
6306 #endif /* configUSE_TRACE_FACILITY */
6307 /*-----------------------------------------------------------*/
6308
6309 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
6310
6311     static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
6312     {
6313         configSTACK_DEPTH_TYPE uxCount = 0U;
6314
6315         while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
6316         {
6317             pucStackByte -= portSTACK_GROWTH;
6318             uxCount++;
6319         }
6320
6321         uxCount /= ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t );
6322
6323         return uxCount;
6324     }
6325
6326 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
6327 /*-----------------------------------------------------------*/
6328
6329 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
6330
6331 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
6332  * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
6333  * user to determine the return type.  It gets around the problem of the value
6334  * overflowing on 8-bit types without breaking backward compatibility for
6335  * applications that expect an 8-bit return type. */
6336     configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
6337     {
6338         TCB_t * pxTCB;
6339         uint8_t * pucEndOfStack;
6340         configSTACK_DEPTH_TYPE uxReturn;
6341
6342         traceENTER_uxTaskGetStackHighWaterMark2( xTask );
6343
6344         /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
6345          * the same except for their return type.  Using configSTACK_DEPTH_TYPE
6346          * allows the user to determine the return type.  It gets around the
6347          * problem of the value overflowing on 8-bit types without breaking
6348          * backward compatibility for applications that expect an 8-bit return
6349          * type. */
6350
6351         pxTCB = prvGetTCBFromHandle( xTask );
6352
6353         #if portSTACK_GROWTH < 0
6354         {
6355             pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6356         }
6357         #else
6358         {
6359             pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6360         }
6361         #endif
6362
6363         uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
6364
6365         traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn );
6366
6367         return uxReturn;
6368     }
6369
6370 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
6371 /*-----------------------------------------------------------*/
6372
6373 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
6374
6375     UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
6376     {
6377         TCB_t * pxTCB;
6378         uint8_t * pucEndOfStack;
6379         UBaseType_t uxReturn;
6380
6381         traceENTER_uxTaskGetStackHighWaterMark( xTask );
6382
6383         pxTCB = prvGetTCBFromHandle( xTask );
6384
6385         #if portSTACK_GROWTH < 0
6386         {
6387             pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6388         }
6389         #else
6390         {
6391             pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6392         }
6393         #endif
6394
6395         uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
6396
6397         traceRETURN_uxTaskGetStackHighWaterMark( uxReturn );
6398
6399         return uxReturn;
6400     }
6401
6402 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
6403 /*-----------------------------------------------------------*/
6404
6405 #if ( INCLUDE_vTaskDelete == 1 )
6406
6407     static void prvDeleteTCB( TCB_t * pxTCB )
6408     {
6409         /* This call is required specifically for the TriCore port.  It must be
6410          * above the vPortFree() calls.  The call is also used by ports/demos that
6411          * want to allocate and clean RAM statically. */
6412         portCLEAN_UP_TCB( pxTCB );
6413
6414         #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
6415         {
6416             /* Free up the memory allocated for the task's TLS Block. */
6417             configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock );
6418         }
6419         #endif
6420
6421         #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
6422         {
6423             /* The task can only have been allocated dynamically - free both
6424              * the stack and TCB. */
6425             vPortFreeStack( pxTCB->pxStack );
6426             vPortFree( pxTCB );
6427         }
6428         #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
6429         {
6430             /* The task could have been allocated statically or dynamically, so
6431              * check what was statically allocated before trying to free the
6432              * memory. */
6433             if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
6434             {
6435                 /* Both the stack and TCB were allocated dynamically, so both
6436                  * must be freed. */
6437                 vPortFreeStack( pxTCB->pxStack );
6438                 vPortFree( pxTCB );
6439             }
6440             else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
6441             {
6442                 /* Only the stack was statically allocated, so the TCB is the
6443                  * only memory that must be freed. */
6444                 vPortFree( pxTCB );
6445             }
6446             else
6447             {
6448                 /* Neither the stack nor the TCB were allocated dynamically, so
6449                  * nothing needs to be freed. */
6450                 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
6451                 mtCOVERAGE_TEST_MARKER();
6452             }
6453         }
6454         #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
6455     }
6456
6457 #endif /* INCLUDE_vTaskDelete */
6458 /*-----------------------------------------------------------*/
6459
6460 static void prvResetNextTaskUnblockTime( void )
6461 {
6462     if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
6463     {
6464         /* The new current delayed list is empty.  Set xNextTaskUnblockTime to
6465          * the maximum possible value so it is  extremely unlikely that the
6466          * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
6467          * there is an item in the delayed list. */
6468         xNextTaskUnblockTime = portMAX_DELAY;
6469     }
6470     else
6471     {
6472         /* The new current delayed list is not empty, get the value of
6473          * the item at the head of the delayed list.  This is the time at
6474          * which the task at the head of the delayed list should be removed
6475          * from the Blocked state. */
6476         xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
6477     }
6478 }
6479 /*-----------------------------------------------------------*/
6480
6481 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 )
6482
6483     #if ( configNUMBER_OF_CORES == 1 )
6484         TaskHandle_t xTaskGetCurrentTaskHandle( void )
6485         {
6486             TaskHandle_t xReturn;
6487
6488             traceENTER_xTaskGetCurrentTaskHandle();
6489
6490             /* A critical section is not required as this is not called from
6491              * an interrupt and the current TCB will always be the same for any
6492              * individual execution thread. */
6493             xReturn = pxCurrentTCB;
6494
6495             traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6496
6497             return xReturn;
6498         }
6499     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
6500         TaskHandle_t xTaskGetCurrentTaskHandle( void )
6501         {
6502             TaskHandle_t xReturn;
6503             UBaseType_t uxSavedInterruptStatus;
6504
6505             traceENTER_xTaskGetCurrentTaskHandle();
6506
6507             uxSavedInterruptStatus = portSET_INTERRUPT_MASK();
6508             {
6509                 xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
6510             }
6511             portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus );
6512
6513             traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6514
6515             return xReturn;
6516         }
6517     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6518
6519     TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID )
6520     {
6521         TaskHandle_t xReturn = NULL;
6522
6523         traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID );
6524
6525         if( taskVALID_CORE_ID( xCoreID ) != pdFALSE )
6526         {
6527             #if ( configNUMBER_OF_CORES == 1 )
6528                 xReturn = pxCurrentTCB;
6529             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
6530                 xReturn = pxCurrentTCBs[ xCoreID ];
6531             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6532         }
6533
6534         traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn );
6535
6536         return xReturn;
6537     }
6538
6539 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
6540 /*-----------------------------------------------------------*/
6541
6542 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
6543
6544     BaseType_t xTaskGetSchedulerState( void )
6545     {
6546         BaseType_t xReturn;
6547
6548         traceENTER_xTaskGetSchedulerState();
6549
6550         if( xSchedulerRunning == pdFALSE )
6551         {
6552             xReturn = taskSCHEDULER_NOT_STARTED;
6553         }
6554         else
6555         {
6556             #if ( configNUMBER_OF_CORES > 1 )
6557                 taskENTER_CRITICAL();
6558             #endif
6559             {
6560                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
6561                 {
6562                     xReturn = taskSCHEDULER_RUNNING;
6563                 }
6564                 else
6565                 {
6566                     xReturn = taskSCHEDULER_SUSPENDED;
6567                 }
6568             }
6569             #if ( configNUMBER_OF_CORES > 1 )
6570                 taskEXIT_CRITICAL();
6571             #endif
6572         }
6573
6574         traceRETURN_xTaskGetSchedulerState( xReturn );
6575
6576         return xReturn;
6577     }
6578
6579 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
6580 /*-----------------------------------------------------------*/
6581
6582 #if ( configUSE_MUTEXES == 1 )
6583
6584     BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
6585     {
6586         TCB_t * const pxMutexHolderTCB = pxMutexHolder;
6587         BaseType_t xReturn = pdFALSE;
6588
6589         traceENTER_xTaskPriorityInherit( pxMutexHolder );
6590
6591         /* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority
6592          * inheritance is not applied in this scenario. */
6593         if( pxMutexHolder != NULL )
6594         {
6595             /* If the holder of the mutex has a priority below the priority of
6596              * the task attempting to obtain the mutex then it will temporarily
6597              * inherit the priority of the task attempting to obtain the mutex. */
6598             if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
6599             {
6600                 /* Adjust the mutex holder state to account for its new
6601                  * priority.  Only reset the event list item value if the value is
6602                  * not being used for anything else. */
6603                 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
6604                 {
6605                     listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority );
6606                 }
6607                 else
6608                 {
6609                     mtCOVERAGE_TEST_MARKER();
6610                 }
6611
6612                 /* If the task being modified is in the ready state it will need
6613                  * to be moved into a new list. */
6614                 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
6615                 {
6616                     if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6617                     {
6618                         /* It is known that the task is in its ready list so
6619                          * there is no need to check again and the port level
6620                          * reset macro can be called directly. */
6621                         portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
6622                     }
6623                     else
6624                     {
6625                         mtCOVERAGE_TEST_MARKER();
6626                     }
6627
6628                     /* Inherit the priority before being moved into the new list. */
6629                     pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6630                     prvAddTaskToReadyList( pxMutexHolderTCB );
6631                     #if ( configNUMBER_OF_CORES > 1 )
6632                     {
6633                         /* The priority of the task is raised. Yield for this task
6634                          * if it is not running. */
6635                         if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE )
6636                         {
6637                             prvYieldForTask( pxMutexHolderTCB );
6638                         }
6639                     }
6640                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6641                 }
6642                 else
6643                 {
6644                     /* Just inherit the priority. */
6645                     pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6646                 }
6647
6648                 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
6649
6650                 /* Inheritance occurred. */
6651                 xReturn = pdTRUE;
6652             }
6653             else
6654             {
6655                 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
6656                 {
6657                     /* The base priority of the mutex holder is lower than the
6658                      * priority of the task attempting to take the mutex, but the
6659                      * current priority of the mutex holder is not lower than the
6660                      * priority of the task attempting to take the mutex.
6661                      * Therefore the mutex holder must have already inherited a
6662                      * priority, but inheritance would have occurred if that had
6663                      * not been the case. */
6664                     xReturn = pdTRUE;
6665                 }
6666                 else
6667                 {
6668                     mtCOVERAGE_TEST_MARKER();
6669                 }
6670             }
6671         }
6672         else
6673         {
6674             mtCOVERAGE_TEST_MARKER();
6675         }
6676
6677         traceRETURN_xTaskPriorityInherit( xReturn );
6678
6679         return xReturn;
6680     }
6681
6682 #endif /* configUSE_MUTEXES */
6683 /*-----------------------------------------------------------*/
6684
6685 #if ( configUSE_MUTEXES == 1 )
6686
6687     BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
6688     {
6689         TCB_t * const pxTCB = pxMutexHolder;
6690         BaseType_t xReturn = pdFALSE;
6691
6692         traceENTER_xTaskPriorityDisinherit( pxMutexHolder );
6693
6694         if( pxMutexHolder != NULL )
6695         {
6696             /* A task can only have an inherited priority if it holds the mutex.
6697              * If the mutex is held by a task then it cannot be given from an
6698              * interrupt, and if a mutex is given by the holding task then it must
6699              * be the running state task. */
6700             configASSERT( pxTCB == pxCurrentTCB );
6701             configASSERT( pxTCB->uxMutexesHeld );
6702             ( pxTCB->uxMutexesHeld )--;
6703
6704             /* Has the holder of the mutex inherited the priority of another
6705              * task? */
6706             if( pxTCB->uxPriority != pxTCB->uxBasePriority )
6707             {
6708                 /* Only disinherit if no other mutexes are held. */
6709                 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
6710                 {
6711                     /* A task can only have an inherited priority if it holds
6712                      * the mutex.  If the mutex is held by a task then it cannot be
6713                      * given from an interrupt, and if a mutex is given by the
6714                      * holding task then it must be the running state task.  Remove
6715                      * the holding task from the ready list. */
6716                     if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6717                     {
6718                         portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6719                     }
6720                     else
6721                     {
6722                         mtCOVERAGE_TEST_MARKER();
6723                     }
6724
6725                     /* Disinherit the priority before adding the task into the
6726                      * new  ready list. */
6727                     traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
6728                     pxTCB->uxPriority = pxTCB->uxBasePriority;
6729
6730                     /* Reset the event list item value.  It cannot be in use for
6731                      * any other purpose if this task is running, and it must be
6732                      * running to give back the mutex. */
6733                     listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority );
6734                     prvAddTaskToReadyList( pxTCB );
6735                     #if ( configNUMBER_OF_CORES > 1 )
6736                     {
6737                         /* The priority of the task is dropped. Yield the core on
6738                          * which the task is running. */
6739                         if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6740                         {
6741                             prvYieldCore( pxTCB->xTaskRunState );
6742                         }
6743                     }
6744                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6745
6746                     /* Return true to indicate that a context switch is required.
6747                      * This is only actually required in the corner case whereby
6748                      * multiple mutexes were held and the mutexes were given back
6749                      * in an order different to that in which they were taken.
6750                      * If a context switch did not occur when the first mutex was
6751                      * returned, even if a task was waiting on it, then a context
6752                      * switch should occur when the last mutex is returned whether
6753                      * a task is waiting on it or not. */
6754                     xReturn = pdTRUE;
6755                 }
6756                 else
6757                 {
6758                     mtCOVERAGE_TEST_MARKER();
6759                 }
6760             }
6761             else
6762             {
6763                 mtCOVERAGE_TEST_MARKER();
6764             }
6765         }
6766         else
6767         {
6768             mtCOVERAGE_TEST_MARKER();
6769         }
6770
6771         traceRETURN_xTaskPriorityDisinherit( xReturn );
6772
6773         return xReturn;
6774     }
6775
6776 #endif /* configUSE_MUTEXES */
6777 /*-----------------------------------------------------------*/
6778
6779 #if ( configUSE_MUTEXES == 1 )
6780
6781     void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
6782                                               UBaseType_t uxHighestPriorityWaitingTask )
6783     {
6784         TCB_t * const pxTCB = pxMutexHolder;
6785         UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
6786         const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
6787
6788         traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask );
6789
6790         if( pxMutexHolder != NULL )
6791         {
6792             /* If pxMutexHolder is not NULL then the holder must hold at least
6793              * one mutex. */
6794             configASSERT( pxTCB->uxMutexesHeld );
6795
6796             /* Determine the priority to which the priority of the task that
6797              * holds the mutex should be set.  This will be the greater of the
6798              * holding task's base priority and the priority of the highest
6799              * priority task that is waiting to obtain the mutex. */
6800             if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
6801             {
6802                 uxPriorityToUse = uxHighestPriorityWaitingTask;
6803             }
6804             else
6805             {
6806                 uxPriorityToUse = pxTCB->uxBasePriority;
6807             }
6808
6809             /* Does the priority need to change? */
6810             if( pxTCB->uxPriority != uxPriorityToUse )
6811             {
6812                 /* Only disinherit if no other mutexes are held.  This is a
6813                  * simplification in the priority inheritance implementation.  If
6814                  * the task that holds the mutex is also holding other mutexes then
6815                  * the other mutexes may have caused the priority inheritance. */
6816                 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
6817                 {
6818                     /* If a task has timed out because it already holds the
6819                      * mutex it was trying to obtain then it cannot of inherited
6820                      * its own priority. */
6821                     configASSERT( pxTCB != pxCurrentTCB );
6822
6823                     /* Disinherit the priority, remembering the previous
6824                      * priority to facilitate determining the subject task's
6825                      * state. */
6826                     traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
6827                     uxPriorityUsedOnEntry = pxTCB->uxPriority;
6828                     pxTCB->uxPriority = uxPriorityToUse;
6829
6830                     /* Only reset the event list item value if the value is not
6831                      * being used for anything else. */
6832                     if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
6833                     {
6834                         listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse );
6835                     }
6836                     else
6837                     {
6838                         mtCOVERAGE_TEST_MARKER();
6839                     }
6840
6841                     /* If the running task is not the task that holds the mutex
6842                      * then the task that holds the mutex could be in either the
6843                      * Ready, Blocked or Suspended states.  Only remove the task
6844                      * from its current state list if it is in the Ready state as
6845                      * the task's priority is going to change and there is one
6846                      * Ready list per priority. */
6847                     if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
6848                     {
6849                         if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6850                         {
6851                             /* It is known that the task is in its ready list so
6852                              * there is no need to check again and the port level
6853                              * reset macro can be called directly. */
6854                             portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6855                         }
6856                         else
6857                         {
6858                             mtCOVERAGE_TEST_MARKER();
6859                         }
6860
6861                         prvAddTaskToReadyList( pxTCB );
6862                         #if ( configNUMBER_OF_CORES > 1 )
6863                         {
6864                             /* The priority of the task is dropped. Yield the core on
6865                              * which the task is running. */
6866                             if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6867                             {
6868                                 prvYieldCore( pxTCB->xTaskRunState );
6869                             }
6870                         }
6871                         #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6872                     }
6873                     else
6874                     {
6875                         mtCOVERAGE_TEST_MARKER();
6876                     }
6877                 }
6878                 else
6879                 {
6880                     mtCOVERAGE_TEST_MARKER();
6881                 }
6882             }
6883             else
6884             {
6885                 mtCOVERAGE_TEST_MARKER();
6886             }
6887         }
6888         else
6889         {
6890             mtCOVERAGE_TEST_MARKER();
6891         }
6892
6893         traceRETURN_vTaskPriorityDisinheritAfterTimeout();
6894     }
6895
6896 #endif /* configUSE_MUTEXES */
6897 /*-----------------------------------------------------------*/
6898
6899 #if ( configNUMBER_OF_CORES > 1 )
6900
6901 /* If not in a critical section then yield immediately.
6902  * Otherwise set xYieldPendings to true to wait to
6903  * yield until exiting the critical section.
6904  */
6905     void vTaskYieldWithinAPI( void )
6906     {
6907         traceENTER_vTaskYieldWithinAPI();
6908
6909         if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6910         {
6911             portYIELD();
6912         }
6913         else
6914         {
6915             xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
6916         }
6917
6918         traceRETURN_vTaskYieldWithinAPI();
6919     }
6920 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
6921
6922 /*-----------------------------------------------------------*/
6923
6924 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
6925
6926     void vTaskEnterCritical( void )
6927     {
6928         traceENTER_vTaskEnterCritical();
6929
6930         portDISABLE_INTERRUPTS();
6931
6932         if( xSchedulerRunning != pdFALSE )
6933         {
6934             ( pxCurrentTCB->uxCriticalNesting )++;
6935
6936             /* This is not the interrupt safe version of the enter critical
6937              * function so  assert() if it is being called from an interrupt
6938              * context.  Only API functions that end in "FromISR" can be used in an
6939              * interrupt.  Only assert if the critical nesting count is 1 to
6940              * protect against recursive calls if the assert function also uses a
6941              * critical section. */
6942             if( pxCurrentTCB->uxCriticalNesting == 1U )
6943             {
6944                 portASSERT_IF_IN_ISR();
6945             }
6946         }
6947         else
6948         {
6949             mtCOVERAGE_TEST_MARKER();
6950         }
6951
6952         traceRETURN_vTaskEnterCritical();
6953     }
6954
6955 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
6956 /*-----------------------------------------------------------*/
6957
6958 #if ( configNUMBER_OF_CORES > 1 )
6959
6960     void vTaskEnterCritical( void )
6961     {
6962         traceENTER_vTaskEnterCritical();
6963
6964         portDISABLE_INTERRUPTS();
6965
6966         if( xSchedulerRunning != pdFALSE )
6967         {
6968             if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6969             {
6970                 portGET_TASK_LOCK();
6971                 portGET_ISR_LOCK();
6972             }
6973
6974             portINCREMENT_CRITICAL_NESTING_COUNT();
6975
6976             /* This is not the interrupt safe version of the enter critical
6977              * function so  assert() if it is being called from an interrupt
6978              * context.  Only API functions that end in "FromISR" can be used in an
6979              * interrupt.  Only assert if the critical nesting count is 1 to
6980              * protect against recursive calls if the assert function also uses a
6981              * critical section. */
6982             if( portGET_CRITICAL_NESTING_COUNT() == 1U )
6983             {
6984                 portASSERT_IF_IN_ISR();
6985
6986                 if( uxSchedulerSuspended == 0U )
6987                 {
6988                     /* The only time there would be a problem is if this is called
6989                      * before a context switch and vTaskExitCritical() is called
6990                      * after pxCurrentTCB changes. Therefore this should not be
6991                      * used within vTaskSwitchContext(). */
6992                     prvCheckForRunStateChange();
6993                 }
6994             }
6995         }
6996         else
6997         {
6998             mtCOVERAGE_TEST_MARKER();
6999         }
7000
7001         traceRETURN_vTaskEnterCritical();
7002     }
7003
7004 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7005
7006 /*-----------------------------------------------------------*/
7007
7008 #if ( configNUMBER_OF_CORES > 1 )
7009
7010     UBaseType_t vTaskEnterCriticalFromISR( void )
7011     {
7012         UBaseType_t uxSavedInterruptStatus = 0;
7013
7014         traceENTER_vTaskEnterCriticalFromISR();
7015
7016         if( xSchedulerRunning != pdFALSE )
7017         {
7018             uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
7019
7020             if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7021             {
7022                 portGET_ISR_LOCK();
7023             }
7024
7025             portINCREMENT_CRITICAL_NESTING_COUNT();
7026         }
7027         else
7028         {
7029             mtCOVERAGE_TEST_MARKER();
7030         }
7031
7032         traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus );
7033
7034         return uxSavedInterruptStatus;
7035     }
7036
7037 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7038 /*-----------------------------------------------------------*/
7039
7040 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
7041
7042     void vTaskExitCritical( void )
7043     {
7044         traceENTER_vTaskExitCritical();
7045
7046         if( xSchedulerRunning != pdFALSE )
7047         {
7048             /* If pxCurrentTCB->uxCriticalNesting is zero then this function
7049              * does not match a previous call to vTaskEnterCritical(). */
7050             configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );
7051
7052             /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7053              * to exit critical section from ISR. */
7054             portASSERT_IF_IN_ISR();
7055
7056             if( pxCurrentTCB->uxCriticalNesting > 0U )
7057             {
7058                 ( pxCurrentTCB->uxCriticalNesting )--;
7059
7060                 if( pxCurrentTCB->uxCriticalNesting == 0U )
7061                 {
7062                     portENABLE_INTERRUPTS();
7063                 }
7064                 else
7065                 {
7066                     mtCOVERAGE_TEST_MARKER();
7067                 }
7068             }
7069             else
7070             {
7071                 mtCOVERAGE_TEST_MARKER();
7072             }
7073         }
7074         else
7075         {
7076             mtCOVERAGE_TEST_MARKER();
7077         }
7078
7079         traceRETURN_vTaskExitCritical();
7080     }
7081
7082 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
7083 /*-----------------------------------------------------------*/
7084
7085 #if ( configNUMBER_OF_CORES > 1 )
7086
7087     void vTaskExitCritical( void )
7088     {
7089         traceENTER_vTaskExitCritical();
7090
7091         if( xSchedulerRunning != pdFALSE )
7092         {
7093             /* If critical nesting count is zero then this function
7094              * does not match a previous call to vTaskEnterCritical(). */
7095             configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7096
7097             /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7098              * to exit critical section from ISR. */
7099             portASSERT_IF_IN_ISR();
7100
7101             if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7102             {
7103                 portDECREMENT_CRITICAL_NESTING_COUNT();
7104
7105                 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7106                 {
7107                     BaseType_t xYieldCurrentTask;
7108
7109                     /* Get the xYieldPending stats inside the critical section. */
7110                     xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ];
7111
7112                     portRELEASE_ISR_LOCK();
7113                     portRELEASE_TASK_LOCK();
7114                     portENABLE_INTERRUPTS();
7115
7116                     /* When a task yields in a critical section it just sets
7117                      * xYieldPending to true. So now that we have exited the
7118                      * critical section check if xYieldPending is true, and
7119                      * if so yield. */
7120                     if( xYieldCurrentTask != pdFALSE )
7121                     {
7122                         portYIELD();
7123                     }
7124                 }
7125                 else
7126                 {
7127                     mtCOVERAGE_TEST_MARKER();
7128                 }
7129             }
7130             else
7131             {
7132                 mtCOVERAGE_TEST_MARKER();
7133             }
7134         }
7135         else
7136         {
7137             mtCOVERAGE_TEST_MARKER();
7138         }
7139
7140         traceRETURN_vTaskExitCritical();
7141     }
7142
7143 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7144 /*-----------------------------------------------------------*/
7145
7146 #if ( configNUMBER_OF_CORES > 1 )
7147
7148     void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus )
7149     {
7150         traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus );
7151
7152         if( xSchedulerRunning != pdFALSE )
7153         {
7154             /* If critical nesting count is zero then this function
7155              * does not match a previous call to vTaskEnterCritical(). */
7156             configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7157
7158             if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7159             {
7160                 portDECREMENT_CRITICAL_NESTING_COUNT();
7161
7162                 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7163                 {
7164                     portRELEASE_ISR_LOCK();
7165                     portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
7166                 }
7167                 else
7168                 {
7169                     mtCOVERAGE_TEST_MARKER();
7170                 }
7171             }
7172             else
7173             {
7174                 mtCOVERAGE_TEST_MARKER();
7175             }
7176         }
7177         else
7178         {
7179             mtCOVERAGE_TEST_MARKER();
7180         }
7181
7182         traceRETURN_vTaskExitCriticalFromISR();
7183     }
7184
7185 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7186 /*-----------------------------------------------------------*/
7187
7188 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
7189
7190     static char * prvWriteNameToBuffer( char * pcBuffer,
7191                                         const char * pcTaskName )
7192     {
7193         size_t x;
7194
7195         /* Start by copying the entire string. */
7196         ( void ) strcpy( pcBuffer, pcTaskName );
7197
7198         /* Pad the end of the string with spaces to ensure columns line up when
7199          * printed out. */
7200         for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ )
7201         {
7202             pcBuffer[ x ] = ' ';
7203         }
7204
7205         /* Terminate. */
7206         pcBuffer[ x ] = ( char ) 0x00;
7207
7208         /* Return the new end of string. */
7209         return &( pcBuffer[ x ] );
7210     }
7211
7212 #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
7213 /*-----------------------------------------------------------*/
7214
7215 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
7216
7217     void vTaskListTasks( char * pcWriteBuffer,
7218                          size_t uxBufferLength )
7219     {
7220         TaskStatus_t * pxTaskStatusArray;
7221         size_t uxConsumedBufferLength = 0;
7222         size_t uxCharsWrittenBySnprintf;
7223         int iSnprintfReturnValue;
7224         BaseType_t xOutputBufferFull = pdFALSE;
7225         UBaseType_t uxArraySize, x;
7226         char cStatus;
7227
7228         traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength );
7229
7230         /*
7231          * PLEASE NOTE:
7232          *
7233          * This function is provided for convenience only, and is used by many
7234          * of the demo applications.  Do not consider it to be part of the
7235          * scheduler.
7236          *
7237          * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the
7238          * uxTaskGetSystemState() output into a human readable table that
7239          * displays task: names, states, priority, stack usage and task number.
7240          * Stack usage specified as the number of unused StackType_t words stack can hold
7241          * on top of stack - not the number of bytes.
7242          *
7243          * vTaskListTasks() has a dependency on the snprintf() C library function that
7244          * might bloat the code size, use a lot of stack, and provide different
7245          * results on different platforms.  An alternative, tiny, third party,
7246          * and limited functionality implementation of snprintf() is provided in
7247          * many of the FreeRTOS/Demo sub-directories in a file called
7248          * printf-stdarg.c (note printf-stdarg.c does not provide a full
7249          * snprintf() implementation!).
7250          *
7251          * It is recommended that production systems call uxTaskGetSystemState()
7252          * directly to get access to raw stats data, rather than indirectly
7253          * through a call to vTaskListTasks().
7254          */
7255
7256
7257         /* Make sure the write buffer does not contain a string. */
7258         *pcWriteBuffer = ( char ) 0x00;
7259
7260         /* Take a snapshot of the number of tasks in case it changes while this
7261          * function is executing. */
7262         uxArraySize = uxCurrentNumberOfTasks;
7263
7264         /* Allocate an array index for each task.  NOTE!  if
7265          * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7266          * equate to NULL. */
7267         /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7268         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7269         /* coverity[misra_c_2012_rule_11_5_violation] */
7270         pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7271
7272         if( pxTaskStatusArray != NULL )
7273         {
7274             /* Generate the (binary) data. */
7275             uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
7276
7277             /* Create a human readable table from the binary data. */
7278             for( x = 0; x < uxArraySize; x++ )
7279             {
7280                 switch( pxTaskStatusArray[ x ].eCurrentState )
7281                 {
7282                     case eRunning:
7283                         cStatus = tskRUNNING_CHAR;
7284                         break;
7285
7286                     case eReady:
7287                         cStatus = tskREADY_CHAR;
7288                         break;
7289
7290                     case eBlocked:
7291                         cStatus = tskBLOCKED_CHAR;
7292                         break;
7293
7294                     case eSuspended:
7295                         cStatus = tskSUSPENDED_CHAR;
7296                         break;
7297
7298                     case eDeleted:
7299                         cStatus = tskDELETED_CHAR;
7300                         break;
7301
7302                     case eInvalid: /* Fall through. */
7303                     default:       /* Should not get here, but it is included
7304                                     * to prevent static checking errors. */
7305                         cStatus = ( char ) 0x00;
7306                         break;
7307                 }
7308
7309                 /* Is there enough space in the buffer to hold task name? */
7310                 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7311                 {
7312                     /* Write the task name to the string, padding with spaces so it
7313                      * can be printed in tabular form more easily. */
7314                     pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7315                     /* Do not count the terminating null character. */
7316                     uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7317
7318                     /* Is there space left in the buffer? -1 is done because snprintf
7319                      * writes a terminating null character. So we are essentially
7320                      * checking if the buffer has space to write at least one non-null
7321                      * character. */
7322                     if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7323                     {
7324                         /* Write the rest of the string. */
7325                         #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
7326                             /* MISRA Ref 21.6.1 [snprintf for utility] */
7327                             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7328                             /* coverity[misra_c_2012_rule_21_6_violation] */
7329                             iSnprintfReturnValue = snprintf( pcWriteBuffer,
7330                                                              uxBufferLength - uxConsumedBufferLength,
7331                                                              "\t%c\t%u\t%u\t%u\t0x%x\r\n",
7332                                                              cStatus,
7333                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7334                                                              ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7335                                                              ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber,
7336                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask );
7337                         #else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7338                             /* MISRA Ref 21.6.1 [snprintf for utility] */
7339                             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7340                             /* coverity[misra_c_2012_rule_21_6_violation] */
7341                             iSnprintfReturnValue = snprintf( pcWriteBuffer,
7342                                                              uxBufferLength - uxConsumedBufferLength,
7343                                                              "\t%c\t%u\t%u\t%u\r\n",
7344                                                              cStatus,
7345                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7346                                                              ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7347                                                              ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
7348                         #endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7349                         uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7350
7351                         uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7352                         pcWriteBuffer += uxCharsWrittenBySnprintf;
7353                     }
7354                     else
7355                     {
7356                         xOutputBufferFull = pdTRUE;
7357                     }
7358                 }
7359                 else
7360                 {
7361                     xOutputBufferFull = pdTRUE;
7362                 }
7363
7364                 if( xOutputBufferFull == pdTRUE )
7365                 {
7366                     break;
7367                 }
7368             }
7369
7370             /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
7371              * is 0 then vPortFree() will be #defined to nothing. */
7372             vPortFree( pxTaskStatusArray );
7373         }
7374         else
7375         {
7376             mtCOVERAGE_TEST_MARKER();
7377         }
7378
7379         traceRETURN_vTaskListTasks();
7380     }
7381
7382 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7383 /*----------------------------------------------------------*/
7384
7385 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
7386
7387     void vTaskGetRunTimeStatistics( char * pcWriteBuffer,
7388                                     size_t uxBufferLength )
7389     {
7390         TaskStatus_t * pxTaskStatusArray;
7391         size_t uxConsumedBufferLength = 0;
7392         size_t uxCharsWrittenBySnprintf;
7393         int iSnprintfReturnValue;
7394         BaseType_t xOutputBufferFull = pdFALSE;
7395         UBaseType_t uxArraySize, x;
7396         configRUN_TIME_COUNTER_TYPE ulTotalTime = 0;
7397         configRUN_TIME_COUNTER_TYPE ulStatsAsPercentage;
7398
7399         traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength );
7400
7401         /*
7402          * PLEASE NOTE:
7403          *
7404          * This function is provided for convenience only, and is used by many
7405          * of the demo applications.  Do not consider it to be part of the
7406          * scheduler.
7407          *
7408          * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part
7409          * of the uxTaskGetSystemState() output into a human readable table that
7410          * displays the amount of time each task has spent in the Running state
7411          * in both absolute and percentage terms.
7412          *
7413          * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library
7414          * function that might bloat the code size, use a lot of stack, and
7415          * provide different results on different platforms.  An alternative,
7416          * tiny, third party, and limited functionality implementation of
7417          * snprintf() is provided in many of the FreeRTOS/Demo sub-directories in
7418          * a file called printf-stdarg.c (note printf-stdarg.c does not provide
7419          * a full snprintf() implementation!).
7420          *
7421          * It is recommended that production systems call uxTaskGetSystemState()
7422          * directly to get access to raw stats data, rather than indirectly
7423          * through a call to vTaskGetRunTimeStatistics().
7424          */
7425
7426         /* Make sure the write buffer does not contain a string. */
7427         *pcWriteBuffer = ( char ) 0x00;
7428
7429         /* Take a snapshot of the number of tasks in case it changes while this
7430          * function is executing. */
7431         uxArraySize = uxCurrentNumberOfTasks;
7432
7433         /* Allocate an array index for each task.  NOTE!  If
7434          * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7435          * equate to NULL. */
7436         /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7437         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7438         /* coverity[misra_c_2012_rule_11_5_violation] */
7439         pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7440
7441         if( pxTaskStatusArray != NULL )
7442         {
7443             /* Generate the (binary) data. */
7444             uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
7445
7446             /* For percentage calculations. */
7447             ulTotalTime /= ( ( configRUN_TIME_COUNTER_TYPE ) 100U );
7448
7449             /* Avoid divide by zero errors. */
7450             if( ulTotalTime > 0U )
7451             {
7452                 /* Create a human readable table from the binary data. */
7453                 for( x = 0; x < uxArraySize; x++ )
7454                 {
7455                     /* What percentage of the total run time has the task used?
7456                      * This will always be rounded down to the nearest integer.
7457                      * ulTotalRunTime has already been divided by 100. */
7458                     ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
7459
7460                     /* Is there enough space in the buffer to hold task name? */
7461                     if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7462                     {
7463                         /* Write the task name to the string, padding with
7464                          * spaces so it can be printed in tabular form more
7465                          * easily. */
7466                         pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7467                         /* Do not count the terminating null character. */
7468                         uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7469
7470                         /* Is there space left in the buffer? -1 is done because snprintf
7471                          * writes a terminating null character. So we are essentially
7472                          * checking if the buffer has space to write at least one non-null
7473                          * character. */
7474                         if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7475                         {
7476                             if( ulStatsAsPercentage > 0U )
7477                             {
7478                                 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7479                                 {
7480                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7481                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7482                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7483                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7484                                                                      uxBufferLength - uxConsumedBufferLength,
7485                                                                      "\t%lu\t\t%lu%%\r\n",
7486                                                                      pxTaskStatusArray[ x ].ulRunTimeCounter,
7487                                                                      ulStatsAsPercentage );
7488                                 }
7489                                 #else /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7490                                 {
7491                                     /* sizeof( int ) == sizeof( long ) so a smaller
7492                                      * printf() library can be used. */
7493                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7494                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7495                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7496                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7497                                                                      uxBufferLength - uxConsumedBufferLength,
7498                                                                      "\t%u\t\t%u%%\r\n",
7499                                                                      ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter,
7500                                                                      ( unsigned int ) ulStatsAsPercentage );
7501                                 }
7502                                 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7503                             }
7504                             else
7505                             {
7506                                 /* If the percentage is zero here then the task has
7507                                  * consumed less than 1% of the total run time. */
7508                                 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7509                                 {
7510                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7511                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7512                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7513                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7514                                                                      uxBufferLength - uxConsumedBufferLength,
7515                                                                      "\t%lu\t\t<1%%\r\n",
7516                                                                      pxTaskStatusArray[ x ].ulRunTimeCounter );
7517                                 }
7518                                 #else
7519                                 {
7520                                     /* sizeof( int ) == sizeof( long ) so a smaller
7521                                      * printf() library can be used. */
7522                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7523                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7524                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7525                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7526                                                                      uxBufferLength - uxConsumedBufferLength,
7527                                                                      "\t%u\t\t<1%%\r\n",
7528                                                                      ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
7529                                 }
7530                                 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7531                             }
7532
7533                             uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7534                             uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7535                             pcWriteBuffer += uxCharsWrittenBySnprintf;
7536                         }
7537                         else
7538                         {
7539                             xOutputBufferFull = pdTRUE;
7540                         }
7541                     }
7542                     else
7543                     {
7544                         xOutputBufferFull = pdTRUE;
7545                     }
7546
7547                     if( xOutputBufferFull == pdTRUE )
7548                     {
7549                         break;
7550                     }
7551                 }
7552             }
7553             else
7554             {
7555                 mtCOVERAGE_TEST_MARKER();
7556             }
7557
7558             /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
7559              * is 0 then vPortFree() will be #defined to nothing. */
7560             vPortFree( pxTaskStatusArray );
7561         }
7562         else
7563         {
7564             mtCOVERAGE_TEST_MARKER();
7565         }
7566
7567         traceRETURN_vTaskGetRunTimeStatistics();
7568     }
7569
7570 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7571 /*-----------------------------------------------------------*/
7572
7573 TickType_t uxTaskResetEventItemValue( void )
7574 {
7575     TickType_t uxReturn;
7576
7577     traceENTER_uxTaskResetEventItemValue();
7578
7579     uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
7580
7581     /* Reset the event list item to its normal value - so it can be used with
7582      * queues and semaphores. */
7583     listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) );
7584
7585     traceRETURN_uxTaskResetEventItemValue( uxReturn );
7586
7587     return uxReturn;
7588 }
7589 /*-----------------------------------------------------------*/
7590
7591 #if ( configUSE_MUTEXES == 1 )
7592
7593     TaskHandle_t pvTaskIncrementMutexHeldCount( void )
7594     {
7595         TCB_t * pxTCB;
7596
7597         traceENTER_pvTaskIncrementMutexHeldCount();
7598
7599         pxTCB = pxCurrentTCB;
7600
7601         /* If xSemaphoreCreateMutex() is called before any tasks have been created
7602          * then pxCurrentTCB will be NULL. */
7603         if( pxTCB != NULL )
7604         {
7605             ( pxTCB->uxMutexesHeld )++;
7606         }
7607
7608         traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB );
7609
7610         return pxTCB;
7611     }
7612
7613 #endif /* configUSE_MUTEXES */
7614 /*-----------------------------------------------------------*/
7615
7616 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7617
7618     uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn,
7619                                       BaseType_t xClearCountOnExit,
7620                                       TickType_t xTicksToWait )
7621     {
7622         uint32_t ulReturn;
7623         BaseType_t xAlreadyYielded, xShouldBlock = pdFALSE;
7624
7625         traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait );
7626
7627         configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7628
7629         /* We suspend the scheduler here as prvAddCurrentTaskToDelayedList is a
7630          * non-deterministic operation. */
7631         vTaskSuspendAll();
7632         {
7633             /* We MUST enter a critical section to atomically check if a notification
7634              * has occurred and set the flag to indicate that we are waiting for
7635              * a notification. If we do not do so, a notification sent from an ISR
7636              * will get lost. */
7637             taskENTER_CRITICAL();
7638             {
7639                 /* Only block if the notification count is not already non-zero. */
7640                 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0U )
7641                 {
7642                     /* Mark this task as waiting for a notification. */
7643                     pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7644
7645                     if( xTicksToWait > ( TickType_t ) 0 )
7646                     {
7647                         xShouldBlock = pdTRUE;
7648                     }
7649                     else
7650                     {
7651                         mtCOVERAGE_TEST_MARKER();
7652                     }
7653                 }
7654                 else
7655                 {
7656                     mtCOVERAGE_TEST_MARKER();
7657                 }
7658             }
7659             taskEXIT_CRITICAL();
7660
7661             /* We are now out of the critical section but the scheduler is still
7662              * suspended, so we are safe to do non-deterministic operations such
7663              * as prvAddCurrentTaskToDelayedList. */
7664             if( xShouldBlock == pdTRUE )
7665             {
7666                 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn );
7667                 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7668             }
7669             else
7670             {
7671                 mtCOVERAGE_TEST_MARKER();
7672             }
7673         }
7674         xAlreadyYielded = xTaskResumeAll();
7675
7676         /* Force a reschedule if xTaskResumeAll has not already done so. */
7677         if( ( xShouldBlock == pdTRUE ) && ( xAlreadyYielded == pdFALSE ) )
7678         {
7679             taskYIELD_WITHIN_API();
7680         }
7681         else
7682         {
7683             mtCOVERAGE_TEST_MARKER();
7684         }
7685
7686         taskENTER_CRITICAL();
7687         {
7688             traceTASK_NOTIFY_TAKE( uxIndexToWaitOn );
7689             ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7690
7691             if( ulReturn != 0U )
7692             {
7693                 if( xClearCountOnExit != pdFALSE )
7694                 {
7695                     pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ( uint32_t ) 0U;
7696                 }
7697                 else
7698                 {
7699                     pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1;
7700                 }
7701             }
7702             else
7703             {
7704                 mtCOVERAGE_TEST_MARKER();
7705             }
7706
7707             pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7708         }
7709         taskEXIT_CRITICAL();
7710
7711         traceRETURN_ulTaskGenericNotifyTake( ulReturn );
7712
7713         return ulReturn;
7714     }
7715
7716 #endif /* configUSE_TASK_NOTIFICATIONS */
7717 /*-----------------------------------------------------------*/
7718
7719 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7720
7721     BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn,
7722                                        uint32_t ulBitsToClearOnEntry,
7723                                        uint32_t ulBitsToClearOnExit,
7724                                        uint32_t * pulNotificationValue,
7725                                        TickType_t xTicksToWait )
7726     {
7727         BaseType_t xReturn, xAlreadyYielded, xShouldBlock = pdFALSE;
7728
7729         traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait );
7730
7731         configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7732
7733         /* We suspend the scheduler here as prvAddCurrentTaskToDelayedList is a
7734          * non-deterministic operation. */
7735         vTaskSuspendAll();
7736         {
7737             /* We MUST enter a critical section to atomically check and update the
7738              * task notification value. If we do not do so, a notification from
7739              * an ISR will get lost. */
7740             taskENTER_CRITICAL();
7741             {
7742                 /* Only block if a notification is not already pending. */
7743                 if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7744                 {
7745                     /* Clear bits in the task's notification value as bits may get
7746                      * set by the notifying task or interrupt. This can be used
7747                      * to clear the value to zero. */
7748                     pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry;
7749
7750                     /* Mark this task as waiting for a notification. */
7751                     pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7752
7753                     if( xTicksToWait > ( TickType_t ) 0 )
7754                     {
7755                         xShouldBlock = pdTRUE;
7756                     }
7757                     else
7758                     {
7759                         mtCOVERAGE_TEST_MARKER();
7760                     }
7761                 }
7762                 else
7763                 {
7764                     mtCOVERAGE_TEST_MARKER();
7765                 }
7766             }
7767             taskEXIT_CRITICAL();
7768
7769             /* We are now out of the critical section but the scheduler is still
7770              * suspended, so we are safe to do non-deterministic operations such
7771              * as prvAddCurrentTaskToDelayedList. */
7772             if( xShouldBlock == pdTRUE )
7773             {
7774                 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn );
7775                 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7776             }
7777             else
7778             {
7779                 mtCOVERAGE_TEST_MARKER();
7780             }
7781         }
7782         xAlreadyYielded = xTaskResumeAll();
7783
7784         /* Force a reschedule if xTaskResumeAll has not already done so. */
7785         if( ( xShouldBlock == pdTRUE ) && ( xAlreadyYielded == pdFALSE ) )
7786         {
7787             taskYIELD_WITHIN_API();
7788         }
7789         else
7790         {
7791             mtCOVERAGE_TEST_MARKER();
7792         }
7793
7794         taskENTER_CRITICAL();
7795         {
7796             traceTASK_NOTIFY_WAIT( uxIndexToWaitOn );
7797
7798             if( pulNotificationValue != NULL )
7799             {
7800                 /* Output the current notification value, which may or may not
7801                  * have changed. */
7802                 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7803             }
7804
7805             /* If ucNotifyValue is set then either the task never entered the
7806              * blocked state (because a notification was already pending) or the
7807              * task unblocked because of a notification.  Otherwise the task
7808              * unblocked because of a timeout. */
7809             if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7810             {
7811                 /* A notification was not received. */
7812                 xReturn = pdFALSE;
7813             }
7814             else
7815             {
7816                 /* A notification was already pending or a notification was
7817                  * received while the task was waiting. */
7818                 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit;
7819                 xReturn = pdTRUE;
7820             }
7821
7822             pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7823         }
7824         taskEXIT_CRITICAL();
7825
7826         traceRETURN_xTaskGenericNotifyWait( xReturn );
7827
7828         return xReturn;
7829     }
7830
7831 #endif /* configUSE_TASK_NOTIFICATIONS */
7832 /*-----------------------------------------------------------*/
7833
7834 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7835
7836     BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
7837                                    UBaseType_t uxIndexToNotify,
7838                                    uint32_t ulValue,
7839                                    eNotifyAction eAction,
7840                                    uint32_t * pulPreviousNotificationValue )
7841     {
7842         TCB_t * pxTCB;
7843         BaseType_t xReturn = pdPASS;
7844         uint8_t ucOriginalNotifyState;
7845
7846         traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue );
7847
7848         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7849         configASSERT( xTaskToNotify );
7850         pxTCB = xTaskToNotify;
7851
7852         taskENTER_CRITICAL();
7853         {
7854             if( pulPreviousNotificationValue != NULL )
7855             {
7856                 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
7857             }
7858
7859             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
7860
7861             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
7862
7863             switch( eAction )
7864             {
7865                 case eSetBits:
7866                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
7867                     break;
7868
7869                 case eIncrement:
7870                     ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
7871                     break;
7872
7873                 case eSetValueWithOverwrite:
7874                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7875                     break;
7876
7877                 case eSetValueWithoutOverwrite:
7878
7879                     if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
7880                     {
7881                         pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7882                     }
7883                     else
7884                     {
7885                         /* The value could not be written to the task. */
7886                         xReturn = pdFAIL;
7887                     }
7888
7889                     break;
7890
7891                 case eNoAction:
7892
7893                     /* The task is being notified without its notify value being
7894                      * updated. */
7895                     break;
7896
7897                 default:
7898
7899                     /* Should not get here if all enums are handled.
7900                      * Artificially force an assert by testing a value the
7901                      * compiler can't assume is const. */
7902                     configASSERT( xTickCount == ( TickType_t ) 0 );
7903
7904                     break;
7905             }
7906
7907             traceTASK_NOTIFY( uxIndexToNotify );
7908
7909             /* If the task is in the blocked state specifically to wait for a
7910              * notification then unblock it now. */
7911             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
7912             {
7913                 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
7914                 prvAddTaskToReadyList( pxTCB );
7915
7916                 /* The task should not have been on an event list. */
7917                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
7918
7919                 #if ( configUSE_TICKLESS_IDLE != 0 )
7920                 {
7921                     /* If a task is blocked waiting for a notification then
7922                      * xNextTaskUnblockTime might be set to the blocked task's time
7923                      * out time.  If the task is unblocked for a reason other than
7924                      * a timeout xNextTaskUnblockTime is normally left unchanged,
7925                      * because it will automatically get reset to a new value when
7926                      * the tick count equals xNextTaskUnblockTime.  However if
7927                      * tickless idling is used it might be more important to enter
7928                      * sleep mode at the earliest possible time - so reset
7929                      * xNextTaskUnblockTime here to ensure it is updated at the
7930                      * earliest possible time. */
7931                     prvResetNextTaskUnblockTime();
7932                 }
7933                 #endif
7934
7935                 /* Check if the notified task has a priority above the currently
7936                  * executing task. */
7937                 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
7938             }
7939             else
7940             {
7941                 mtCOVERAGE_TEST_MARKER();
7942             }
7943         }
7944         taskEXIT_CRITICAL();
7945
7946         traceRETURN_xTaskGenericNotify( xReturn );
7947
7948         return xReturn;
7949     }
7950
7951 #endif /* configUSE_TASK_NOTIFICATIONS */
7952 /*-----------------------------------------------------------*/
7953
7954 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7955
7956     BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
7957                                           UBaseType_t uxIndexToNotify,
7958                                           uint32_t ulValue,
7959                                           eNotifyAction eAction,
7960                                           uint32_t * pulPreviousNotificationValue,
7961                                           BaseType_t * pxHigherPriorityTaskWoken )
7962     {
7963         TCB_t * pxTCB;
7964         uint8_t ucOriginalNotifyState;
7965         BaseType_t xReturn = pdPASS;
7966         UBaseType_t uxSavedInterruptStatus;
7967
7968         traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken );
7969
7970         configASSERT( xTaskToNotify );
7971         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7972
7973         /* RTOS ports that support interrupt nesting have the concept of a
7974          * maximum  system call (or maximum API call) interrupt priority.
7975          * Interrupts that are  above the maximum system call priority are keep
7976          * permanently enabled, even when the RTOS kernel is in a critical section,
7977          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
7978          * is defined in FreeRTOSConfig.h then
7979          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
7980          * failure if a FreeRTOS API function is called from an interrupt that has
7981          * been assigned a priority above the configured maximum system call
7982          * priority.  Only FreeRTOS functions that end in FromISR can be called
7983          * from interrupts  that have been assigned a priority at or (logically)
7984          * below the maximum system call interrupt priority.  FreeRTOS maintains a
7985          * separate interrupt safe API to ensure interrupt entry is as fast and as
7986          * simple as possible.  More information (albeit Cortex-M specific) is
7987          * provided on the following link:
7988          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
7989         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
7990
7991         pxTCB = xTaskToNotify;
7992
7993         /* MISRA Ref 4.7.1 [Return value shall be checked] */
7994         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
7995         /* coverity[misra_c_2012_directive_4_7_violation] */
7996         uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
7997         {
7998             if( pulPreviousNotificationValue != NULL )
7999             {
8000                 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
8001             }
8002
8003             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8004             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8005
8006             switch( eAction )
8007             {
8008                 case eSetBits:
8009                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
8010                     break;
8011
8012                 case eIncrement:
8013                     ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8014                     break;
8015
8016                 case eSetValueWithOverwrite:
8017                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8018                     break;
8019
8020                 case eSetValueWithoutOverwrite:
8021
8022                     if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
8023                     {
8024                         pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8025                     }
8026                     else
8027                     {
8028                         /* The value could not be written to the task. */
8029                         xReturn = pdFAIL;
8030                     }
8031
8032                     break;
8033
8034                 case eNoAction:
8035
8036                     /* The task is being notified without its notify value being
8037                      * updated. */
8038                     break;
8039
8040                 default:
8041
8042                     /* Should not get here if all enums are handled.
8043                      * Artificially force an assert by testing a value the
8044                      * compiler can't assume is const. */
8045                     configASSERT( xTickCount == ( TickType_t ) 0 );
8046                     break;
8047             }
8048
8049             traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
8050
8051             /* If the task is in the blocked state specifically to wait for a
8052              * notification then unblock it now. */
8053             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8054             {
8055                 /* The task should not have been on an event list. */
8056                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8057
8058                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8059                 {
8060                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8061                     prvAddTaskToReadyList( pxTCB );
8062                 }
8063                 else
8064                 {
8065                     /* The delayed and ready lists cannot be accessed, so hold
8066                      * this task pending until the scheduler is resumed. */
8067                     listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8068                 }
8069
8070                 #if ( configNUMBER_OF_CORES == 1 )
8071                 {
8072                     if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8073                     {
8074                         /* The notified task has a priority above the currently
8075                          * executing task so a yield is required. */
8076                         if( pxHigherPriorityTaskWoken != NULL )
8077                         {
8078                             *pxHigherPriorityTaskWoken = pdTRUE;
8079                         }
8080
8081                         /* Mark that a yield is pending in case the user is not
8082                          * using the "xHigherPriorityTaskWoken" parameter to an ISR
8083                          * safe FreeRTOS function. */
8084                         xYieldPendings[ 0 ] = pdTRUE;
8085                     }
8086                     else
8087                     {
8088                         mtCOVERAGE_TEST_MARKER();
8089                     }
8090                 }
8091                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8092                 {
8093                     #if ( configUSE_PREEMPTION == 1 )
8094                     {
8095                         prvYieldForTask( pxTCB );
8096
8097                         if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8098                         {
8099                             if( pxHigherPriorityTaskWoken != NULL )
8100                             {
8101                                 *pxHigherPriorityTaskWoken = pdTRUE;
8102                             }
8103                         }
8104                     }
8105                     #endif /* if ( configUSE_PREEMPTION == 1 ) */
8106                 }
8107                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8108             }
8109         }
8110         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8111
8112         traceRETURN_xTaskGenericNotifyFromISR( xReturn );
8113
8114         return xReturn;
8115     }
8116
8117 #endif /* configUSE_TASK_NOTIFICATIONS */
8118 /*-----------------------------------------------------------*/
8119
8120 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8121
8122     void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
8123                                         UBaseType_t uxIndexToNotify,
8124                                         BaseType_t * pxHigherPriorityTaskWoken )
8125     {
8126         TCB_t * pxTCB;
8127         uint8_t ucOriginalNotifyState;
8128         UBaseType_t uxSavedInterruptStatus;
8129
8130         traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken );
8131
8132         configASSERT( xTaskToNotify );
8133         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8134
8135         /* RTOS ports that support interrupt nesting have the concept of a
8136          * maximum  system call (or maximum API call) interrupt priority.
8137          * Interrupts that are  above the maximum system call priority are keep
8138          * permanently enabled, even when the RTOS kernel is in a critical section,
8139          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
8140          * is defined in FreeRTOSConfig.h then
8141          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8142          * failure if a FreeRTOS API function is called from an interrupt that has
8143          * been assigned a priority above the configured maximum system call
8144          * priority.  Only FreeRTOS functions that end in FromISR can be called
8145          * from interrupts  that have been assigned a priority at or (logically)
8146          * below the maximum system call interrupt priority.  FreeRTOS maintains a
8147          * separate interrupt safe API to ensure interrupt entry is as fast and as
8148          * simple as possible.  More information (albeit Cortex-M specific) is
8149          * provided on the following link:
8150          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8151         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8152
8153         pxTCB = xTaskToNotify;
8154
8155         /* MISRA Ref 4.7.1 [Return value shall be checked] */
8156         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
8157         /* coverity[misra_c_2012_directive_4_7_violation] */
8158         uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
8159         {
8160             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8161             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8162
8163             /* 'Giving' is equivalent to incrementing a count in a counting
8164              * semaphore. */
8165             ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8166
8167             traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
8168
8169             /* If the task is in the blocked state specifically to wait for a
8170              * notification then unblock it now. */
8171             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8172             {
8173                 /* The task should not have been on an event list. */
8174                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8175
8176                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8177                 {
8178                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8179                     prvAddTaskToReadyList( pxTCB );
8180                 }
8181                 else
8182                 {
8183                     /* The delayed and ready lists cannot be accessed, so hold
8184                      * this task pending until the scheduler is resumed. */
8185                     listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8186                 }
8187
8188                 #if ( configNUMBER_OF_CORES == 1 )
8189                 {
8190                     if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8191                     {
8192                         /* The notified task has a priority above the currently
8193                          * executing task so a yield is required. */
8194                         if( pxHigherPriorityTaskWoken != NULL )
8195                         {
8196                             *pxHigherPriorityTaskWoken = pdTRUE;
8197                         }
8198
8199                         /* Mark that a yield is pending in case the user is not
8200                          * using the "xHigherPriorityTaskWoken" parameter in an ISR
8201                          * safe FreeRTOS function. */
8202                         xYieldPendings[ 0 ] = pdTRUE;
8203                     }
8204                     else
8205                     {
8206                         mtCOVERAGE_TEST_MARKER();
8207                     }
8208                 }
8209                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8210                 {
8211                     #if ( configUSE_PREEMPTION == 1 )
8212                     {
8213                         prvYieldForTask( pxTCB );
8214
8215                         if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8216                         {
8217                             if( pxHigherPriorityTaskWoken != NULL )
8218                             {
8219                                 *pxHigherPriorityTaskWoken = pdTRUE;
8220                             }
8221                         }
8222                     }
8223                     #endif /* #if ( configUSE_PREEMPTION == 1 ) */
8224                 }
8225                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8226             }
8227         }
8228         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8229
8230         traceRETURN_vTaskGenericNotifyGiveFromISR();
8231     }
8232
8233 #endif /* configUSE_TASK_NOTIFICATIONS */
8234 /*-----------------------------------------------------------*/
8235
8236 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8237
8238     BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
8239                                              UBaseType_t uxIndexToClear )
8240     {
8241         TCB_t * pxTCB;
8242         BaseType_t xReturn;
8243
8244         traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear );
8245
8246         configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8247
8248         /* If null is passed in here then it is the calling task that is having
8249          * its notification state cleared. */
8250         pxTCB = prvGetTCBFromHandle( xTask );
8251
8252         taskENTER_CRITICAL();
8253         {
8254             if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
8255             {
8256                 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
8257                 xReturn = pdPASS;
8258             }
8259             else
8260             {
8261                 xReturn = pdFAIL;
8262             }
8263         }
8264         taskEXIT_CRITICAL();
8265
8266         traceRETURN_xTaskGenericNotifyStateClear( xReturn );
8267
8268         return xReturn;
8269     }
8270
8271 #endif /* configUSE_TASK_NOTIFICATIONS */
8272 /*-----------------------------------------------------------*/
8273
8274 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8275
8276     uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
8277                                             UBaseType_t uxIndexToClear,
8278                                             uint32_t ulBitsToClear )
8279     {
8280         TCB_t * pxTCB;
8281         uint32_t ulReturn;
8282
8283         traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear );
8284
8285         configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8286
8287         /* If null is passed in here then it is the calling task that is having
8288          * its notification state cleared. */
8289         pxTCB = prvGetTCBFromHandle( xTask );
8290
8291         taskENTER_CRITICAL();
8292         {
8293             /* Return the notification as it was before the bits were cleared,
8294              * then clear the bit mask. */
8295             ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
8296             pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
8297         }
8298         taskEXIT_CRITICAL();
8299
8300         traceRETURN_ulTaskGenericNotifyValueClear( ulReturn );
8301
8302         return ulReturn;
8303     }
8304
8305 #endif /* configUSE_TASK_NOTIFICATIONS */
8306 /*-----------------------------------------------------------*/
8307
8308 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8309
8310     configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask )
8311     {
8312         TCB_t * pxTCB;
8313
8314         traceENTER_ulTaskGetRunTimeCounter( xTask );
8315
8316         pxTCB = prvGetTCBFromHandle( xTask );
8317
8318         traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter );
8319
8320         return pxTCB->ulRunTimeCounter;
8321     }
8322
8323 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8324 /*-----------------------------------------------------------*/
8325
8326 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8327
8328     configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask )
8329     {
8330         TCB_t * pxTCB;
8331         configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8332
8333         traceENTER_ulTaskGetRunTimePercent( xTask );
8334
8335         ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
8336
8337         /* For percentage calculations. */
8338         ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8339
8340         /* Avoid divide by zero errors. */
8341         if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8342         {
8343             pxTCB = prvGetTCBFromHandle( xTask );
8344             ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime;
8345         }
8346         else
8347         {
8348             ulReturn = 0;
8349         }
8350
8351         traceRETURN_ulTaskGetRunTimePercent( ulReturn );
8352
8353         return ulReturn;
8354     }
8355
8356 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8357 /*-----------------------------------------------------------*/
8358
8359 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8360
8361     configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
8362     {
8363         configRUN_TIME_COUNTER_TYPE ulReturn = 0;
8364         BaseType_t i;
8365
8366         traceENTER_ulTaskGetIdleRunTimeCounter();
8367
8368         for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8369         {
8370             ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8371         }
8372
8373         traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn );
8374
8375         return ulReturn;
8376     }
8377
8378 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8379 /*-----------------------------------------------------------*/
8380
8381 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8382
8383     configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
8384     {
8385         configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8386         configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0;
8387         BaseType_t i;
8388
8389         traceENTER_ulTaskGetIdleRunTimePercent();
8390
8391         ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES;
8392
8393         /* For percentage calculations. */
8394         ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8395
8396         /* Avoid divide by zero errors. */
8397         if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8398         {
8399             for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8400             {
8401                 ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8402             }
8403
8404             ulReturn = ulRunTimeCounter / ulTotalTime;
8405         }
8406         else
8407         {
8408             ulReturn = 0;
8409         }
8410
8411         traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn );
8412
8413         return ulReturn;
8414     }
8415
8416 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8417 /*-----------------------------------------------------------*/
8418
8419 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
8420                                             const BaseType_t xCanBlockIndefinitely )
8421 {
8422     TickType_t xTimeToWake;
8423     const TickType_t xConstTickCount = xTickCount;
8424     List_t * const pxDelayedList = pxDelayedTaskList;
8425     List_t * const pxOverflowDelayedList = pxOverflowDelayedTaskList;
8426
8427     #if ( INCLUDE_xTaskAbortDelay == 1 )
8428     {
8429         /* About to enter a delayed list, so ensure the ucDelayAborted flag is
8430          * reset to pdFALSE so it can be detected as having been set to pdTRUE
8431          * when the task leaves the Blocked state. */
8432         pxCurrentTCB->ucDelayAborted = ( uint8_t ) pdFALSE;
8433     }
8434     #endif
8435
8436     /* Remove the task from the ready list before adding it to the blocked list
8437      * as the same list item is used for both lists. */
8438     if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
8439     {
8440         /* The current task must be in a ready list, so there is no need to
8441          * check, and the port reset macro can be called directly. */
8442         portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
8443     }
8444     else
8445     {
8446         mtCOVERAGE_TEST_MARKER();
8447     }
8448
8449     #if ( INCLUDE_vTaskSuspend == 1 )
8450     {
8451         if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
8452         {
8453             /* Add the task to the suspended task list instead of a delayed task
8454              * list to ensure it is not woken by a timing event.  It will block
8455              * indefinitely. */
8456             listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
8457         }
8458         else
8459         {
8460             /* Calculate the time at which the task should be woken if the event
8461              * does not occur.  This may overflow but this doesn't matter, the
8462              * kernel will manage it correctly. */
8463             xTimeToWake = xConstTickCount + xTicksToWait;
8464
8465             /* The list item will be inserted in wake time order. */
8466             listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8467
8468             if( xTimeToWake < xConstTickCount )
8469             {
8470                 /* Wake time has overflowed.  Place this item in the overflow
8471                  * list. */
8472                 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8473                 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8474             }
8475             else
8476             {
8477                 /* The wake time has not overflowed, so the current block list
8478                  * is used. */
8479                 traceMOVED_TASK_TO_DELAYED_LIST();
8480                 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8481
8482                 /* If the task entering the blocked state was placed at the
8483                  * head of the list of blocked tasks then xNextTaskUnblockTime
8484                  * needs to be updated too. */
8485                 if( xTimeToWake < xNextTaskUnblockTime )
8486                 {
8487                     xNextTaskUnblockTime = xTimeToWake;
8488                 }
8489                 else
8490                 {
8491                     mtCOVERAGE_TEST_MARKER();
8492                 }
8493             }
8494         }
8495     }
8496     #else /* INCLUDE_vTaskSuspend */
8497     {
8498         /* Calculate the time at which the task should be woken if the event
8499          * does not occur.  This may overflow but this doesn't matter, the kernel
8500          * will manage it correctly. */
8501         xTimeToWake = xConstTickCount + xTicksToWait;
8502
8503         /* The list item will be inserted in wake time order. */
8504         listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8505
8506         if( xTimeToWake < xConstTickCount )
8507         {
8508             traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8509             /* Wake time has overflowed.  Place this item in the overflow list. */
8510             vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8511         }
8512         else
8513         {
8514             traceMOVED_TASK_TO_DELAYED_LIST();
8515             /* The wake time has not overflowed, so the current block list is used. */
8516             vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8517
8518             /* If the task entering the blocked state was placed at the head of the
8519              * list of blocked tasks then xNextTaskUnblockTime needs to be updated
8520              * too. */
8521             if( xTimeToWake < xNextTaskUnblockTime )
8522             {
8523                 xNextTaskUnblockTime = xTimeToWake;
8524             }
8525             else
8526             {
8527                 mtCOVERAGE_TEST_MARKER();
8528             }
8529         }
8530
8531         /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
8532         ( void ) xCanBlockIndefinitely;
8533     }
8534     #endif /* INCLUDE_vTaskSuspend */
8535 }
8536 /*-----------------------------------------------------------*/
8537
8538 #if ( portUSING_MPU_WRAPPERS == 1 )
8539
8540     xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask )
8541     {
8542         TCB_t * pxTCB;
8543
8544         traceENTER_xTaskGetMPUSettings( xTask );
8545
8546         pxTCB = prvGetTCBFromHandle( xTask );
8547
8548         traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) );
8549
8550         return &( pxTCB->xMPUSettings );
8551     }
8552
8553 #endif /* portUSING_MPU_WRAPPERS */
8554 /*-----------------------------------------------------------*/
8555
8556 /* Code below here allows additional code to be inserted into this source file,
8557  * especially where access to file scope functions and data is needed (for example
8558  * when performing module tests). */
8559
8560 #ifdef FREERTOS_MODULE_TEST
8561     #include "tasks_test_access_functions.h"
8562 #endif
8563
8564
8565 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
8566
8567     #include "freertos_tasks_c_additions.h"
8568
8569     #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
8570         static void freertos_tasks_c_additions_init( void )
8571         {
8572             FREERTOS_TASKS_C_ADDITIONS_INIT();
8573         }
8574     #endif
8575
8576 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
8577 /*-----------------------------------------------------------*/
8578
8579 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8580
8581 /*
8582  * This is the kernel provided implementation of vApplicationGetIdleTaskMemory()
8583  * to provide the memory that is used by the Idle task. It is used when
8584  * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8585  * it's own implementation of vApplicationGetIdleTaskMemory by setting
8586  * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8587  */
8588     void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8589                                         StackType_t ** ppxIdleTaskStackBuffer,
8590                                         configSTACK_DEPTH_TYPE * puxIdleTaskStackSize )
8591     {
8592         static StaticTask_t xIdleTaskTCB;
8593         static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
8594
8595         *ppxIdleTaskTCBBuffer = &( xIdleTaskTCB );
8596         *ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] );
8597         *puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8598     }
8599
8600     #if ( configNUMBER_OF_CORES > 1 )
8601
8602         void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8603                                                    StackType_t ** ppxIdleTaskStackBuffer,
8604                                                    configSTACK_DEPTH_TYPE * puxIdleTaskStackSize,
8605                                                    BaseType_t xPassiveIdleTaskIndex )
8606         {
8607             static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ];
8608             static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ];
8609
8610             *ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] );
8611             *ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] );
8612             *puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8613         }
8614
8615     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
8616
8617 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8618 /*-----------------------------------------------------------*/
8619
8620 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8621
8622 /*
8623  * This is the kernel provided implementation of vApplicationGetTimerTaskMemory()
8624  * to provide the memory that is used by the Timer service task. It is used when
8625  * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8626  * it's own implementation of vApplicationGetTimerTaskMemory by setting
8627  * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8628  */
8629     void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
8630                                          StackType_t ** ppxTimerTaskStackBuffer,
8631                                          configSTACK_DEPTH_TYPE * puxTimerTaskStackSize )
8632     {
8633         static StaticTask_t xTimerTaskTCB;
8634         static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
8635
8636         *ppxTimerTaskTCBBuffer = &( xTimerTaskTCB );
8637         *ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] );
8638         *puxTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
8639     }
8640
8641 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8642 /*-----------------------------------------------------------*/
8643
8644 /*
8645  * Reset the state in this file. This state is normally initialized at start up.
8646  * This function must be called by the application before restarting the
8647  * scheduler.
8648  */
8649 void vTaskResetState( void )
8650 {
8651     BaseType_t xCoreID;
8652
8653     /* Task control block. */
8654     #if ( configNUMBER_OF_CORES == 1 )
8655     {
8656         pxCurrentTCB = NULL;
8657     }
8658     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8659
8660     #if ( INCLUDE_vTaskDelete == 1 )
8661     {
8662         uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
8663     }
8664     #endif /* #if ( INCLUDE_vTaskDelete == 1 ) */
8665
8666     #if ( configUSE_POSIX_ERRNO == 1 )
8667     {
8668         FreeRTOS_errno = 0;
8669     }
8670     #endif /* #if ( configUSE_POSIX_ERRNO == 1 ) */
8671
8672     /* Other file private variables. */
8673     uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
8674     xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
8675     uxTopReadyPriority = tskIDLE_PRIORITY;
8676     xSchedulerRunning = pdFALSE;
8677     xPendedTicks = ( TickType_t ) 0U;
8678
8679     for( xCoreID = 0; xCoreID < configNUMBER_OF_CORES; xCoreID++ )
8680     {
8681         xYieldPendings[ xCoreID ] = pdFALSE;
8682     }
8683
8684     xNumOfOverflows = ( BaseType_t ) 0;
8685     uxTaskNumber = ( UBaseType_t ) 0U;
8686     xNextTaskUnblockTime = ( TickType_t ) 0U;
8687
8688     uxSchedulerSuspended = ( UBaseType_t ) 0U;
8689
8690     #if ( configGENERATE_RUN_TIME_STATS == 1 )
8691     {
8692         for( xCoreID = 0; xCoreID < configNUMBER_OF_CORES; xCoreID++ )
8693         {
8694             ulTaskSwitchedInTime[ xCoreID ] = 0U;
8695             ulTotalRunTime[ xCoreID ] = 0U;
8696         }
8697     }
8698     #endif /* #if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8699 }
8700 /*-----------------------------------------------------------*/