2 FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
\r
5 VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
\r
7 This file is part of the FreeRTOS distribution.
\r
9 FreeRTOS is free software; you can redistribute it and/or modify it under
\r
10 the terms of the GNU General Public License (version 2) as published by the
\r
11 Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
\r
13 ***************************************************************************
\r
14 >>! NOTE: The modification to the GPL is included to allow you to !<<
\r
15 >>! distribute a combined work that includes FreeRTOS without being !<<
\r
16 >>! obliged to provide the source code for proprietary components !<<
\r
17 >>! outside of the FreeRTOS kernel. !<<
\r
18 ***************************************************************************
\r
20 FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
\r
21 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
\r
22 FOR A PARTICULAR PURPOSE. Full license text is available on the following
\r
23 link: http://www.freertos.org/a00114.html
\r
25 ***************************************************************************
\r
27 * FreeRTOS provides completely free yet professionally developed, *
\r
28 * robust, strictly quality controlled, supported, and cross *
\r
29 * platform software that is more than just the market leader, it *
\r
30 * is the industry's de facto standard. *
\r
32 * Help yourself get started quickly while simultaneously helping *
\r
33 * to support the FreeRTOS project by purchasing a FreeRTOS *
\r
34 * tutorial book, reference manual, or both: *
\r
35 * http://www.FreeRTOS.org/Documentation *
\r
37 ***************************************************************************
\r
39 http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
\r
40 the FAQ page "My application does not run, what could be wrong?". Have you
\r
41 defined configASSERT()?
\r
43 http://www.FreeRTOS.org/support - In return for receiving this top quality
\r
44 embedded software for free we request you assist our global community by
\r
45 participating in the support forum.
\r
47 http://www.FreeRTOS.org/training - Investing in training allows your team to
\r
48 be as productive as possible as early as possible. Now you can receive
\r
49 FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
\r
50 Ltd, and the world's leading authority on the world's leading RTOS.
\r
52 http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
\r
53 including FreeRTOS+Trace - an indispensable productivity tool, a DOS
\r
54 compatible FAT file system, and our tiny thread aware UDP/IP stack.
\r
56 http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
\r
57 Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
\r
59 http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
\r
60 Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
\r
61 licenses offer ticketed support, indemnification and commercial middleware.
\r
63 http://www.SafeRTOS.com - High Integrity Systems also provide a safety
\r
64 engineered and independently SIL3 certified version for use in safety and
\r
65 mission critical applications that require provable dependability.
\r
73 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
74 all the API functions to use the MPU wrappers. That should only be done when
\r
75 task.h is included from an application file. */
\r
76 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
78 #include "FreeRTOS.h"
\r
82 #if ( configUSE_CO_ROUTINES == 1 )
\r
83 #include "croutine.h"
\r
86 /* Lint e961 and e750 are suppressed as a MISRA exception justified because the
\r
87 MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
\r
88 header files above, but not in this file, in order to generate the correct
\r
89 privileged Vs unprivileged linkage and placement. */
\r
90 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
\r
93 /* Constants used with the cRxLock and cTxLock structure members. */
\r
94 #define queueUNLOCKED ( ( int8_t ) -1 )
\r
95 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
\r
97 /* When the Queue_t structure is used to represent a base queue its pcHead and
\r
98 pcTail members are used as pointers into the queue storage area. When the
\r
99 Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
\r
100 not necessary, and the pcHead pointer is set to NULL to indicate that the
\r
101 pcTail pointer actually points to the mutex holder (if any). Map alternative
\r
102 names to the pcHead and pcTail structure members to ensure the readability of
\r
103 the code is maintained despite this dual use of two structure members. An
\r
104 alternative implementation would be to use a union, but use of a union is
\r
105 against the coding standard (although an exception to the standard has been
\r
106 permitted where the dual use also significantly changes the type of the
\r
107 structure member). */
\r
108 #define pxMutexHolder pcTail
\r
109 #define uxQueueType pcHead
\r
110 #define queueQUEUE_IS_MUTEX NULL
\r
112 /* Semaphores do not actually store or copy data, so have an item size of
\r
114 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
\r
115 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
\r
117 #if( configUSE_PREEMPTION == 0 )
\r
118 /* If the cooperative scheduler is being used then a yield should not be
\r
119 performed just because a higher priority task has been woken. */
\r
120 #define queueYIELD_IF_USING_PREEMPTION()
\r
122 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
126 * Definition of the queue used by the scheduler.
\r
127 * Items are queued by copy, not reference. See the following link for the
\r
128 * rationale: http://www.freertos.org/Embedded-RTOS-Queues.html
\r
130 typedef struct QueueDefinition
\r
132 int8_t *pcHead; /*< Points to the beginning of the queue storage area. */
\r
133 int8_t *pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
\r
134 int8_t *pcWriteTo; /*< Points to the free next place in the storage area. */
\r
136 union /* Use of a union is an exception to the coding standard to ensure two mutually exclusive structure members don't appear simultaneously (wasting RAM). */
\r
138 int8_t *pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
\r
139 UBaseType_t uxRecursiveCallCount;/*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
\r
142 List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
\r
143 List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
\r
145 volatile UBaseType_t uxMessagesWaiting;/*< The number of items currently in the queue. */
\r
146 UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
\r
147 UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
\r
149 volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
150 volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
152 #if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
153 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
\r
156 #if ( configUSE_QUEUE_SETS == 1 )
\r
157 struct QueueDefinition *pxQueueSetContainer;
\r
160 #if ( configUSE_TRACE_FACILITY == 1 )
\r
161 UBaseType_t uxQueueNumber;
\r
162 uint8_t ucQueueType;
\r
167 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
\r
168 name below to enable the use of older kernel aware debuggers. */
\r
169 typedef xQUEUE Queue_t;
\r
171 /*-----------------------------------------------------------*/
\r
174 * The queue registry is just a means for kernel aware debuggers to locate
\r
175 * queue structures. It has no other purpose so is an optional component.
\r
177 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
179 /* The type stored within the queue registry array. This allows a name
\r
180 to be assigned to each queue making kernel aware debugging a little
\r
181 more user friendly. */
\r
182 typedef struct QUEUE_REGISTRY_ITEM
\r
184 const char *pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
185 QueueHandle_t xHandle;
\r
186 } xQueueRegistryItem;
\r
188 /* The old xQueueRegistryItem name is maintained above then typedefed to the
\r
189 new xQueueRegistryItem name below to enable the use of older kernel aware
\r
191 typedef xQueueRegistryItem QueueRegistryItem_t;
\r
193 /* The queue registry is simply an array of QueueRegistryItem_t structures.
\r
194 The pcQueueName member of a structure being NULL is indicative of the
\r
195 array position being vacant. */
\r
196 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
\r
198 #endif /* configQUEUE_REGISTRY_SIZE */
\r
201 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
\r
202 * prevent an ISR from adding or removing items to the queue, but does prevent
\r
203 * an ISR from removing tasks from the queue event lists. If an ISR finds a
\r
204 * queue is locked it will instead increment the appropriate queue lock count
\r
205 * to indicate that a task may require unblocking. When the queue in unlocked
\r
206 * these lock counts are inspected, and the appropriate action taken.
\r
208 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
211 * Uses a critical section to determine if there is any data in a queue.
\r
213 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
\r
215 static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION;
\r
218 * Uses a critical section to determine if there is any space in a queue.
\r
220 * @return pdTRUE if there is no space, otherwise pdFALSE;
\r
222 static BaseType_t prvIsQueueFull( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION;
\r
225 * Copies an item into the queue, either at the front of the queue or the
\r
226 * back of the queue.
\r
228 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
\r
231 * Copies an item out of a queue.
\r
233 static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;
\r
235 #if ( configUSE_QUEUE_SETS == 1 )
\r
237 * Checks to see if a queue is a member of a queue set, and if so, notifies
\r
238 * the queue set that the queue contains data.
\r
240 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
\r
244 * Called after a Queue_t structure has been allocated either statically or
\r
245 * dynamically to fill in the structure's members.
\r
247 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue ) PRIVILEGED_FUNCTION;
\r
250 * Mutexes are a special type of queue. When a mutex is created, first the
\r
251 * queue is created, then prvInitialiseMutex() is called to configure the queue
\r
254 #if( configUSE_MUTEXES == 1 )
\r
255 static void prvInitialiseMutex( Queue_t *pxNewQueue ) PRIVILEGED_FUNCTION;
\r
258 /*-----------------------------------------------------------*/
\r
261 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
\r
262 * accessing the queue event lists.
\r
264 #define prvLockQueue( pxQueue ) \
\r
265 taskENTER_CRITICAL(); \
\r
267 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
\r
269 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
\r
271 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
\r
273 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
\r
276 taskEXIT_CRITICAL()
\r
277 /*-----------------------------------------------------------*/
\r
279 BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue )
\r
281 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
283 configASSERT( pxQueue );
\r
285 taskENTER_CRITICAL();
\r
287 pxQueue->pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize );
\r
288 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
\r
289 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
290 pxQueue->u.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - ( UBaseType_t ) 1U ) * pxQueue->uxItemSize );
\r
291 pxQueue->cRxLock = queueUNLOCKED;
\r
292 pxQueue->cTxLock = queueUNLOCKED;
\r
294 if( xNewQueue == pdFALSE )
\r
296 /* If there are tasks blocked waiting to read from the queue, then
\r
297 the tasks will remain blocked as after this function exits the queue
\r
298 will still be empty. If there are tasks blocked waiting to write to
\r
299 the queue, then one should be unblocked as after this function exits
\r
300 it will be possible to write to it. */
\r
301 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
303 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
305 queueYIELD_IF_USING_PREEMPTION();
\r
309 mtCOVERAGE_TEST_MARKER();
\r
314 mtCOVERAGE_TEST_MARKER();
\r
319 /* Ensure the event queues start in the correct state. */
\r
320 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
\r
321 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
\r
324 taskEXIT_CRITICAL();
\r
326 /* A value is returned for calling semantic consistency with previous
\r
330 /*-----------------------------------------------------------*/
\r
332 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
334 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType )
\r
336 Queue_t *pxNewQueue;
\r
338 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
\r
340 /* The StaticQueue_t structure and the queue storage area must be
\r
342 configASSERT( pxStaticQueue != NULL );
\r
344 /* A queue storage area should be provided if the item size is not 0, and
\r
345 should not be provided if the item size is 0. */
\r
346 configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) );
\r
347 configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) );
\r
349 #if( configASSERT_DEFINED == 1 )
\r
351 /* Sanity check that the size of the structure used to declare a
\r
352 variable of type StaticQueue_t or StaticSemaphore_t equals the size of
\r
353 the real queue and semaphore structures. */
\r
354 volatile size_t xSize = sizeof( StaticQueue_t );
\r
355 configASSERT( xSize == sizeof( Queue_t ) );
\r
357 #endif /* configASSERT_DEFINED */
\r
359 /* The address of a statically allocated queue was passed in, use it.
\r
360 The address of a statically allocated storage area was also passed in
\r
361 but is already set. */
\r
362 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
364 if( pxNewQueue != NULL )
\r
366 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
368 /* Queues can be allocated wither statically or dynamically, so
\r
369 note this queue was allocated statically in case the queue is
\r
371 pxNewQueue->ucStaticallyAllocated = pdTRUE;
\r
373 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
375 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
381 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
382 /*-----------------------------------------------------------*/
\r
384 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
386 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType )
\r
388 Queue_t *pxNewQueue;
\r
389 size_t xQueueSizeInBytes;
\r
390 uint8_t *pucQueueStorage;
\r
392 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
\r
394 if( uxItemSize == ( UBaseType_t ) 0 )
\r
396 /* There is not going to be a queue storage area. */
\r
397 xQueueSizeInBytes = ( size_t ) 0;
\r
401 /* Allocate enough space to hold the maximum number of items that
\r
402 can be in the queue at any time. */
\r
403 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
406 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes );
\r
408 if( pxNewQueue != NULL )
\r
410 /* Jump past the queue structure to find the location of the queue
\r
412 pucQueueStorage = ( ( uint8_t * ) pxNewQueue ) + sizeof( Queue_t );
\r
414 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
416 /* Queues can be created either statically or dynamically, so
\r
417 note this task was created dynamically in case it is later
\r
419 pxNewQueue->ucStaticallyAllocated = pdFALSE;
\r
421 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
423 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
429 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
430 /*-----------------------------------------------------------*/
\r
432 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue )
\r
434 /* Remove compiler warnings about unused parameters should
\r
435 configUSE_TRACE_FACILITY not be set to 1. */
\r
436 ( void ) ucQueueType;
\r
438 if( uxItemSize == ( UBaseType_t ) 0 )
\r
440 /* No RAM was allocated for the queue storage area, but PC head cannot
\r
441 be set to NULL because NULL is used as a key to say the queue is used as
\r
442 a mutex. Therefore just set pcHead to point to the queue as a benign
\r
443 value that is known to be within the memory map. */
\r
444 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
\r
448 /* Set the head to the start of the queue storage area. */
\r
449 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
\r
452 /* Initialise the queue members as described where the queue type is
\r
454 pxNewQueue->uxLength = uxQueueLength;
\r
455 pxNewQueue->uxItemSize = uxItemSize;
\r
456 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
\r
458 #if ( configUSE_TRACE_FACILITY == 1 )
\r
460 pxNewQueue->ucQueueType = ucQueueType;
\r
462 #endif /* configUSE_TRACE_FACILITY */
\r
464 #if( configUSE_QUEUE_SETS == 1 )
\r
466 pxNewQueue->pxQueueSetContainer = NULL;
\r
468 #endif /* configUSE_QUEUE_SETS */
\r
470 traceQUEUE_CREATE( pxNewQueue );
\r
472 /*-----------------------------------------------------------*/
\r
474 #if( configUSE_MUTEXES == 1 )
\r
476 static void prvInitialiseMutex( Queue_t *pxNewQueue )
\r
478 if( pxNewQueue != NULL )
\r
480 /* The queue create function will set all the queue structure members
\r
481 correctly for a generic queue, but this function is creating a
\r
482 mutex. Overwrite those members that need to be set differently -
\r
483 in particular the information required for priority inheritance. */
\r
484 pxNewQueue->pxMutexHolder = NULL;
\r
485 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
\r
487 /* In case this is a recursive mutex. */
\r
488 pxNewQueue->u.uxRecursiveCallCount = 0;
\r
490 traceCREATE_MUTEX( pxNewQueue );
\r
492 /* Start with the semaphore in the expected state. */
\r
493 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
\r
497 traceCREATE_MUTEX_FAILED();
\r
501 #endif /* configUSE_MUTEXES */
\r
502 /*-----------------------------------------------------------*/
\r
504 #if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
506 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
\r
508 Queue_t *pxNewQueue;
\r
509 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
511 pxNewQueue = ( Queue_t * ) xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
\r
512 prvInitialiseMutex( pxNewQueue );
\r
517 #endif /* configUSE_MUTEXES */
\r
518 /*-----------------------------------------------------------*/
\r
520 #if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
522 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue )
\r
524 Queue_t *pxNewQueue;
\r
525 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
527 /* Prevent compiler warnings about unused parameters if
\r
528 configUSE_TRACE_FACILITY does not equal 1. */
\r
529 ( void ) ucQueueType;
\r
531 pxNewQueue = ( Queue_t * ) xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
\r
532 prvInitialiseMutex( pxNewQueue );
\r
537 #endif /* configUSE_MUTEXES */
\r
538 /*-----------------------------------------------------------*/
\r
540 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
542 void* xQueueGetMutexHolder( QueueHandle_t xSemaphore )
\r
546 /* This function is called by xSemaphoreGetMutexHolder(), and should not
\r
547 be called directly. Note: This is a good way of determining if the
\r
548 calling task is the mutex holder, but not a good way of determining the
\r
549 identity of the mutex holder, as the holder may change between the
\r
550 following critical section exiting and the function returning. */
\r
551 taskENTER_CRITICAL();
\r
553 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
\r
555 pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder;
\r
562 taskEXIT_CRITICAL();
\r
565 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
568 /*-----------------------------------------------------------*/
\r
570 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
572 void* xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
\r
576 configASSERT( xSemaphore );
\r
578 /* Mutexes cannot be used in interrupt service routines, so the mutex
\r
579 holder should not change in an ISR, and therefore a critical section is
\r
580 not required here. */
\r
581 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
\r
583 pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder;
\r
591 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
594 /*-----------------------------------------------------------*/
\r
596 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
598 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
\r
600 BaseType_t xReturn;
\r
601 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
603 configASSERT( pxMutex );
\r
605 /* If this is the task that holds the mutex then pxMutexHolder will not
\r
606 change outside of this task. If this task does not hold the mutex then
\r
607 pxMutexHolder can never coincidentally equal the tasks handle, and as
\r
608 this is the only condition we are interested in it does not matter if
\r
609 pxMutexHolder is accessed simultaneously by another task. Therefore no
\r
610 mutual exclusion is required to test the pxMutexHolder variable. */
\r
611 if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Not a redundant cast as TaskHandle_t is a typedef. */
\r
613 traceGIVE_MUTEX_RECURSIVE( pxMutex );
\r
615 /* uxRecursiveCallCount cannot be zero if pxMutexHolder is equal to
\r
616 the task handle, therefore no underflow check is required. Also,
\r
617 uxRecursiveCallCount is only modified by the mutex holder, and as
\r
618 there can only be one, no mutual exclusion is required to modify the
\r
619 uxRecursiveCallCount member. */
\r
620 ( pxMutex->u.uxRecursiveCallCount )--;
\r
622 /* Has the recursive call count unwound to 0? */
\r
623 if( pxMutex->u.uxRecursiveCallCount == ( UBaseType_t ) 0 )
\r
625 /* Return the mutex. This will automatically unblock any other
\r
626 task that might be waiting to access the mutex. */
\r
627 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
\r
631 mtCOVERAGE_TEST_MARKER();
\r
638 /* The mutex cannot be given because the calling task is not the
\r
642 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
648 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
649 /*-----------------------------------------------------------*/
\r
651 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
653 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait )
\r
655 BaseType_t xReturn;
\r
656 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
658 configASSERT( pxMutex );
\r
660 /* Comments regarding mutual exclusion as per those within
\r
661 xQueueGiveMutexRecursive(). */
\r
663 traceTAKE_MUTEX_RECURSIVE( pxMutex );
\r
665 if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
\r
667 ( pxMutex->u.uxRecursiveCallCount )++;
\r
672 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
\r
674 /* pdPASS will only be returned if the mutex was successfully
\r
675 obtained. The calling task may have entered the Blocked state
\r
676 before reaching here. */
\r
677 if( xReturn != pdFAIL )
\r
679 ( pxMutex->u.uxRecursiveCallCount )++;
\r
683 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
690 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
691 /*-----------------------------------------------------------*/
\r
693 #if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
695 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue )
\r
697 QueueHandle_t xHandle;
\r
699 configASSERT( uxMaxCount != 0 );
\r
700 configASSERT( uxInitialCount <= uxMaxCount );
\r
702 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
704 if( xHandle != NULL )
\r
706 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
708 traceCREATE_COUNTING_SEMAPHORE();
\r
712 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
718 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
719 /*-----------------------------------------------------------*/
\r
721 #if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
723 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount )
\r
725 QueueHandle_t xHandle;
\r
727 configASSERT( uxMaxCount != 0 );
\r
728 configASSERT( uxInitialCount <= uxMaxCount );
\r
730 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
732 if( xHandle != NULL )
\r
734 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
736 traceCREATE_COUNTING_SEMAPHORE();
\r
740 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
746 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
747 /*-----------------------------------------------------------*/
\r
749 BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition )
\r
751 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
\r
752 TimeOut_t xTimeOut;
\r
753 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
755 configASSERT( pxQueue );
\r
756 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
757 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
758 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
760 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
765 /* This function relaxes the coding standard somewhat to allow return
\r
766 statements within the function itself. This is done in the interest
\r
767 of execution time efficiency. */
\r
770 taskENTER_CRITICAL();
\r
772 /* Is there room on the queue now? The running task must be the
\r
773 highest priority task wanting to access the queue. If the head item
\r
774 in the queue is to be overwritten then it does not matter if the
\r
776 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
778 traceQUEUE_SEND( pxQueue );
\r
779 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
781 #if ( configUSE_QUEUE_SETS == 1 )
\r
783 if( pxQueue->pxQueueSetContainer != NULL )
\r
785 if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE )
\r
787 /* The queue is a member of a queue set, and posting
\r
788 to the queue set caused a higher priority task to
\r
789 unblock. A context switch is required. */
\r
790 queueYIELD_IF_USING_PREEMPTION();
\r
794 mtCOVERAGE_TEST_MARKER();
\r
799 /* If there was a task waiting for data to arrive on the
\r
800 queue then unblock it now. */
\r
801 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
803 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
805 /* The unblocked task has a priority higher than
\r
806 our own so yield immediately. Yes it is ok to
\r
807 do this from within the critical section - the
\r
808 kernel takes care of that. */
\r
809 queueYIELD_IF_USING_PREEMPTION();
\r
813 mtCOVERAGE_TEST_MARKER();
\r
816 else if( xYieldRequired != pdFALSE )
\r
818 /* This path is a special case that will only get
\r
819 executed if the task was holding multiple mutexes
\r
820 and the mutexes were given back in an order that is
\r
821 different to that in which they were taken. */
\r
822 queueYIELD_IF_USING_PREEMPTION();
\r
826 mtCOVERAGE_TEST_MARKER();
\r
830 #else /* configUSE_QUEUE_SETS */
\r
832 /* If there was a task waiting for data to arrive on the
\r
833 queue then unblock it now. */
\r
834 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
836 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
838 /* The unblocked task has a priority higher than
\r
839 our own so yield immediately. Yes it is ok to do
\r
840 this from within the critical section - the kernel
\r
841 takes care of that. */
\r
842 queueYIELD_IF_USING_PREEMPTION();
\r
846 mtCOVERAGE_TEST_MARKER();
\r
849 else if( xYieldRequired != pdFALSE )
\r
851 /* This path is a special case that will only get
\r
852 executed if the task was holding multiple mutexes and
\r
853 the mutexes were given back in an order that is
\r
854 different to that in which they were taken. */
\r
855 queueYIELD_IF_USING_PREEMPTION();
\r
859 mtCOVERAGE_TEST_MARKER();
\r
862 #endif /* configUSE_QUEUE_SETS */
\r
864 taskEXIT_CRITICAL();
\r
869 if( xTicksToWait == ( TickType_t ) 0 )
\r
871 /* The queue was full and no block time is specified (or
\r
872 the block time has expired) so leave now. */
\r
873 taskEXIT_CRITICAL();
\r
875 /* Return to the original privilege level before exiting
\r
877 traceQUEUE_SEND_FAILED( pxQueue );
\r
878 return errQUEUE_FULL;
\r
880 else if( xEntryTimeSet == pdFALSE )
\r
882 /* The queue was full and a block time was specified so
\r
883 configure the timeout structure. */
\r
884 vTaskSetTimeOutState( &xTimeOut );
\r
885 xEntryTimeSet = pdTRUE;
\r
889 /* Entry time was already set. */
\r
890 mtCOVERAGE_TEST_MARKER();
\r
894 taskEXIT_CRITICAL();
\r
896 /* Interrupts and other tasks can send to and receive from the queue
\r
897 now the critical section has been exited. */
\r
900 prvLockQueue( pxQueue );
\r
902 /* Update the timeout state to see if it has expired yet. */
\r
903 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
905 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
907 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
\r
908 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
\r
910 /* Unlocking the queue means queue events can effect the
\r
911 event list. It is possible that interrupts occurring now
\r
912 remove this task from the event list again - but as the
\r
913 scheduler is suspended the task will go onto the pending
\r
914 ready last instead of the actual ready list. */
\r
915 prvUnlockQueue( pxQueue );
\r
917 /* Resuming the scheduler will move tasks from the pending
\r
918 ready list into the ready list - so it is feasible that this
\r
919 task is already in a ready list before it yields - in which
\r
920 case the yield will not cause a context switch unless there
\r
921 is also a higher priority task in the pending ready list. */
\r
922 if( xTaskResumeAll() == pdFALSE )
\r
924 portYIELD_WITHIN_API();
\r
930 prvUnlockQueue( pxQueue );
\r
931 ( void ) xTaskResumeAll();
\r
936 /* The timeout has expired. */
\r
937 prvUnlockQueue( pxQueue );
\r
938 ( void ) xTaskResumeAll();
\r
940 traceQUEUE_SEND_FAILED( pxQueue );
\r
941 return errQUEUE_FULL;
\r
945 /*-----------------------------------------------------------*/
\r
947 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition )
\r
949 BaseType_t xReturn;
\r
950 UBaseType_t uxSavedInterruptStatus;
\r
951 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
953 configASSERT( pxQueue );
\r
954 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
955 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
957 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
958 system call (or maximum API call) interrupt priority. Interrupts that are
\r
959 above the maximum system call priority are kept permanently enabled, even
\r
960 when the RTOS kernel is in a critical section, but cannot make any calls to
\r
961 FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
962 then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
963 failure if a FreeRTOS API function is called from an interrupt that has been
\r
964 assigned a priority above the configured maximum system call priority.
\r
965 Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
966 that have been assigned a priority at or (logically) below the maximum
\r
967 system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
968 safe API to ensure interrupt entry is as fast and as simple as possible.
\r
969 More information (albeit Cortex-M specific) is provided on the following
\r
970 link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
971 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
973 /* Similar to xQueueGenericSend, except without blocking if there is no room
\r
974 in the queue. Also don't directly wake a task that was blocked on a queue
\r
975 read, instead return a flag to say whether a context switch is required or
\r
976 not (i.e. has a task with a higher priority than us been woken by this
\r
978 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
980 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
982 const int8_t cTxLock = pxQueue->cTxLock;
\r
984 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
986 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
\r
987 semaphore or mutex. That means prvCopyDataToQueue() cannot result
\r
988 in a task disinheriting a priority and prvCopyDataToQueue() can be
\r
989 called here even though the disinherit function does not check if
\r
990 the scheduler is suspended before accessing the ready lists. */
\r
991 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
993 /* The event list is not altered if the queue is locked. This will
\r
994 be done when the queue is unlocked later. */
\r
995 if( cTxLock == queueUNLOCKED )
\r
997 #if ( configUSE_QUEUE_SETS == 1 )
\r
999 if( pxQueue->pxQueueSetContainer != NULL )
\r
1001 if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE )
\r
1003 /* The queue is a member of a queue set, and posting
\r
1004 to the queue set caused a higher priority task to
\r
1005 unblock. A context switch is required. */
\r
1006 if( pxHigherPriorityTaskWoken != NULL )
\r
1008 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1012 mtCOVERAGE_TEST_MARKER();
\r
1017 mtCOVERAGE_TEST_MARKER();
\r
1022 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1024 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1026 /* The task waiting has a higher priority so
\r
1027 record that a context switch is required. */
\r
1028 if( pxHigherPriorityTaskWoken != NULL )
\r
1030 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1034 mtCOVERAGE_TEST_MARKER();
\r
1039 mtCOVERAGE_TEST_MARKER();
\r
1044 mtCOVERAGE_TEST_MARKER();
\r
1048 #else /* configUSE_QUEUE_SETS */
\r
1050 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1052 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1054 /* The task waiting has a higher priority so record that a
\r
1055 context switch is required. */
\r
1056 if( pxHigherPriorityTaskWoken != NULL )
\r
1058 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1062 mtCOVERAGE_TEST_MARKER();
\r
1067 mtCOVERAGE_TEST_MARKER();
\r
1072 mtCOVERAGE_TEST_MARKER();
\r
1075 #endif /* configUSE_QUEUE_SETS */
\r
1079 /* Increment the lock count so the task that unlocks the queue
\r
1080 knows that data was posted while it was locked. */
\r
1081 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1088 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1089 xReturn = errQUEUE_FULL;
\r
1092 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1096 /*-----------------------------------------------------------*/
\r
1098 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken )
\r
1100 BaseType_t xReturn;
\r
1101 UBaseType_t uxSavedInterruptStatus;
\r
1102 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
1104 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
\r
1105 item size is 0. Don't directly wake a task that was blocked on a queue
\r
1106 read, instead return a flag to say whether a context switch is required or
\r
1107 not (i.e. has a task with a higher priority than us been woken by this
\r
1110 configASSERT( pxQueue );
\r
1112 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
\r
1113 if the item size is not 0. */
\r
1114 configASSERT( pxQueue->uxItemSize == 0 );
\r
1116 /* Normally a mutex would not be given from an interrupt, especially if
\r
1117 there is a mutex holder, as priority inheritance makes no sense for an
\r
1118 interrupts, only tasks. */
\r
1119 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->pxMutexHolder != NULL ) ) );
\r
1121 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1122 system call (or maximum API call) interrupt priority. Interrupts that are
\r
1123 above the maximum system call priority are kept permanently enabled, even
\r
1124 when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1125 FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1126 then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1127 failure if a FreeRTOS API function is called from an interrupt that has been
\r
1128 assigned a priority above the configured maximum system call priority.
\r
1129 Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1130 that have been assigned a priority at or (logically) below the maximum
\r
1131 system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1132 safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1133 More information (albeit Cortex-M specific) is provided on the following
\r
1134 link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1135 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1137 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1139 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1141 /* When the queue is used to implement a semaphore no data is ever
\r
1142 moved through the queue but it is still valid to see if the queue 'has
\r
1144 if( uxMessagesWaiting < pxQueue->uxLength )
\r
1146 const int8_t cTxLock = pxQueue->cTxLock;
\r
1148 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1150 /* A task can only have an inherited priority if it is a mutex
\r
1151 holder - and if there is a mutex holder then the mutex cannot be
\r
1152 given from an ISR. As this is the ISR version of the function it
\r
1153 can be assumed there is no mutex holder and no need to determine if
\r
1154 priority disinheritance is needed. Simply increase the count of
\r
1155 messages (semaphores) available. */
\r
1156 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
1158 /* The event list is not altered if the queue is locked. This will
\r
1159 be done when the queue is unlocked later. */
\r
1160 if( cTxLock == queueUNLOCKED )
\r
1162 #if ( configUSE_QUEUE_SETS == 1 )
\r
1164 if( pxQueue->pxQueueSetContainer != NULL )
\r
1166 if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE )
\r
1168 /* The semaphore is a member of a queue set, and
\r
1169 posting to the queue set caused a higher priority
\r
1170 task to unblock. A context switch is required. */
\r
1171 if( pxHigherPriorityTaskWoken != NULL )
\r
1173 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1177 mtCOVERAGE_TEST_MARKER();
\r
1182 mtCOVERAGE_TEST_MARKER();
\r
1187 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1189 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1191 /* The task waiting has a higher priority so
\r
1192 record that a context switch is required. */
\r
1193 if( pxHigherPriorityTaskWoken != NULL )
\r
1195 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1199 mtCOVERAGE_TEST_MARKER();
\r
1204 mtCOVERAGE_TEST_MARKER();
\r
1209 mtCOVERAGE_TEST_MARKER();
\r
1213 #else /* configUSE_QUEUE_SETS */
\r
1215 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1217 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1219 /* The task waiting has a higher priority so record that a
\r
1220 context switch is required. */
\r
1221 if( pxHigherPriorityTaskWoken != NULL )
\r
1223 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1227 mtCOVERAGE_TEST_MARKER();
\r
1232 mtCOVERAGE_TEST_MARKER();
\r
1237 mtCOVERAGE_TEST_MARKER();
\r
1240 #endif /* configUSE_QUEUE_SETS */
\r
1244 /* Increment the lock count so the task that unlocks the queue
\r
1245 knows that data was posted while it was locked. */
\r
1246 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1253 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1254 xReturn = errQUEUE_FULL;
\r
1257 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1261 /*-----------------------------------------------------------*/
\r
1263 BaseType_t xQueueReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait )
\r
1265 BaseType_t xEntryTimeSet = pdFALSE;
\r
1266 TimeOut_t xTimeOut;
\r
1267 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
1269 /* Check the pointer is not NULL. */
\r
1270 configASSERT( ( pxQueue ) );
\r
1272 /* The buffer into which data is received can only be NULL if the data size
\r
1273 is zero (so no data is copied into the buffer. */
\r
1274 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1276 /* Cannot block if the scheduler is suspended. */
\r
1277 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1279 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1284 /* This function relaxes the coding standard somewhat to allow return
\r
1285 statements within the function itself. This is done in the interest
\r
1286 of execution time efficiency. */
\r
1290 taskENTER_CRITICAL();
\r
1292 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1294 /* Is there data in the queue now? To be running the calling task
\r
1295 must be the highest priority task wanting to access the queue. */
\r
1296 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1298 /* Data available, remove one item. */
\r
1299 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1300 traceQUEUE_RECEIVE( pxQueue );
\r
1301 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1303 /* There is now space in the queue, were any tasks waiting to
\r
1304 post to the queue? If so, unblock the highest priority waiting
\r
1306 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1308 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1310 queueYIELD_IF_USING_PREEMPTION();
\r
1314 mtCOVERAGE_TEST_MARKER();
\r
1319 mtCOVERAGE_TEST_MARKER();
\r
1322 taskEXIT_CRITICAL();
\r
1327 if( xTicksToWait == ( TickType_t ) 0 )
\r
1329 /* The queue was empty and no block time is specified (or
\r
1330 the block time has expired) so leave now. */
\r
1331 taskEXIT_CRITICAL();
\r
1332 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1333 return errQUEUE_EMPTY;
\r
1335 else if( xEntryTimeSet == pdFALSE )
\r
1337 /* The queue was empty and a block time was specified so
\r
1338 configure the timeout structure. */
\r
1339 vTaskSetTimeOutState( &xTimeOut );
\r
1340 xEntryTimeSet = pdTRUE;
\r
1344 /* Entry time was already set. */
\r
1345 mtCOVERAGE_TEST_MARKER();
\r
1349 taskEXIT_CRITICAL();
\r
1351 /* Interrupts and other tasks can send to and receive from the queue
\r
1352 now the critical section has been exited. */
\r
1354 vTaskSuspendAll();
\r
1355 prvLockQueue( pxQueue );
\r
1357 /* Update the timeout state to see if it has expired yet. */
\r
1358 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1360 /* The timeout has not expired. If the queue is still empty place
\r
1361 the task on the list of tasks waiting to receive from the queue. */
\r
1362 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1364 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1365 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1366 prvUnlockQueue( pxQueue );
\r
1367 if( xTaskResumeAll() == pdFALSE )
\r
1369 portYIELD_WITHIN_API();
\r
1373 mtCOVERAGE_TEST_MARKER();
\r
1378 /* The queue contains data again. Loop back to try and read the
\r
1380 prvUnlockQueue( pxQueue );
\r
1381 ( void ) xTaskResumeAll();
\r
1386 /* Timed out. If there is no data in the queue exit, otherwise loop
\r
1387 back and attempt to read the data. */
\r
1388 prvUnlockQueue( pxQueue );
\r
1389 ( void ) xTaskResumeAll();
\r
1391 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1393 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1394 return errQUEUE_EMPTY;
\r
1398 mtCOVERAGE_TEST_MARKER();
\r
1403 /*-----------------------------------------------------------*/
\r
1405 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue, TickType_t xTicksToWait )
\r
1407 BaseType_t xEntryTimeSet = pdFALSE;
\r
1408 TimeOut_t xTimeOut;
\r
1409 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
1411 /* Check the queue pointer is not NULL. */
\r
1412 configASSERT( ( pxQueue ) );
\r
1414 /* Check this really is a semaphore, in which case the item size will be
\r
1416 configASSERT( pxQueue->uxItemSize == 0 );
\r
1418 /* Cannot block if the scheduler is suspended. */
\r
1419 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1421 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1426 /* This function relaxes the coding standard somewhat to allow return
\r
1427 statements within the function itself. This is done in the interest
\r
1428 of execution time efficiency. */
\r
1432 taskENTER_CRITICAL();
\r
1434 /* Semaphores are queues with an item size of 0, and where the
\r
1435 number of messages in the queue is the semaphore's count value. */
\r
1436 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
\r
1438 /* Is there data in the queue now? To be running the calling task
\r
1439 must be the highest priority task wanting to access the queue. */
\r
1440 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
\r
1442 traceQUEUE_RECEIVE( pxQueue );
\r
1444 /* Semaphores are queues with a data size of zero and where the
\r
1445 messages waiting is the semaphore's count. Reduce the count. */
\r
1446 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
\r
1448 #if ( configUSE_MUTEXES == 1 )
\r
1450 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1452 /* Record the information required to implement
\r
1453 priority inheritance should it become necessary. */
\r
1454 pxQueue->pxMutexHolder = ( int8_t * ) pvTaskIncrementMutexHeldCount(); /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
\r
1458 mtCOVERAGE_TEST_MARKER();
\r
1461 #endif /* configUSE_MUTEXES */
\r
1463 /* Check to see if other tasks are blocked waiting to give the
\r
1464 semaphore, and if so, unblock the highest priority such task. */
\r
1465 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1467 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1469 queueYIELD_IF_USING_PREEMPTION();
\r
1473 mtCOVERAGE_TEST_MARKER();
\r
1478 mtCOVERAGE_TEST_MARKER();
\r
1481 taskEXIT_CRITICAL();
\r
1486 if( xTicksToWait == ( TickType_t ) 0 )
\r
1488 /* The semaphore count was 0 and no block time is specified
\r
1489 (or the block time has expired) so exit now. */
\r
1490 taskEXIT_CRITICAL();
\r
1491 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1492 return errQUEUE_EMPTY;
\r
1494 else if( xEntryTimeSet == pdFALSE )
\r
1496 /* The semaphore count was 0 and a block time was specified
\r
1497 so configure the timeout structure ready to block. */
\r
1498 vTaskSetTimeOutState( &xTimeOut );
\r
1499 xEntryTimeSet = pdTRUE;
\r
1503 /* Entry time was already set. */
\r
1504 mtCOVERAGE_TEST_MARKER();
\r
1508 taskEXIT_CRITICAL();
\r
1510 /* Interrupts and other tasks can give to and take from the semaphore
\r
1511 now the critical section has been exited. */
\r
1513 vTaskSuspendAll();
\r
1514 prvLockQueue( pxQueue );
\r
1516 /* Update the timeout state to see if it has expired yet. */
\r
1517 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1519 /* A block time is specified and not expired. If the semaphore
\r
1520 count is 0 then enter the Blocked state to wait for a semaphore to
\r
1521 become available. As semaphores are implemented with queues the
\r
1522 queue being empty is equivalent to the semaphore count being 0. */
\r
1523 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1525 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1527 #if ( configUSE_MUTEXES == 1 )
\r
1529 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1531 taskENTER_CRITICAL();
\r
1533 xTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder );
\r
1535 taskEXIT_CRITICAL();
\r
1539 mtCOVERAGE_TEST_MARKER();
\r
1544 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1545 prvUnlockQueue( pxQueue );
\r
1546 if( xTaskResumeAll() == pdFALSE )
\r
1548 portYIELD_WITHIN_API();
\r
1552 mtCOVERAGE_TEST_MARKER();
\r
1557 /* There was no timeout and the semaphore count was not 0, so
\r
1558 attempt to take the semaphore again. */
\r
1559 prvUnlockQueue( pxQueue );
\r
1560 ( void ) xTaskResumeAll();
\r
1566 prvUnlockQueue( pxQueue );
\r
1567 ( void ) xTaskResumeAll();
\r
1569 /* If the semaphore count is 0 exit now as the timeout has
\r
1570 expired. Otherwise return to attempt to take the semaphore that is
\r
1571 known to be available. As semaphores are implemented by queues the
\r
1572 queue being empty is equivalent to the semaphore count being 0. */
\r
1573 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1575 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1576 return errQUEUE_EMPTY;
\r
1580 mtCOVERAGE_TEST_MARKER();
\r
1585 /*-----------------------------------------------------------*/
\r
1587 BaseType_t xQueuePeek( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait )
\r
1589 BaseType_t xEntryTimeSet = pdFALSE;
\r
1590 TimeOut_t xTimeOut;
\r
1591 int8_t *pcOriginalReadPosition;
\r
1592 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
1594 /* Check the pointer is not NULL. */
\r
1595 configASSERT( ( pxQueue ) );
\r
1597 /* The buffer into which data is received can only be NULL if the data size
\r
1598 is zero (so no data is copied into the buffer. */
\r
1599 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1601 /* Cannot block if the scheduler is suspended. */
\r
1602 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1604 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1609 /* This function relaxes the coding standard somewhat to allow return
\r
1610 statements within the function itself. This is done in the interest
\r
1611 of execution time efficiency. */
\r
1615 taskENTER_CRITICAL();
\r
1617 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1619 /* Is there data in the queue now? To be running the calling task
\r
1620 must be the highest priority task wanting to access the queue. */
\r
1621 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1623 /* Remember the read position so it can be reset after the data
\r
1624 is read from the queue as this function is only peeking the
\r
1625 data, not removing it. */
\r
1626 pcOriginalReadPosition = pxQueue->u.pcReadFrom;
\r
1628 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1629 traceQUEUE_PEEK( pxQueue );
\r
1631 /* The data is not being removed, so reset the read pointer. */
\r
1632 pxQueue->u.pcReadFrom = pcOriginalReadPosition;
\r
1634 /* The data is being left in the queue, so see if there are
\r
1635 any other tasks waiting for the data. */
\r
1636 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1638 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1640 /* The task waiting has a higher priority than this task. */
\r
1641 queueYIELD_IF_USING_PREEMPTION();
\r
1645 mtCOVERAGE_TEST_MARKER();
\r
1650 mtCOVERAGE_TEST_MARKER();
\r
1653 taskEXIT_CRITICAL();
\r
1658 if( xTicksToWait == ( TickType_t ) 0 )
\r
1660 /* The queue was empty and no block time is specified (or
\r
1661 the block time has expired) so leave now. */
\r
1662 taskEXIT_CRITICAL();
\r
1663 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1664 return errQUEUE_EMPTY;
\r
1666 else if( xEntryTimeSet == pdFALSE )
\r
1668 /* The queue was empty and a block time was specified so
\r
1669 configure the timeout structure ready to enter the blocked
\r
1671 vTaskSetTimeOutState( &xTimeOut );
\r
1672 xEntryTimeSet = pdTRUE;
\r
1676 /* Entry time was already set. */
\r
1677 mtCOVERAGE_TEST_MARKER();
\r
1681 taskEXIT_CRITICAL();
\r
1683 /* Interrupts and other tasks can send to and receive from the queue
\r
1684 now the critical section has been exited. */
\r
1686 vTaskSuspendAll();
\r
1687 prvLockQueue( pxQueue );
\r
1689 /* Update the timeout state to see if it has expired yet. */
\r
1690 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1692 /* Timeout has not expired yet, check to see if there is data in the
\r
1693 queue now, and if not enter the Blocked state to wait for data. */
\r
1694 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1696 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1697 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1698 prvUnlockQueue( pxQueue );
\r
1699 if( xTaskResumeAll() == pdFALSE )
\r
1701 portYIELD_WITHIN_API();
\r
1705 mtCOVERAGE_TEST_MARKER();
\r
1710 /* There is data in the queue now, so don't enter the blocked
\r
1711 state, instead return to try and obtain the data. */
\r
1712 prvUnlockQueue( pxQueue );
\r
1713 ( void ) xTaskResumeAll();
\r
1718 /* The timeout has expired. If there is still no data in the queue
\r
1719 exit, otherwise go back and try to read the data again. */
\r
1720 prvUnlockQueue( pxQueue );
\r
1721 ( void ) xTaskResumeAll();
\r
1723 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1725 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1726 return errQUEUE_EMPTY;
\r
1730 mtCOVERAGE_TEST_MARKER();
\r
1735 /*-----------------------------------------------------------*/
\r
1737 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken )
\r
1739 BaseType_t xReturn;
\r
1740 UBaseType_t uxSavedInterruptStatus;
\r
1741 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
1743 configASSERT( pxQueue );
\r
1744 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1746 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1747 system call (or maximum API call) interrupt priority. Interrupts that are
\r
1748 above the maximum system call priority are kept permanently enabled, even
\r
1749 when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1750 FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1751 then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1752 failure if a FreeRTOS API function is called from an interrupt that has been
\r
1753 assigned a priority above the configured maximum system call priority.
\r
1754 Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1755 that have been assigned a priority at or (logically) below the maximum
\r
1756 system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1757 safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1758 More information (albeit Cortex-M specific) is provided on the following
\r
1759 link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1760 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1762 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1764 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1766 /* Cannot block in an ISR, so check there is data available. */
\r
1767 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1769 const int8_t cRxLock = pxQueue->cRxLock;
\r
1771 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
\r
1773 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1774 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1776 /* If the queue is locked the event list will not be modified.
\r
1777 Instead update the lock count so the task that unlocks the queue
\r
1778 will know that an ISR has removed data while the queue was
\r
1780 if( cRxLock == queueUNLOCKED )
\r
1782 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1784 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1786 /* The task waiting has a higher priority than us so
\r
1787 force a context switch. */
\r
1788 if( pxHigherPriorityTaskWoken != NULL )
\r
1790 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1794 mtCOVERAGE_TEST_MARKER();
\r
1799 mtCOVERAGE_TEST_MARKER();
\r
1804 mtCOVERAGE_TEST_MARKER();
\r
1809 /* Increment the lock count so the task that unlocks the queue
\r
1810 knows that data was removed while it was locked. */
\r
1811 pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
\r
1819 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
\r
1822 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1826 /*-----------------------------------------------------------*/
\r
1828 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer )
\r
1830 BaseType_t xReturn;
\r
1831 UBaseType_t uxSavedInterruptStatus;
\r
1832 int8_t *pcOriginalReadPosition;
\r
1833 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
1835 configASSERT( pxQueue );
\r
1836 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1837 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
\r
1839 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1840 system call (or maximum API call) interrupt priority. Interrupts that are
\r
1841 above the maximum system call priority are kept permanently enabled, even
\r
1842 when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1843 FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1844 then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1845 failure if a FreeRTOS API function is called from an interrupt that has been
\r
1846 assigned a priority above the configured maximum system call priority.
\r
1847 Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1848 that have been assigned a priority at or (logically) below the maximum
\r
1849 system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1850 safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1851 More information (albeit Cortex-M specific) is provided on the following
\r
1852 link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1853 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1855 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1857 /* Cannot block in an ISR, so check there is data available. */
\r
1858 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1860 traceQUEUE_PEEK_FROM_ISR( pxQueue );
\r
1862 /* Remember the read position so it can be reset as nothing is
\r
1863 actually being removed from the queue. */
\r
1864 pcOriginalReadPosition = pxQueue->u.pcReadFrom;
\r
1865 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1866 pxQueue->u.pcReadFrom = pcOriginalReadPosition;
\r
1873 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
\r
1876 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1880 /*-----------------------------------------------------------*/
\r
1882 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
\r
1884 UBaseType_t uxReturn;
\r
1886 configASSERT( xQueue );
\r
1888 taskENTER_CRITICAL();
\r
1890 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
\r
1892 taskEXIT_CRITICAL();
\r
1895 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
1896 /*-----------------------------------------------------------*/
\r
1898 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
\r
1900 UBaseType_t uxReturn;
\r
1903 pxQueue = ( Queue_t * ) xQueue;
\r
1904 configASSERT( pxQueue );
\r
1906 taskENTER_CRITICAL();
\r
1908 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
\r
1910 taskEXIT_CRITICAL();
\r
1913 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
1914 /*-----------------------------------------------------------*/
\r
1916 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
\r
1918 UBaseType_t uxReturn;
\r
1920 configASSERT( xQueue );
\r
1922 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
\r
1925 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
1926 /*-----------------------------------------------------------*/
\r
1928 void vQueueDelete( QueueHandle_t xQueue )
\r
1930 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
1932 configASSERT( pxQueue );
\r
1933 traceQUEUE_DELETE( pxQueue );
\r
1935 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
1937 vQueueUnregisterQueue( pxQueue );
\r
1941 #if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
\r
1943 /* The queue can only have been allocated dynamically - free it
\r
1945 vPortFree( pxQueue );
\r
1947 #elif( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
1949 /* The queue could have been allocated statically or dynamically, so
\r
1950 check before attempting to free the memory. */
\r
1951 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
\r
1953 vPortFree( pxQueue );
\r
1957 mtCOVERAGE_TEST_MARKER();
\r
1962 /* The queue must have been statically allocated, so is not going to be
\r
1963 deleted. Avoid compiler warnings about the unused parameter. */
\r
1966 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
1968 /*-----------------------------------------------------------*/
\r
1970 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1972 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
\r
1974 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
\r
1977 #endif /* configUSE_TRACE_FACILITY */
\r
1978 /*-----------------------------------------------------------*/
\r
1980 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1982 void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber )
\r
1984 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
\r
1987 #endif /* configUSE_TRACE_FACILITY */
\r
1988 /*-----------------------------------------------------------*/
\r
1990 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1992 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
\r
1994 return ( ( Queue_t * ) xQueue )->ucQueueType;
\r
1997 #endif /* configUSE_TRACE_FACILITY */
\r
1998 /*-----------------------------------------------------------*/
\r
2000 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition )
\r
2002 BaseType_t xReturn = pdFALSE;
\r
2003 UBaseType_t uxMessagesWaiting;
\r
2005 /* This function is called from a critical section. */
\r
2007 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
2009 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
\r
2011 #if ( configUSE_MUTEXES == 1 )
\r
2013 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
2015 /* The mutex is no longer being held. */
\r
2016 xReturn = xTaskPriorityDisinherit( ( void * ) pxQueue->pxMutexHolder );
\r
2017 pxQueue->pxMutexHolder = NULL;
\r
2021 mtCOVERAGE_TEST_MARKER();
\r
2024 #endif /* configUSE_MUTEXES */
\r
2026 else if( xPosition == queueSEND_TO_BACK )
\r
2028 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. */
\r
2029 pxQueue->pcWriteTo += pxQueue->uxItemSize;
\r
2030 if( pxQueue->pcWriteTo >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2032 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
2036 mtCOVERAGE_TEST_MARKER();
\r
2041 ( void ) memcpy( ( void * ) pxQueue->u.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2042 pxQueue->u.pcReadFrom -= pxQueue->uxItemSize;
\r
2043 if( pxQueue->u.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2045 pxQueue->u.pcReadFrom = ( pxQueue->pcTail - pxQueue->uxItemSize );
\r
2049 mtCOVERAGE_TEST_MARKER();
\r
2052 if( xPosition == queueOVERWRITE )
\r
2054 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2056 /* An item is not being added but overwritten, so subtract
\r
2057 one from the recorded number of items in the queue so when
\r
2058 one is added again below the number of recorded items remains
\r
2060 --uxMessagesWaiting;
\r
2064 mtCOVERAGE_TEST_MARKER();
\r
2069 mtCOVERAGE_TEST_MARKER();
\r
2073 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
2077 /*-----------------------------------------------------------*/
\r
2079 static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer )
\r
2081 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
\r
2083 pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
\r
2084 if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
\r
2086 pxQueue->u.pcReadFrom = pxQueue->pcHead;
\r
2090 mtCOVERAGE_TEST_MARKER();
\r
2092 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. */
\r
2095 /*-----------------------------------------------------------*/
\r
2097 static void prvUnlockQueue( Queue_t * const pxQueue )
\r
2099 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
\r
2101 /* The lock counts contains the number of extra data items placed or
\r
2102 removed from the queue while the queue was locked. When a queue is
\r
2103 locked items can be added or removed, but the event lists cannot be
\r
2105 taskENTER_CRITICAL();
\r
2107 int8_t cTxLock = pxQueue->cTxLock;
\r
2109 /* See if data was added to the queue while it was locked. */
\r
2110 while( cTxLock > queueLOCKED_UNMODIFIED )
\r
2112 /* Data was posted while the queue was locked. Are any tasks
\r
2113 blocked waiting for data to become available? */
\r
2114 #if ( configUSE_QUEUE_SETS == 1 )
\r
2116 if( pxQueue->pxQueueSetContainer != NULL )
\r
2118 if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE )
\r
2120 /* The queue is a member of a queue set, and posting to
\r
2121 the queue set caused a higher priority task to unblock.
\r
2122 A context switch is required. */
\r
2123 vTaskMissedYield();
\r
2127 mtCOVERAGE_TEST_MARKER();
\r
2132 /* Tasks that are removed from the event list will get
\r
2133 added to the pending ready list as the scheduler is still
\r
2135 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2137 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2139 /* The task waiting has a higher priority so record that a
\r
2140 context switch is required. */
\r
2141 vTaskMissedYield();
\r
2145 mtCOVERAGE_TEST_MARKER();
\r
2154 #else /* configUSE_QUEUE_SETS */
\r
2156 /* Tasks that are removed from the event list will get added to
\r
2157 the pending ready list as the scheduler is still suspended. */
\r
2158 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2160 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2162 /* The task waiting has a higher priority so record that
\r
2163 a context switch is required. */
\r
2164 vTaskMissedYield();
\r
2168 mtCOVERAGE_TEST_MARKER();
\r
2176 #endif /* configUSE_QUEUE_SETS */
\r
2181 pxQueue->cTxLock = queueUNLOCKED;
\r
2183 taskEXIT_CRITICAL();
\r
2185 /* Do the same for the Rx lock. */
\r
2186 taskENTER_CRITICAL();
\r
2188 int8_t cRxLock = pxQueue->cRxLock;
\r
2190 while( cRxLock > queueLOCKED_UNMODIFIED )
\r
2192 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2194 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2196 vTaskMissedYield();
\r
2200 mtCOVERAGE_TEST_MARKER();
\r
2211 pxQueue->cRxLock = queueUNLOCKED;
\r
2213 taskEXIT_CRITICAL();
\r
2215 /*-----------------------------------------------------------*/
\r
2217 static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue )
\r
2219 BaseType_t xReturn;
\r
2221 taskENTER_CRITICAL();
\r
2223 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2229 xReturn = pdFALSE;
\r
2232 taskEXIT_CRITICAL();
\r
2236 /*-----------------------------------------------------------*/
\r
2238 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
\r
2240 BaseType_t xReturn;
\r
2242 configASSERT( xQueue );
\r
2243 if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2249 xReturn = pdFALSE;
\r
2253 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2254 /*-----------------------------------------------------------*/
\r
2256 static BaseType_t prvIsQueueFull( const Queue_t *pxQueue )
\r
2258 BaseType_t xReturn;
\r
2260 taskENTER_CRITICAL();
\r
2262 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2268 xReturn = pdFALSE;
\r
2271 taskEXIT_CRITICAL();
\r
2275 /*-----------------------------------------------------------*/
\r
2277 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
\r
2279 BaseType_t xReturn;
\r
2281 configASSERT( xQueue );
\r
2282 if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( ( Queue_t * ) xQueue )->uxLength )
\r
2288 xReturn = pdFALSE;
\r
2292 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2293 /*-----------------------------------------------------------*/
\r
2295 #if ( configUSE_CO_ROUTINES == 1 )
\r
2297 BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait )
\r
2299 BaseType_t xReturn;
\r
2300 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
2302 /* If the queue is already full we may have to block. A critical section
\r
2303 is required to prevent an interrupt removing something from the queue
\r
2304 between the check to see if the queue is full and blocking on the queue. */
\r
2305 portDISABLE_INTERRUPTS();
\r
2307 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
2309 /* The queue is full - do we want to block or just leave without
\r
2311 if( xTicksToWait > ( TickType_t ) 0 )
\r
2313 /* As this is called from a coroutine we cannot block directly, but
\r
2314 return indicating that we need to block. */
\r
2315 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
\r
2316 portENABLE_INTERRUPTS();
\r
2317 return errQUEUE_BLOCKED;
\r
2321 portENABLE_INTERRUPTS();
\r
2322 return errQUEUE_FULL;
\r
2326 portENABLE_INTERRUPTS();
\r
2328 portDISABLE_INTERRUPTS();
\r
2330 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2332 /* There is room in the queue, copy the data into the queue. */
\r
2333 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2336 /* Were any co-routines waiting for data to become available? */
\r
2337 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2339 /* In this instance the co-routine could be placed directly
\r
2340 into the ready list as we are within a critical section.
\r
2341 Instead the same pending ready list mechanism is used as if
\r
2342 the event were caused from within an interrupt. */
\r
2343 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2345 /* The co-routine waiting has a higher priority so record
\r
2346 that a yield might be appropriate. */
\r
2347 xReturn = errQUEUE_YIELD;
\r
2351 mtCOVERAGE_TEST_MARKER();
\r
2356 mtCOVERAGE_TEST_MARKER();
\r
2361 xReturn = errQUEUE_FULL;
\r
2364 portENABLE_INTERRUPTS();
\r
2369 #endif /* configUSE_CO_ROUTINES */
\r
2370 /*-----------------------------------------------------------*/
\r
2372 #if ( configUSE_CO_ROUTINES == 1 )
\r
2374 BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait )
\r
2376 BaseType_t xReturn;
\r
2377 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
2379 /* If the queue is already empty we may have to block. A critical section
\r
2380 is required to prevent an interrupt adding something to the queue
\r
2381 between the check to see if the queue is empty and blocking on the queue. */
\r
2382 portDISABLE_INTERRUPTS();
\r
2384 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2386 /* There are no messages in the queue, do we want to block or just
\r
2387 leave with nothing? */
\r
2388 if( xTicksToWait > ( TickType_t ) 0 )
\r
2390 /* As this is a co-routine we cannot block directly, but return
\r
2391 indicating that we need to block. */
\r
2392 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
\r
2393 portENABLE_INTERRUPTS();
\r
2394 return errQUEUE_BLOCKED;
\r
2398 portENABLE_INTERRUPTS();
\r
2399 return errQUEUE_FULL;
\r
2404 mtCOVERAGE_TEST_MARKER();
\r
2407 portENABLE_INTERRUPTS();
\r
2409 portDISABLE_INTERRUPTS();
\r
2411 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2413 /* Data is available from the queue. */
\r
2414 pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
\r
2415 if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
\r
2417 pxQueue->u.pcReadFrom = pxQueue->pcHead;
\r
2421 mtCOVERAGE_TEST_MARKER();
\r
2423 --( pxQueue->uxMessagesWaiting );
\r
2424 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2428 /* Were any co-routines waiting for space to become available? */
\r
2429 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2431 /* In this instance the co-routine could be placed directly
\r
2432 into the ready list as we are within a critical section.
\r
2433 Instead the same pending ready list mechanism is used as if
\r
2434 the event were caused from within an interrupt. */
\r
2435 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2437 xReturn = errQUEUE_YIELD;
\r
2441 mtCOVERAGE_TEST_MARKER();
\r
2446 mtCOVERAGE_TEST_MARKER();
\r
2454 portENABLE_INTERRUPTS();
\r
2459 #endif /* configUSE_CO_ROUTINES */
\r
2460 /*-----------------------------------------------------------*/
\r
2462 #if ( configUSE_CO_ROUTINES == 1 )
\r
2464 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken )
\r
2466 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
2468 /* Cannot block within an ISR so if there is no space on the queue then
\r
2469 exit without doing anything. */
\r
2470 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2472 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2474 /* We only want to wake one co-routine per ISR, so check that a
\r
2475 co-routine has not already been woken. */
\r
2476 if( xCoRoutinePreviouslyWoken == pdFALSE )
\r
2478 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2480 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2486 mtCOVERAGE_TEST_MARKER();
\r
2491 mtCOVERAGE_TEST_MARKER();
\r
2496 mtCOVERAGE_TEST_MARKER();
\r
2501 mtCOVERAGE_TEST_MARKER();
\r
2504 return xCoRoutinePreviouslyWoken;
\r
2507 #endif /* configUSE_CO_ROUTINES */
\r
2508 /*-----------------------------------------------------------*/
\r
2510 #if ( configUSE_CO_ROUTINES == 1 )
\r
2512 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken )
\r
2514 BaseType_t xReturn;
\r
2515 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
2517 /* We cannot block from an ISR, so check there is data available. If
\r
2518 not then just leave without doing anything. */
\r
2519 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2521 /* Copy the data from the queue. */
\r
2522 pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
\r
2523 if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
\r
2525 pxQueue->u.pcReadFrom = pxQueue->pcHead;
\r
2529 mtCOVERAGE_TEST_MARKER();
\r
2531 --( pxQueue->uxMessagesWaiting );
\r
2532 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2534 if( ( *pxCoRoutineWoken ) == pdFALSE )
\r
2536 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2538 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2540 *pxCoRoutineWoken = pdTRUE;
\r
2544 mtCOVERAGE_TEST_MARKER();
\r
2549 mtCOVERAGE_TEST_MARKER();
\r
2554 mtCOVERAGE_TEST_MARKER();
\r
2567 #endif /* configUSE_CO_ROUTINES */
\r
2568 /*-----------------------------------------------------------*/
\r
2570 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2572 void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2576 /* See if there is an empty space in the registry. A NULL name denotes
\r
2578 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2580 if( xQueueRegistry[ ux ].pcQueueName == NULL )
\r
2582 /* Store the information on this queue. */
\r
2583 xQueueRegistry[ ux ].pcQueueName = pcQueueName;
\r
2584 xQueueRegistry[ ux ].xHandle = xQueue;
\r
2586 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
\r
2591 mtCOVERAGE_TEST_MARKER();
\r
2596 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2597 /*-----------------------------------------------------------*/
\r
2599 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2601 const char *pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2604 const char *pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2606 /* Note there is nothing here to protect against another task adding or
\r
2607 removing entries from the registry while it is being searched. */
\r
2608 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2610 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2612 pcReturn = xQueueRegistry[ ux ].pcQueueName;
\r
2617 mtCOVERAGE_TEST_MARKER();
\r
2622 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
\r
2624 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2625 /*-----------------------------------------------------------*/
\r
2627 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2629 void vQueueUnregisterQueue( QueueHandle_t xQueue )
\r
2633 /* See if the handle of the queue being unregistered in actually in the
\r
2635 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2637 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2639 /* Set the name to NULL to show that this slot if free again. */
\r
2640 xQueueRegistry[ ux ].pcQueueName = NULL;
\r
2642 /* Set the handle to NULL to ensure the same queue handle cannot
\r
2643 appear in the registry twice if it is added, removed, then
\r
2645 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
\r
2650 mtCOVERAGE_TEST_MARKER();
\r
2654 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2656 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2657 /*-----------------------------------------------------------*/
\r
2659 #if ( configUSE_TIMERS == 1 )
\r
2661 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely )
\r
2663 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
\r
2665 /* This function should not be called by application code hence the
\r
2666 'Restricted' in its name. It is not part of the public API. It is
\r
2667 designed for use by kernel code, and has special calling requirements.
\r
2668 It can result in vListInsert() being called on a list that can only
\r
2669 possibly ever have one item in it, so the list will be fast, but even
\r
2670 so it should be called with the scheduler locked and not from a critical
\r
2673 /* Only do anything if there are no messages in the queue. This function
\r
2674 will not actually cause the task to block, just place it on a blocked
\r
2675 list. It will not block until the scheduler is unlocked - at which
\r
2676 time a yield will be performed. If an item is added to the queue while
\r
2677 the queue is locked, and the calling task blocks on the queue, then the
\r
2678 calling task will be immediately unblocked when the queue is unlocked. */
\r
2679 prvLockQueue( pxQueue );
\r
2680 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
\r
2682 /* There is nothing in the queue, block for the specified period. */
\r
2683 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
\r
2687 mtCOVERAGE_TEST_MARKER();
\r
2689 prvUnlockQueue( pxQueue );
\r
2692 #endif /* configUSE_TIMERS */
\r
2693 /*-----------------------------------------------------------*/
\r
2695 #if( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
2697 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
\r
2699 QueueSetHandle_t pxQueue;
\r
2701 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
\r
2706 #endif /* configUSE_QUEUE_SETS */
\r
2707 /*-----------------------------------------------------------*/
\r
2709 #if ( configUSE_QUEUE_SETS == 1 )
\r
2711 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
\r
2713 BaseType_t xReturn;
\r
2715 taskENTER_CRITICAL();
\r
2717 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
\r
2719 /* Cannot add a queue/semaphore to more than one queue set. */
\r
2722 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2724 /* Cannot add a queue/semaphore to a queue set if there are already
\r
2725 items in the queue/semaphore. */
\r
2730 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
\r
2734 taskEXIT_CRITICAL();
\r
2739 #endif /* configUSE_QUEUE_SETS */
\r
2740 /*-----------------------------------------------------------*/
\r
2742 #if ( configUSE_QUEUE_SETS == 1 )
\r
2744 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
\r
2746 BaseType_t xReturn;
\r
2747 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
\r
2749 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
\r
2751 /* The queue was not a member of the set. */
\r
2754 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2756 /* It is dangerous to remove a queue from a set when the queue is
\r
2757 not empty because the queue set will still hold pending events for
\r
2763 taskENTER_CRITICAL();
\r
2765 /* The queue is no longer contained in the set. */
\r
2766 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
\r
2768 taskEXIT_CRITICAL();
\r
2773 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
\r
2775 #endif /* configUSE_QUEUE_SETS */
\r
2776 /*-----------------------------------------------------------*/
\r
2778 #if ( configUSE_QUEUE_SETS == 1 )
\r
2780 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, TickType_t const xTicksToWait )
\r
2782 QueueSetMemberHandle_t xReturn = NULL;
\r
2784 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2788 #endif /* configUSE_QUEUE_SETS */
\r
2789 /*-----------------------------------------------------------*/
\r
2791 #if ( configUSE_QUEUE_SETS == 1 )
\r
2793 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
\r
2795 QueueSetMemberHandle_t xReturn = NULL;
\r
2797 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2801 #endif /* configUSE_QUEUE_SETS */
\r
2802 /*-----------------------------------------------------------*/
\r
2804 #if ( configUSE_QUEUE_SETS == 1 )
\r
2806 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition )
\r
2808 Queue_t *pxQueueSetContainer = pxQueue->pxQueueSetContainer;
\r
2809 BaseType_t xReturn = pdFALSE;
\r
2811 /* This function must be called form a critical section. */
\r
2813 configASSERT( pxQueueSetContainer );
\r
2814 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
\r
2816 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
\r
2818 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
\r
2820 traceQUEUE_SEND( pxQueueSetContainer );
\r
2822 /* The data copied is the handle of the queue that contains data. */
\r
2823 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, xCopyPosition );
\r
2825 if( cTxLock == queueUNLOCKED )
\r
2827 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2829 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2831 /* The task waiting has a higher priority. */
\r
2836 mtCOVERAGE_TEST_MARKER();
\r
2841 mtCOVERAGE_TEST_MARKER();
\r
2846 pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
2851 mtCOVERAGE_TEST_MARKER();
\r
2857 #endif /* configUSE_QUEUE_SETS */
\r