2 * FreeRTOS Kernel V10.4.3
\r
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * https://www.FreeRTOS.org
\r
23 * https://github.com/FreeRTOS
\r
27 /* Standard includes. */
\r
31 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
32 * all the API functions to use the MPU wrappers. That should only be done when
\r
33 * task.h is included from an application file. */
\r
34 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
36 /* FreeRTOS includes. */
\r
37 #include "FreeRTOS.h"
\r
40 #include "stack_macros.h"
\r
42 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
43 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
44 * for the header files above, but not in this file, in order to generate the
\r
45 * correct privileged Vs unprivileged linkage and placement. */
\r
46 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
48 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
49 * functions but without including stdio.h here. */
\r
50 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
52 /* At the bottom of this file are two optional functions that can be used
\r
53 * to generate human readable text from the raw data generated by the
\r
54 * uxTaskGetSystemState() function. Note the formatting functions are provided
\r
55 * for convenience only, and are NOT considered part of the kernel. */
\r
57 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
59 #if ( configUSE_PREEMPTION == 0 )
\r
61 /* If the cooperative scheduler is being used then a yield should not be
\r
62 * performed just because a higher priority task has been woken. */
\r
63 #define taskYIELD_IF_USING_PREEMPTION()
\r
65 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
68 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
69 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
\r
70 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
71 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
74 * The value used to fill the stack of a task when the task is created. This
\r
75 * is used purely for checking the high water mark for tasks.
\r
77 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
79 /* Bits used to recored how a task's stack and TCB were allocated. */
\r
80 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
81 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
82 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
84 /* If any of the following are set then task stacks are filled with a known
\r
85 * value so the high water mark can be determined. If none of the following are
\r
86 * set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
87 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
88 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
94 * Macros used by vListTask to indicate which state a task is in.
\r
96 #define tskRUNNING_CHAR ( 'X' )
\r
97 #define tskBLOCKED_CHAR ( 'B' )
\r
98 #define tskREADY_CHAR ( 'R' )
\r
99 #define tskDELETED_CHAR ( 'D' )
\r
100 #define tskSUSPENDED_CHAR ( 'S' )
\r
103 * Some kernel aware debuggers require the data the debugger needs access to be
\r
104 * global, rather than file scope.
\r
106 #ifdef portREMOVE_STATIC_QUALIFIER
\r
110 /* The name allocated to the Idle task. This can be overridden by defining
\r
111 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
112 #ifndef configIDLE_TASK_NAME
\r
113 #define configIDLE_TASK_NAME "IDLE"
\r
116 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
118 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
119 * performed in a generic way that is not optimised to any particular
\r
120 * microcontroller architecture. */
\r
122 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
124 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
126 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
128 uxTopReadyPriority = ( uxPriority ); \
\r
130 } /* taskRECORD_READY_PRIORITY */
\r
132 /*-----------------------------------------------------------*/
\r
134 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
136 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
138 /* Find the highest priority queue that contains ready tasks. */ \
\r
139 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
141 configASSERT( uxTopPriority ); \
\r
145 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
146 * the same priority get an equal share of the processor time. */ \
\r
147 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
148 uxTopReadyPriority = uxTopPriority; \
\r
149 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
151 /*-----------------------------------------------------------*/
\r
153 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
154 * they are only required when a port optimised method of task selection is
\r
156 #define taskRESET_READY_PRIORITY( uxPriority )
\r
157 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
159 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
162 * performed in a way that is tailored to the particular microcontroller
\r
163 * architecture being used. */
\r
165 /* A port optimised version is provided. Call the port defined macros. */
\r
166 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
168 /*-----------------------------------------------------------*/
\r
170 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
172 UBaseType_t uxTopPriority; \
\r
174 /* Find the highest priority list that contains ready tasks. */ \
\r
175 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
176 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
177 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
178 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
180 /*-----------------------------------------------------------*/
\r
182 /* A port optimised version is provided, call it only if the TCB being reset
\r
183 * is being referenced from a ready list. If it is referenced from a delayed
\r
184 * or suspended list then it won't be in a ready list. */
\r
185 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
187 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
189 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
193 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
195 /*-----------------------------------------------------------*/
\r
197 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
198 * count overflows. */
\r
199 #define taskSWITCH_DELAYED_LISTS() \
\r
203 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
204 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
206 pxTemp = pxDelayedTaskList; \
\r
207 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
208 pxOverflowDelayedTaskList = pxTemp; \
\r
209 xNumOfOverflows++; \
\r
210 prvResetNextTaskUnblockTime(); \
\r
213 /*-----------------------------------------------------------*/
\r
216 * Place the task represented by pxTCB into the appropriate ready list for
\r
217 * the task. It is inserted at the end of the list.
\r
219 #define prvAddTaskToReadyList( pxTCB ) \
\r
220 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
221 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
222 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
223 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
224 /*-----------------------------------------------------------*/
\r
227 * Several functions take an TaskHandle_t parameter that can optionally be NULL,
\r
228 * where NULL is used to indicate that the handle of the currently executing
\r
229 * task should be used in place of the parameter. This macro simply checks to
\r
230 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
232 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
234 /* The item value of the event list item is normally used to hold the priority
\r
235 * of the task to which it belongs (coded to allow it to be held in reverse
\r
236 * priority order). However, it is occasionally borrowed for other purposes. It
\r
237 * is important its value is not updated due to a task priority change while it is
\r
238 * being used for another purpose. The following bit definition is used to inform
\r
239 * the scheduler that the value should not be changed - in which case it is the
\r
240 * responsibility of whichever module is using the value to ensure it gets set back
\r
241 * to its original value when it is released. */
\r
242 #if ( configUSE_16_BIT_TICKS == 1 )
\r
243 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
249 * Task control block. A task control block (TCB) is allocated for each task,
\r
250 * and stores task state information, including a pointer to the task's context
\r
251 * (the task's run time environment, including register values)
\r
253 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
255 volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
257 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
258 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
261 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
262 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
263 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
264 StackType_t * pxStack; /*< Points to the start of the stack. */
\r
265 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
267 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
268 StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
271 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
272 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
275 #if ( configUSE_TRACE_FACILITY == 1 )
\r
276 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
277 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
280 #if ( configUSE_MUTEXES == 1 )
\r
281 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
282 UBaseType_t uxMutexesHeld;
\r
285 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
286 TaskHookFunction_t pxTaskTag;
\r
289 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
290 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
293 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
294 uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
297 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
299 /* Allocate a Newlib reent structure that is specific to this task.
\r
300 * Note Newlib support has been included by popular demand, but is not
\r
301 * used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
302 * responsible for resulting newlib operation. User must be familiar with
\r
303 * newlib and must provide system-wide implementations of the necessary
\r
304 * stubs. Be warned that (at the time of writing) the current newlib design
\r
305 * implements a system-wide malloc() that must be provided with locks.
\r
307 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
308 * for additional information. */
\r
309 struct _reent xNewLib_reent;
\r
312 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
313 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
314 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
317 /* See the comments in FreeRTOS.h with the definition of
\r
318 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
319 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
320 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
323 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
324 uint8_t ucDelayAborted;
\r
327 #if ( configUSE_POSIX_ERRNO == 1 )
\r
332 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
333 * below to enable the use of older kernel aware debuggers. */
\r
334 typedef tskTCB TCB_t;
\r
336 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
337 * which static variables must be declared volatile. */
\r
338 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
340 /* Lists for ready and blocked tasks. --------------------
\r
341 * xDelayedTaskList1 and xDelayedTaskList2 could be move to function scople but
\r
342 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
343 * the static qualifier. */
\r
344 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
\r
345 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
346 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
347 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
348 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
349 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
351 #if ( INCLUDE_vTaskDelete == 1 )
\r
353 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
354 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
358 #if ( INCLUDE_vTaskSuspend == 1 )
\r
360 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
364 /* Global POSIX errno. Its value is changed upon context switching to match
\r
365 * the errno of the currently running task. */
\r
366 #if ( configUSE_POSIX_ERRNO == 1 )
\r
367 int FreeRTOS_errno = 0;
\r
370 /* Other file private variables. --------------------------------*/
\r
371 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
372 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
373 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
374 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
375 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
376 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
377 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
378 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
379 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
380 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
382 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
\r
383 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
\r
384 * to determine the number of priority lists to read back from the remote target. */
\r
385 const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
\r
387 /* Context switches are held pending while the scheduler is suspended. Also,
\r
388 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
389 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
390 * If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
391 * moves the task's event list item into the xPendingReadyList, ready for the
\r
392 * kernel to move the task from the pending ready list into the real ready list
\r
393 * when the scheduler is unsuspended. The pending ready list itself can only be
\r
394 * accessed from a critical section. */
\r
395 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
397 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
399 /* Do not move these variables to function scope as doing so prevents the
\r
400 * code working with debuggers that need to remove the static qualifier. */
\r
401 PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
402 PRIVILEGED_DATA static volatile uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
408 /*-----------------------------------------------------------*/
\r
410 /* File private functions. --------------------------------*/
\r
413 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
414 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
415 * is in any other state.
\r
417 #if ( INCLUDE_vTaskSuspend == 1 )
\r
419 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
421 #endif /* INCLUDE_vTaskSuspend */
\r
424 * Utility to ready all the lists used by the scheduler. This is called
\r
425 * automatically upon the creation of the first task.
\r
427 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
430 * The idle task, which as all tasks is implemented as a never ending loop.
\r
431 * The idle task is automatically created and added to the ready lists upon
\r
432 * creation of the first user task.
\r
434 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
435 * language extensions. The equivalent prototype for this function is:
\r
437 * void prvIdleTask( void *pvParameters );
\r
440 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
\r
443 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
444 * including the stack pointed to by the TCB.
\r
446 * This does not free memory allocated by the task itself (i.e. memory
\r
447 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
449 #if ( INCLUDE_vTaskDelete == 1 )
\r
451 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
\r
456 * Used only by the idle task. This checks to see if anything has been placed
\r
457 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
458 * and its TCB deleted.
\r
460 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
463 * The currently executing task is entering the Blocked state. Add the task to
\r
464 * either the current or the overflow delayed task list.
\r
466 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
467 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
470 * Fills an TaskStatus_t structure with information on each task that is
\r
471 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
472 * a suspended list, etc.).
\r
474 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
475 * NORMAL APPLICATION CODE.
\r
477 #if ( configUSE_TRACE_FACILITY == 1 )
\r
479 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
481 eTaskState eState ) PRIVILEGED_FUNCTION;
\r
486 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
487 * the task if it is found, or NULL if the task is not found.
\r
489 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
491 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
492 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
497 * When a task is created, the stack of the task is filled with a known value.
\r
498 * This function determines the 'high water mark' of the task stack by
\r
499 * determining how much of the stack remains at the original preset value.
\r
501 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
503 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
508 * Return the amount of time, in ticks, that will pass before the kernel will
\r
509 * next move a task from the Blocked state to the Running state.
\r
511 * This conditional compilation should use inequality to 0, not equality to 1.
\r
512 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
513 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
514 * set to a value other than 1.
\r
516 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
518 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
523 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
524 * will exit the Blocked state.
\r
526 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
\r
528 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
531 * Helper function used to pad task names with spaces when printing out
\r
532 * human readable tables of task information.
\r
534 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
535 const char * pcTaskName ) PRIVILEGED_FUNCTION;
\r
540 * Called after a Task_t structure has been allocated either statically or
\r
541 * dynamically to fill in the structure's members.
\r
543 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
544 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
545 const uint32_t ulStackDepth,
\r
546 void * const pvParameters,
\r
547 UBaseType_t uxPriority,
\r
548 TaskHandle_t * const pxCreatedTask,
\r
550 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
553 * Called after a new task has been created and initialised to place the task
\r
554 * under the control of the scheduler.
\r
556 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
\r
559 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
560 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
561 * called by the function.
\r
563 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
565 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
569 /*-----------------------------------------------------------*/
\r
571 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
573 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
574 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
575 const uint32_t ulStackDepth,
\r
576 void * const pvParameters,
\r
577 UBaseType_t uxPriority,
\r
578 StackType_t * const puxStackBuffer,
\r
579 StaticTask_t * const pxTaskBuffer )
\r
582 TaskHandle_t xReturn;
\r
584 configASSERT( puxStackBuffer != NULL );
\r
585 configASSERT( pxTaskBuffer != NULL );
\r
587 #if ( configASSERT_DEFINED == 1 )
\r
589 /* Sanity check that the size of the structure used to declare a
\r
590 * variable of type StaticTask_t equals the size of the real task
\r
592 volatile size_t xSize = sizeof( StaticTask_t );
\r
593 configASSERT( xSize == sizeof( TCB_t ) );
\r
594 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
596 #endif /* configASSERT_DEFINED */
\r
598 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
600 /* The memory used for the task's TCB and stack are passed into this
\r
601 * function - use them. */
\r
602 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
603 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
605 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
607 /* Tasks can be created statically or dynamically, so note this
\r
608 * task was created statically in case the task is later deleted. */
\r
609 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
611 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
613 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
614 prvAddNewTaskToReadyList( pxNewTCB );
\r
624 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
625 /*-----------------------------------------------------------*/
\r
627 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
629 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
\r
630 TaskHandle_t * pxCreatedTask )
\r
633 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
635 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
636 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
638 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
640 /* Allocate space for the TCB. Where the memory comes from depends
\r
641 * on the implementation of the port malloc function and whether or
\r
642 * not static allocation is being used. */
\r
643 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
645 /* Store the stack location in the TCB. */
\r
646 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
648 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
650 /* Tasks can be created statically or dynamically, so note this
\r
651 * task was created statically in case the task is later deleted. */
\r
652 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
654 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
656 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
657 pxTaskDefinition->pcName,
\r
658 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
659 pxTaskDefinition->pvParameters,
\r
660 pxTaskDefinition->uxPriority,
\r
661 pxCreatedTask, pxNewTCB,
\r
662 pxTaskDefinition->xRegions );
\r
664 prvAddNewTaskToReadyList( pxNewTCB );
\r
671 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
672 /*-----------------------------------------------------------*/
\r
674 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
676 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
\r
677 TaskHandle_t * pxCreatedTask )
\r
680 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
682 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
684 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
686 /* Allocate space for the TCB. Where the memory comes from depends
\r
687 * on the implementation of the port malloc function and whether or
\r
688 * not static allocation is being used. */
\r
689 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
691 if( pxNewTCB != NULL )
\r
693 /* Store the stack location in the TCB. */
\r
694 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
696 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
698 /* Tasks can be created statically or dynamically, so note
\r
699 * this task had a statically allocated stack in case it is
\r
700 * later deleted. The TCB was allocated dynamically. */
\r
701 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
703 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
705 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
706 pxTaskDefinition->pcName,
\r
707 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
708 pxTaskDefinition->pvParameters,
\r
709 pxTaskDefinition->uxPriority,
\r
710 pxCreatedTask, pxNewTCB,
\r
711 pxTaskDefinition->xRegions );
\r
713 prvAddNewTaskToReadyList( pxNewTCB );
\r
721 #endif /* portUSING_MPU_WRAPPERS */
\r
722 /*-----------------------------------------------------------*/
\r
724 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
726 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
727 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
728 const configSTACK_DEPTH_TYPE usStackDepth,
\r
729 void * const pvParameters,
\r
730 UBaseType_t uxPriority,
\r
731 TaskHandle_t * const pxCreatedTask )
\r
734 BaseType_t xReturn;
\r
736 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
737 * does not grow into the TCB. Likewise if the stack grows up then allocate
\r
738 * the TCB then the stack. */
\r
739 #if ( portSTACK_GROWTH > 0 )
\r
741 /* Allocate space for the TCB. Where the memory comes from depends on
\r
742 * the implementation of the port malloc function and whether or not static
\r
743 * allocation is being used. */
\r
744 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
746 if( pxNewTCB != NULL )
\r
748 /* Allocate space for the stack used by the task being created.
\r
749 * The base of the stack memory stored in the TCB so the task can
\r
750 * be deleted later if required. */
\r
751 pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
753 if( pxNewTCB->pxStack == NULL )
\r
755 /* Could not allocate the stack. Delete the allocated TCB. */
\r
756 vPortFree( pxNewTCB );
\r
761 #else /* portSTACK_GROWTH */
\r
763 StackType_t * pxStack;
\r
765 /* Allocate space for the stack used by the task being created. */
\r
766 pxStack = pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
768 if( pxStack != NULL )
\r
770 /* Allocate space for the TCB. */
\r
771 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
773 if( pxNewTCB != NULL )
\r
775 /* Store the stack location in the TCB. */
\r
776 pxNewTCB->pxStack = pxStack;
\r
780 /* The stack cannot be used as the TCB was not created. Free
\r
782 vPortFree( pxStack );
\r
790 #endif /* portSTACK_GROWTH */
\r
792 if( pxNewTCB != NULL )
\r
794 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
796 /* Tasks can be created statically or dynamically, so note this
\r
797 * task was created dynamically in case it is later deleted. */
\r
798 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
800 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
802 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
803 prvAddNewTaskToReadyList( pxNewTCB );
\r
808 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
814 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
815 /*-----------------------------------------------------------*/
\r
817 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
818 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
819 const uint32_t ulStackDepth,
\r
820 void * const pvParameters,
\r
821 UBaseType_t uxPriority,
\r
822 TaskHandle_t * const pxCreatedTask,
\r
824 const MemoryRegion_t * const xRegions )
\r
826 StackType_t * pxTopOfStack;
\r
829 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
830 /* Should the task be created in privileged mode? */
\r
831 BaseType_t xRunPrivileged;
\r
833 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
835 xRunPrivileged = pdTRUE;
\r
839 xRunPrivileged = pdFALSE;
\r
841 uxPriority &= ~portPRIVILEGE_BIT;
\r
842 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
844 /* Avoid dependency on memset() if it is not required. */
\r
845 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
847 /* Fill the stack with a known value to assist debugging. */
\r
848 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
850 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
852 /* Calculate the top of stack address. This depends on whether the stack
\r
853 * grows from high memory to low (as per the 80x86) or vice versa.
\r
854 * portSTACK_GROWTH is used to make the result positive or negative as required
\r
856 #if ( portSTACK_GROWTH < 0 )
\r
858 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
859 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
861 /* Check the alignment of the calculated top of stack is correct. */
\r
862 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
864 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
866 /* Also record the stack's high address, which may assist
\r
868 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
870 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
872 #else /* portSTACK_GROWTH */
\r
874 pxTopOfStack = pxNewTCB->pxStack;
\r
876 /* Check the alignment of the stack buffer is correct. */
\r
877 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
879 /* The other extreme of the stack space is required if stack checking is
\r
881 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
883 #endif /* portSTACK_GROWTH */
\r
885 /* Store the task name in the TCB. */
\r
886 if( pcName != NULL )
\r
888 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
890 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
892 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
893 * configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
894 * string is not accessible (extremely unlikely). */
\r
895 if( pcName[ x ] == ( char ) 0x00 )
\r
901 mtCOVERAGE_TEST_MARKER();
\r
905 /* Ensure the name string is terminated in the case that the string length
\r
906 * was greater or equal to configMAX_TASK_NAME_LEN. */
\r
907 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
911 /* The task has not been given a name, so just ensure there is a NULL
\r
912 * terminator when it is read out. */
\r
913 pxNewTCB->pcTaskName[ 0 ] = 0x00;
\r
916 /* This is used as an array index so must ensure it's not too large. First
\r
917 * remove the privilege bit if one is present. */
\r
918 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
920 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
924 mtCOVERAGE_TEST_MARKER();
\r
927 pxNewTCB->uxPriority = uxPriority;
\r
928 #if ( configUSE_MUTEXES == 1 )
\r
930 pxNewTCB->uxBasePriority = uxPriority;
\r
931 pxNewTCB->uxMutexesHeld = 0;
\r
933 #endif /* configUSE_MUTEXES */
\r
935 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
936 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
938 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
939 * back to the containing TCB from a generic item in a list. */
\r
940 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
942 /* Event lists are always in priority order. */
\r
943 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
944 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
946 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
948 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
950 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
952 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
954 pxNewTCB->pxTaskTag = NULL;
\r
956 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
958 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
960 pxNewTCB->ulRunTimeCounter = 0UL;
\r
962 #endif /* configGENERATE_RUN_TIME_STATS */
\r
964 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
966 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
970 /* Avoid compiler warning about unreferenced parameter. */
\r
975 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
977 memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
\r
981 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
983 memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
\r
984 memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
\r
988 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
990 /* Initialise this task's Newlib reent structure.
\r
991 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
992 * for additional information. */
\r
993 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
997 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
999 pxNewTCB->ucDelayAborted = pdFALSE;
\r
1003 /* Initialize the TCB stack to look as if the task was already running,
\r
1004 * but had been interrupted by the scheduler. The return address is set
\r
1005 * to the start of the task function. Once the stack has been initialised
\r
1006 * the top of stack variable is updated. */
\r
1007 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
1009 /* If the port has capability to detect stack overflow,
\r
1010 * pass the stack end address to the stack initialization
\r
1011 * function as well. */
\r
1012 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1014 #if ( portSTACK_GROWTH < 0 )
\r
1016 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1018 #else /* portSTACK_GROWTH */
\r
1020 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1022 #endif /* portSTACK_GROWTH */
\r
1024 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1026 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1028 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1030 #else /* portUSING_MPU_WRAPPERS */
\r
1032 /* If the port has capability to detect stack overflow,
\r
1033 * pass the stack end address to the stack initialization
\r
1034 * function as well. */
\r
1035 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1037 #if ( portSTACK_GROWTH < 0 )
\r
1039 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
1041 #else /* portSTACK_GROWTH */
\r
1043 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1045 #endif /* portSTACK_GROWTH */
\r
1047 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1049 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1051 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1053 #endif /* portUSING_MPU_WRAPPERS */
\r
1055 if( pxCreatedTask != NULL )
\r
1057 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1058 * change the created task's priority, delete the created task, etc.*/
\r
1059 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1063 mtCOVERAGE_TEST_MARKER();
\r
1066 /*-----------------------------------------------------------*/
\r
1068 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
\r
1070 /* Ensure interrupts don't access the task lists while the lists are being
\r
1072 taskENTER_CRITICAL();
\r
1074 uxCurrentNumberOfTasks++;
\r
1076 if( pxCurrentTCB == NULL )
\r
1078 /* There are no other tasks, or all the other tasks are in
\r
1079 * the suspended state - make this the current task. */
\r
1080 pxCurrentTCB = pxNewTCB;
\r
1082 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1084 /* This is the first task to be created so do the preliminary
\r
1085 * initialisation required. We will not recover if this call
\r
1086 * fails, but we will report the failure. */
\r
1087 prvInitialiseTaskLists();
\r
1091 mtCOVERAGE_TEST_MARKER();
\r
1096 /* If the scheduler is not already running, make this task the
\r
1097 * current task if it is the highest priority task to be created
\r
1099 if( xSchedulerRunning == pdFALSE )
\r
1101 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1103 pxCurrentTCB = pxNewTCB;
\r
1107 mtCOVERAGE_TEST_MARKER();
\r
1112 mtCOVERAGE_TEST_MARKER();
\r
1118 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1120 /* Add a counter into the TCB for tracing only. */
\r
1121 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1123 #endif /* configUSE_TRACE_FACILITY */
\r
1124 traceTASK_CREATE( pxNewTCB );
\r
1126 prvAddTaskToReadyList( pxNewTCB );
\r
1128 portSETUP_TCB( pxNewTCB );
\r
1130 taskEXIT_CRITICAL();
\r
1132 if( xSchedulerRunning != pdFALSE )
\r
1134 /* If the created task is of a higher priority than the current task
\r
1135 * then it should run now. */
\r
1136 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1138 taskYIELD_IF_USING_PREEMPTION();
\r
1142 mtCOVERAGE_TEST_MARKER();
\r
1147 mtCOVERAGE_TEST_MARKER();
\r
1150 /*-----------------------------------------------------------*/
\r
1152 #if ( INCLUDE_vTaskDelete == 1 )
\r
1154 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1158 taskENTER_CRITICAL();
\r
1160 /* If null is passed in here then it is the calling task that is
\r
1161 * being deleted. */
\r
1162 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1164 /* Remove task from the ready/delayed list. */
\r
1165 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1167 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1171 mtCOVERAGE_TEST_MARKER();
\r
1174 /* Is the task waiting on an event also? */
\r
1175 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1177 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1181 mtCOVERAGE_TEST_MARKER();
\r
1184 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1185 * detect that the task lists need re-generating. This is done before
\r
1186 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1190 if( pxTCB == pxCurrentTCB )
\r
1192 /* A task is deleting itself. This cannot complete within the
\r
1193 * task itself, as a context switch to another task is required.
\r
1194 * Place the task in the termination list. The idle task will
\r
1195 * check the termination list and free up any memory allocated by
\r
1196 * the scheduler for the TCB and stack of the deleted task. */
\r
1197 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1199 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1200 * there is a task that has been deleted and that it should therefore
\r
1201 * check the xTasksWaitingTermination list. */
\r
1202 ++uxDeletedTasksWaitingCleanUp;
\r
1204 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1205 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1206 traceTASK_DELETE( pxTCB );
\r
1208 /* The pre-delete hook is primarily for the Windows simulator,
\r
1209 * in which Windows specific clean up operations are performed,
\r
1210 * after which it is not possible to yield away from this task -
\r
1211 * hence xYieldPending is used to latch that a context switch is
\r
1213 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1217 --uxCurrentNumberOfTasks;
\r
1218 traceTASK_DELETE( pxTCB );
\r
1219 prvDeleteTCB( pxTCB );
\r
1221 /* Reset the next expected unblock time in case it referred to
\r
1222 * the task that has just been deleted. */
\r
1223 prvResetNextTaskUnblockTime();
\r
1226 taskEXIT_CRITICAL();
\r
1228 /* Force a reschedule if it is the currently running task that has just
\r
1229 * been deleted. */
\r
1230 if( xSchedulerRunning != pdFALSE )
\r
1232 if( pxTCB == pxCurrentTCB )
\r
1234 configASSERT( uxSchedulerSuspended == 0 );
\r
1235 portYIELD_WITHIN_API();
\r
1239 mtCOVERAGE_TEST_MARKER();
\r
1244 #endif /* INCLUDE_vTaskDelete */
\r
1245 /*-----------------------------------------------------------*/
\r
1247 #if ( INCLUDE_xTaskDelayUntil == 1 )
\r
1249 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
\r
1250 const TickType_t xTimeIncrement )
\r
1252 TickType_t xTimeToWake;
\r
1253 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1255 configASSERT( pxPreviousWakeTime );
\r
1256 configASSERT( ( xTimeIncrement > 0U ) );
\r
1257 configASSERT( uxSchedulerSuspended == 0 );
\r
1259 vTaskSuspendAll();
\r
1261 /* Minor optimisation. The tick count cannot change in this
\r
1263 const TickType_t xConstTickCount = xTickCount;
\r
1265 /* Generate the tick time at which the task wants to wake. */
\r
1266 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1268 if( xConstTickCount < *pxPreviousWakeTime )
\r
1270 /* The tick count has overflowed since this function was
\r
1271 * lasted called. In this case the only time we should ever
\r
1272 * actually delay is if the wake time has also overflowed,
\r
1273 * and the wake time is greater than the tick time. When this
\r
1274 * is the case it is as if neither time had overflowed. */
\r
1275 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1277 xShouldDelay = pdTRUE;
\r
1281 mtCOVERAGE_TEST_MARKER();
\r
1286 /* The tick time has not overflowed. In this case we will
\r
1287 * delay if either the wake time has overflowed, and/or the
\r
1288 * tick time is less than the wake time. */
\r
1289 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1291 xShouldDelay = pdTRUE;
\r
1295 mtCOVERAGE_TEST_MARKER();
\r
1299 /* Update the wake time ready for the next call. */
\r
1300 *pxPreviousWakeTime = xTimeToWake;
\r
1302 if( xShouldDelay != pdFALSE )
\r
1304 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1306 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1307 * the time to wake, so subtract the current tick count. */
\r
1308 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1312 mtCOVERAGE_TEST_MARKER();
\r
1315 xAlreadyYielded = xTaskResumeAll();
\r
1317 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1318 * have put ourselves to sleep. */
\r
1319 if( xAlreadyYielded == pdFALSE )
\r
1321 portYIELD_WITHIN_API();
\r
1325 mtCOVERAGE_TEST_MARKER();
\r
1328 return xShouldDelay;
\r
1331 #endif /* INCLUDE_xTaskDelayUntil */
\r
1332 /*-----------------------------------------------------------*/
\r
1334 #if ( INCLUDE_vTaskDelay == 1 )
\r
1336 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1338 BaseType_t xAlreadyYielded = pdFALSE;
\r
1340 /* A delay time of zero just forces a reschedule. */
\r
1341 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1343 configASSERT( uxSchedulerSuspended == 0 );
\r
1344 vTaskSuspendAll();
\r
1346 traceTASK_DELAY();
\r
1348 /* A task that is removed from the event list while the
\r
1349 * scheduler is suspended will not get placed in the ready
\r
1350 * list or removed from the blocked list until the scheduler
\r
1353 * This task cannot be in an event list as it is the currently
\r
1354 * executing task. */
\r
1355 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1357 xAlreadyYielded = xTaskResumeAll();
\r
1361 mtCOVERAGE_TEST_MARKER();
\r
1364 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1365 * have put ourselves to sleep. */
\r
1366 if( xAlreadyYielded == pdFALSE )
\r
1368 portYIELD_WITHIN_API();
\r
1372 mtCOVERAGE_TEST_MARKER();
\r
1376 #endif /* INCLUDE_vTaskDelay */
\r
1377 /*-----------------------------------------------------------*/
\r
1379 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1381 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1383 eTaskState eReturn;
\r
1384 List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
\r
1385 const TCB_t * const pxTCB = xTask;
\r
1387 configASSERT( pxTCB );
\r
1389 if( pxTCB == pxCurrentTCB )
\r
1391 /* The task calling this function is querying its own state. */
\r
1392 eReturn = eRunning;
\r
1396 taskENTER_CRITICAL();
\r
1398 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1399 pxDelayedList = pxDelayedTaskList;
\r
1400 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1402 taskEXIT_CRITICAL();
\r
1404 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1406 /* The task being queried is referenced from one of the Blocked
\r
1408 eReturn = eBlocked;
\r
1411 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1412 else if( pxStateList == &xSuspendedTaskList )
\r
1414 /* The task being queried is referenced from the suspended
\r
1415 * list. Is it genuinely suspended or is it blocked
\r
1416 * indefinitely? */
\r
1417 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1419 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1423 /* The task does not appear on the event list item of
\r
1424 * and of the RTOS objects, but could still be in the
\r
1425 * blocked state if it is waiting on its notification
\r
1426 * rather than waiting on an object. If not, is
\r
1428 eReturn = eSuspended;
\r
1430 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1432 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1434 eReturn = eBlocked;
\r
1439 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1441 eReturn = eSuspended;
\r
1443 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1447 eReturn = eBlocked;
\r
1450 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
\r
1452 #if ( INCLUDE_vTaskDelete == 1 )
\r
1453 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1455 /* The task being queried is referenced from the deleted
\r
1456 * tasks list, or it is not referenced from any lists at
\r
1458 eReturn = eDeleted;
\r
1462 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1464 /* If the task is not in any other state, it must be in the
\r
1465 * Ready (including pending ready) state. */
\r
1471 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1473 #endif /* INCLUDE_eTaskGetState */
\r
1474 /*-----------------------------------------------------------*/
\r
1476 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1478 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1480 TCB_t const * pxTCB;
\r
1481 UBaseType_t uxReturn;
\r
1483 taskENTER_CRITICAL();
\r
1485 /* If null is passed in here then it is the priority of the task
\r
1486 * that called uxTaskPriorityGet() that is being queried. */
\r
1487 pxTCB = prvGetTCBFromHandle( xTask );
\r
1488 uxReturn = pxTCB->uxPriority;
\r
1490 taskEXIT_CRITICAL();
\r
1495 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1496 /*-----------------------------------------------------------*/
\r
1498 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1500 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1502 TCB_t const * pxTCB;
\r
1503 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1505 /* RTOS ports that support interrupt nesting have the concept of a
\r
1506 * maximum system call (or maximum API call) interrupt priority.
\r
1507 * Interrupts that are above the maximum system call priority are keep
\r
1508 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1509 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1510 * is defined in FreeRTOSConfig.h then
\r
1511 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1512 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1513 * been assigned a priority above the configured maximum system call
\r
1514 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1515 * from interrupts that have been assigned a priority at or (logically)
\r
1516 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1517 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1518 * simple as possible. More information (albeit Cortex-M specific) is
\r
1519 * provided on the following link:
\r
1520 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1521 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1523 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1525 /* If null is passed in here then it is the priority of the calling
\r
1526 * task that is being queried. */
\r
1527 pxTCB = prvGetTCBFromHandle( xTask );
\r
1528 uxReturn = pxTCB->uxPriority;
\r
1530 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1535 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1536 /*-----------------------------------------------------------*/
\r
1538 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1540 void vTaskPrioritySet( TaskHandle_t xTask,
\r
1541 UBaseType_t uxNewPriority )
\r
1544 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1545 BaseType_t xYieldRequired = pdFALSE;
\r
1547 configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
\r
1549 /* Ensure the new priority is valid. */
\r
1550 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1552 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1556 mtCOVERAGE_TEST_MARKER();
\r
1559 taskENTER_CRITICAL();
\r
1561 /* If null is passed in here then it is the priority of the calling
\r
1562 * task that is being changed. */
\r
1563 pxTCB = prvGetTCBFromHandle( xTask );
\r
1565 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1567 #if ( configUSE_MUTEXES == 1 )
\r
1569 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1573 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1577 if( uxCurrentBasePriority != uxNewPriority )
\r
1579 /* The priority change may have readied a task of higher
\r
1580 * priority than the calling task. */
\r
1581 if( uxNewPriority > uxCurrentBasePriority )
\r
1583 if( pxTCB != pxCurrentTCB )
\r
1585 /* The priority of a task other than the currently
\r
1586 * running task is being raised. Is the priority being
\r
1587 * raised above that of the running task? */
\r
1588 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1590 xYieldRequired = pdTRUE;
\r
1594 mtCOVERAGE_TEST_MARKER();
\r
1599 /* The priority of the running task is being raised,
\r
1600 * but the running task must already be the highest
\r
1601 * priority task able to run so no yield is required. */
\r
1604 else if( pxTCB == pxCurrentTCB )
\r
1606 /* Setting the priority of the running task down means
\r
1607 * there may now be another task of higher priority that
\r
1608 * is ready to execute. */
\r
1609 xYieldRequired = pdTRUE;
\r
1613 /* Setting the priority of any other task down does not
\r
1614 * require a yield as the running task must be above the
\r
1615 * new priority of the task being modified. */
\r
1618 /* Remember the ready list the task might be referenced from
\r
1619 * before its uxPriority member is changed so the
\r
1620 * taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1621 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1623 #if ( configUSE_MUTEXES == 1 )
\r
1625 /* Only change the priority being used if the task is not
\r
1626 * currently using an inherited priority. */
\r
1627 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1629 pxTCB->uxPriority = uxNewPriority;
\r
1633 mtCOVERAGE_TEST_MARKER();
\r
1636 /* The base priority gets set whatever. */
\r
1637 pxTCB->uxBasePriority = uxNewPriority;
\r
1639 #else /* if ( configUSE_MUTEXES == 1 ) */
\r
1641 pxTCB->uxPriority = uxNewPriority;
\r
1643 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1645 /* Only reset the event list item value if the value is not
\r
1646 * being used for anything else. */
\r
1647 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1649 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1653 mtCOVERAGE_TEST_MARKER();
\r
1656 /* If the task is in the blocked or suspended list we need do
\r
1657 * nothing more than change its priority variable. However, if
\r
1658 * the task is in a ready list it needs to be removed and placed
\r
1659 * in the list appropriate to its new priority. */
\r
1660 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1662 /* The task is currently in its ready list - remove before
\r
1663 * adding it to it's new ready list. As we are in a critical
\r
1664 * section we can do this even if the scheduler is suspended. */
\r
1665 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1667 /* It is known that the task is in its ready list so
\r
1668 * there is no need to check again and the port level
\r
1669 * reset macro can be called directly. */
\r
1670 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1674 mtCOVERAGE_TEST_MARKER();
\r
1677 prvAddTaskToReadyList( pxTCB );
\r
1681 mtCOVERAGE_TEST_MARKER();
\r
1684 if( xYieldRequired != pdFALSE )
\r
1686 taskYIELD_IF_USING_PREEMPTION();
\r
1690 mtCOVERAGE_TEST_MARKER();
\r
1693 /* Remove compiler warning about unused variables when the port
\r
1694 * optimised task selection is not being used. */
\r
1695 ( void ) uxPriorityUsedOnEntry;
\r
1698 taskEXIT_CRITICAL();
\r
1701 #endif /* INCLUDE_vTaskPrioritySet */
\r
1702 /*-----------------------------------------------------------*/
\r
1704 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1706 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1710 taskENTER_CRITICAL();
\r
1712 /* If null is passed in here then it is the running task that is
\r
1713 * being suspended. */
\r
1714 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1716 traceTASK_SUSPEND( pxTCB );
\r
1718 /* Remove task from the ready/delayed list and place in the
\r
1719 * suspended list. */
\r
1720 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1722 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1726 mtCOVERAGE_TEST_MARKER();
\r
1729 /* Is the task waiting on an event also? */
\r
1730 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1732 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1736 mtCOVERAGE_TEST_MARKER();
\r
1739 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1741 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1745 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1747 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1749 /* The task was blocked to wait for a notification, but is
\r
1750 * now suspended, so no notification was received. */
\r
1751 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
\r
1755 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1757 taskEXIT_CRITICAL();
\r
1759 if( xSchedulerRunning != pdFALSE )
\r
1761 /* Reset the next expected unblock time in case it referred to the
\r
1762 * task that is now in the Suspended state. */
\r
1763 taskENTER_CRITICAL();
\r
1765 prvResetNextTaskUnblockTime();
\r
1767 taskEXIT_CRITICAL();
\r
1771 mtCOVERAGE_TEST_MARKER();
\r
1774 if( pxTCB == pxCurrentTCB )
\r
1776 if( xSchedulerRunning != pdFALSE )
\r
1778 /* The current task has just been suspended. */
\r
1779 configASSERT( uxSchedulerSuspended == 0 );
\r
1780 portYIELD_WITHIN_API();
\r
1784 /* The scheduler is not running, but the task that was pointed
\r
1785 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1786 * must be adjusted to point to a different task. */
\r
1787 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1789 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1790 * NULL so when the next task is created pxCurrentTCB will
\r
1791 * be set to point to it no matter what its relative priority
\r
1793 pxCurrentTCB = NULL;
\r
1797 vTaskSwitchContext();
\r
1803 mtCOVERAGE_TEST_MARKER();
\r
1807 #endif /* INCLUDE_vTaskSuspend */
\r
1808 /*-----------------------------------------------------------*/
\r
1810 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1812 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1814 BaseType_t xReturn = pdFALSE;
\r
1815 const TCB_t * const pxTCB = xTask;
\r
1817 /* Accesses xPendingReadyList so must be called from a critical
\r
1820 /* It does not make sense to check if the calling task is suspended. */
\r
1821 configASSERT( xTask );
\r
1823 /* Is the task being resumed actually in the suspended list? */
\r
1824 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1826 /* Has the task already been resumed from within an ISR? */
\r
1827 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1829 /* Is it in the suspended list because it is in the Suspended
\r
1830 * state, or because is is blocked with no timeout? */
\r
1831 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1837 mtCOVERAGE_TEST_MARKER();
\r
1842 mtCOVERAGE_TEST_MARKER();
\r
1847 mtCOVERAGE_TEST_MARKER();
\r
1851 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1853 #endif /* INCLUDE_vTaskSuspend */
\r
1854 /*-----------------------------------------------------------*/
\r
1856 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1858 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1860 TCB_t * const pxTCB = xTaskToResume;
\r
1862 /* It does not make sense to resume the calling task. */
\r
1863 configASSERT( xTaskToResume );
\r
1865 /* The parameter cannot be NULL as it is impossible to resume the
\r
1866 * currently executing task. */
\r
1867 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1869 taskENTER_CRITICAL();
\r
1871 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1873 traceTASK_RESUME( pxTCB );
\r
1875 /* The ready list can be accessed even if the scheduler is
\r
1876 * suspended because this is inside a critical section. */
\r
1877 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1878 prvAddTaskToReadyList( pxTCB );
\r
1880 /* A higher priority task may have just been resumed. */
\r
1881 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1883 /* This yield may not cause the task just resumed to run,
\r
1884 * but will leave the lists in the correct state for the
\r
1886 taskYIELD_IF_USING_PREEMPTION();
\r
1890 mtCOVERAGE_TEST_MARKER();
\r
1895 mtCOVERAGE_TEST_MARKER();
\r
1898 taskEXIT_CRITICAL();
\r
1902 mtCOVERAGE_TEST_MARKER();
\r
1906 #endif /* INCLUDE_vTaskSuspend */
\r
1908 /*-----------------------------------------------------------*/
\r
1910 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1912 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1914 BaseType_t xYieldRequired = pdFALSE;
\r
1915 TCB_t * const pxTCB = xTaskToResume;
\r
1916 UBaseType_t uxSavedInterruptStatus;
\r
1918 configASSERT( xTaskToResume );
\r
1920 /* RTOS ports that support interrupt nesting have the concept of a
\r
1921 * maximum system call (or maximum API call) interrupt priority.
\r
1922 * Interrupts that are above the maximum system call priority are keep
\r
1923 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1924 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1925 * is defined in FreeRTOSConfig.h then
\r
1926 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1927 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1928 * been assigned a priority above the configured maximum system call
\r
1929 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1930 * from interrupts that have been assigned a priority at or (logically)
\r
1931 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1932 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1933 * simple as possible. More information (albeit Cortex-M specific) is
\r
1934 * provided on the following link:
\r
1935 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1936 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1938 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1940 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1942 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1944 /* Check the ready lists can be accessed. */
\r
1945 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1947 /* Ready lists can be accessed so move the task from the
\r
1948 * suspended list to the ready list directly. */
\r
1949 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1951 xYieldRequired = pdTRUE;
\r
1953 /* Mark that a yield is pending in case the user is not
\r
1954 * using the return value to initiate a context switch
\r
1955 * from the ISR using portYIELD_FROM_ISR. */
\r
1956 xYieldPending = pdTRUE;
\r
1960 mtCOVERAGE_TEST_MARKER();
\r
1963 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1964 prvAddTaskToReadyList( pxTCB );
\r
1968 /* The delayed or ready lists cannot be accessed so the task
\r
1969 * is held in the pending ready list until the scheduler is
\r
1971 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1976 mtCOVERAGE_TEST_MARKER();
\r
1979 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1981 return xYieldRequired;
\r
1984 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1985 /*-----------------------------------------------------------*/
\r
1987 void vTaskStartScheduler( void )
\r
1989 BaseType_t xReturn;
\r
1991 /* Add the idle task at the lowest priority. */
\r
1992 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1994 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
\r
1995 StackType_t * pxIdleTaskStackBuffer = NULL;
\r
1996 uint32_t ulIdleTaskStackSize;
\r
1998 /* The Idle task is created using user provided RAM - obtain the
\r
1999 * address of the RAM then create the idle task. */
\r
2000 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
2001 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
2002 configIDLE_TASK_NAME,
\r
2003 ulIdleTaskStackSize,
\r
2004 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
2005 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2006 pxIdleTaskStackBuffer,
\r
2007 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2009 if( xIdleTaskHandle != NULL )
\r
2018 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
2020 /* The Idle task is being created using dynamically allocated RAM. */
\r
2021 xReturn = xTaskCreate( prvIdleTask,
\r
2022 configIDLE_TASK_NAME,
\r
2023 configMINIMAL_STACK_SIZE,
\r
2025 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2026 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2028 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
2030 #if ( configUSE_TIMERS == 1 )
\r
2032 if( xReturn == pdPASS )
\r
2034 xReturn = xTimerCreateTimerTask();
\r
2038 mtCOVERAGE_TEST_MARKER();
\r
2041 #endif /* configUSE_TIMERS */
\r
2043 if( xReturn == pdPASS )
\r
2045 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2046 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2047 * the only macro called by the function. */
\r
2048 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2050 freertos_tasks_c_additions_init();
\r
2054 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2055 * before or during the call to xPortStartScheduler(). The stacks of
\r
2056 * the created tasks contain a status word with interrupts switched on
\r
2057 * so interrupts will automatically get re-enabled when the first task
\r
2058 * starts to run. */
\r
2059 portDISABLE_INTERRUPTS();
\r
2061 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2063 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2064 * structure specific to the task that will run first.
\r
2065 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
2066 * for additional information. */
\r
2067 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2069 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2071 xNextTaskUnblockTime = portMAX_DELAY;
\r
2072 xSchedulerRunning = pdTRUE;
\r
2073 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2075 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2076 * macro must be defined to configure the timer/counter used to generate
\r
2077 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2078 * is set to 0 and the following line fails to build then ensure you do not
\r
2079 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2080 * FreeRTOSConfig.h file. */
\r
2081 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2083 traceTASK_SWITCHED_IN();
\r
2085 /* Setting up the timer tick is hardware specific and thus in the
\r
2086 * portable interface. */
\r
2087 if( xPortStartScheduler() != pdFALSE )
\r
2089 /* Should not reach here as if the scheduler is running the
\r
2090 * function will not return. */
\r
2094 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2099 /* This line will only be reached if the kernel could not be started,
\r
2100 * because there was not enough FreeRTOS heap to create the idle task
\r
2101 * or the timer task. */
\r
2102 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2105 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2106 * meaning xIdleTaskHandle is not used anywhere else. */
\r
2107 ( void ) xIdleTaskHandle;
\r
2109 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
\r
2110 * from getting optimized out as it is no longer used by the kernel. */
\r
2111 ( void ) uxTopUsedPriority;
\r
2113 /*-----------------------------------------------------------*/
\r
2115 void vTaskEndScheduler( void )
\r
2117 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2118 * routine so the original ISRs can be restored if necessary. The port
\r
2119 * layer must ensure interrupts enable bit is left in the correct state. */
\r
2120 portDISABLE_INTERRUPTS();
\r
2121 xSchedulerRunning = pdFALSE;
\r
2122 vPortEndScheduler();
\r
2124 /*----------------------------------------------------------*/
\r
2126 void vTaskSuspendAll( void )
\r
2128 /* A critical section is not required as the variable is of type
\r
2129 * BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2130 * post in the FreeRTOS support forum before reporting this as a bug! -
\r
2131 * https://goo.gl/wu4acr */
\r
2133 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2134 * do not otherwise exhibit real time behaviour. */
\r
2135 portSOFTWARE_BARRIER();
\r
2137 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2138 * is used to allow calls to vTaskSuspendAll() to nest. */
\r
2139 ++uxSchedulerSuspended;
\r
2141 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2142 * the above increment elsewhere. */
\r
2143 portMEMORY_BARRIER();
\r
2145 /*----------------------------------------------------------*/
\r
2147 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2149 static TickType_t prvGetExpectedIdleTime( void )
\r
2151 TickType_t xReturn;
\r
2152 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2154 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2155 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2156 * task that are in the Ready state, even though the idle task is
\r
2158 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2160 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2162 uxHigherPriorityReadyTasks = pdTRUE;
\r
2167 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2169 /* When port optimised task selection is used the uxTopReadyPriority
\r
2170 * variable is used as a bit map. If bits other than the least
\r
2171 * significant bit are set then there are tasks that have a priority
\r
2172 * above the idle priority that are in the Ready state. This takes
\r
2173 * care of the case where the co-operative scheduler is in use. */
\r
2174 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2176 uxHigherPriorityReadyTasks = pdTRUE;
\r
2179 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
\r
2181 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2185 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2187 /* There are other idle priority tasks in the ready state. If
\r
2188 * time slicing is used then the very next tick interrupt must be
\r
2192 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2194 /* There are tasks in the Ready state that have a priority above the
\r
2195 * idle priority. This path can only be reached if
\r
2196 * configUSE_PREEMPTION is 0. */
\r
2201 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2207 #endif /* configUSE_TICKLESS_IDLE */
\r
2208 /*----------------------------------------------------------*/
\r
2210 BaseType_t xTaskResumeAll( void )
\r
2212 TCB_t * pxTCB = NULL;
\r
2213 BaseType_t xAlreadyYielded = pdFALSE;
\r
2215 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2216 * previous call to vTaskSuspendAll(). */
\r
2217 configASSERT( uxSchedulerSuspended );
\r
2219 /* It is possible that an ISR caused a task to be removed from an event
\r
2220 * list while the scheduler was suspended. If this was the case then the
\r
2221 * removed task will have been added to the xPendingReadyList. Once the
\r
2222 * scheduler has been resumed it is safe to move all the pending ready
\r
2223 * tasks from this list into their appropriate ready list. */
\r
2224 taskENTER_CRITICAL();
\r
2226 --uxSchedulerSuspended;
\r
2228 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2230 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2232 /* Move any readied tasks from the pending list into the
\r
2233 * appropriate ready list. */
\r
2234 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2236 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2237 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2238 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2239 prvAddTaskToReadyList( pxTCB );
\r
2241 /* If the moved task has a priority higher than the current
\r
2242 * task then a yield must be performed. */
\r
2243 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2245 xYieldPending = pdTRUE;
\r
2249 mtCOVERAGE_TEST_MARKER();
\r
2253 if( pxTCB != NULL )
\r
2255 /* A task was unblocked while the scheduler was suspended,
\r
2256 * which may have prevented the next unblock time from being
\r
2257 * re-calculated, in which case re-calculate it now. Mainly
\r
2258 * important for low power tickless implementations, where
\r
2259 * this can prevent an unnecessary exit from low power
\r
2261 prvResetNextTaskUnblockTime();
\r
2264 /* If any ticks occurred while the scheduler was suspended then
\r
2265 * they should be processed now. This ensures the tick count does
\r
2266 * not slip, and that any delayed tasks are resumed at the correct
\r
2269 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2271 if( xPendedCounts > ( TickType_t ) 0U )
\r
2275 if( xTaskIncrementTick() != pdFALSE )
\r
2277 xYieldPending = pdTRUE;
\r
2281 mtCOVERAGE_TEST_MARKER();
\r
2285 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2291 mtCOVERAGE_TEST_MARKER();
\r
2295 if( xYieldPending != pdFALSE )
\r
2297 #if ( configUSE_PREEMPTION != 0 )
\r
2299 xAlreadyYielded = pdTRUE;
\r
2302 taskYIELD_IF_USING_PREEMPTION();
\r
2306 mtCOVERAGE_TEST_MARKER();
\r
2312 mtCOVERAGE_TEST_MARKER();
\r
2315 taskEXIT_CRITICAL();
\r
2317 return xAlreadyYielded;
\r
2319 /*-----------------------------------------------------------*/
\r
2321 TickType_t xTaskGetTickCount( void )
\r
2323 TickType_t xTicks;
\r
2325 /* Critical section required if running on a 16 bit processor. */
\r
2326 portTICK_TYPE_ENTER_CRITICAL();
\r
2328 xTicks = xTickCount;
\r
2330 portTICK_TYPE_EXIT_CRITICAL();
\r
2334 /*-----------------------------------------------------------*/
\r
2336 TickType_t xTaskGetTickCountFromISR( void )
\r
2338 TickType_t xReturn;
\r
2339 UBaseType_t uxSavedInterruptStatus;
\r
2341 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2342 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
2343 * above the maximum system call priority are kept permanently enabled, even
\r
2344 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2345 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2346 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2347 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2348 * assigned a priority above the configured maximum system call priority.
\r
2349 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2350 * that have been assigned a priority at or (logically) below the maximum
\r
2351 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2352 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2353 * More information (albeit Cortex-M specific) is provided on the following
\r
2354 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
2355 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2357 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2359 xReturn = xTickCount;
\r
2361 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2365 /*-----------------------------------------------------------*/
\r
2367 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2369 /* A critical section is not required because the variables are of type
\r
2371 return uxCurrentNumberOfTasks;
\r
2373 /*-----------------------------------------------------------*/
\r
2375 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2379 /* If null is passed in here then the name of the calling task is being
\r
2381 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2382 configASSERT( pxTCB );
\r
2383 return &( pxTCB->pcTaskName[ 0 ] );
\r
2385 /*-----------------------------------------------------------*/
\r
2387 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2389 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
2390 const char pcNameToQuery[] )
\r
2392 TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
\r
2395 BaseType_t xBreakLoop;
\r
2397 /* This function is called with the scheduler suspended. */
\r
2399 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2401 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2405 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2407 /* Check each character in the name looking for a match or
\r
2409 xBreakLoop = pdFALSE;
\r
2411 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2413 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2415 if( cNextChar != pcNameToQuery[ x ] )
\r
2417 /* Characters didn't match. */
\r
2418 xBreakLoop = pdTRUE;
\r
2420 else if( cNextChar == ( char ) 0x00 )
\r
2422 /* Both strings terminated, a match must have been
\r
2424 pxReturn = pxNextTCB;
\r
2425 xBreakLoop = pdTRUE;
\r
2429 mtCOVERAGE_TEST_MARKER();
\r
2432 if( xBreakLoop != pdFALSE )
\r
2438 if( pxReturn != NULL )
\r
2440 /* The handle has been found. */
\r
2443 } while( pxNextTCB != pxFirstTCB );
\r
2447 mtCOVERAGE_TEST_MARKER();
\r
2453 #endif /* INCLUDE_xTaskGetHandle */
\r
2454 /*-----------------------------------------------------------*/
\r
2456 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2458 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2460 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2463 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2464 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2466 vTaskSuspendAll();
\r
2468 /* Search the ready lists. */
\r
2472 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2474 if( pxTCB != NULL )
\r
2476 /* Found the handle. */
\r
2479 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2481 /* Search the delayed lists. */
\r
2482 if( pxTCB == NULL )
\r
2484 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2487 if( pxTCB == NULL )
\r
2489 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2492 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2494 if( pxTCB == NULL )
\r
2496 /* Search the suspended list. */
\r
2497 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2502 #if ( INCLUDE_vTaskDelete == 1 )
\r
2504 if( pxTCB == NULL )
\r
2506 /* Search the deleted list. */
\r
2507 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2512 ( void ) xTaskResumeAll();
\r
2517 #endif /* INCLUDE_xTaskGetHandle */
\r
2518 /*-----------------------------------------------------------*/
\r
2520 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2522 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
\r
2523 const UBaseType_t uxArraySize,
\r
2524 uint32_t * const pulTotalRunTime )
\r
2526 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2528 vTaskSuspendAll();
\r
2530 /* Is there a space in the array for each task in the system? */
\r
2531 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2533 /* Fill in an TaskStatus_t structure with information on each
\r
2534 * task in the Ready state. */
\r
2538 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2539 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2541 /* Fill in an TaskStatus_t structure with information on each
\r
2542 * task in the Blocked state. */
\r
2543 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2544 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2546 #if ( INCLUDE_vTaskDelete == 1 )
\r
2548 /* Fill in an TaskStatus_t structure with information on
\r
2549 * each task that has been deleted but not yet cleaned up. */
\r
2550 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2554 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2556 /* Fill in an TaskStatus_t structure with information on
\r
2557 * each task in the Suspended state. */
\r
2558 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2562 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2564 if( pulTotalRunTime != NULL )
\r
2566 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2567 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2569 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2573 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2575 if( pulTotalRunTime != NULL )
\r
2577 *pulTotalRunTime = 0;
\r
2580 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2584 mtCOVERAGE_TEST_MARKER();
\r
2587 ( void ) xTaskResumeAll();
\r
2592 #endif /* configUSE_TRACE_FACILITY */
\r
2593 /*----------------------------------------------------------*/
\r
2595 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2597 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2599 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2600 * started, then xIdleTaskHandle will be NULL. */
\r
2601 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2602 return xIdleTaskHandle;
\r
2605 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2606 /*----------------------------------------------------------*/
\r
2608 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2609 * This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2610 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2612 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2614 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2616 /* Correct the tick count value after a period during which the tick
\r
2617 * was suppressed. Note this does *not* call the tick hook function for
\r
2618 * each stepped tick. */
\r
2619 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2620 xTickCount += xTicksToJump;
\r
2621 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2624 #endif /* configUSE_TICKLESS_IDLE */
\r
2625 /*----------------------------------------------------------*/
\r
2627 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2629 BaseType_t xYieldOccurred;
\r
2631 /* Must not be called with the scheduler suspended as the implementation
\r
2632 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2633 configASSERT( uxSchedulerSuspended == 0 );
\r
2635 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2636 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2637 vTaskSuspendAll();
\r
2638 xPendedTicks += xTicksToCatchUp;
\r
2639 xYieldOccurred = xTaskResumeAll();
\r
2641 return xYieldOccurred;
\r
2643 /*----------------------------------------------------------*/
\r
2645 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2647 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2649 TCB_t * pxTCB = xTask;
\r
2650 BaseType_t xReturn;
\r
2652 configASSERT( pxTCB );
\r
2654 vTaskSuspendAll();
\r
2656 /* A task can only be prematurely removed from the Blocked state if
\r
2657 * it is actually in the Blocked state. */
\r
2658 if( eTaskGetState( xTask ) == eBlocked )
\r
2662 /* Remove the reference to the task from the blocked list. An
\r
2663 * interrupt won't touch the xStateListItem because the
\r
2664 * scheduler is suspended. */
\r
2665 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2667 /* Is the task waiting on an event also? If so remove it from
\r
2668 * the event list too. Interrupts can touch the event list item,
\r
2669 * even though the scheduler is suspended, so a critical section
\r
2671 taskENTER_CRITICAL();
\r
2673 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2675 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2677 /* This lets the task know it was forcibly removed from the
\r
2678 * blocked state so it should not re-evaluate its block time and
\r
2679 * then block again. */
\r
2680 pxTCB->ucDelayAborted = pdTRUE;
\r
2684 mtCOVERAGE_TEST_MARKER();
\r
2687 taskEXIT_CRITICAL();
\r
2689 /* Place the unblocked task into the appropriate ready list. */
\r
2690 prvAddTaskToReadyList( pxTCB );
\r
2692 /* A task being unblocked cannot cause an immediate context
\r
2693 * switch if preemption is turned off. */
\r
2694 #if ( configUSE_PREEMPTION == 1 )
\r
2696 /* Preemption is on, but a context switch should only be
\r
2697 * performed if the unblocked task has a priority that is
\r
2698 * equal to or higher than the currently executing task. */
\r
2699 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2701 /* Pend the yield to be performed when the scheduler
\r
2702 * is unsuspended. */
\r
2703 xYieldPending = pdTRUE;
\r
2707 mtCOVERAGE_TEST_MARKER();
\r
2710 #endif /* configUSE_PREEMPTION */
\r
2717 ( void ) xTaskResumeAll();
\r
2722 #endif /* INCLUDE_xTaskAbortDelay */
\r
2723 /*----------------------------------------------------------*/
\r
2725 BaseType_t xTaskIncrementTick( void )
\r
2728 TickType_t xItemValue;
\r
2729 BaseType_t xSwitchRequired = pdFALSE;
\r
2731 /* Called by the portable layer each time a tick interrupt occurs.
\r
2732 * Increments the tick then checks to see if the new tick value will cause any
\r
2733 * tasks to be unblocked. */
\r
2734 traceTASK_INCREMENT_TICK( xTickCount );
\r
2736 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2738 /* Minor optimisation. The tick count cannot change in this
\r
2740 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2742 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2743 * delayed lists if it wraps to 0. */
\r
2744 xTickCount = xConstTickCount;
\r
2746 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2748 taskSWITCH_DELAYED_LISTS();
\r
2752 mtCOVERAGE_TEST_MARKER();
\r
2755 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2756 * the queue in the order of their wake time - meaning once one task
\r
2757 * has been found whose block time has not expired there is no need to
\r
2758 * look any further down the list. */
\r
2759 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2763 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2765 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2766 * to the maximum possible value so it is extremely
\r
2767 * unlikely that the
\r
2768 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2769 * next time through. */
\r
2770 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2775 /* The delayed list is not empty, get the value of the
\r
2776 * item at the head of the delayed list. This is the time
\r
2777 * at which the task at the head of the delayed list must
\r
2778 * be removed from the Blocked state. */
\r
2779 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2780 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2782 if( xConstTickCount < xItemValue )
\r
2784 /* It is not time to unblock this item yet, but the
\r
2785 * item value is the time at which the task at the head
\r
2786 * of the blocked list must be removed from the Blocked
\r
2787 * state - so record the item value in
\r
2788 * xNextTaskUnblockTime. */
\r
2789 xNextTaskUnblockTime = xItemValue;
\r
2790 break; /*lint !e9011 Code structure here is deedmed easier to understand with multiple breaks. */
\r
2794 mtCOVERAGE_TEST_MARKER();
\r
2797 /* It is time to remove the item from the Blocked state. */
\r
2798 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2800 /* Is the task waiting on an event also? If so remove
\r
2801 * it from the event list. */
\r
2802 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2804 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2808 mtCOVERAGE_TEST_MARKER();
\r
2811 /* Place the unblocked task into the appropriate ready
\r
2813 prvAddTaskToReadyList( pxTCB );
\r
2815 /* A task being unblocked cannot cause an immediate
\r
2816 * context switch if preemption is turned off. */
\r
2817 #if ( configUSE_PREEMPTION == 1 )
\r
2819 /* Preemption is on, but a context switch should
\r
2820 * only be performed if the unblocked task has a
\r
2821 * priority that is equal to or higher than the
\r
2822 * currently executing task. */
\r
2823 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2825 xSwitchRequired = pdTRUE;
\r
2829 mtCOVERAGE_TEST_MARKER();
\r
2832 #endif /* configUSE_PREEMPTION */
\r
2837 /* Tasks of equal priority to the currently running task will share
\r
2838 * processing time (time slice) if preemption is on, and the application
\r
2839 * writer has not explicitly turned time slicing off. */
\r
2840 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2842 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2844 xSwitchRequired = pdTRUE;
\r
2848 mtCOVERAGE_TEST_MARKER();
\r
2851 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2853 #if ( configUSE_TICK_HOOK == 1 )
\r
2855 /* Guard against the tick hook being called when the pended tick
\r
2856 * count is being unwound (when the scheduler is being unlocked). */
\r
2857 if( xPendedTicks == ( TickType_t ) 0 )
\r
2859 vApplicationTickHook();
\r
2863 mtCOVERAGE_TEST_MARKER();
\r
2866 #endif /* configUSE_TICK_HOOK */
\r
2868 #if ( configUSE_PREEMPTION == 1 )
\r
2870 if( xYieldPending != pdFALSE )
\r
2872 xSwitchRequired = pdTRUE;
\r
2876 mtCOVERAGE_TEST_MARKER();
\r
2879 #endif /* configUSE_PREEMPTION */
\r
2885 /* The tick hook gets called at regular intervals, even if the
\r
2886 * scheduler is locked. */
\r
2887 #if ( configUSE_TICK_HOOK == 1 )
\r
2889 vApplicationTickHook();
\r
2894 return xSwitchRequired;
\r
2896 /*-----------------------------------------------------------*/
\r
2898 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2900 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
\r
2901 TaskHookFunction_t pxHookFunction )
\r
2905 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2907 if( xTask == NULL )
\r
2909 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2916 /* Save the hook function in the TCB. A critical section is required as
\r
2917 * the value can be accessed from an interrupt. */
\r
2918 taskENTER_CRITICAL();
\r
2920 xTCB->pxTaskTag = pxHookFunction;
\r
2922 taskEXIT_CRITICAL();
\r
2925 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2926 /*-----------------------------------------------------------*/
\r
2928 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2930 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2933 TaskHookFunction_t xReturn;
\r
2935 /* If xTask is NULL then set the calling task's hook. */
\r
2936 pxTCB = prvGetTCBFromHandle( xTask );
\r
2938 /* Save the hook function in the TCB. A critical section is required as
\r
2939 * the value can be accessed from an interrupt. */
\r
2940 taskENTER_CRITICAL();
\r
2942 xReturn = pxTCB->pxTaskTag;
\r
2944 taskEXIT_CRITICAL();
\r
2949 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2950 /*-----------------------------------------------------------*/
\r
2952 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2954 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2957 TaskHookFunction_t xReturn;
\r
2958 UBaseType_t uxSavedInterruptStatus;
\r
2960 /* If xTask is NULL then set the calling task's hook. */
\r
2961 pxTCB = prvGetTCBFromHandle( xTask );
\r
2963 /* Save the hook function in the TCB. A critical section is required as
\r
2964 * the value can be accessed from an interrupt. */
\r
2965 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2967 xReturn = pxTCB->pxTaskTag;
\r
2969 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2974 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2975 /*-----------------------------------------------------------*/
\r
2977 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2979 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
\r
2980 void * pvParameter )
\r
2983 BaseType_t xReturn;
\r
2985 /* If xTask is NULL then we are calling our own task hook. */
\r
2986 if( xTask == NULL )
\r
2988 xTCB = pxCurrentTCB;
\r
2995 if( xTCB->pxTaskTag != NULL )
\r
2997 xReturn = xTCB->pxTaskTag( pvParameter );
\r
3007 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
3008 /*-----------------------------------------------------------*/
\r
3010 void vTaskSwitchContext( void )
\r
3012 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
3014 /* The scheduler is currently suspended - do not allow a context
\r
3016 xYieldPending = pdTRUE;
\r
3020 xYieldPending = pdFALSE;
\r
3021 traceTASK_SWITCHED_OUT();
\r
3023 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3025 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3026 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3028 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3031 /* Add the amount of time the task has been running to the
\r
3032 * accumulated time so far. The time the task started running was
\r
3033 * stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3034 * protection here so count values are only valid until the timer
\r
3035 * overflows. The guard against negative values is to protect
\r
3036 * against suspect run time stat counter implementations - which
\r
3037 * are provided by the application, not the kernel. */
\r
3038 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3040 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3044 mtCOVERAGE_TEST_MARKER();
\r
3047 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3049 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3051 /* Check for stack overflow, if configured. */
\r
3052 taskCHECK_FOR_STACK_OVERFLOW();
\r
3054 /* Before the currently running task is switched out, save its errno. */
\r
3055 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3057 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3061 /* Select a new task to run using either the generic C or port
\r
3062 * optimised asm code. */
\r
3063 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3064 traceTASK_SWITCHED_IN();
\r
3066 /* After the new task is switched in, update the global errno. */
\r
3067 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3069 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3073 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3075 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
3076 * structure specific to this task.
\r
3077 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3078 * for additional information. */
\r
3079 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
3081 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3084 /*-----------------------------------------------------------*/
\r
3086 void vTaskPlaceOnEventList( List_t * const pxEventList,
\r
3087 const TickType_t xTicksToWait )
\r
3089 configASSERT( pxEventList );
\r
3091 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3092 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3094 /* Place the event list item of the TCB in the appropriate event list.
\r
3095 * This is placed in the list in priority order so the highest priority task
\r
3096 * is the first to be woken by the event. The queue that contains the event
\r
3097 * list is locked, preventing simultaneous access from interrupts. */
\r
3098 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3100 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3102 /*-----------------------------------------------------------*/
\r
3104 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
\r
3105 const TickType_t xItemValue,
\r
3106 const TickType_t xTicksToWait )
\r
3108 configASSERT( pxEventList );
\r
3110 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3111 * the event groups implementation. */
\r
3112 configASSERT( uxSchedulerSuspended != 0 );
\r
3114 /* Store the item value in the event list item. It is safe to access the
\r
3115 * event list item here as interrupts won't access the event list item of a
\r
3116 * task that is not in the Blocked state. */
\r
3117 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3119 /* Place the event list item of the TCB at the end of the appropriate event
\r
3120 * list. It is safe to access the event list here because it is part of an
\r
3121 * event group implementation - and interrupts don't access event groups
\r
3122 * directly (instead they access them indirectly by pending function calls to
\r
3123 * the task level). */
\r
3124 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3126 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3128 /*-----------------------------------------------------------*/
\r
3130 #if ( configUSE_TIMERS == 1 )
\r
3132 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
\r
3133 TickType_t xTicksToWait,
\r
3134 const BaseType_t xWaitIndefinitely )
\r
3136 configASSERT( pxEventList );
\r
3138 /* This function should not be called by application code hence the
\r
3139 * 'Restricted' in its name. It is not part of the public API. It is
\r
3140 * designed for use by kernel code, and has special calling requirements -
\r
3141 * it should be called with the scheduler suspended. */
\r
3144 /* Place the event list item of the TCB in the appropriate event list.
\r
3145 * In this case it is assume that this is the only task that is going to
\r
3146 * be waiting on this event list, so the faster vListInsertEnd() function
\r
3147 * can be used in place of vListInsert. */
\r
3148 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3150 /* If the task should block indefinitely then set the block time to a
\r
3151 * value that will be recognised as an indefinite delay inside the
\r
3152 * prvAddCurrentTaskToDelayedList() function. */
\r
3153 if( xWaitIndefinitely != pdFALSE )
\r
3155 xTicksToWait = portMAX_DELAY;
\r
3158 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3159 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3162 #endif /* configUSE_TIMERS */
\r
3163 /*-----------------------------------------------------------*/
\r
3165 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3167 TCB_t * pxUnblockedTCB;
\r
3168 BaseType_t xReturn;
\r
3170 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3171 * called from a critical section within an ISR. */
\r
3173 /* The event list is sorted in priority order, so the first in the list can
\r
3174 * be removed as it is known to be the highest priority. Remove the TCB from
\r
3175 * the delayed list, and add it to the ready list.
\r
3177 * If an event is for a queue that is locked then this function will never
\r
3178 * get called - the lock count on the queue will get modified instead. This
\r
3179 * means exclusive access to the event list is guaranteed here.
\r
3181 * This function assumes that a check has already been made to ensure that
\r
3182 * pxEventList is not empty. */
\r
3183 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3184 configASSERT( pxUnblockedTCB );
\r
3185 ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
\r
3187 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3189 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3190 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3192 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3194 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3195 * might be set to the blocked task's time out time. If the task is
\r
3196 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3197 * normally left unchanged, because it is automatically reset to a new
\r
3198 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3199 * tickless idling is used it might be more important to enter sleep mode
\r
3200 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3201 * ensure it is updated at the earliest possible time. */
\r
3202 prvResetNextTaskUnblockTime();
\r
3208 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3209 * pending until the scheduler is resumed. */
\r
3210 vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3213 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3215 /* Return true if the task removed from the event list has a higher
\r
3216 * priority than the calling task. This allows the calling task to know if
\r
3217 * it should force a context switch now. */
\r
3220 /* Mark that a yield is pending in case the user is not using the
\r
3221 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3222 xYieldPending = pdTRUE;
\r
3226 xReturn = pdFALSE;
\r
3231 /*-----------------------------------------------------------*/
\r
3233 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
\r
3234 const TickType_t xItemValue )
\r
3236 TCB_t * pxUnblockedTCB;
\r
3238 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3239 * the event flags implementation. */
\r
3240 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3242 /* Store the new item value in the event list. */
\r
3243 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3245 /* Remove the event list form the event flag. Interrupts do not access
\r
3247 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3248 configASSERT( pxUnblockedTCB );
\r
3249 ( void ) uxListRemove( pxEventListItem );
\r
3251 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3253 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3254 * might be set to the blocked task's time out time. If the task is
\r
3255 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3256 * normally left unchanged, because it is automatically reset to a new
\r
3257 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3258 * tickless idling is used it might be more important to enter sleep mode
\r
3259 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3260 * ensure it is updated at the earliest possible time. */
\r
3261 prvResetNextTaskUnblockTime();
\r
3265 /* Remove the task from the delayed list and add it to the ready list. The
\r
3266 * scheduler is suspended so interrupts will not be accessing the ready
\r
3268 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3269 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3271 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3273 /* The unblocked task has a priority above that of the calling task, so
\r
3274 * a context switch is required. This function is called with the
\r
3275 * scheduler suspended so xYieldPending is set so the context switch
\r
3276 * occurs immediately that the scheduler is resumed (unsuspended). */
\r
3277 xYieldPending = pdTRUE;
\r
3280 /*-----------------------------------------------------------*/
\r
3282 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3284 configASSERT( pxTimeOut );
\r
3285 taskENTER_CRITICAL();
\r
3287 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3288 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3290 taskEXIT_CRITICAL();
\r
3292 /*-----------------------------------------------------------*/
\r
3294 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3296 /* For internal use only as it does not use a critical section. */
\r
3297 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3298 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3300 /*-----------------------------------------------------------*/
\r
3302 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
\r
3303 TickType_t * const pxTicksToWait )
\r
3305 BaseType_t xReturn;
\r
3307 configASSERT( pxTimeOut );
\r
3308 configASSERT( pxTicksToWait );
\r
3310 taskENTER_CRITICAL();
\r
3312 /* Minor optimisation. The tick count cannot change in this block. */
\r
3313 const TickType_t xConstTickCount = xTickCount;
\r
3314 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3316 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
3317 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3319 /* The delay was aborted, which is not the same as a time out,
\r
3320 * but has the same result. */
\r
3321 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3327 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3328 if( *pxTicksToWait == portMAX_DELAY )
\r
3330 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3331 * specified is the maximum block time then the task should block
\r
3332 * indefinitely, and therefore never time out. */
\r
3333 xReturn = pdFALSE;
\r
3338 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3340 /* The tick count is greater than the time at which
\r
3341 * vTaskSetTimeout() was called, but has also overflowed since
\r
3342 * vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3343 * around and gone past again. This passed since vTaskSetTimeout()
\r
3346 *pxTicksToWait = ( TickType_t ) 0;
\r
3348 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3350 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3351 *pxTicksToWait -= xElapsedTime;
\r
3352 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3353 xReturn = pdFALSE;
\r
3357 *pxTicksToWait = ( TickType_t ) 0;
\r
3361 taskEXIT_CRITICAL();
\r
3365 /*-----------------------------------------------------------*/
\r
3367 void vTaskMissedYield( void )
\r
3369 xYieldPending = pdTRUE;
\r
3371 /*-----------------------------------------------------------*/
\r
3373 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3375 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3377 UBaseType_t uxReturn;
\r
3378 TCB_t const * pxTCB;
\r
3380 if( xTask != NULL )
\r
3383 uxReturn = pxTCB->uxTaskNumber;
\r
3393 #endif /* configUSE_TRACE_FACILITY */
\r
3394 /*-----------------------------------------------------------*/
\r
3396 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3398 void vTaskSetTaskNumber( TaskHandle_t xTask,
\r
3399 const UBaseType_t uxHandle )
\r
3403 if( xTask != NULL )
\r
3406 pxTCB->uxTaskNumber = uxHandle;
\r
3410 #endif /* configUSE_TRACE_FACILITY */
\r
3413 * -----------------------------------------------------------
\r
3415 * ----------------------------------------------------------
\r
3417 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3418 * language extensions. The equivalent prototype for this function is:
\r
3420 * void prvIdleTask( void *pvParameters );
\r
3423 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3425 /* Stop warnings. */
\r
3426 ( void ) pvParameters;
\r
3428 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3429 * SCHEDULER IS STARTED. **/
\r
3431 /* In case a task that has a secure context deletes itself, in which case
\r
3432 * the idle task is responsible for deleting the task's secure context, if
\r
3434 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3438 /* See if any tasks have deleted themselves - if so then the idle task
\r
3439 * is responsible for freeing the deleted task's TCB and stack. */
\r
3440 prvCheckTasksWaitingTermination();
\r
3442 #if ( configUSE_PREEMPTION == 0 )
\r
3444 /* If we are not using preemption we keep forcing a task switch to
\r
3445 * see if any other task has become available. If we are using
\r
3446 * preemption we don't need to do this as any task becoming available
\r
3447 * will automatically get the processor anyway. */
\r
3450 #endif /* configUSE_PREEMPTION */
\r
3452 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3454 /* When using preemption tasks of equal priority will be
\r
3455 * timesliced. If a task that is sharing the idle priority is ready
\r
3456 * to run then the idle task should yield before the end of the
\r
3459 * A critical region is not required here as we are just reading from
\r
3460 * the list, and an occasional incorrect value will not matter. If
\r
3461 * the ready list at the idle priority contains more than one task
\r
3462 * then a task other than the idle task is ready to execute. */
\r
3463 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3469 mtCOVERAGE_TEST_MARKER();
\r
3472 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3474 #if ( configUSE_IDLE_HOOK == 1 )
\r
3476 extern void vApplicationIdleHook( void );
\r
3478 /* Call the user defined function from within the idle task. This
\r
3479 * allows the application designer to add background functionality
\r
3480 * without the overhead of a separate task.
\r
3481 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3482 * CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3483 vApplicationIdleHook();
\r
3485 #endif /* configUSE_IDLE_HOOK */
\r
3487 /* This conditional compilation should use inequality to 0, not equality
\r
3488 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3489 * user defined low power mode implementations require
\r
3490 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3491 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3493 TickType_t xExpectedIdleTime;
\r
3495 /* It is not desirable to suspend then resume the scheduler on
\r
3496 * each iteration of the idle task. Therefore, a preliminary
\r
3497 * test of the expected idle time is performed without the
\r
3498 * scheduler suspended. The result here is not necessarily
\r
3500 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3502 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3504 vTaskSuspendAll();
\r
3506 /* Now the scheduler is suspended, the expected idle
\r
3507 * time can be sampled again, and this time its value can
\r
3509 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3510 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3512 /* Define the following macro to set xExpectedIdleTime to 0
\r
3513 * if the application does not want
\r
3514 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3515 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3517 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3519 traceLOW_POWER_IDLE_BEGIN();
\r
3520 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3521 traceLOW_POWER_IDLE_END();
\r
3525 mtCOVERAGE_TEST_MARKER();
\r
3528 ( void ) xTaskResumeAll();
\r
3532 mtCOVERAGE_TEST_MARKER();
\r
3535 #endif /* configUSE_TICKLESS_IDLE */
\r
3538 /*-----------------------------------------------------------*/
\r
3540 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3542 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3544 /* The idle task exists in addition to the application tasks. */
\r
3545 const UBaseType_t uxNonApplicationTasks = 1;
\r
3546 eSleepModeStatus eReturn = eStandardSleep;
\r
3548 /* This function must be called from a critical section. */
\r
3550 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3552 /* A task was made ready while the scheduler was suspended. */
\r
3553 eReturn = eAbortSleep;
\r
3555 else if( xYieldPending != pdFALSE )
\r
3557 /* A yield was pended while the scheduler was suspended. */
\r
3558 eReturn = eAbortSleep;
\r
3560 else if( xPendedTicks != 0 )
\r
3562 /* A tick interrupt has already occurred but was held pending
\r
3563 * because the scheduler is suspended. */
\r
3564 eReturn = eAbortSleep;
\r
3568 /* If all the tasks are in the suspended list (which might mean they
\r
3569 * have an infinite block time rather than actually being suspended)
\r
3570 * then it is safe to turn all clocks off and just wait for external
\r
3572 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3574 eReturn = eNoTasksWaitingTimeout;
\r
3578 mtCOVERAGE_TEST_MARKER();
\r
3585 #endif /* configUSE_TICKLESS_IDLE */
\r
3586 /*-----------------------------------------------------------*/
\r
3588 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3590 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
\r
3591 BaseType_t xIndex,
\r
3596 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3598 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3599 configASSERT( pxTCB != NULL );
\r
3600 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3604 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3605 /*-----------------------------------------------------------*/
\r
3607 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3609 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
\r
3610 BaseType_t xIndex )
\r
3612 void * pvReturn = NULL;
\r
3615 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3617 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3618 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3628 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3629 /*-----------------------------------------------------------*/
\r
3631 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3633 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
\r
3634 const MemoryRegion_t * const xRegions )
\r
3638 /* If null is passed in here then we are modifying the MPU settings of
\r
3639 * the calling task. */
\r
3640 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3642 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3645 #endif /* portUSING_MPU_WRAPPERS */
\r
3646 /*-----------------------------------------------------------*/
\r
3648 static void prvInitialiseTaskLists( void )
\r
3650 UBaseType_t uxPriority;
\r
3652 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3654 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3657 vListInitialise( &xDelayedTaskList1 );
\r
3658 vListInitialise( &xDelayedTaskList2 );
\r
3659 vListInitialise( &xPendingReadyList );
\r
3661 #if ( INCLUDE_vTaskDelete == 1 )
\r
3663 vListInitialise( &xTasksWaitingTermination );
\r
3665 #endif /* INCLUDE_vTaskDelete */
\r
3667 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3669 vListInitialise( &xSuspendedTaskList );
\r
3671 #endif /* INCLUDE_vTaskSuspend */
\r
3673 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3675 pxDelayedTaskList = &xDelayedTaskList1;
\r
3676 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3678 /*-----------------------------------------------------------*/
\r
3680 static void prvCheckTasksWaitingTermination( void )
\r
3682 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3684 #if ( INCLUDE_vTaskDelete == 1 )
\r
3688 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3689 * being called too often in the idle task. */
\r
3690 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3692 taskENTER_CRITICAL();
\r
3694 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3695 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3696 --uxCurrentNumberOfTasks;
\r
3697 --uxDeletedTasksWaitingCleanUp;
\r
3699 taskEXIT_CRITICAL();
\r
3701 prvDeleteTCB( pxTCB );
\r
3704 #endif /* INCLUDE_vTaskDelete */
\r
3706 /*-----------------------------------------------------------*/
\r
3708 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3710 void vTaskGetInfo( TaskHandle_t xTask,
\r
3711 TaskStatus_t * pxTaskStatus,
\r
3712 BaseType_t xGetFreeStackSpace,
\r
3713 eTaskState eState )
\r
3717 /* xTask is NULL then get the state of the calling task. */
\r
3718 pxTCB = prvGetTCBFromHandle( xTask );
\r
3720 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3721 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
\r
3722 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3723 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3724 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3726 #if ( configUSE_MUTEXES == 1 )
\r
3728 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3732 pxTaskStatus->uxBasePriority = 0;
\r
3736 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3738 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3742 pxTaskStatus->ulRunTimeCounter = 0;
\r
3746 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3747 * value of eState passed into this function is eInvalid - otherwise the
\r
3748 * state is just set to whatever is passed in. */
\r
3749 if( eState != eInvalid )
\r
3751 if( pxTCB == pxCurrentTCB )
\r
3753 pxTaskStatus->eCurrentState = eRunning;
\r
3757 pxTaskStatus->eCurrentState = eState;
\r
3759 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3761 /* If the task is in the suspended list then there is a
\r
3762 * chance it is actually just blocked indefinitely - so really
\r
3763 * it should be reported as being in the Blocked state. */
\r
3764 if( eState == eSuspended )
\r
3766 vTaskSuspendAll();
\r
3768 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3770 pxTaskStatus->eCurrentState = eBlocked;
\r
3773 ( void ) xTaskResumeAll();
\r
3776 #endif /* INCLUDE_vTaskSuspend */
\r
3781 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3784 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3785 * parameter is provided to allow it to be skipped. */
\r
3786 if( xGetFreeStackSpace != pdFALSE )
\r
3788 #if ( portSTACK_GROWTH > 0 )
\r
3790 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3794 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3800 pxTaskStatus->usStackHighWaterMark = 0;
\r
3804 #endif /* configUSE_TRACE_FACILITY */
\r
3805 /*-----------------------------------------------------------*/
\r
3807 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3809 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
3811 eTaskState eState )
\r
3813 configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
\r
3814 UBaseType_t uxTask = 0;
\r
3816 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3818 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3820 /* Populate an TaskStatus_t structure within the
\r
3821 * pxTaskStatusArray array for each task that is referenced from
\r
3822 * pxList. See the definition of TaskStatus_t in task.h for the
\r
3823 * meaning of each TaskStatus_t structure member. */
\r
3826 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3827 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3829 } while( pxNextTCB != pxFirstTCB );
\r
3833 mtCOVERAGE_TEST_MARKER();
\r
3839 #endif /* configUSE_TRACE_FACILITY */
\r
3840 /*-----------------------------------------------------------*/
\r
3842 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3844 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3846 uint32_t ulCount = 0U;
\r
3848 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3850 pucStackByte -= portSTACK_GROWTH;
\r
3854 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3856 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3859 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3860 /*-----------------------------------------------------------*/
\r
3862 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3864 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3865 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3866 * user to determine the return type. It gets around the problem of the value
\r
3867 * overflowing on 8-bit types without breaking backward compatibility for
\r
3868 * applications that expect an 8-bit return type. */
\r
3869 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3872 uint8_t * pucEndOfStack;
\r
3873 configSTACK_DEPTH_TYPE uxReturn;
\r
3875 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3876 * the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3877 * allows the user to determine the return type. It gets around the
\r
3878 * problem of the value overflowing on 8-bit types without breaking
\r
3879 * backward compatibility for applications that expect an 8-bit return
\r
3882 pxTCB = prvGetTCBFromHandle( xTask );
\r
3884 #if portSTACK_GROWTH < 0
\r
3886 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3890 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3894 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3899 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3900 /*-----------------------------------------------------------*/
\r
3902 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3904 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3907 uint8_t * pucEndOfStack;
\r
3908 UBaseType_t uxReturn;
\r
3910 pxTCB = prvGetTCBFromHandle( xTask );
\r
3912 #if portSTACK_GROWTH < 0
\r
3914 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3918 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3922 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3927 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3928 /*-----------------------------------------------------------*/
\r
3930 #if ( INCLUDE_vTaskDelete == 1 )
\r
3932 static void prvDeleteTCB( TCB_t * pxTCB )
\r
3934 /* This call is required specifically for the TriCore port. It must be
\r
3935 * above the vPortFree() calls. The call is also used by ports/demos that
\r
3936 * want to allocate and clean RAM statically. */
\r
3937 portCLEAN_UP_TCB( pxTCB );
\r
3939 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3940 * to the task to free any memory allocated at the application level.
\r
3941 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3942 * for additional information. */
\r
3943 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3945 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3947 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3949 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3951 /* The task can only have been allocated dynamically - free both
\r
3952 * the stack and TCB. */
\r
3953 vPortFree( pxTCB->pxStack );
\r
3954 vPortFree( pxTCB );
\r
3956 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3958 /* The task could have been allocated statically or dynamically, so
\r
3959 * check what was statically allocated before trying to free the
\r
3961 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3963 /* Both the stack and TCB were allocated dynamically, so both
\r
3964 * must be freed. */
\r
3965 vPortFree( pxTCB->pxStack );
\r
3966 vPortFree( pxTCB );
\r
3968 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3970 /* Only the stack was statically allocated, so the TCB is the
\r
3971 * only memory that must be freed. */
\r
3972 vPortFree( pxTCB );
\r
3976 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3977 * nothing needs to be freed. */
\r
3978 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
3979 mtCOVERAGE_TEST_MARKER();
\r
3982 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3985 #endif /* INCLUDE_vTaskDelete */
\r
3986 /*-----------------------------------------------------------*/
\r
3988 static void prvResetNextTaskUnblockTime( void )
\r
3990 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
3992 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
3993 * the maximum possible value so it is extremely unlikely that the
\r
3994 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
3995 * there is an item in the delayed list. */
\r
3996 xNextTaskUnblockTime = portMAX_DELAY;
\r
4000 /* The new current delayed list is not empty, get the value of
\r
4001 * the item at the head of the delayed list. This is the time at
\r
4002 * which the task at the head of the delayed list should be removed
\r
4003 * from the Blocked state. */
\r
4004 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
4007 /*-----------------------------------------------------------*/
\r
4009 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
4011 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
4013 TaskHandle_t xReturn;
\r
4015 /* A critical section is not required as this is not called from
\r
4016 * an interrupt and the current TCB will always be the same for any
\r
4017 * individual execution thread. */
\r
4018 xReturn = pxCurrentTCB;
\r
4023 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
4024 /*-----------------------------------------------------------*/
\r
4026 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
4028 BaseType_t xTaskGetSchedulerState( void )
\r
4030 BaseType_t xReturn;
\r
4032 if( xSchedulerRunning == pdFALSE )
\r
4034 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4038 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4040 xReturn = taskSCHEDULER_RUNNING;
\r
4044 xReturn = taskSCHEDULER_SUSPENDED;
\r
4051 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4052 /*-----------------------------------------------------------*/
\r
4054 #if ( configUSE_MUTEXES == 1 )
\r
4056 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4058 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4059 BaseType_t xReturn = pdFALSE;
\r
4061 /* If the mutex was given back by an interrupt while the queue was
\r
4062 * locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4063 * needed as interrupts can no longer use mutexes? */
\r
4064 if( pxMutexHolder != NULL )
\r
4066 /* If the holder of the mutex has a priority below the priority of
\r
4067 * the task attempting to obtain the mutex then it will temporarily
\r
4068 * inherit the priority of the task attempting to obtain the mutex. */
\r
4069 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4071 /* Adjust the mutex holder state to account for its new
\r
4072 * priority. Only reset the event list item value if the value is
\r
4073 * not being used for anything else. */
\r
4074 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4076 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4080 mtCOVERAGE_TEST_MARKER();
\r
4083 /* If the task being modified is in the ready state it will need
\r
4084 * to be moved into a new list. */
\r
4085 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4087 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4089 /* It is known that the task is in its ready list so
\r
4090 * there is no need to check again and the port level
\r
4091 * reset macro can be called directly. */
\r
4092 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4096 mtCOVERAGE_TEST_MARKER();
\r
4099 /* Inherit the priority before being moved into the new list. */
\r
4100 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4101 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4105 /* Just inherit the priority. */
\r
4106 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4109 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4111 /* Inheritance occurred. */
\r
4116 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4118 /* The base priority of the mutex holder is lower than the
\r
4119 * priority of the task attempting to take the mutex, but the
\r
4120 * current priority of the mutex holder is not lower than the
\r
4121 * priority of the task attempting to take the mutex.
\r
4122 * Therefore the mutex holder must have already inherited a
\r
4123 * priority, but inheritance would have occurred if that had
\r
4124 * not been the case. */
\r
4129 mtCOVERAGE_TEST_MARKER();
\r
4135 mtCOVERAGE_TEST_MARKER();
\r
4141 #endif /* configUSE_MUTEXES */
\r
4142 /*-----------------------------------------------------------*/
\r
4144 #if ( configUSE_MUTEXES == 1 )
\r
4146 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4148 TCB_t * const pxTCB = pxMutexHolder;
\r
4149 BaseType_t xReturn = pdFALSE;
\r
4151 if( pxMutexHolder != NULL )
\r
4153 /* A task can only have an inherited priority if it holds the mutex.
\r
4154 * If the mutex is held by a task then it cannot be given from an
\r
4155 * interrupt, and if a mutex is given by the holding task then it must
\r
4156 * be the running state task. */
\r
4157 configASSERT( pxTCB == pxCurrentTCB );
\r
4158 configASSERT( pxTCB->uxMutexesHeld );
\r
4159 ( pxTCB->uxMutexesHeld )--;
\r
4161 /* Has the holder of the mutex inherited the priority of another
\r
4163 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4165 /* Only disinherit if no other mutexes are held. */
\r
4166 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4168 /* A task can only have an inherited priority if it holds
\r
4169 * the mutex. If the mutex is held by a task then it cannot be
\r
4170 * given from an interrupt, and if a mutex is given by the
\r
4171 * holding task then it must be the running state task. Remove
\r
4172 * the holding task from the ready list. */
\r
4173 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4175 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4179 mtCOVERAGE_TEST_MARKER();
\r
4182 /* Disinherit the priority before adding the task into the
\r
4183 * new ready list. */
\r
4184 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4185 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4187 /* Reset the event list item value. It cannot be in use for
\r
4188 * any other purpose if this task is running, and it must be
\r
4189 * running to give back the mutex. */
\r
4190 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4191 prvAddTaskToReadyList( pxTCB );
\r
4193 /* Return true to indicate that a context switch is required.
\r
4194 * This is only actually required in the corner case whereby
\r
4195 * multiple mutexes were held and the mutexes were given back
\r
4196 * in an order different to that in which they were taken.
\r
4197 * If a context switch did not occur when the first mutex was
\r
4198 * returned, even if a task was waiting on it, then a context
\r
4199 * switch should occur when the last mutex is returned whether
\r
4200 * a task is waiting on it or not. */
\r
4205 mtCOVERAGE_TEST_MARKER();
\r
4210 mtCOVERAGE_TEST_MARKER();
\r
4215 mtCOVERAGE_TEST_MARKER();
\r
4221 #endif /* configUSE_MUTEXES */
\r
4222 /*-----------------------------------------------------------*/
\r
4224 #if ( configUSE_MUTEXES == 1 )
\r
4226 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
\r
4227 UBaseType_t uxHighestPriorityWaitingTask )
\r
4229 TCB_t * const pxTCB = pxMutexHolder;
\r
4230 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4231 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4233 if( pxMutexHolder != NULL )
\r
4235 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4237 configASSERT( pxTCB->uxMutexesHeld );
\r
4239 /* Determine the priority to which the priority of the task that
\r
4240 * holds the mutex should be set. This will be the greater of the
\r
4241 * holding task's base priority and the priority of the highest
\r
4242 * priority task that is waiting to obtain the mutex. */
\r
4243 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4245 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4249 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4252 /* Does the priority need to change? */
\r
4253 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4255 /* Only disinherit if no other mutexes are held. This is a
\r
4256 * simplification in the priority inheritance implementation. If
\r
4257 * the task that holds the mutex is also holding other mutexes then
\r
4258 * the other mutexes may have caused the priority inheritance. */
\r
4259 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4261 /* If a task has timed out because it already holds the
\r
4262 * mutex it was trying to obtain then it cannot of inherited
\r
4263 * its own priority. */
\r
4264 configASSERT( pxTCB != pxCurrentTCB );
\r
4266 /* Disinherit the priority, remembering the previous
\r
4267 * priority to facilitate determining the subject task's
\r
4269 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
\r
4270 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4271 pxTCB->uxPriority = uxPriorityToUse;
\r
4273 /* Only reset the event list item value if the value is not
\r
4274 * being used for anything else. */
\r
4275 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4277 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4281 mtCOVERAGE_TEST_MARKER();
\r
4284 /* If the running task is not the task that holds the mutex
\r
4285 * then the task that holds the mutex could be in either the
\r
4286 * Ready, Blocked or Suspended states. Only remove the task
\r
4287 * from its current state list if it is in the Ready state as
\r
4288 * the task's priority is going to change and there is one
\r
4289 * Ready list per priority. */
\r
4290 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4292 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4294 /* It is known that the task is in its ready list so
\r
4295 * there is no need to check again and the port level
\r
4296 * reset macro can be called directly. */
\r
4297 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4301 mtCOVERAGE_TEST_MARKER();
\r
4304 prvAddTaskToReadyList( pxTCB );
\r
4308 mtCOVERAGE_TEST_MARKER();
\r
4313 mtCOVERAGE_TEST_MARKER();
\r
4318 mtCOVERAGE_TEST_MARKER();
\r
4323 mtCOVERAGE_TEST_MARKER();
\r
4327 #endif /* configUSE_MUTEXES */
\r
4328 /*-----------------------------------------------------------*/
\r
4330 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4332 void vTaskEnterCritical( void )
\r
4334 portDISABLE_INTERRUPTS();
\r
4336 if( xSchedulerRunning != pdFALSE )
\r
4338 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4340 /* This is not the interrupt safe version of the enter critical
\r
4341 * function so assert() if it is being called from an interrupt
\r
4342 * context. Only API functions that end in "FromISR" can be used in an
\r
4343 * interrupt. Only assert if the critical nesting count is 1 to
\r
4344 * protect against recursive calls if the assert function also uses a
\r
4345 * critical section. */
\r
4346 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4348 portASSERT_IF_IN_ISR();
\r
4353 mtCOVERAGE_TEST_MARKER();
\r
4357 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4358 /*-----------------------------------------------------------*/
\r
4360 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4362 void vTaskExitCritical( void )
\r
4364 if( xSchedulerRunning != pdFALSE )
\r
4366 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4368 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4370 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4372 portENABLE_INTERRUPTS();
\r
4376 mtCOVERAGE_TEST_MARKER();
\r
4381 mtCOVERAGE_TEST_MARKER();
\r
4386 mtCOVERAGE_TEST_MARKER();
\r
4390 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4391 /*-----------------------------------------------------------*/
\r
4393 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4395 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
4396 const char * pcTaskName )
\r
4400 /* Start by copying the entire string. */
\r
4401 strcpy( pcBuffer, pcTaskName );
\r
4403 /* Pad the end of the string with spaces to ensure columns line up when
\r
4405 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4407 pcBuffer[ x ] = ' ';
\r
4411 pcBuffer[ x ] = ( char ) 0x00;
\r
4413 /* Return the new end of string. */
\r
4414 return &( pcBuffer[ x ] );
\r
4417 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4418 /*-----------------------------------------------------------*/
\r
4420 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4422 void vTaskList( char * pcWriteBuffer )
\r
4424 TaskStatus_t * pxTaskStatusArray;
\r
4425 UBaseType_t uxArraySize, x;
\r
4431 * This function is provided for convenience only, and is used by many
\r
4432 * of the demo applications. Do not consider it to be part of the
\r
4435 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4436 * uxTaskGetSystemState() output into a human readable table that
\r
4437 * displays task names, states and stack usage.
\r
4439 * vTaskList() has a dependency on the sprintf() C library function that
\r
4440 * might bloat the code size, use a lot of stack, and provide different
\r
4441 * results on different platforms. An alternative, tiny, third party,
\r
4442 * and limited functionality implementation of sprintf() is provided in
\r
4443 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4444 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4445 * snprintf() implementation!).
\r
4447 * It is recommended that production systems call uxTaskGetSystemState()
\r
4448 * directly to get access to raw stats data, rather than indirectly
\r
4449 * through a call to vTaskList().
\r
4453 /* Make sure the write buffer does not contain a string. */
\r
4454 *pcWriteBuffer = ( char ) 0x00;
\r
4456 /* Take a snapshot of the number of tasks in case it changes while this
\r
4457 * function is executing. */
\r
4458 uxArraySize = uxCurrentNumberOfTasks;
\r
4460 /* Allocate an array index for each task. NOTE! if
\r
4461 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4462 * equate to NULL. */
\r
4463 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4465 if( pxTaskStatusArray != NULL )
\r
4467 /* Generate the (binary) data. */
\r
4468 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4470 /* Create a human readable table from the binary data. */
\r
4471 for( x = 0; x < uxArraySize; x++ )
\r
4473 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4476 cStatus = tskRUNNING_CHAR;
\r
4480 cStatus = tskREADY_CHAR;
\r
4484 cStatus = tskBLOCKED_CHAR;
\r
4488 cStatus = tskSUSPENDED_CHAR;
\r
4492 cStatus = tskDELETED_CHAR;
\r
4495 case eInvalid: /* Fall through. */
\r
4496 default: /* Should not get here, but it is included
\r
4497 * to prevent static checking errors. */
\r
4498 cStatus = ( char ) 0x00;
\r
4502 /* Write the task name to the string, padding with spaces so it
\r
4503 * can be printed in tabular form more easily. */
\r
4504 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4506 /* Write the rest of the string. */
\r
4507 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4508 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4511 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4512 * is 0 then vPortFree() will be #defined to nothing. */
\r
4513 vPortFree( pxTaskStatusArray );
\r
4517 mtCOVERAGE_TEST_MARKER();
\r
4521 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4522 /*----------------------------------------------------------*/
\r
4524 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4526 void vTaskGetRunTimeStats( char * pcWriteBuffer )
\r
4528 TaskStatus_t * pxTaskStatusArray;
\r
4529 UBaseType_t uxArraySize, x;
\r
4530 uint32_t ulTotalTime, ulStatsAsPercentage;
\r
4532 #if ( configUSE_TRACE_FACILITY != 1 )
\r
4534 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4541 * This function is provided for convenience only, and is used by many
\r
4542 * of the demo applications. Do not consider it to be part of the
\r
4545 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4546 * of the uxTaskGetSystemState() output into a human readable table that
\r
4547 * displays the amount of time each task has spent in the Running state
\r
4548 * in both absolute and percentage terms.
\r
4550 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4551 * function that might bloat the code size, use a lot of stack, and
\r
4552 * provide different results on different platforms. An alternative,
\r
4553 * tiny, third party, and limited functionality implementation of
\r
4554 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4555 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4556 * a full snprintf() implementation!).
\r
4558 * It is recommended that production systems call uxTaskGetSystemState()
\r
4559 * directly to get access to raw stats data, rather than indirectly
\r
4560 * through a call to vTaskGetRunTimeStats().
\r
4563 /* Make sure the write buffer does not contain a string. */
\r
4564 *pcWriteBuffer = ( char ) 0x00;
\r
4566 /* Take a snapshot of the number of tasks in case it changes while this
\r
4567 * function is executing. */
\r
4568 uxArraySize = uxCurrentNumberOfTasks;
\r
4570 /* Allocate an array index for each task. NOTE! If
\r
4571 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4572 * equate to NULL. */
\r
4573 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4575 if( pxTaskStatusArray != NULL )
\r
4577 /* Generate the (binary) data. */
\r
4578 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4580 /* For percentage calculations. */
\r
4581 ulTotalTime /= 100UL;
\r
4583 /* Avoid divide by zero errors. */
\r
4584 if( ulTotalTime > 0UL )
\r
4586 /* Create a human readable table from the binary data. */
\r
4587 for( x = 0; x < uxArraySize; x++ )
\r
4589 /* What percentage of the total run time has the task used?
\r
4590 * This will always be rounded down to the nearest integer.
\r
4591 * ulTotalRunTimeDiv100 has already been divided by 100. */
\r
4592 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4594 /* Write the task name to the string, padding with
\r
4595 * spaces so it can be printed in tabular form more
\r
4597 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4599 if( ulStatsAsPercentage > 0UL )
\r
4601 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4603 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4607 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4608 * printf() library can be used. */
\r
4609 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4615 /* If the percentage is zero here then the task has
\r
4616 * consumed less than 1% of the total run time. */
\r
4617 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4619 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4623 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4624 * printf() library can be used. */
\r
4625 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4630 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4635 mtCOVERAGE_TEST_MARKER();
\r
4638 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4639 * is 0 then vPortFree() will be #defined to nothing. */
\r
4640 vPortFree( pxTaskStatusArray );
\r
4644 mtCOVERAGE_TEST_MARKER();
\r
4648 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4649 /*-----------------------------------------------------------*/
\r
4651 TickType_t uxTaskResetEventItemValue( void )
\r
4653 TickType_t uxReturn;
\r
4655 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4657 /* Reset the event list item to its normal value - so it can be used with
\r
4658 * queues and semaphores. */
\r
4659 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4663 /*-----------------------------------------------------------*/
\r
4665 #if ( configUSE_MUTEXES == 1 )
\r
4667 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4669 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4670 * then pxCurrentTCB will be NULL. */
\r
4671 if( pxCurrentTCB != NULL )
\r
4673 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4676 return pxCurrentTCB;
\r
4679 #endif /* configUSE_MUTEXES */
\r
4680 /*-----------------------------------------------------------*/
\r
4682 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4684 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
\r
4685 BaseType_t xClearCountOnExit,
\r
4686 TickType_t xTicksToWait )
\r
4688 uint32_t ulReturn;
\r
4690 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4692 taskENTER_CRITICAL();
\r
4694 /* Only block if the notification count is not already non-zero. */
\r
4695 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
\r
4697 /* Mark this task as waiting for a notification. */
\r
4698 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4700 if( xTicksToWait > ( TickType_t ) 0 )
\r
4702 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4703 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
\r
4705 /* All ports are written to allow a yield in a critical
\r
4706 * section (some will yield immediately, others wait until the
\r
4707 * critical section exits) - but it is not something that
\r
4708 * application code should ever do. */
\r
4709 portYIELD_WITHIN_API();
\r
4713 mtCOVERAGE_TEST_MARKER();
\r
4718 mtCOVERAGE_TEST_MARKER();
\r
4721 taskEXIT_CRITICAL();
\r
4723 taskENTER_CRITICAL();
\r
4725 traceTASK_NOTIFY_TAKE( uxIndexToWait );
\r
4726 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4728 if( ulReturn != 0UL )
\r
4730 if( xClearCountOnExit != pdFALSE )
\r
4732 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
\r
4736 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
\r
4741 mtCOVERAGE_TEST_MARKER();
\r
4744 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4746 taskEXIT_CRITICAL();
\r
4751 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4752 /*-----------------------------------------------------------*/
\r
4754 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4756 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
\r
4757 uint32_t ulBitsToClearOnEntry,
\r
4758 uint32_t ulBitsToClearOnExit,
\r
4759 uint32_t * pulNotificationValue,
\r
4760 TickType_t xTicksToWait )
\r
4762 BaseType_t xReturn;
\r
4764 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4766 taskENTER_CRITICAL();
\r
4768 /* Only block if a notification is not already pending. */
\r
4769 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4771 /* Clear bits in the task's notification value as bits may get
\r
4772 * set by the notifying task or interrupt. This can be used to
\r
4773 * clear the value to zero. */
\r
4774 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
\r
4776 /* Mark this task as waiting for a notification. */
\r
4777 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4779 if( xTicksToWait > ( TickType_t ) 0 )
\r
4781 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4782 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
\r
4784 /* All ports are written to allow a yield in a critical
\r
4785 * section (some will yield immediately, others wait until the
\r
4786 * critical section exits) - but it is not something that
\r
4787 * application code should ever do. */
\r
4788 portYIELD_WITHIN_API();
\r
4792 mtCOVERAGE_TEST_MARKER();
\r
4797 mtCOVERAGE_TEST_MARKER();
\r
4800 taskEXIT_CRITICAL();
\r
4802 taskENTER_CRITICAL();
\r
4804 traceTASK_NOTIFY_WAIT( uxIndexToWait );
\r
4806 if( pulNotificationValue != NULL )
\r
4808 /* Output the current notification value, which may or may not
\r
4809 * have changed. */
\r
4810 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4813 /* If ucNotifyValue is set then either the task never entered the
\r
4814 * blocked state (because a notification was already pending) or the
\r
4815 * task unblocked because of a notification. Otherwise the task
\r
4816 * unblocked because of a timeout. */
\r
4817 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4819 /* A notification was not received. */
\r
4820 xReturn = pdFALSE;
\r
4824 /* A notification was already pending or a notification was
\r
4825 * received while the task was waiting. */
\r
4826 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
\r
4830 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4832 taskEXIT_CRITICAL();
\r
4837 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4838 /*-----------------------------------------------------------*/
\r
4840 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4842 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
\r
4843 UBaseType_t uxIndexToNotify,
\r
4845 eNotifyAction eAction,
\r
4846 uint32_t * pulPreviousNotificationValue )
\r
4849 BaseType_t xReturn = pdPASS;
\r
4850 uint8_t ucOriginalNotifyState;
\r
4852 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4853 configASSERT( xTaskToNotify );
\r
4854 pxTCB = xTaskToNotify;
\r
4856 taskENTER_CRITICAL();
\r
4858 if( pulPreviousNotificationValue != NULL )
\r
4860 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
4863 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
4865 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
4870 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
4874 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
4877 case eSetValueWithOverwrite:
\r
4878 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4881 case eSetValueWithoutOverwrite:
\r
4883 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4885 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4889 /* The value could not be written to the task. */
\r
4897 /* The task is being notified without its notify value being
\r
4903 /* Should not get here if all enums are handled.
\r
4904 * Artificially force an assert by testing a value the
\r
4905 * compiler can't assume is const. */
\r
4906 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
4911 traceTASK_NOTIFY( uxIndexToNotify );
\r
4913 /* If the task is in the blocked state specifically to wait for a
\r
4914 * notification then unblock it now. */
\r
4915 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4917 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4918 prvAddTaskToReadyList( pxTCB );
\r
4920 /* The task should not have been on an event list. */
\r
4921 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4923 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
4925 /* If a task is blocked waiting for a notification then
\r
4926 * xNextTaskUnblockTime might be set to the blocked task's time
\r
4927 * out time. If the task is unblocked for a reason other than
\r
4928 * a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4929 * because it will automatically get reset to a new value when
\r
4930 * the tick count equals xNextTaskUnblockTime. However if
\r
4931 * tickless idling is used it might be more important to enter
\r
4932 * sleep mode at the earliest possible time - so reset
\r
4933 * xNextTaskUnblockTime here to ensure it is updated at the
\r
4934 * earliest possible time. */
\r
4935 prvResetNextTaskUnblockTime();
\r
4939 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4941 /* The notified task has a priority above the currently
\r
4942 * executing task so a yield is required. */
\r
4943 taskYIELD_IF_USING_PREEMPTION();
\r
4947 mtCOVERAGE_TEST_MARKER();
\r
4952 mtCOVERAGE_TEST_MARKER();
\r
4955 taskEXIT_CRITICAL();
\r
4960 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4961 /*-----------------------------------------------------------*/
\r
4963 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4965 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
\r
4966 UBaseType_t uxIndexToNotify,
\r
4968 eNotifyAction eAction,
\r
4969 uint32_t * pulPreviousNotificationValue,
\r
4970 BaseType_t * pxHigherPriorityTaskWoken )
\r
4973 uint8_t ucOriginalNotifyState;
\r
4974 BaseType_t xReturn = pdPASS;
\r
4975 UBaseType_t uxSavedInterruptStatus;
\r
4977 configASSERT( xTaskToNotify );
\r
4978 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4980 /* RTOS ports that support interrupt nesting have the concept of a
\r
4981 * maximum system call (or maximum API call) interrupt priority.
\r
4982 * Interrupts that are above the maximum system call priority are keep
\r
4983 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
4984 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4985 * is defined in FreeRTOSConfig.h then
\r
4986 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4987 * failure if a FreeRTOS API function is called from an interrupt that has
\r
4988 * been assigned a priority above the configured maximum system call
\r
4989 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
4990 * from interrupts that have been assigned a priority at or (logically)
\r
4991 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
4992 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
4993 * simple as possible. More information (albeit Cortex-M specific) is
\r
4994 * provided on the following link:
\r
4995 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
4996 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
4998 pxTCB = xTaskToNotify;
\r
5000 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5002 if( pulPreviousNotificationValue != NULL )
\r
5004 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
5007 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5008 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5013 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
5017 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5020 case eSetValueWithOverwrite:
\r
5021 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5024 case eSetValueWithoutOverwrite:
\r
5026 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
5028 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5032 /* The value could not be written to the task. */
\r
5040 /* The task is being notified without its notify value being
\r
5046 /* Should not get here if all enums are handled.
\r
5047 * Artificially force an assert by testing a value the
\r
5048 * compiler can't assume is const. */
\r
5049 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
5053 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
\r
5055 /* If the task is in the blocked state specifically to wait for a
\r
5056 * notification then unblock it now. */
\r
5057 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5059 /* The task should not have been on an event list. */
\r
5060 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5062 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5064 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
5065 prvAddTaskToReadyList( pxTCB );
\r
5069 /* The delayed and ready lists cannot be accessed, so hold
\r
5070 * this task pending until the scheduler is resumed. */
\r
5071 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5074 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5076 /* The notified task has a priority above the currently
\r
5077 * executing task so a yield is required. */
\r
5078 if( pxHigherPriorityTaskWoken != NULL )
\r
5080 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5083 /* Mark that a yield is pending in case the user is not
\r
5084 * using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5085 * safe FreeRTOS function. */
\r
5086 xYieldPending = pdTRUE;
\r
5090 mtCOVERAGE_TEST_MARKER();
\r
5094 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5099 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5100 /*-----------------------------------------------------------*/
\r
5102 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5104 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
\r
5105 UBaseType_t uxIndexToNotify,
\r
5106 BaseType_t * pxHigherPriorityTaskWoken )
\r
5109 uint8_t ucOriginalNotifyState;
\r
5110 UBaseType_t uxSavedInterruptStatus;
\r
5112 configASSERT( xTaskToNotify );
\r
5113 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5115 /* RTOS ports that support interrupt nesting have the concept of a
\r
5116 * maximum system call (or maximum API call) interrupt priority.
\r
5117 * Interrupts that are above the maximum system call priority are keep
\r
5118 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5119 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5120 * is defined in FreeRTOSConfig.h then
\r
5121 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5122 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5123 * been assigned a priority above the configured maximum system call
\r
5124 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5125 * from interrupts that have been assigned a priority at or (logically)
\r
5126 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5127 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5128 * simple as possible. More information (albeit Cortex-M specific) is
\r
5129 * provided on the following link:
\r
5130 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5131 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5133 pxTCB = xTaskToNotify;
\r
5135 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5137 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5138 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5140 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5142 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5144 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
\r
5146 /* If the task is in the blocked state specifically to wait for a
\r
5147 * notification then unblock it now. */
\r
5148 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5150 /* The task should not have been on an event list. */
\r
5151 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5153 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5155 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
5156 prvAddTaskToReadyList( pxTCB );
\r
5160 /* The delayed and ready lists cannot be accessed, so hold
\r
5161 * this task pending until the scheduler is resumed. */
\r
5162 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5165 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5167 /* The notified task has a priority above the currently
\r
5168 * executing task so a yield is required. */
\r
5169 if( pxHigherPriorityTaskWoken != NULL )
\r
5171 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5174 /* Mark that a yield is pending in case the user is not
\r
5175 * using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5176 * safe FreeRTOS function. */
\r
5177 xYieldPending = pdTRUE;
\r
5181 mtCOVERAGE_TEST_MARKER();
\r
5185 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5188 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5189 /*-----------------------------------------------------------*/
\r
5191 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5193 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
\r
5194 UBaseType_t uxIndexToClear )
\r
5197 BaseType_t xReturn;
\r
5199 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5201 /* If null is passed in here then it is the calling task that is having
\r
5202 * its notification state cleared. */
\r
5203 pxTCB = prvGetTCBFromHandle( xTask );
\r
5205 taskENTER_CRITICAL();
\r
5207 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
\r
5209 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
\r
5217 taskEXIT_CRITICAL();
\r
5222 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5223 /*-----------------------------------------------------------*/
\r
5225 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5227 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
\r
5228 UBaseType_t uxIndexToClear,
\r
5229 uint32_t ulBitsToClear )
\r
5232 uint32_t ulReturn;
\r
5234 /* If null is passed in here then it is the calling task that is having
\r
5235 * its notification state cleared. */
\r
5236 pxTCB = prvGetTCBFromHandle( xTask );
\r
5238 taskENTER_CRITICAL();
\r
5240 /* Return the notification as it was before the bits were cleared,
\r
5241 * then clear the bit mask. */
\r
5242 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
\r
5243 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
\r
5245 taskEXIT_CRITICAL();
\r
5250 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5251 /*-----------------------------------------------------------*/
\r
5253 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5255 uint32_t ulTaskGetIdleRunTimeCounter( void )
\r
5257 return xIdleTaskHandle->ulRunTimeCounter;
\r
5261 /*-----------------------------------------------------------*/
\r
5263 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
5264 const BaseType_t xCanBlockIndefinitely )
\r
5266 TickType_t xTimeToWake;
\r
5267 const TickType_t xConstTickCount = xTickCount;
\r
5269 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
5271 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5272 * reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5273 * when the task leaves the Blocked state. */
\r
5274 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5278 /* Remove the task from the ready list before adding it to the blocked list
\r
5279 * as the same list item is used for both lists. */
\r
5280 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5282 /* The current task must be in a ready list, so there is no need to
\r
5283 * check, and the port reset macro can be called directly. */
\r
5284 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5288 mtCOVERAGE_TEST_MARKER();
\r
5291 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5293 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5295 /* Add the task to the suspended task list instead of a delayed task
\r
5296 * list to ensure it is not woken by a timing event. It will block
\r
5297 * indefinitely. */
\r
5298 vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5302 /* Calculate the time at which the task should be woken if the event
\r
5303 * does not occur. This may overflow but this doesn't matter, the
\r
5304 * kernel will manage it correctly. */
\r
5305 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5307 /* The list item will be inserted in wake time order. */
\r
5308 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5310 if( xTimeToWake < xConstTickCount )
\r
5312 /* Wake time has overflowed. Place this item in the overflow
\r
5314 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5318 /* The wake time has not overflowed, so the current block list
\r
5320 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5322 /* If the task entering the blocked state was placed at the
\r
5323 * head of the list of blocked tasks then xNextTaskUnblockTime
\r
5324 * needs to be updated too. */
\r
5325 if( xTimeToWake < xNextTaskUnblockTime )
\r
5327 xNextTaskUnblockTime = xTimeToWake;
\r
5331 mtCOVERAGE_TEST_MARKER();
\r
5336 #else /* INCLUDE_vTaskSuspend */
\r
5338 /* Calculate the time at which the task should be woken if the event
\r
5339 * does not occur. This may overflow but this doesn't matter, the kernel
\r
5340 * will manage it correctly. */
\r
5341 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5343 /* The list item will be inserted in wake time order. */
\r
5344 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5346 if( xTimeToWake < xConstTickCount )
\r
5348 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5349 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5353 /* The wake time has not overflowed, so the current block list is used. */
\r
5354 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5356 /* If the task entering the blocked state was placed at the head of the
\r
5357 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5359 if( xTimeToWake < xNextTaskUnblockTime )
\r
5361 xNextTaskUnblockTime = xTimeToWake;
\r
5365 mtCOVERAGE_TEST_MARKER();
\r
5369 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5370 ( void ) xCanBlockIndefinitely;
\r
5372 #endif /* INCLUDE_vTaskSuspend */
\r
5375 /* Code below here allows additional code to be inserted into this source file,
\r
5376 * especially where access to file scope functions and data is needed (for example
\r
5377 * when performing module tests). */
\r
5379 #ifdef FREERTOS_MODULE_TEST
\r
5380 #include "tasks_test_access_functions.h"
\r
5384 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5386 #include "freertos_tasks_c_additions.h"
\r
5388 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5389 static void freertos_tasks_c_additions_init( void )
\r
5391 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r
5395 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
\r