2 * FreeRTOS Kernel V10.4.3 LTS Patch 2
\r
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * https://www.FreeRTOS.org
\r
23 * https://github.com/FreeRTOS
\r
30 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
31 * all the API functions to use the MPU wrappers. That should only be done when
\r
32 * task.h is included from an application file. */
\r
33 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
35 #include "FreeRTOS.h"
\r
39 #if ( configUSE_CO_ROUTINES == 1 )
\r
40 #include "croutine.h"
\r
43 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
44 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
45 * for the header files above, but not in this file, in order to generate the
\r
46 * correct privileged Vs unprivileged linkage and placement. */
\r
47 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Constants used with the cRxLock and cTxLock structure members. */
\r
51 #define queueUNLOCKED ( ( int8_t ) -1 )
\r
52 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
\r
53 #define queueINT8_MAX ( ( int8_t ) 127 )
\r
55 /* When the Queue_t structure is used to represent a base queue its pcHead and
\r
56 * pcTail members are used as pointers into the queue storage area. When the
\r
57 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
\r
58 * not necessary, and the pcHead pointer is set to NULL to indicate that the
\r
59 * structure instead holds a pointer to the mutex holder (if any). Map alternative
\r
60 * names to the pcHead and structure member to ensure the readability of the code
\r
61 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
\r
62 * a union as their usage is mutually exclusive dependent on what the queue is
\r
63 * being used for. */
\r
64 #define uxQueueType pcHead
\r
65 #define queueQUEUE_IS_MUTEX NULL
\r
67 typedef struct QueuePointers
\r
69 int8_t * pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
\r
70 int8_t * pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
\r
73 typedef struct SemaphoreData
\r
75 TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex. */
\r
76 UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
\r
79 /* Semaphores do not actually store or copy data, so have an item size of
\r
81 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
\r
82 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
\r
84 #if ( configUSE_PREEMPTION == 0 )
\r
86 /* If the cooperative scheduler is being used then a yield should not be
\r
87 * performed just because a higher priority task has been woken. */
\r
88 #define queueYIELD_IF_USING_PREEMPTION()
\r
90 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
94 * Definition of the queue used by the scheduler.
\r
95 * Items are queued by copy, not reference. See the following link for the
\r
96 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
\r
98 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
100 int8_t * pcHead; /*< Points to the beginning of the queue storage area. */
\r
101 int8_t * pcWriteTo; /*< Points to the free next place in the storage area. */
\r
105 QueuePointers_t xQueue; /*< Data required exclusively when this structure is used as a queue. */
\r
106 SemaphoreData_t xSemaphore; /*< Data required exclusively when this structure is used as a semaphore. */
\r
109 List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
\r
110 List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
\r
112 volatile UBaseType_t uxMessagesWaiting; /*< The number of items currently in the queue. */
\r
113 UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
\r
114 UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
\r
116 volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
117 volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
119 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
120 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
\r
123 #if ( configUSE_QUEUE_SETS == 1 )
\r
124 struct QueueDefinition * pxQueueSetContainer;
\r
127 #if ( configUSE_TRACE_FACILITY == 1 )
\r
128 UBaseType_t uxQueueNumber;
\r
129 uint8_t ucQueueType;
\r
133 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
\r
134 * name below to enable the use of older kernel aware debuggers. */
\r
135 typedef xQUEUE Queue_t;
\r
137 /*-----------------------------------------------------------*/
\r
140 * The queue registry is just a means for kernel aware debuggers to locate
\r
141 * queue structures. It has no other purpose so is an optional component.
\r
143 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
145 /* The type stored within the queue registry array. This allows a name
\r
146 * to be assigned to each queue making kernel aware debugging a little
\r
147 * more user friendly. */
\r
148 typedef struct QUEUE_REGISTRY_ITEM
\r
150 const char * pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
151 QueueHandle_t xHandle;
\r
152 } xQueueRegistryItem;
\r
154 /* The old xQueueRegistryItem name is maintained above then typedefed to the
\r
155 * new xQueueRegistryItem name below to enable the use of older kernel aware
\r
157 typedef xQueueRegistryItem QueueRegistryItem_t;
\r
159 /* The queue registry is simply an array of QueueRegistryItem_t structures.
\r
160 * The pcQueueName member of a structure being NULL is indicative of the
\r
161 * array position being vacant. */
\r
162 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
\r
164 #endif /* configQUEUE_REGISTRY_SIZE */
\r
167 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
\r
168 * prevent an ISR from adding or removing items to the queue, but does prevent
\r
169 * an ISR from removing tasks from the queue event lists. If an ISR finds a
\r
170 * queue is locked it will instead increment the appropriate queue lock count
\r
171 * to indicate that a task may require unblocking. When the queue in unlocked
\r
172 * these lock counts are inspected, and the appropriate action taken.
\r
174 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
177 * Uses a critical section to determine if there is any data in a queue.
\r
179 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
\r
181 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
184 * Uses a critical section to determine if there is any space in a queue.
\r
186 * @return pdTRUE if there is no space, otherwise pdFALSE;
\r
188 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
191 * Copies an item into the queue, either at the front of the queue or the
\r
192 * back of the queue.
\r
194 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
195 const void * pvItemToQueue,
\r
196 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
\r
199 * Copies an item out of a queue.
\r
201 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
202 void * const pvBuffer ) PRIVILEGED_FUNCTION;
\r
204 #if ( configUSE_QUEUE_SETS == 1 )
\r
207 * Checks to see if a queue is a member of a queue set, and if so, notifies
\r
208 * the queue set that the queue contains data.
\r
210 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
214 * Called after a Queue_t structure has been allocated either statically or
\r
215 * dynamically to fill in the structure's members.
\r
217 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
218 const UBaseType_t uxItemSize,
\r
219 uint8_t * pucQueueStorage,
\r
220 const uint8_t ucQueueType,
\r
221 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
224 * Mutexes are a special type of queue. When a mutex is created, first the
\r
225 * queue is created, then prvInitialiseMutex() is called to configure the queue
\r
228 #if ( configUSE_MUTEXES == 1 )
\r
229 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
232 #if ( configUSE_MUTEXES == 1 )
\r
235 * If a task waiting for a mutex causes the mutex holder to inherit a
\r
236 * priority, but the waiting task times out, then the holder should
\r
237 * disinherit the priority - but only down to the highest priority of any
\r
238 * other tasks that are waiting for the same mutex. This function returns
\r
241 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
243 /*-----------------------------------------------------------*/
\r
246 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
\r
247 * accessing the queue event lists.
\r
249 #define prvLockQueue( pxQueue ) \
\r
250 taskENTER_CRITICAL(); \
\r
252 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
\r
254 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
\r
256 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
\r
258 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
\r
261 taskEXIT_CRITICAL()
\r
262 /*-----------------------------------------------------------*/
\r
264 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
\r
265 BaseType_t xNewQueue )
\r
267 Queue_t * const pxQueue = xQueue;
\r
269 configASSERT( pxQueue );
\r
271 taskENTER_CRITICAL();
\r
273 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
274 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
\r
275 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
276 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
277 pxQueue->cRxLock = queueUNLOCKED;
\r
278 pxQueue->cTxLock = queueUNLOCKED;
\r
280 if( xNewQueue == pdFALSE )
\r
282 /* If there are tasks blocked waiting to read from the queue, then
\r
283 * the tasks will remain blocked as after this function exits the queue
\r
284 * will still be empty. If there are tasks blocked waiting to write to
\r
285 * the queue, then one should be unblocked as after this function exits
\r
286 * it will be possible to write to it. */
\r
287 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
289 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
291 queueYIELD_IF_USING_PREEMPTION();
\r
295 mtCOVERAGE_TEST_MARKER();
\r
300 mtCOVERAGE_TEST_MARKER();
\r
305 /* Ensure the event queues start in the correct state. */
\r
306 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
\r
307 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
\r
310 taskEXIT_CRITICAL();
\r
312 /* A value is returned for calling semantic consistency with previous
\r
316 /*-----------------------------------------------------------*/
\r
318 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
320 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
\r
321 const UBaseType_t uxItemSize,
\r
322 uint8_t * pucQueueStorage,
\r
323 StaticQueue_t * pxStaticQueue,
\r
324 const uint8_t ucQueueType )
\r
326 Queue_t * pxNewQueue;
\r
328 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
\r
330 /* The StaticQueue_t structure and the queue storage area must be
\r
332 configASSERT( pxStaticQueue != NULL );
\r
334 /* A queue storage area should be provided if the item size is not 0, and
\r
335 * should not be provided if the item size is 0. */
\r
336 configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) );
\r
337 configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) );
\r
339 #if ( configASSERT_DEFINED == 1 )
\r
341 /* Sanity check that the size of the structure used to declare a
\r
342 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
\r
343 * the real queue and semaphore structures. */
\r
344 volatile size_t xSize = sizeof( StaticQueue_t );
\r
345 configASSERT( xSize == sizeof( Queue_t ) );
\r
346 ( void ) xSize; /* Keeps lint quiet when configASSERT() is not defined. */
\r
348 #endif /* configASSERT_DEFINED */
\r
350 /* The address of a statically allocated queue was passed in, use it.
\r
351 * The address of a statically allocated storage area was also passed in
\r
352 * but is already set. */
\r
353 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
355 if( pxNewQueue != NULL )
\r
357 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
359 /* Queues can be allocated wither statically or dynamically, so
\r
360 * note this queue was allocated statically in case the queue is
\r
361 * later deleted. */
\r
362 pxNewQueue->ucStaticallyAllocated = pdTRUE;
\r
364 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
366 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
370 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
371 mtCOVERAGE_TEST_MARKER();
\r
377 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
378 /*-----------------------------------------------------------*/
\r
380 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
382 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
\r
383 const UBaseType_t uxItemSize,
\r
384 const uint8_t ucQueueType )
\r
386 Queue_t * pxNewQueue;
\r
387 size_t xQueueSizeInBytes;
\r
388 uint8_t * pucQueueStorage;
\r
390 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
\r
392 /* Allocate enough space to hold the maximum number of items that
\r
393 * can be in the queue at any time. It is valid for uxItemSize to be
\r
394 * zero in the case the queue is used as a semaphore. */
\r
395 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
397 /* Check for multiplication overflow. */
\r
398 configASSERT( ( uxItemSize == 0 ) || ( uxQueueLength == ( xQueueSizeInBytes / uxItemSize ) ) );
\r
400 /* Check for addition overflow. */
\r
401 configASSERT( ( sizeof( Queue_t ) + xQueueSizeInBytes ) > xQueueSizeInBytes );
\r
403 /* Allocate the queue and storage area. Justification for MISRA
\r
404 * deviation as follows: pvPortMalloc() always ensures returned memory
\r
405 * blocks are aligned per the requirements of the MCU stack. In this case
\r
406 * pvPortMalloc() must return a pointer that is guaranteed to meet the
\r
407 * alignment requirements of the Queue_t structure - which in this case
\r
408 * is an int8_t *. Therefore, whenever the stack alignment requirements
\r
409 * are greater than or equal to the pointer to char requirements the cast
\r
410 * is safe. In other cases alignment requirements are not strict (one or
\r
412 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); /*lint !e9087 !e9079 see comment above. */
\r
414 if( pxNewQueue != NULL )
\r
416 /* Jump past the queue structure to find the location of the queue
\r
418 pucQueueStorage = ( uint8_t * ) pxNewQueue;
\r
419 pucQueueStorage += sizeof( Queue_t ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
421 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
423 /* Queues can be created either statically or dynamically, so
\r
424 * note this task was created dynamically in case it is later
\r
426 pxNewQueue->ucStaticallyAllocated = pdFALSE;
\r
428 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
430 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
434 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
435 mtCOVERAGE_TEST_MARKER();
\r
441 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
442 /*-----------------------------------------------------------*/
\r
444 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
445 const UBaseType_t uxItemSize,
\r
446 uint8_t * pucQueueStorage,
\r
447 const uint8_t ucQueueType,
\r
448 Queue_t * pxNewQueue )
\r
450 /* Remove compiler warnings about unused parameters should
\r
451 * configUSE_TRACE_FACILITY not be set to 1. */
\r
452 ( void ) ucQueueType;
\r
454 if( uxItemSize == ( UBaseType_t ) 0 )
\r
456 /* No RAM was allocated for the queue storage area, but PC head cannot
\r
457 * be set to NULL because NULL is used as a key to say the queue is used as
\r
458 * a mutex. Therefore just set pcHead to point to the queue as a benign
\r
459 * value that is known to be within the memory map. */
\r
460 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
\r
464 /* Set the head to the start of the queue storage area. */
\r
465 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
\r
468 /* Initialise the queue members as described where the queue type is
\r
470 pxNewQueue->uxLength = uxQueueLength;
\r
471 pxNewQueue->uxItemSize = uxItemSize;
\r
472 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
\r
474 #if ( configUSE_TRACE_FACILITY == 1 )
\r
476 pxNewQueue->ucQueueType = ucQueueType;
\r
478 #endif /* configUSE_TRACE_FACILITY */
\r
480 #if ( configUSE_QUEUE_SETS == 1 )
\r
482 pxNewQueue->pxQueueSetContainer = NULL;
\r
484 #endif /* configUSE_QUEUE_SETS */
\r
486 traceQUEUE_CREATE( pxNewQueue );
\r
488 /*-----------------------------------------------------------*/
\r
490 #if ( configUSE_MUTEXES == 1 )
\r
492 static void prvInitialiseMutex( Queue_t * pxNewQueue )
\r
494 if( pxNewQueue != NULL )
\r
496 /* The queue create function will set all the queue structure members
\r
497 * correctly for a generic queue, but this function is creating a
\r
498 * mutex. Overwrite those members that need to be set differently -
\r
499 * in particular the information required for priority inheritance. */
\r
500 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
\r
501 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
\r
503 /* In case this is a recursive mutex. */
\r
504 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
\r
506 traceCREATE_MUTEX( pxNewQueue );
\r
508 /* Start with the semaphore in the expected state. */
\r
509 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
\r
513 traceCREATE_MUTEX_FAILED();
\r
517 #endif /* configUSE_MUTEXES */
\r
518 /*-----------------------------------------------------------*/
\r
520 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
522 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
\r
524 QueueHandle_t xNewQueue;
\r
525 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
527 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
\r
528 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
533 #endif /* configUSE_MUTEXES */
\r
534 /*-----------------------------------------------------------*/
\r
536 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
538 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
\r
539 StaticQueue_t * pxStaticQueue )
\r
541 QueueHandle_t xNewQueue;
\r
542 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
544 /* Prevent compiler warnings about unused parameters if
\r
545 * configUSE_TRACE_FACILITY does not equal 1. */
\r
546 ( void ) ucQueueType;
\r
548 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
\r
549 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
554 #endif /* configUSE_MUTEXES */
\r
555 /*-----------------------------------------------------------*/
\r
557 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
559 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
\r
561 TaskHandle_t pxReturn;
\r
562 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
\r
564 /* This function is called by xSemaphoreGetMutexHolder(), and should not
\r
565 * be called directly. Note: This is a good way of determining if the
\r
566 * calling task is the mutex holder, but not a good way of determining the
\r
567 * identity of the mutex holder, as the holder may change between the
\r
568 * following critical section exiting and the function returning. */
\r
569 taskENTER_CRITICAL();
\r
571 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
\r
573 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
\r
580 taskEXIT_CRITICAL();
\r
583 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
585 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
586 /*-----------------------------------------------------------*/
\r
588 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
590 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
\r
592 TaskHandle_t pxReturn;
\r
594 configASSERT( xSemaphore );
\r
596 /* Mutexes cannot be used in interrupt service routines, so the mutex
\r
597 * holder should not change in an ISR, and therefore a critical section is
\r
598 * not required here. */
\r
599 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
\r
601 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
\r
609 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
611 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
612 /*-----------------------------------------------------------*/
\r
614 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
616 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
\r
618 BaseType_t xReturn;
\r
619 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
621 configASSERT( pxMutex );
\r
623 /* If this is the task that holds the mutex then xMutexHolder will not
\r
624 * change outside of this task. If this task does not hold the mutex then
\r
625 * pxMutexHolder can never coincidentally equal the tasks handle, and as
\r
626 * this is the only condition we are interested in it does not matter if
\r
627 * pxMutexHolder is accessed simultaneously by another task. Therefore no
\r
628 * mutual exclusion is required to test the pxMutexHolder variable. */
\r
629 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
631 traceGIVE_MUTEX_RECURSIVE( pxMutex );
\r
633 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
\r
634 * the task handle, therefore no underflow check is required. Also,
\r
635 * uxRecursiveCallCount is only modified by the mutex holder, and as
\r
636 * there can only be one, no mutual exclusion is required to modify the
\r
637 * uxRecursiveCallCount member. */
\r
638 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
\r
640 /* Has the recursive call count unwound to 0? */
\r
641 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
\r
643 /* Return the mutex. This will automatically unblock any other
\r
644 * task that might be waiting to access the mutex. */
\r
645 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
\r
649 mtCOVERAGE_TEST_MARKER();
\r
656 /* The mutex cannot be given because the calling task is not the
\r
660 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
666 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
667 /*-----------------------------------------------------------*/
\r
669 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
671 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
\r
672 TickType_t xTicksToWait )
\r
674 BaseType_t xReturn;
\r
675 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
677 configASSERT( pxMutex );
\r
679 /* Comments regarding mutual exclusion as per those within
\r
680 * xQueueGiveMutexRecursive(). */
\r
682 traceTAKE_MUTEX_RECURSIVE( pxMutex );
\r
684 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
686 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
691 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
\r
693 /* pdPASS will only be returned if the mutex was successfully
\r
694 * obtained. The calling task may have entered the Blocked state
\r
695 * before reaching here. */
\r
696 if( xReturn != pdFAIL )
\r
698 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
702 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
709 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
710 /*-----------------------------------------------------------*/
\r
712 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
714 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
\r
715 const UBaseType_t uxInitialCount,
\r
716 StaticQueue_t * pxStaticQueue )
\r
718 QueueHandle_t xHandle;
\r
720 configASSERT( uxMaxCount != 0 );
\r
721 configASSERT( uxInitialCount <= uxMaxCount );
\r
723 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
725 if( xHandle != NULL )
\r
727 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
729 traceCREATE_COUNTING_SEMAPHORE();
\r
733 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
739 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
740 /*-----------------------------------------------------------*/
\r
742 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
744 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
\r
745 const UBaseType_t uxInitialCount )
\r
747 QueueHandle_t xHandle;
\r
749 configASSERT( uxMaxCount != 0 );
\r
750 configASSERT( uxInitialCount <= uxMaxCount );
\r
752 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
754 if( xHandle != NULL )
\r
756 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
758 traceCREATE_COUNTING_SEMAPHORE();
\r
762 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
768 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
769 /*-----------------------------------------------------------*/
\r
771 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
\r
772 const void * const pvItemToQueue,
\r
773 TickType_t xTicksToWait,
\r
774 const BaseType_t xCopyPosition )
\r
776 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
\r
777 TimeOut_t xTimeOut;
\r
778 Queue_t * const pxQueue = xQueue;
\r
780 configASSERT( pxQueue );
\r
781 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
782 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
783 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
785 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
789 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
790 * allow return statements within the function itself. This is done in the
\r
791 * interest of execution time efficiency. */
\r
794 taskENTER_CRITICAL();
\r
796 /* Is there room on the queue now? The running task must be the
\r
797 * highest priority task wanting to access the queue. If the head item
\r
798 * in the queue is to be overwritten then it does not matter if the
\r
799 * queue is full. */
\r
800 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
802 traceQUEUE_SEND( pxQueue );
\r
804 #if ( configUSE_QUEUE_SETS == 1 )
\r
806 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
808 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
810 if( pxQueue->pxQueueSetContainer != NULL )
\r
812 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
814 /* Do not notify the queue set as an existing item
\r
815 * was overwritten in the queue so the number of items
\r
816 * in the queue has not changed. */
\r
817 mtCOVERAGE_TEST_MARKER();
\r
819 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
821 /* The queue is a member of a queue set, and posting
\r
822 * to the queue set caused a higher priority task to
\r
823 * unblock. A context switch is required. */
\r
824 queueYIELD_IF_USING_PREEMPTION();
\r
828 mtCOVERAGE_TEST_MARKER();
\r
833 /* If there was a task waiting for data to arrive on the
\r
834 * queue then unblock it now. */
\r
835 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
837 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
839 /* The unblocked task has a priority higher than
\r
840 * our own so yield immediately. Yes it is ok to
\r
841 * do this from within the critical section - the
\r
842 * kernel takes care of that. */
\r
843 queueYIELD_IF_USING_PREEMPTION();
\r
847 mtCOVERAGE_TEST_MARKER();
\r
850 else if( xYieldRequired != pdFALSE )
\r
852 /* This path is a special case that will only get
\r
853 * executed if the task was holding multiple mutexes
\r
854 * and the mutexes were given back in an order that is
\r
855 * different to that in which they were taken. */
\r
856 queueYIELD_IF_USING_PREEMPTION();
\r
860 mtCOVERAGE_TEST_MARKER();
\r
864 #else /* configUSE_QUEUE_SETS */
\r
866 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
868 /* If there was a task waiting for data to arrive on the
\r
869 * queue then unblock it now. */
\r
870 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
872 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
874 /* The unblocked task has a priority higher than
\r
875 * our own so yield immediately. Yes it is ok to do
\r
876 * this from within the critical section - the kernel
\r
877 * takes care of that. */
\r
878 queueYIELD_IF_USING_PREEMPTION();
\r
882 mtCOVERAGE_TEST_MARKER();
\r
885 else if( xYieldRequired != pdFALSE )
\r
887 /* This path is a special case that will only get
\r
888 * executed if the task was holding multiple mutexes and
\r
889 * the mutexes were given back in an order that is
\r
890 * different to that in which they were taken. */
\r
891 queueYIELD_IF_USING_PREEMPTION();
\r
895 mtCOVERAGE_TEST_MARKER();
\r
898 #endif /* configUSE_QUEUE_SETS */
\r
900 taskEXIT_CRITICAL();
\r
905 if( xTicksToWait == ( TickType_t ) 0 )
\r
907 /* The queue was full and no block time is specified (or
\r
908 * the block time has expired) so leave now. */
\r
909 taskEXIT_CRITICAL();
\r
911 /* Return to the original privilege level before exiting
\r
913 traceQUEUE_SEND_FAILED( pxQueue );
\r
914 return errQUEUE_FULL;
\r
916 else if( xEntryTimeSet == pdFALSE )
\r
918 /* The queue was full and a block time was specified so
\r
919 * configure the timeout structure. */
\r
920 vTaskInternalSetTimeOutState( &xTimeOut );
\r
921 xEntryTimeSet = pdTRUE;
\r
925 /* Entry time was already set. */
\r
926 mtCOVERAGE_TEST_MARKER();
\r
930 taskEXIT_CRITICAL();
\r
932 /* Interrupts and other tasks can send to and receive from the queue
\r
933 * now the critical section has been exited. */
\r
936 prvLockQueue( pxQueue );
\r
938 /* Update the timeout state to see if it has expired yet. */
\r
939 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
941 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
943 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
\r
944 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
\r
946 /* Unlocking the queue means queue events can effect the
\r
947 * event list. It is possible that interrupts occurring now
\r
948 * remove this task from the event list again - but as the
\r
949 * scheduler is suspended the task will go onto the pending
\r
950 * ready last instead of the actual ready list. */
\r
951 prvUnlockQueue( pxQueue );
\r
953 /* Resuming the scheduler will move tasks from the pending
\r
954 * ready list into the ready list - so it is feasible that this
\r
955 * task is already in a ready list before it yields - in which
\r
956 * case the yield will not cause a context switch unless there
\r
957 * is also a higher priority task in the pending ready list. */
\r
958 if( xTaskResumeAll() == pdFALSE )
\r
960 portYIELD_WITHIN_API();
\r
966 prvUnlockQueue( pxQueue );
\r
967 ( void ) xTaskResumeAll();
\r
972 /* The timeout has expired. */
\r
973 prvUnlockQueue( pxQueue );
\r
974 ( void ) xTaskResumeAll();
\r
976 traceQUEUE_SEND_FAILED( pxQueue );
\r
977 return errQUEUE_FULL;
\r
979 } /*lint -restore */
\r
981 /*-----------------------------------------------------------*/
\r
983 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
\r
984 const void * const pvItemToQueue,
\r
985 BaseType_t * const pxHigherPriorityTaskWoken,
\r
986 const BaseType_t xCopyPosition )
\r
988 BaseType_t xReturn;
\r
989 UBaseType_t uxSavedInterruptStatus;
\r
990 Queue_t * const pxQueue = xQueue;
\r
992 configASSERT( pxQueue );
\r
993 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
994 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
996 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
997 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
998 * above the maximum system call priority are kept permanently enabled, even
\r
999 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1000 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1001 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1002 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1003 * assigned a priority above the configured maximum system call priority.
\r
1004 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1005 * that have been assigned a priority at or (logically) below the maximum
\r
1006 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1007 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1008 * More information (albeit Cortex-M specific) is provided on the following
\r
1009 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1010 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1012 /* Similar to xQueueGenericSend, except without blocking if there is no room
\r
1013 * in the queue. Also don't directly wake a task that was blocked on a queue
\r
1014 * read, instead return a flag to say whether a context switch is required or
\r
1015 * not (i.e. has a task with a higher priority than us been woken by this
\r
1017 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1019 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
1021 const int8_t cTxLock = pxQueue->cTxLock;
\r
1022 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1024 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1026 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
\r
1027 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
\r
1028 * in a task disinheriting a priority and prvCopyDataToQueue() can be
\r
1029 * called here even though the disinherit function does not check if
\r
1030 * the scheduler is suspended before accessing the ready lists. */
\r
1031 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
1033 /* The event list is not altered if the queue is locked. This will
\r
1034 * be done when the queue is unlocked later. */
\r
1035 if( cTxLock == queueUNLOCKED )
\r
1037 #if ( configUSE_QUEUE_SETS == 1 )
\r
1039 if( pxQueue->pxQueueSetContainer != NULL )
\r
1041 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
1043 /* Do not notify the queue set as an existing item
\r
1044 * was overwritten in the queue so the number of items
\r
1045 * in the queue has not changed. */
\r
1046 mtCOVERAGE_TEST_MARKER();
\r
1048 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1050 /* The queue is a member of a queue set, and posting
\r
1051 * to the queue set caused a higher priority task to
\r
1052 * unblock. A context switch is required. */
\r
1053 if( pxHigherPriorityTaskWoken != NULL )
\r
1055 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1059 mtCOVERAGE_TEST_MARKER();
\r
1064 mtCOVERAGE_TEST_MARKER();
\r
1069 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1071 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1073 /* The task waiting has a higher priority so
\r
1074 * record that a context switch is required. */
\r
1075 if( pxHigherPriorityTaskWoken != NULL )
\r
1077 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1081 mtCOVERAGE_TEST_MARKER();
\r
1086 mtCOVERAGE_TEST_MARKER();
\r
1091 mtCOVERAGE_TEST_MARKER();
\r
1095 #else /* configUSE_QUEUE_SETS */
\r
1097 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1099 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1101 /* The task waiting has a higher priority so record that a
\r
1102 * context switch is required. */
\r
1103 if( pxHigherPriorityTaskWoken != NULL )
\r
1105 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1109 mtCOVERAGE_TEST_MARKER();
\r
1114 mtCOVERAGE_TEST_MARKER();
\r
1119 mtCOVERAGE_TEST_MARKER();
\r
1122 /* Not used in this path. */
\r
1123 ( void ) uxPreviousMessagesWaiting;
\r
1125 #endif /* configUSE_QUEUE_SETS */
\r
1129 /* Increment the lock count so the task that unlocks the queue
\r
1130 * knows that data was posted while it was locked. */
\r
1131 configASSERT( cTxLock != queueINT8_MAX );
\r
1133 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1140 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1141 xReturn = errQUEUE_FULL;
\r
1144 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1148 /*-----------------------------------------------------------*/
\r
1150 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
\r
1151 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1153 BaseType_t xReturn;
\r
1154 UBaseType_t uxSavedInterruptStatus;
\r
1155 Queue_t * const pxQueue = xQueue;
\r
1157 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
\r
1158 * item size is 0. Don't directly wake a task that was blocked on a queue
\r
1159 * read, instead return a flag to say whether a context switch is required or
\r
1160 * not (i.e. has a task with a higher priority than us been woken by this
\r
1163 configASSERT( pxQueue );
\r
1165 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
\r
1166 * if the item size is not 0. */
\r
1167 configASSERT( pxQueue->uxItemSize == 0 );
\r
1169 /* Normally a mutex would not be given from an interrupt, especially if
\r
1170 * there is a mutex holder, as priority inheritance makes no sense for an
\r
1171 * interrupts, only tasks. */
\r
1172 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
\r
1174 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1175 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1176 * above the maximum system call priority are kept permanently enabled, even
\r
1177 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1178 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1179 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1180 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1181 * assigned a priority above the configured maximum system call priority.
\r
1182 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1183 * that have been assigned a priority at or (logically) below the maximum
\r
1184 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1185 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1186 * More information (albeit Cortex-M specific) is provided on the following
\r
1187 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1188 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1190 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1192 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1194 /* When the queue is used to implement a semaphore no data is ever
\r
1195 * moved through the queue but it is still valid to see if the queue 'has
\r
1197 if( uxMessagesWaiting < pxQueue->uxLength )
\r
1199 const int8_t cTxLock = pxQueue->cTxLock;
\r
1201 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1203 /* A task can only have an inherited priority if it is a mutex
\r
1204 * holder - and if there is a mutex holder then the mutex cannot be
\r
1205 * given from an ISR. As this is the ISR version of the function it
\r
1206 * can be assumed there is no mutex holder and no need to determine if
\r
1207 * priority disinheritance is needed. Simply increase the count of
\r
1208 * messages (semaphores) available. */
\r
1209 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
1211 /* The event list is not altered if the queue is locked. This will
\r
1212 * be done when the queue is unlocked later. */
\r
1213 if( cTxLock == queueUNLOCKED )
\r
1215 #if ( configUSE_QUEUE_SETS == 1 )
\r
1217 if( pxQueue->pxQueueSetContainer != NULL )
\r
1219 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1221 /* The semaphore is a member of a queue set, and
\r
1222 * posting to the queue set caused a higher priority
\r
1223 * task to unblock. A context switch is required. */
\r
1224 if( pxHigherPriorityTaskWoken != NULL )
\r
1226 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1230 mtCOVERAGE_TEST_MARKER();
\r
1235 mtCOVERAGE_TEST_MARKER();
\r
1240 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1242 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1244 /* The task waiting has a higher priority so
\r
1245 * record that a context switch is required. */
\r
1246 if( pxHigherPriorityTaskWoken != NULL )
\r
1248 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1252 mtCOVERAGE_TEST_MARKER();
\r
1257 mtCOVERAGE_TEST_MARKER();
\r
1262 mtCOVERAGE_TEST_MARKER();
\r
1266 #else /* configUSE_QUEUE_SETS */
\r
1268 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1270 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1272 /* The task waiting has a higher priority so record that a
\r
1273 * context switch is required. */
\r
1274 if( pxHigherPriorityTaskWoken != NULL )
\r
1276 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1280 mtCOVERAGE_TEST_MARKER();
\r
1285 mtCOVERAGE_TEST_MARKER();
\r
1290 mtCOVERAGE_TEST_MARKER();
\r
1293 #endif /* configUSE_QUEUE_SETS */
\r
1297 /* Increment the lock count so the task that unlocks the queue
\r
1298 * knows that data was posted while it was locked. */
\r
1299 configASSERT( cTxLock != queueINT8_MAX );
\r
1301 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1308 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1309 xReturn = errQUEUE_FULL;
\r
1312 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1316 /*-----------------------------------------------------------*/
\r
1318 BaseType_t xQueueReceive( QueueHandle_t xQueue,
\r
1319 void * const pvBuffer,
\r
1320 TickType_t xTicksToWait )
\r
1322 BaseType_t xEntryTimeSet = pdFALSE;
\r
1323 TimeOut_t xTimeOut;
\r
1324 Queue_t * const pxQueue = xQueue;
\r
1326 /* Check the pointer is not NULL. */
\r
1327 configASSERT( ( pxQueue ) );
\r
1329 /* The buffer into which data is received can only be NULL if the data size
\r
1330 * is zero (so no data is copied into the buffer). */
\r
1331 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1333 /* Cannot block if the scheduler is suspended. */
\r
1334 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1336 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1340 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1341 * allow return statements within the function itself. This is done in the
\r
1342 * interest of execution time efficiency. */
\r
1345 taskENTER_CRITICAL();
\r
1347 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1349 /* Is there data in the queue now? To be running the calling task
\r
1350 * must be the highest priority task wanting to access the queue. */
\r
1351 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1353 /* Data available, remove one item. */
\r
1354 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1355 traceQUEUE_RECEIVE( pxQueue );
\r
1356 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1358 /* There is now space in the queue, were any tasks waiting to
\r
1359 * post to the queue? If so, unblock the highest priority waiting
\r
1361 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1363 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1365 queueYIELD_IF_USING_PREEMPTION();
\r
1369 mtCOVERAGE_TEST_MARKER();
\r
1374 mtCOVERAGE_TEST_MARKER();
\r
1377 taskEXIT_CRITICAL();
\r
1382 if( xTicksToWait == ( TickType_t ) 0 )
\r
1384 /* The queue was empty and no block time is specified (or
\r
1385 * the block time has expired) so leave now. */
\r
1386 taskEXIT_CRITICAL();
\r
1387 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1388 return errQUEUE_EMPTY;
\r
1390 else if( xEntryTimeSet == pdFALSE )
\r
1392 /* The queue was empty and a block time was specified so
\r
1393 * configure the timeout structure. */
\r
1394 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1395 xEntryTimeSet = pdTRUE;
\r
1399 /* Entry time was already set. */
\r
1400 mtCOVERAGE_TEST_MARKER();
\r
1404 taskEXIT_CRITICAL();
\r
1406 /* Interrupts and other tasks can send to and receive from the queue
\r
1407 * now the critical section has been exited. */
\r
1409 vTaskSuspendAll();
\r
1410 prvLockQueue( pxQueue );
\r
1412 /* Update the timeout state to see if it has expired yet. */
\r
1413 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1415 /* The timeout has not expired. If the queue is still empty place
\r
1416 * the task on the list of tasks waiting to receive from the queue. */
\r
1417 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1419 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1420 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1421 prvUnlockQueue( pxQueue );
\r
1423 if( xTaskResumeAll() == pdFALSE )
\r
1425 portYIELD_WITHIN_API();
\r
1429 mtCOVERAGE_TEST_MARKER();
\r
1434 /* The queue contains data again. Loop back to try and read the
\r
1436 prvUnlockQueue( pxQueue );
\r
1437 ( void ) xTaskResumeAll();
\r
1442 /* Timed out. If there is no data in the queue exit, otherwise loop
\r
1443 * back and attempt to read the data. */
\r
1444 prvUnlockQueue( pxQueue );
\r
1445 ( void ) xTaskResumeAll();
\r
1447 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1449 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1450 return errQUEUE_EMPTY;
\r
1454 mtCOVERAGE_TEST_MARKER();
\r
1457 } /*lint -restore */
\r
1459 /*-----------------------------------------------------------*/
\r
1461 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
\r
1462 TickType_t xTicksToWait )
\r
1464 BaseType_t xEntryTimeSet = pdFALSE;
\r
1465 TimeOut_t xTimeOut;
\r
1466 Queue_t * const pxQueue = xQueue;
\r
1468 #if ( configUSE_MUTEXES == 1 )
\r
1469 BaseType_t xInheritanceOccurred = pdFALSE;
\r
1472 /* Check the queue pointer is not NULL. */
\r
1473 configASSERT( ( pxQueue ) );
\r
1475 /* Check this really is a semaphore, in which case the item size will be
\r
1477 configASSERT( pxQueue->uxItemSize == 0 );
\r
1479 /* Cannot block if the scheduler is suspended. */
\r
1480 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1482 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1486 /*lint -save -e904 This function relaxes the coding standard somewhat to allow return
\r
1487 * statements within the function itself. This is done in the interest
\r
1488 * of execution time efficiency. */
\r
1491 taskENTER_CRITICAL();
\r
1493 /* Semaphores are queues with an item size of 0, and where the
\r
1494 * number of messages in the queue is the semaphore's count value. */
\r
1495 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
\r
1497 /* Is there data in the queue now? To be running the calling task
\r
1498 * must be the highest priority task wanting to access the queue. */
\r
1499 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
\r
1501 traceQUEUE_RECEIVE( pxQueue );
\r
1503 /* Semaphores are queues with a data size of zero and where the
\r
1504 * messages waiting is the semaphore's count. Reduce the count. */
\r
1505 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
\r
1507 #if ( configUSE_MUTEXES == 1 )
\r
1509 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1511 /* Record the information required to implement
\r
1512 * priority inheritance should it become necessary. */
\r
1513 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
\r
1517 mtCOVERAGE_TEST_MARKER();
\r
1520 #endif /* configUSE_MUTEXES */
\r
1522 /* Check to see if other tasks are blocked waiting to give the
\r
1523 * semaphore, and if so, unblock the highest priority such task. */
\r
1524 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1526 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1528 queueYIELD_IF_USING_PREEMPTION();
\r
1532 mtCOVERAGE_TEST_MARKER();
\r
1537 mtCOVERAGE_TEST_MARKER();
\r
1540 taskEXIT_CRITICAL();
\r
1545 if( xTicksToWait == ( TickType_t ) 0 )
\r
1547 /* For inheritance to have occurred there must have been an
\r
1548 * initial timeout, and an adjusted timeout cannot become 0, as
\r
1549 * if it were 0 the function would have exited. */
\r
1550 #if ( configUSE_MUTEXES == 1 )
\r
1552 configASSERT( xInheritanceOccurred == pdFALSE );
\r
1554 #endif /* configUSE_MUTEXES */
\r
1556 /* The semaphore count was 0 and no block time is specified
\r
1557 * (or the block time has expired) so exit now. */
\r
1558 taskEXIT_CRITICAL();
\r
1559 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1560 return errQUEUE_EMPTY;
\r
1562 else if( xEntryTimeSet == pdFALSE )
\r
1564 /* The semaphore count was 0 and a block time was specified
\r
1565 * so configure the timeout structure ready to block. */
\r
1566 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1567 xEntryTimeSet = pdTRUE;
\r
1571 /* Entry time was already set. */
\r
1572 mtCOVERAGE_TEST_MARKER();
\r
1576 taskEXIT_CRITICAL();
\r
1578 /* Interrupts and other tasks can give to and take from the semaphore
\r
1579 * now the critical section has been exited. */
\r
1581 vTaskSuspendAll();
\r
1582 prvLockQueue( pxQueue );
\r
1584 /* Update the timeout state to see if it has expired yet. */
\r
1585 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1587 /* A block time is specified and not expired. If the semaphore
\r
1588 * count is 0 then enter the Blocked state to wait for a semaphore to
\r
1589 * become available. As semaphores are implemented with queues the
\r
1590 * queue being empty is equivalent to the semaphore count being 0. */
\r
1591 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1593 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1595 #if ( configUSE_MUTEXES == 1 )
\r
1597 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1599 taskENTER_CRITICAL();
\r
1601 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
1603 taskEXIT_CRITICAL();
\r
1607 mtCOVERAGE_TEST_MARKER();
\r
1610 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1612 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1613 prvUnlockQueue( pxQueue );
\r
1615 if( xTaskResumeAll() == pdFALSE )
\r
1617 portYIELD_WITHIN_API();
\r
1621 mtCOVERAGE_TEST_MARKER();
\r
1626 /* There was no timeout and the semaphore count was not 0, so
\r
1627 * attempt to take the semaphore again. */
\r
1628 prvUnlockQueue( pxQueue );
\r
1629 ( void ) xTaskResumeAll();
\r
1635 prvUnlockQueue( pxQueue );
\r
1636 ( void ) xTaskResumeAll();
\r
1638 /* If the semaphore count is 0 exit now as the timeout has
\r
1639 * expired. Otherwise return to attempt to take the semaphore that is
\r
1640 * known to be available. As semaphores are implemented by queues the
\r
1641 * queue being empty is equivalent to the semaphore count being 0. */
\r
1642 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1644 #if ( configUSE_MUTEXES == 1 )
\r
1646 /* xInheritanceOccurred could only have be set if
\r
1647 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
\r
1648 * test the mutex type again to check it is actually a mutex. */
\r
1649 if( xInheritanceOccurred != pdFALSE )
\r
1651 taskENTER_CRITICAL();
\r
1653 UBaseType_t uxHighestWaitingPriority;
\r
1655 /* This task blocking on the mutex caused another
\r
1656 * task to inherit this task's priority. Now this task
\r
1657 * has timed out the priority should be disinherited
\r
1658 * again, but only as low as the next highest priority
\r
1659 * task that is waiting for the same mutex. */
\r
1660 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
\r
1661 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
\r
1663 taskEXIT_CRITICAL();
\r
1666 #endif /* configUSE_MUTEXES */
\r
1668 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1669 return errQUEUE_EMPTY;
\r
1673 mtCOVERAGE_TEST_MARKER();
\r
1676 } /*lint -restore */
\r
1678 /*-----------------------------------------------------------*/
\r
1680 BaseType_t xQueuePeek( QueueHandle_t xQueue,
\r
1681 void * const pvBuffer,
\r
1682 TickType_t xTicksToWait )
\r
1684 BaseType_t xEntryTimeSet = pdFALSE;
\r
1685 TimeOut_t xTimeOut;
\r
1686 int8_t * pcOriginalReadPosition;
\r
1687 Queue_t * const pxQueue = xQueue;
\r
1689 /* Check the pointer is not NULL. */
\r
1690 configASSERT( ( pxQueue ) );
\r
1692 /* The buffer into which data is received can only be NULL if the data size
\r
1693 * is zero (so no data is copied into the buffer. */
\r
1694 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1696 /* Cannot block if the scheduler is suspended. */
\r
1697 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1699 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1703 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1704 * allow return statements within the function itself. This is done in the
\r
1705 * interest of execution time efficiency. */
\r
1708 taskENTER_CRITICAL();
\r
1710 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1712 /* Is there data in the queue now? To be running the calling task
\r
1713 * must be the highest priority task wanting to access the queue. */
\r
1714 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1716 /* Remember the read position so it can be reset after the data
\r
1717 * is read from the queue as this function is only peeking the
\r
1718 * data, not removing it. */
\r
1719 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1721 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1722 traceQUEUE_PEEK( pxQueue );
\r
1724 /* The data is not being removed, so reset the read pointer. */
\r
1725 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1727 /* The data is being left in the queue, so see if there are
\r
1728 * any other tasks waiting for the data. */
\r
1729 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1731 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1733 /* The task waiting has a higher priority than this task. */
\r
1734 queueYIELD_IF_USING_PREEMPTION();
\r
1738 mtCOVERAGE_TEST_MARKER();
\r
1743 mtCOVERAGE_TEST_MARKER();
\r
1746 taskEXIT_CRITICAL();
\r
1751 if( xTicksToWait == ( TickType_t ) 0 )
\r
1753 /* The queue was empty and no block time is specified (or
\r
1754 * the block time has expired) so leave now. */
\r
1755 taskEXIT_CRITICAL();
\r
1756 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1757 return errQUEUE_EMPTY;
\r
1759 else if( xEntryTimeSet == pdFALSE )
\r
1761 /* The queue was empty and a block time was specified so
\r
1762 * configure the timeout structure ready to enter the blocked
\r
1764 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1765 xEntryTimeSet = pdTRUE;
\r
1769 /* Entry time was already set. */
\r
1770 mtCOVERAGE_TEST_MARKER();
\r
1774 taskEXIT_CRITICAL();
\r
1776 /* Interrupts and other tasks can send to and receive from the queue
\r
1777 * now the critical section has been exited. */
\r
1779 vTaskSuspendAll();
\r
1780 prvLockQueue( pxQueue );
\r
1782 /* Update the timeout state to see if it has expired yet. */
\r
1783 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1785 /* Timeout has not expired yet, check to see if there is data in the
\r
1786 * queue now, and if not enter the Blocked state to wait for data. */
\r
1787 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1789 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
\r
1790 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1791 prvUnlockQueue( pxQueue );
\r
1793 if( xTaskResumeAll() == pdFALSE )
\r
1795 portYIELD_WITHIN_API();
\r
1799 mtCOVERAGE_TEST_MARKER();
\r
1804 /* There is data in the queue now, so don't enter the blocked
\r
1805 * state, instead return to try and obtain the data. */
\r
1806 prvUnlockQueue( pxQueue );
\r
1807 ( void ) xTaskResumeAll();
\r
1812 /* The timeout has expired. If there is still no data in the queue
\r
1813 * exit, otherwise go back and try to read the data again. */
\r
1814 prvUnlockQueue( pxQueue );
\r
1815 ( void ) xTaskResumeAll();
\r
1817 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1819 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1820 return errQUEUE_EMPTY;
\r
1824 mtCOVERAGE_TEST_MARKER();
\r
1827 } /*lint -restore */
\r
1829 /*-----------------------------------------------------------*/
\r
1831 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
\r
1832 void * const pvBuffer,
\r
1833 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1835 BaseType_t xReturn;
\r
1836 UBaseType_t uxSavedInterruptStatus;
\r
1837 Queue_t * const pxQueue = xQueue;
\r
1839 configASSERT( pxQueue );
\r
1840 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1842 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1843 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1844 * above the maximum system call priority are kept permanently enabled, even
\r
1845 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1846 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1847 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1848 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1849 * assigned a priority above the configured maximum system call priority.
\r
1850 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1851 * that have been assigned a priority at or (logically) below the maximum
\r
1852 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1853 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1854 * More information (albeit Cortex-M specific) is provided on the following
\r
1855 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1856 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1858 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1860 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1862 /* Cannot block in an ISR, so check there is data available. */
\r
1863 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1865 const int8_t cRxLock = pxQueue->cRxLock;
\r
1867 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
\r
1869 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1870 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1872 /* If the queue is locked the event list will not be modified.
\r
1873 * Instead update the lock count so the task that unlocks the queue
\r
1874 * will know that an ISR has removed data while the queue was
\r
1876 if( cRxLock == queueUNLOCKED )
\r
1878 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1880 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1882 /* The task waiting has a higher priority than us so
\r
1883 * force a context switch. */
\r
1884 if( pxHigherPriorityTaskWoken != NULL )
\r
1886 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1890 mtCOVERAGE_TEST_MARKER();
\r
1895 mtCOVERAGE_TEST_MARKER();
\r
1900 mtCOVERAGE_TEST_MARKER();
\r
1905 /* Increment the lock count so the task that unlocks the queue
\r
1906 * knows that data was removed while it was locked. */
\r
1907 configASSERT( cRxLock != queueINT8_MAX );
\r
1909 pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
\r
1917 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
\r
1920 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1924 /*-----------------------------------------------------------*/
\r
1926 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
\r
1927 void * const pvBuffer )
\r
1929 BaseType_t xReturn;
\r
1930 UBaseType_t uxSavedInterruptStatus;
\r
1931 int8_t * pcOriginalReadPosition;
\r
1932 Queue_t * const pxQueue = xQueue;
\r
1934 configASSERT( pxQueue );
\r
1935 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1936 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
\r
1938 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1939 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1940 * above the maximum system call priority are kept permanently enabled, even
\r
1941 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1942 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1943 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1944 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1945 * assigned a priority above the configured maximum system call priority.
\r
1946 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1947 * that have been assigned a priority at or (logically) below the maximum
\r
1948 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1949 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1950 * More information (albeit Cortex-M specific) is provided on the following
\r
1951 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1952 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1954 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1956 /* Cannot block in an ISR, so check there is data available. */
\r
1957 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1959 traceQUEUE_PEEK_FROM_ISR( pxQueue );
\r
1961 /* Remember the read position so it can be reset as nothing is
\r
1962 * actually being removed from the queue. */
\r
1963 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1964 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1965 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1972 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
\r
1975 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1979 /*-----------------------------------------------------------*/
\r
1981 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
\r
1983 UBaseType_t uxReturn;
\r
1985 configASSERT( xQueue );
\r
1987 taskENTER_CRITICAL();
\r
1989 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
\r
1991 taskEXIT_CRITICAL();
\r
1994 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
1995 /*-----------------------------------------------------------*/
\r
1997 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
\r
1999 UBaseType_t uxReturn;
\r
2000 Queue_t * const pxQueue = xQueue;
\r
2002 configASSERT( pxQueue );
\r
2004 taskENTER_CRITICAL();
\r
2006 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
\r
2008 taskEXIT_CRITICAL();
\r
2011 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2012 /*-----------------------------------------------------------*/
\r
2014 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
\r
2016 UBaseType_t uxReturn;
\r
2017 Queue_t * const pxQueue = xQueue;
\r
2019 configASSERT( pxQueue );
\r
2020 uxReturn = pxQueue->uxMessagesWaiting;
\r
2023 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2024 /*-----------------------------------------------------------*/
\r
2026 void vQueueDelete( QueueHandle_t xQueue )
\r
2028 Queue_t * const pxQueue = xQueue;
\r
2030 configASSERT( pxQueue );
\r
2031 traceQUEUE_DELETE( pxQueue );
\r
2033 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2035 vQueueUnregisterQueue( pxQueue );
\r
2039 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
\r
2041 /* The queue can only have been allocated dynamically - free it
\r
2043 vPortFree( pxQueue );
\r
2045 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
2047 /* The queue could have been allocated statically or dynamically, so
\r
2048 * check before attempting to free the memory. */
\r
2049 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
\r
2051 vPortFree( pxQueue );
\r
2055 mtCOVERAGE_TEST_MARKER();
\r
2058 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
\r
2060 /* The queue must have been statically allocated, so is not going to be
\r
2061 * deleted. Avoid compiler warnings about the unused parameter. */
\r
2064 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
2066 /*-----------------------------------------------------------*/
\r
2068 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2070 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
\r
2072 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
\r
2075 #endif /* configUSE_TRACE_FACILITY */
\r
2076 /*-----------------------------------------------------------*/
\r
2078 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2080 void vQueueSetQueueNumber( QueueHandle_t xQueue,
\r
2081 UBaseType_t uxQueueNumber )
\r
2083 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
\r
2086 #endif /* configUSE_TRACE_FACILITY */
\r
2087 /*-----------------------------------------------------------*/
\r
2089 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2091 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
\r
2093 return ( ( Queue_t * ) xQueue )->ucQueueType;
\r
2096 #endif /* configUSE_TRACE_FACILITY */
\r
2097 /*-----------------------------------------------------------*/
\r
2099 #if ( configUSE_MUTEXES == 1 )
\r
2101 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
\r
2103 UBaseType_t uxHighestPriorityOfWaitingTasks;
\r
2105 /* If a task waiting for a mutex causes the mutex holder to inherit a
\r
2106 * priority, but the waiting task times out, then the holder should
\r
2107 * disinherit the priority - but only down to the highest priority of any
\r
2108 * other tasks that are waiting for the same mutex. For this purpose,
\r
2109 * return the priority of the highest priority task that is waiting for the
\r
2111 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
\r
2113 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) );
\r
2117 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
\r
2120 return uxHighestPriorityOfWaitingTasks;
\r
2123 #endif /* configUSE_MUTEXES */
\r
2124 /*-----------------------------------------------------------*/
\r
2126 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
2127 const void * pvItemToQueue,
\r
2128 const BaseType_t xPosition )
\r
2130 BaseType_t xReturn = pdFALSE;
\r
2131 UBaseType_t uxMessagesWaiting;
\r
2133 /* This function is called from a critical section. */
\r
2135 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
2137 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
\r
2139 #if ( configUSE_MUTEXES == 1 )
\r
2141 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
2143 /* The mutex is no longer being held. */
\r
2144 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
2145 pxQueue->u.xSemaphore.xMutexHolder = NULL;
\r
2149 mtCOVERAGE_TEST_MARKER();
\r
2152 #endif /* configUSE_MUTEXES */
\r
2154 else if( xPosition == queueSEND_TO_BACK )
\r
2156 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2157 pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2159 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2161 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
2165 mtCOVERAGE_TEST_MARKER();
\r
2170 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
\r
2171 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
\r
2173 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2175 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
\r
2179 mtCOVERAGE_TEST_MARKER();
\r
2182 if( xPosition == queueOVERWRITE )
\r
2184 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2186 /* An item is not being added but overwritten, so subtract
\r
2187 * one from the recorded number of items in the queue so when
\r
2188 * one is added again below the number of recorded items remains
\r
2190 --uxMessagesWaiting;
\r
2194 mtCOVERAGE_TEST_MARKER();
\r
2199 mtCOVERAGE_TEST_MARKER();
\r
2203 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
2207 /*-----------------------------------------------------------*/
\r
2209 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
2210 void * const pvBuffer )
\r
2212 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
\r
2214 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2216 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
\r
2218 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2222 mtCOVERAGE_TEST_MARKER();
\r
2225 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2228 /*-----------------------------------------------------------*/
\r
2230 static void prvUnlockQueue( Queue_t * const pxQueue )
\r
2232 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
\r
2234 /* The lock counts contains the number of extra data items placed or
\r
2235 * removed from the queue while the queue was locked. When a queue is
\r
2236 * locked items can be added or removed, but the event lists cannot be
\r
2238 taskENTER_CRITICAL();
\r
2240 int8_t cTxLock = pxQueue->cTxLock;
\r
2242 /* See if data was added to the queue while it was locked. */
\r
2243 while( cTxLock > queueLOCKED_UNMODIFIED )
\r
2245 /* Data was posted while the queue was locked. Are any tasks
\r
2246 * blocked waiting for data to become available? */
\r
2247 #if ( configUSE_QUEUE_SETS == 1 )
\r
2249 if( pxQueue->pxQueueSetContainer != NULL )
\r
2251 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
2253 /* The queue is a member of a queue set, and posting to
\r
2254 * the queue set caused a higher priority task to unblock.
\r
2255 * A context switch is required. */
\r
2256 vTaskMissedYield();
\r
2260 mtCOVERAGE_TEST_MARKER();
\r
2265 /* Tasks that are removed from the event list will get
\r
2266 * added to the pending ready list as the scheduler is still
\r
2268 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2270 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2272 /* The task waiting has a higher priority so record that a
\r
2273 * context switch is required. */
\r
2274 vTaskMissedYield();
\r
2278 mtCOVERAGE_TEST_MARKER();
\r
2287 #else /* configUSE_QUEUE_SETS */
\r
2289 /* Tasks that are removed from the event list will get added to
\r
2290 * the pending ready list as the scheduler is still suspended. */
\r
2291 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2293 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2295 /* The task waiting has a higher priority so record that
\r
2296 * a context switch is required. */
\r
2297 vTaskMissedYield();
\r
2301 mtCOVERAGE_TEST_MARKER();
\r
2309 #endif /* configUSE_QUEUE_SETS */
\r
2314 pxQueue->cTxLock = queueUNLOCKED;
\r
2316 taskEXIT_CRITICAL();
\r
2318 /* Do the same for the Rx lock. */
\r
2319 taskENTER_CRITICAL();
\r
2321 int8_t cRxLock = pxQueue->cRxLock;
\r
2323 while( cRxLock > queueLOCKED_UNMODIFIED )
\r
2325 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2327 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2329 vTaskMissedYield();
\r
2333 mtCOVERAGE_TEST_MARKER();
\r
2344 pxQueue->cRxLock = queueUNLOCKED;
\r
2346 taskEXIT_CRITICAL();
\r
2348 /*-----------------------------------------------------------*/
\r
2350 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
\r
2352 BaseType_t xReturn;
\r
2354 taskENTER_CRITICAL();
\r
2356 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2362 xReturn = pdFALSE;
\r
2365 taskEXIT_CRITICAL();
\r
2369 /*-----------------------------------------------------------*/
\r
2371 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
\r
2373 BaseType_t xReturn;
\r
2374 Queue_t * const pxQueue = xQueue;
\r
2376 configASSERT( pxQueue );
\r
2378 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2384 xReturn = pdFALSE;
\r
2388 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2389 /*-----------------------------------------------------------*/
\r
2391 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
\r
2393 BaseType_t xReturn;
\r
2395 taskENTER_CRITICAL();
\r
2397 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2403 xReturn = pdFALSE;
\r
2406 taskEXIT_CRITICAL();
\r
2410 /*-----------------------------------------------------------*/
\r
2412 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
\r
2414 BaseType_t xReturn;
\r
2415 Queue_t * const pxQueue = xQueue;
\r
2417 configASSERT( pxQueue );
\r
2419 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2425 xReturn = pdFALSE;
\r
2429 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2430 /*-----------------------------------------------------------*/
\r
2432 #if ( configUSE_CO_ROUTINES == 1 )
\r
2434 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
\r
2435 const void * pvItemToQueue,
\r
2436 TickType_t xTicksToWait )
\r
2438 BaseType_t xReturn;
\r
2439 Queue_t * const pxQueue = xQueue;
\r
2441 /* If the queue is already full we may have to block. A critical section
\r
2442 * is required to prevent an interrupt removing something from the queue
\r
2443 * between the check to see if the queue is full and blocking on the queue. */
\r
2444 portDISABLE_INTERRUPTS();
\r
2446 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
2448 /* The queue is full - do we want to block or just leave without
\r
2450 if( xTicksToWait > ( TickType_t ) 0 )
\r
2452 /* As this is called from a coroutine we cannot block directly, but
\r
2453 * return indicating that we need to block. */
\r
2454 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
\r
2455 portENABLE_INTERRUPTS();
\r
2456 return errQUEUE_BLOCKED;
\r
2460 portENABLE_INTERRUPTS();
\r
2461 return errQUEUE_FULL;
\r
2465 portENABLE_INTERRUPTS();
\r
2467 portDISABLE_INTERRUPTS();
\r
2469 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2471 /* There is room in the queue, copy the data into the queue. */
\r
2472 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2475 /* Were any co-routines waiting for data to become available? */
\r
2476 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2478 /* In this instance the co-routine could be placed directly
\r
2479 * into the ready list as we are within a critical section.
\r
2480 * Instead the same pending ready list mechanism is used as if
\r
2481 * the event were caused from within an interrupt. */
\r
2482 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2484 /* The co-routine waiting has a higher priority so record
\r
2485 * that a yield might be appropriate. */
\r
2486 xReturn = errQUEUE_YIELD;
\r
2490 mtCOVERAGE_TEST_MARKER();
\r
2495 mtCOVERAGE_TEST_MARKER();
\r
2500 xReturn = errQUEUE_FULL;
\r
2503 portENABLE_INTERRUPTS();
\r
2508 #endif /* configUSE_CO_ROUTINES */
\r
2509 /*-----------------------------------------------------------*/
\r
2511 #if ( configUSE_CO_ROUTINES == 1 )
\r
2513 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
\r
2515 TickType_t xTicksToWait )
\r
2517 BaseType_t xReturn;
\r
2518 Queue_t * const pxQueue = xQueue;
\r
2520 /* If the queue is already empty we may have to block. A critical section
\r
2521 * is required to prevent an interrupt adding something to the queue
\r
2522 * between the check to see if the queue is empty and blocking on the queue. */
\r
2523 portDISABLE_INTERRUPTS();
\r
2525 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2527 /* There are no messages in the queue, do we want to block or just
\r
2528 * leave with nothing? */
\r
2529 if( xTicksToWait > ( TickType_t ) 0 )
\r
2531 /* As this is a co-routine we cannot block directly, but return
\r
2532 * indicating that we need to block. */
\r
2533 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
\r
2534 portENABLE_INTERRUPTS();
\r
2535 return errQUEUE_BLOCKED;
\r
2539 portENABLE_INTERRUPTS();
\r
2540 return errQUEUE_FULL;
\r
2545 mtCOVERAGE_TEST_MARKER();
\r
2548 portENABLE_INTERRUPTS();
\r
2550 portDISABLE_INTERRUPTS();
\r
2552 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2554 /* Data is available from the queue. */
\r
2555 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2557 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2559 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2563 mtCOVERAGE_TEST_MARKER();
\r
2566 --( pxQueue->uxMessagesWaiting );
\r
2567 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2571 /* Were any co-routines waiting for space to become available? */
\r
2572 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2574 /* In this instance the co-routine could be placed directly
\r
2575 * into the ready list as we are within a critical section.
\r
2576 * Instead the same pending ready list mechanism is used as if
\r
2577 * the event were caused from within an interrupt. */
\r
2578 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2580 xReturn = errQUEUE_YIELD;
\r
2584 mtCOVERAGE_TEST_MARKER();
\r
2589 mtCOVERAGE_TEST_MARKER();
\r
2597 portENABLE_INTERRUPTS();
\r
2602 #endif /* configUSE_CO_ROUTINES */
\r
2603 /*-----------------------------------------------------------*/
\r
2605 #if ( configUSE_CO_ROUTINES == 1 )
\r
2607 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
\r
2608 const void * pvItemToQueue,
\r
2609 BaseType_t xCoRoutinePreviouslyWoken )
\r
2611 Queue_t * const pxQueue = xQueue;
\r
2613 /* Cannot block within an ISR so if there is no space on the queue then
\r
2614 * exit without doing anything. */
\r
2615 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2617 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2619 /* We only want to wake one co-routine per ISR, so check that a
\r
2620 * co-routine has not already been woken. */
\r
2621 if( xCoRoutinePreviouslyWoken == pdFALSE )
\r
2623 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2625 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2631 mtCOVERAGE_TEST_MARKER();
\r
2636 mtCOVERAGE_TEST_MARKER();
\r
2641 mtCOVERAGE_TEST_MARKER();
\r
2646 mtCOVERAGE_TEST_MARKER();
\r
2649 return xCoRoutinePreviouslyWoken;
\r
2652 #endif /* configUSE_CO_ROUTINES */
\r
2653 /*-----------------------------------------------------------*/
\r
2655 #if ( configUSE_CO_ROUTINES == 1 )
\r
2657 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
\r
2659 BaseType_t * pxCoRoutineWoken )
\r
2661 BaseType_t xReturn;
\r
2662 Queue_t * const pxQueue = xQueue;
\r
2664 /* We cannot block from an ISR, so check there is data available. If
\r
2665 * not then just leave without doing anything. */
\r
2666 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2668 /* Copy the data from the queue. */
\r
2669 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2671 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2673 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2677 mtCOVERAGE_TEST_MARKER();
\r
2680 --( pxQueue->uxMessagesWaiting );
\r
2681 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2683 if( ( *pxCoRoutineWoken ) == pdFALSE )
\r
2685 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2687 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2689 *pxCoRoutineWoken = pdTRUE;
\r
2693 mtCOVERAGE_TEST_MARKER();
\r
2698 mtCOVERAGE_TEST_MARKER();
\r
2703 mtCOVERAGE_TEST_MARKER();
\r
2716 #endif /* configUSE_CO_ROUTINES */
\r
2717 /*-----------------------------------------------------------*/
\r
2719 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2721 void vQueueAddToRegistry( QueueHandle_t xQueue,
\r
2722 const char * pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2726 /* See if there is an empty space in the registry. A NULL name denotes
\r
2728 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2730 if( xQueueRegistry[ ux ].pcQueueName == NULL )
\r
2732 /* Store the information on this queue. */
\r
2733 xQueueRegistry[ ux ].pcQueueName = pcQueueName;
\r
2734 xQueueRegistry[ ux ].xHandle = xQueue;
\r
2736 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
\r
2741 mtCOVERAGE_TEST_MARKER();
\r
2746 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2747 /*-----------------------------------------------------------*/
\r
2749 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2751 const char * pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2754 const char * pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2756 /* Note there is nothing here to protect against another task adding or
\r
2757 * removing entries from the registry while it is being searched. */
\r
2759 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2761 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2763 pcReturn = xQueueRegistry[ ux ].pcQueueName;
\r
2768 mtCOVERAGE_TEST_MARKER();
\r
2773 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
\r
2775 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2776 /*-----------------------------------------------------------*/
\r
2778 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2780 void vQueueUnregisterQueue( QueueHandle_t xQueue )
\r
2784 /* See if the handle of the queue being unregistered in actually in the
\r
2786 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2788 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2790 /* Set the name to NULL to show that this slot if free again. */
\r
2791 xQueueRegistry[ ux ].pcQueueName = NULL;
\r
2793 /* Set the handle to NULL to ensure the same queue handle cannot
\r
2794 * appear in the registry twice if it is added, removed, then
\r
2796 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
\r
2801 mtCOVERAGE_TEST_MARKER();
\r
2804 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2806 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2807 /*-----------------------------------------------------------*/
\r
2809 #if ( configUSE_TIMERS == 1 )
\r
2811 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
\r
2812 TickType_t xTicksToWait,
\r
2813 const BaseType_t xWaitIndefinitely )
\r
2815 Queue_t * const pxQueue = xQueue;
\r
2817 /* This function should not be called by application code hence the
\r
2818 * 'Restricted' in its name. It is not part of the public API. It is
\r
2819 * designed for use by kernel code, and has special calling requirements.
\r
2820 * It can result in vListInsert() being called on a list that can only
\r
2821 * possibly ever have one item in it, so the list will be fast, but even
\r
2822 * so it should be called with the scheduler locked and not from a critical
\r
2825 /* Only do anything if there are no messages in the queue. This function
\r
2826 * will not actually cause the task to block, just place it on a blocked
\r
2827 * list. It will not block until the scheduler is unlocked - at which
\r
2828 * time a yield will be performed. If an item is added to the queue while
\r
2829 * the queue is locked, and the calling task blocks on the queue, then the
\r
2830 * calling task will be immediately unblocked when the queue is unlocked. */
\r
2831 prvLockQueue( pxQueue );
\r
2833 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
\r
2835 /* There is nothing in the queue, block for the specified period. */
\r
2836 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
\r
2840 mtCOVERAGE_TEST_MARKER();
\r
2843 prvUnlockQueue( pxQueue );
\r
2846 #endif /* configUSE_TIMERS */
\r
2847 /*-----------------------------------------------------------*/
\r
2849 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
2851 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
\r
2853 QueueSetHandle_t pxQueue;
\r
2855 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
\r
2860 #endif /* configUSE_QUEUE_SETS */
\r
2861 /*-----------------------------------------------------------*/
\r
2863 #if ( configUSE_QUEUE_SETS == 1 )
\r
2865 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2866 QueueSetHandle_t xQueueSet )
\r
2868 BaseType_t xReturn;
\r
2870 taskENTER_CRITICAL();
\r
2872 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
\r
2874 /* Cannot add a queue/semaphore to more than one queue set. */
\r
2877 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2879 /* Cannot add a queue/semaphore to a queue set if there are already
\r
2880 * items in the queue/semaphore. */
\r
2885 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
\r
2889 taskEXIT_CRITICAL();
\r
2894 #endif /* configUSE_QUEUE_SETS */
\r
2895 /*-----------------------------------------------------------*/
\r
2897 #if ( configUSE_QUEUE_SETS == 1 )
\r
2899 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2900 QueueSetHandle_t xQueueSet )
\r
2902 BaseType_t xReturn;
\r
2903 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
\r
2905 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
\r
2907 /* The queue was not a member of the set. */
\r
2910 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2912 /* It is dangerous to remove a queue from a set when the queue is
\r
2913 * not empty because the queue set will still hold pending events for
\r
2919 taskENTER_CRITICAL();
\r
2921 /* The queue is no longer contained in the set. */
\r
2922 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
\r
2924 taskEXIT_CRITICAL();
\r
2929 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
\r
2931 #endif /* configUSE_QUEUE_SETS */
\r
2932 /*-----------------------------------------------------------*/
\r
2934 #if ( configUSE_QUEUE_SETS == 1 )
\r
2936 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
\r
2937 TickType_t const xTicksToWait )
\r
2939 QueueSetMemberHandle_t xReturn = NULL;
\r
2941 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2945 #endif /* configUSE_QUEUE_SETS */
\r
2946 /*-----------------------------------------------------------*/
\r
2948 #if ( configUSE_QUEUE_SETS == 1 )
\r
2950 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
\r
2952 QueueSetMemberHandle_t xReturn = NULL;
\r
2954 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2958 #endif /* configUSE_QUEUE_SETS */
\r
2959 /*-----------------------------------------------------------*/
\r
2961 #if ( configUSE_QUEUE_SETS == 1 )
\r
2963 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
\r
2965 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
\r
2966 BaseType_t xReturn = pdFALSE;
\r
2968 /* This function must be called form a critical section. */
\r
2970 configASSERT( pxQueueSetContainer );
\r
2971 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
\r
2973 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
\r
2975 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
\r
2977 traceQUEUE_SET_SEND( pxQueueSetContainer );
\r
2979 /* The data copied is the handle of the queue that contains data. */
\r
2980 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
\r
2982 if( cTxLock == queueUNLOCKED )
\r
2984 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2986 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2988 /* The task waiting has a higher priority. */
\r
2993 mtCOVERAGE_TEST_MARKER();
\r
2998 mtCOVERAGE_TEST_MARKER();
\r
3003 configASSERT( cTxLock != queueINT8_MAX );
\r
3005 pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
3010 mtCOVERAGE_TEST_MARKER();
\r
3016 #endif /* configUSE_QUEUE_SETS */
\r