2 * FreeRTOS Kernel V10.4.1
\r
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * https://www.FreeRTOS.org
\r
23 * https://github.com/FreeRTOS
\r
30 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
31 * all the API functions to use the MPU wrappers. That should only be done when
\r
32 * task.h is included from an application file. */
\r
33 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
35 #include "FreeRTOS.h"
\r
39 #if ( configUSE_CO_ROUTINES == 1 )
\r
40 #include "croutine.h"
\r
43 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
44 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
45 * for the header files above, but not in this file, in order to generate the
\r
46 * correct privileged Vs unprivileged linkage and placement. */
\r
47 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Constants used with the cRxLock and cTxLock structure members. */
\r
51 #define queueUNLOCKED ( ( int8_t ) -1 )
\r
52 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
\r
53 #define queueINT8_MAX ( ( int8_t ) 127 )
\r
55 /* When the Queue_t structure is used to represent a base queue its pcHead and
\r
56 * pcTail members are used as pointers into the queue storage area. When the
\r
57 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
\r
58 * not necessary, and the pcHead pointer is set to NULL to indicate that the
\r
59 * structure instead holds a pointer to the mutex holder (if any). Map alternative
\r
60 * names to the pcHead and structure member to ensure the readability of the code
\r
61 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
\r
62 * a union as their usage is mutually exclusive dependent on what the queue is
\r
63 * being used for. */
\r
64 #define uxQueueType pcHead
\r
65 #define queueQUEUE_IS_MUTEX NULL
\r
67 typedef struct QueuePointers
\r
69 int8_t * pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
\r
70 int8_t * pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
\r
73 typedef struct SemaphoreData
\r
75 TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex. */
\r
76 UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
\r
79 /* Semaphores do not actually store or copy data, so have an item size of
\r
81 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
\r
82 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
\r
84 #if ( configUSE_PREEMPTION == 0 )
\r
86 /* If the cooperative scheduler is being used then a yield should not be
\r
87 * performed just because a higher priority task has been woken. */
\r
88 #define queueYIELD_IF_USING_PREEMPTION()
\r
90 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
94 * Definition of the queue used by the scheduler.
\r
95 * Items are queued by copy, not reference. See the following link for the
\r
96 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
\r
98 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
100 int8_t * pcHead; /*< Points to the beginning of the queue storage area. */
\r
101 int8_t * pcWriteTo; /*< Points to the free next place in the storage area. */
\r
105 QueuePointers_t xQueue; /*< Data required exclusively when this structure is used as a queue. */
\r
106 SemaphoreData_t xSemaphore; /*< Data required exclusively when this structure is used as a semaphore. */
\r
109 List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
\r
110 List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
\r
112 volatile UBaseType_t uxMessagesWaiting; /*< The number of items currently in the queue. */
\r
113 UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
\r
114 UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
\r
116 volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
117 volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
119 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
120 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
\r
123 #if ( configUSE_QUEUE_SETS == 1 )
\r
124 struct QueueDefinition * pxQueueSetContainer;
\r
127 #if ( configUSE_TRACE_FACILITY == 1 )
\r
128 UBaseType_t uxQueueNumber;
\r
129 uint8_t ucQueueType;
\r
133 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
\r
134 * name below to enable the use of older kernel aware debuggers. */
\r
135 typedef xQUEUE Queue_t;
\r
137 /*-----------------------------------------------------------*/
\r
140 * The queue registry is just a means for kernel aware debuggers to locate
\r
141 * queue structures. It has no other purpose so is an optional component.
\r
143 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
145 /* The type stored within the queue registry array. This allows a name
\r
146 * to be assigned to each queue making kernel aware debugging a little
\r
147 * more user friendly. */
\r
148 typedef struct QUEUE_REGISTRY_ITEM
\r
150 const char * pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
151 QueueHandle_t xHandle;
\r
152 } xQueueRegistryItem;
\r
154 /* The old xQueueRegistryItem name is maintained above then typedefed to the
\r
155 * new xQueueRegistryItem name below to enable the use of older kernel aware
\r
157 typedef xQueueRegistryItem QueueRegistryItem_t;
\r
159 /* The queue registry is simply an array of QueueRegistryItem_t structures.
\r
160 * The pcQueueName member of a structure being NULL is indicative of the
\r
161 * array position being vacant. */
\r
162 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
\r
164 #endif /* configQUEUE_REGISTRY_SIZE */
\r
167 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
\r
168 * prevent an ISR from adding or removing items to the queue, but does prevent
\r
169 * an ISR from removing tasks from the queue event lists. If an ISR finds a
\r
170 * queue is locked it will instead increment the appropriate queue lock count
\r
171 * to indicate that a task may require unblocking. When the queue in unlocked
\r
172 * these lock counts are inspected, and the appropriate action taken.
\r
174 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
177 * Uses a critical section to determine if there is any data in a queue.
\r
179 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
\r
181 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
184 * Uses a critical section to determine if there is any space in a queue.
\r
186 * @return pdTRUE if there is no space, otherwise pdFALSE;
\r
188 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
191 * Copies an item into the queue, either at the front of the queue or the
\r
192 * back of the queue.
\r
194 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
195 const void * pvItemToQueue,
\r
196 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
\r
199 * Copies an item out of a queue.
\r
201 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
202 void * const pvBuffer ) PRIVILEGED_FUNCTION;
\r
204 #if ( configUSE_QUEUE_SETS == 1 )
\r
207 * Checks to see if a queue is a member of a queue set, and if so, notifies
\r
208 * the queue set that the queue contains data.
\r
210 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
214 * Called after a Queue_t structure has been allocated either statically or
\r
215 * dynamically to fill in the structure's members.
\r
217 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
218 const UBaseType_t uxItemSize,
\r
219 uint8_t * pucQueueStorage,
\r
220 const uint8_t ucQueueType,
\r
221 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
224 * Mutexes are a special type of queue. When a mutex is created, first the
\r
225 * queue is created, then prvInitialiseMutex() is called to configure the queue
\r
228 #if ( configUSE_MUTEXES == 1 )
\r
229 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
232 #if ( configUSE_MUTEXES == 1 )
\r
235 * If a task waiting for a mutex causes the mutex holder to inherit a
\r
236 * priority, but the waiting task times out, then the holder should
\r
237 * disinherit the priority - but only down to the highest priority of any
\r
238 * other tasks that are waiting for the same mutex. This function returns
\r
241 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
243 /*-----------------------------------------------------------*/
\r
246 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
\r
247 * accessing the queue event lists.
\r
249 #define prvLockQueue( pxQueue ) \
\r
250 taskENTER_CRITICAL(); \
\r
252 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
\r
254 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
\r
256 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
\r
258 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
\r
261 taskEXIT_CRITICAL()
\r
262 /*-----------------------------------------------------------*/
\r
264 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
\r
265 BaseType_t xNewQueue )
\r
267 Queue_t * const pxQueue = xQueue;
\r
269 configASSERT( pxQueue );
\r
271 taskENTER_CRITICAL();
\r
273 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
274 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
\r
275 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
276 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
277 pxQueue->cRxLock = queueUNLOCKED;
\r
278 pxQueue->cTxLock = queueUNLOCKED;
\r
280 if( xNewQueue == pdFALSE )
\r
282 /* If there are tasks blocked waiting to read from the queue, then
\r
283 * the tasks will remain blocked as after this function exits the queue
\r
284 * will still be empty. If there are tasks blocked waiting to write to
\r
285 * the queue, then one should be unblocked as after this function exits
\r
286 * it will be possible to write to it. */
\r
287 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
289 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
291 queueYIELD_IF_USING_PREEMPTION();
\r
295 mtCOVERAGE_TEST_MARKER();
\r
300 mtCOVERAGE_TEST_MARKER();
\r
305 /* Ensure the event queues start in the correct state. */
\r
306 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
\r
307 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
\r
310 taskEXIT_CRITICAL();
\r
312 /* A value is returned for calling semantic consistency with previous
\r
316 /*-----------------------------------------------------------*/
\r
318 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
320 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
\r
321 const UBaseType_t uxItemSize,
\r
322 uint8_t * pucQueueStorage,
\r
323 StaticQueue_t * pxStaticQueue,
\r
324 const uint8_t ucQueueType )
\r
326 Queue_t * pxNewQueue;
\r
328 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
\r
330 /* The StaticQueue_t structure and the queue storage area must be
\r
332 configASSERT( pxStaticQueue != NULL );
\r
334 /* A queue storage area should be provided if the item size is not 0, and
\r
335 * should not be provided if the item size is 0. */
\r
336 configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) );
\r
337 configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) );
\r
339 #if ( configASSERT_DEFINED == 1 )
\r
341 /* Sanity check that the size of the structure used to declare a
\r
342 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
\r
343 * the real queue and semaphore structures. */
\r
344 volatile size_t xSize = sizeof( StaticQueue_t );
\r
345 configASSERT( xSize == sizeof( Queue_t ) );
\r
346 ( void ) xSize; /* Keeps lint quiet when configASSERT() is not defined. */
\r
348 #endif /* configASSERT_DEFINED */
\r
350 /* The address of a statically allocated queue was passed in, use it.
\r
351 * The address of a statically allocated storage area was also passed in
\r
352 * but is already set. */
\r
353 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
355 if( pxNewQueue != NULL )
\r
357 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
359 /* Queues can be allocated wither statically or dynamically, so
\r
360 * note this queue was allocated statically in case the queue is
\r
361 * later deleted. */
\r
362 pxNewQueue->ucStaticallyAllocated = pdTRUE;
\r
364 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
366 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
370 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
371 mtCOVERAGE_TEST_MARKER();
\r
377 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
378 /*-----------------------------------------------------------*/
\r
380 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
382 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
\r
383 const UBaseType_t uxItemSize,
\r
384 const uint8_t ucQueueType )
\r
386 Queue_t * pxNewQueue;
\r
387 size_t xQueueSizeInBytes;
\r
388 uint8_t * pucQueueStorage;
\r
390 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
\r
392 /* Allocate enough space to hold the maximum number of items that
\r
393 * can be in the queue at any time. It is valid for uxItemSize to be
\r
394 * zero in the case the queue is used as a semaphore. */
\r
395 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
397 /* Check for multiplication overflow. */
\r
398 configASSERT( ( uxItemSize == 0 ) || ( uxQueueLength == ( xQueueSizeInBytes / uxItemSize ) ) );
\r
400 /* Allocate the queue and storage area. Justification for MISRA
\r
401 * deviation as follows: pvPortMalloc() always ensures returned memory
\r
402 * blocks are aligned per the requirements of the MCU stack. In this case
\r
403 * pvPortMalloc() must return a pointer that is guaranteed to meet the
\r
404 * alignment requirements of the Queue_t structure - which in this case
\r
405 * is an int8_t *. Therefore, whenever the stack alignment requirements
\r
406 * are greater than or equal to the pointer to char requirements the cast
\r
407 * is safe. In other cases alignment requirements are not strict (one or
\r
409 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); /*lint !e9087 !e9079 see comment above. */
\r
411 if( pxNewQueue != NULL )
\r
413 /* Jump past the queue structure to find the location of the queue
\r
415 pucQueueStorage = ( uint8_t * ) pxNewQueue;
\r
416 pucQueueStorage += sizeof( Queue_t ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
418 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
420 /* Queues can be created either statically or dynamically, so
\r
421 * note this task was created dynamically in case it is later
\r
423 pxNewQueue->ucStaticallyAllocated = pdFALSE;
\r
425 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
427 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
431 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
432 mtCOVERAGE_TEST_MARKER();
\r
438 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
439 /*-----------------------------------------------------------*/
\r
441 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
442 const UBaseType_t uxItemSize,
\r
443 uint8_t * pucQueueStorage,
\r
444 const uint8_t ucQueueType,
\r
445 Queue_t * pxNewQueue )
\r
447 /* Remove compiler warnings about unused parameters should
\r
448 * configUSE_TRACE_FACILITY not be set to 1. */
\r
449 ( void ) ucQueueType;
\r
451 if( uxItemSize == ( UBaseType_t ) 0 )
\r
453 /* No RAM was allocated for the queue storage area, but PC head cannot
\r
454 * be set to NULL because NULL is used as a key to say the queue is used as
\r
455 * a mutex. Therefore just set pcHead to point to the queue as a benign
\r
456 * value that is known to be within the memory map. */
\r
457 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
\r
461 /* Set the head to the start of the queue storage area. */
\r
462 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
\r
465 /* Initialise the queue members as described where the queue type is
\r
467 pxNewQueue->uxLength = uxQueueLength;
\r
468 pxNewQueue->uxItemSize = uxItemSize;
\r
469 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
\r
471 #if ( configUSE_TRACE_FACILITY == 1 )
\r
473 pxNewQueue->ucQueueType = ucQueueType;
\r
475 #endif /* configUSE_TRACE_FACILITY */
\r
477 #if ( configUSE_QUEUE_SETS == 1 )
\r
479 pxNewQueue->pxQueueSetContainer = NULL;
\r
481 #endif /* configUSE_QUEUE_SETS */
\r
483 traceQUEUE_CREATE( pxNewQueue );
\r
485 /*-----------------------------------------------------------*/
\r
487 #if ( configUSE_MUTEXES == 1 )
\r
489 static void prvInitialiseMutex( Queue_t * pxNewQueue )
\r
491 if( pxNewQueue != NULL )
\r
493 /* The queue create function will set all the queue structure members
\r
494 * correctly for a generic queue, but this function is creating a
\r
495 * mutex. Overwrite those members that need to be set differently -
\r
496 * in particular the information required for priority inheritance. */
\r
497 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
\r
498 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
\r
500 /* In case this is a recursive mutex. */
\r
501 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
\r
503 traceCREATE_MUTEX( pxNewQueue );
\r
505 /* Start with the semaphore in the expected state. */
\r
506 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
\r
510 traceCREATE_MUTEX_FAILED();
\r
514 #endif /* configUSE_MUTEXES */
\r
515 /*-----------------------------------------------------------*/
\r
517 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
519 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
\r
521 QueueHandle_t xNewQueue;
\r
522 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
524 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
\r
525 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
530 #endif /* configUSE_MUTEXES */
\r
531 /*-----------------------------------------------------------*/
\r
533 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
535 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
\r
536 StaticQueue_t * pxStaticQueue )
\r
538 QueueHandle_t xNewQueue;
\r
539 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
541 /* Prevent compiler warnings about unused parameters if
\r
542 * configUSE_TRACE_FACILITY does not equal 1. */
\r
543 ( void ) ucQueueType;
\r
545 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
\r
546 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
551 #endif /* configUSE_MUTEXES */
\r
552 /*-----------------------------------------------------------*/
\r
554 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
556 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
\r
558 TaskHandle_t pxReturn;
\r
559 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
\r
561 /* This function is called by xSemaphoreGetMutexHolder(), and should not
\r
562 * be called directly. Note: This is a good way of determining if the
\r
563 * calling task is the mutex holder, but not a good way of determining the
\r
564 * identity of the mutex holder, as the holder may change between the
\r
565 * following critical section exiting and the function returning. */
\r
566 taskENTER_CRITICAL();
\r
568 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
\r
570 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
\r
577 taskEXIT_CRITICAL();
\r
580 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
582 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
583 /*-----------------------------------------------------------*/
\r
585 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
587 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
\r
589 TaskHandle_t pxReturn;
\r
591 configASSERT( xSemaphore );
\r
593 /* Mutexes cannot be used in interrupt service routines, so the mutex
\r
594 * holder should not change in an ISR, and therefore a critical section is
\r
595 * not required here. */
\r
596 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
\r
598 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
\r
606 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
608 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
609 /*-----------------------------------------------------------*/
\r
611 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
613 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
\r
615 BaseType_t xReturn;
\r
616 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
618 configASSERT( pxMutex );
\r
620 /* If this is the task that holds the mutex then xMutexHolder will not
\r
621 * change outside of this task. If this task does not hold the mutex then
\r
622 * pxMutexHolder can never coincidentally equal the tasks handle, and as
\r
623 * this is the only condition we are interested in it does not matter if
\r
624 * pxMutexHolder is accessed simultaneously by another task. Therefore no
\r
625 * mutual exclusion is required to test the pxMutexHolder variable. */
\r
626 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
628 traceGIVE_MUTEX_RECURSIVE( pxMutex );
\r
630 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
\r
631 * the task handle, therefore no underflow check is required. Also,
\r
632 * uxRecursiveCallCount is only modified by the mutex holder, and as
\r
633 * there can only be one, no mutual exclusion is required to modify the
\r
634 * uxRecursiveCallCount member. */
\r
635 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
\r
637 /* Has the recursive call count unwound to 0? */
\r
638 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
\r
640 /* Return the mutex. This will automatically unblock any other
\r
641 * task that might be waiting to access the mutex. */
\r
642 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
\r
646 mtCOVERAGE_TEST_MARKER();
\r
653 /* The mutex cannot be given because the calling task is not the
\r
657 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
663 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
664 /*-----------------------------------------------------------*/
\r
666 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
668 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
\r
669 TickType_t xTicksToWait )
\r
671 BaseType_t xReturn;
\r
672 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
674 configASSERT( pxMutex );
\r
676 /* Comments regarding mutual exclusion as per those within
\r
677 * xQueueGiveMutexRecursive(). */
\r
679 traceTAKE_MUTEX_RECURSIVE( pxMutex );
\r
681 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
683 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
688 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
\r
690 /* pdPASS will only be returned if the mutex was successfully
\r
691 * obtained. The calling task may have entered the Blocked state
\r
692 * before reaching here. */
\r
693 if( xReturn != pdFAIL )
\r
695 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
699 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
706 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
707 /*-----------------------------------------------------------*/
\r
709 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
711 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
\r
712 const UBaseType_t uxInitialCount,
\r
713 StaticQueue_t * pxStaticQueue )
\r
715 QueueHandle_t xHandle;
\r
717 configASSERT( uxMaxCount != 0 );
\r
718 configASSERT( uxInitialCount <= uxMaxCount );
\r
720 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
722 if( xHandle != NULL )
\r
724 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
726 traceCREATE_COUNTING_SEMAPHORE();
\r
730 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
736 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
737 /*-----------------------------------------------------------*/
\r
739 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
741 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
\r
742 const UBaseType_t uxInitialCount )
\r
744 QueueHandle_t xHandle;
\r
746 configASSERT( uxMaxCount != 0 );
\r
747 configASSERT( uxInitialCount <= uxMaxCount );
\r
749 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
751 if( xHandle != NULL )
\r
753 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
755 traceCREATE_COUNTING_SEMAPHORE();
\r
759 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
765 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
766 /*-----------------------------------------------------------*/
\r
768 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
\r
769 const void * const pvItemToQueue,
\r
770 TickType_t xTicksToWait,
\r
771 const BaseType_t xCopyPosition )
\r
773 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
\r
774 TimeOut_t xTimeOut;
\r
775 Queue_t * const pxQueue = xQueue;
\r
777 configASSERT( pxQueue );
\r
778 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
779 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
780 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
782 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
786 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
787 * allow return statements within the function itself. This is done in the
\r
788 * interest of execution time efficiency. */
\r
791 taskENTER_CRITICAL();
\r
793 /* Is there room on the queue now? The running task must be the
\r
794 * highest priority task wanting to access the queue. If the head item
\r
795 * in the queue is to be overwritten then it does not matter if the
\r
796 * queue is full. */
\r
797 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
799 traceQUEUE_SEND( pxQueue );
\r
801 #if ( configUSE_QUEUE_SETS == 1 )
\r
803 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
805 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
807 if( pxQueue->pxQueueSetContainer != NULL )
\r
809 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
811 /* Do not notify the queue set as an existing item
\r
812 * was overwritten in the queue so the number of items
\r
813 * in the queue has not changed. */
\r
814 mtCOVERAGE_TEST_MARKER();
\r
816 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
818 /* The queue is a member of a queue set, and posting
\r
819 * to the queue set caused a higher priority task to
\r
820 * unblock. A context switch is required. */
\r
821 queueYIELD_IF_USING_PREEMPTION();
\r
825 mtCOVERAGE_TEST_MARKER();
\r
830 /* If there was a task waiting for data to arrive on the
\r
831 * queue then unblock it now. */
\r
832 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
834 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
836 /* The unblocked task has a priority higher than
\r
837 * our own so yield immediately. Yes it is ok to
\r
838 * do this from within the critical section - the
\r
839 * kernel takes care of that. */
\r
840 queueYIELD_IF_USING_PREEMPTION();
\r
844 mtCOVERAGE_TEST_MARKER();
\r
847 else if( xYieldRequired != pdFALSE )
\r
849 /* This path is a special case that will only get
\r
850 * executed if the task was holding multiple mutexes
\r
851 * and the mutexes were given back in an order that is
\r
852 * different to that in which they were taken. */
\r
853 queueYIELD_IF_USING_PREEMPTION();
\r
857 mtCOVERAGE_TEST_MARKER();
\r
861 #else /* configUSE_QUEUE_SETS */
\r
863 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
865 /* If there was a task waiting for data to arrive on the
\r
866 * queue then unblock it now. */
\r
867 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
869 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
871 /* The unblocked task has a priority higher than
\r
872 * our own so yield immediately. Yes it is ok to do
\r
873 * this from within the critical section - the kernel
\r
874 * takes care of that. */
\r
875 queueYIELD_IF_USING_PREEMPTION();
\r
879 mtCOVERAGE_TEST_MARKER();
\r
882 else if( xYieldRequired != pdFALSE )
\r
884 /* This path is a special case that will only get
\r
885 * executed if the task was holding multiple mutexes and
\r
886 * the mutexes were given back in an order that is
\r
887 * different to that in which they were taken. */
\r
888 queueYIELD_IF_USING_PREEMPTION();
\r
892 mtCOVERAGE_TEST_MARKER();
\r
895 #endif /* configUSE_QUEUE_SETS */
\r
897 taskEXIT_CRITICAL();
\r
902 if( xTicksToWait == ( TickType_t ) 0 )
\r
904 /* The queue was full and no block time is specified (or
\r
905 * the block time has expired) so leave now. */
\r
906 taskEXIT_CRITICAL();
\r
908 /* Return to the original privilege level before exiting
\r
910 traceQUEUE_SEND_FAILED( pxQueue );
\r
911 return errQUEUE_FULL;
\r
913 else if( xEntryTimeSet == pdFALSE )
\r
915 /* The queue was full and a block time was specified so
\r
916 * configure the timeout structure. */
\r
917 vTaskInternalSetTimeOutState( &xTimeOut );
\r
918 xEntryTimeSet = pdTRUE;
\r
922 /* Entry time was already set. */
\r
923 mtCOVERAGE_TEST_MARKER();
\r
927 taskEXIT_CRITICAL();
\r
929 /* Interrupts and other tasks can send to and receive from the queue
\r
930 * now the critical section has been exited. */
\r
933 prvLockQueue( pxQueue );
\r
935 /* Update the timeout state to see if it has expired yet. */
\r
936 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
938 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
940 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
\r
941 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
\r
943 /* Unlocking the queue means queue events can effect the
\r
944 * event list. It is possible that interrupts occurring now
\r
945 * remove this task from the event list again - but as the
\r
946 * scheduler is suspended the task will go onto the pending
\r
947 * ready last instead of the actual ready list. */
\r
948 prvUnlockQueue( pxQueue );
\r
950 /* Resuming the scheduler will move tasks from the pending
\r
951 * ready list into the ready list - so it is feasible that this
\r
952 * task is already in a ready list before it yields - in which
\r
953 * case the yield will not cause a context switch unless there
\r
954 * is also a higher priority task in the pending ready list. */
\r
955 if( xTaskResumeAll() == pdFALSE )
\r
957 portYIELD_WITHIN_API();
\r
963 prvUnlockQueue( pxQueue );
\r
964 ( void ) xTaskResumeAll();
\r
969 /* The timeout has expired. */
\r
970 prvUnlockQueue( pxQueue );
\r
971 ( void ) xTaskResumeAll();
\r
973 traceQUEUE_SEND_FAILED( pxQueue );
\r
974 return errQUEUE_FULL;
\r
976 } /*lint -restore */
\r
978 /*-----------------------------------------------------------*/
\r
980 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
\r
981 const void * const pvItemToQueue,
\r
982 BaseType_t * const pxHigherPriorityTaskWoken,
\r
983 const BaseType_t xCopyPosition )
\r
985 BaseType_t xReturn;
\r
986 UBaseType_t uxSavedInterruptStatus;
\r
987 Queue_t * const pxQueue = xQueue;
\r
989 configASSERT( pxQueue );
\r
990 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
991 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
993 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
994 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
995 * above the maximum system call priority are kept permanently enabled, even
\r
996 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
997 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
998 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
999 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1000 * assigned a priority above the configured maximum system call priority.
\r
1001 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1002 * that have been assigned a priority at or (logically) below the maximum
\r
1003 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1004 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1005 * More information (albeit Cortex-M specific) is provided on the following
\r
1006 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1007 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1009 /* Similar to xQueueGenericSend, except without blocking if there is no room
\r
1010 * in the queue. Also don't directly wake a task that was blocked on a queue
\r
1011 * read, instead return a flag to say whether a context switch is required or
\r
1012 * not (i.e. has a task with a higher priority than us been woken by this
\r
1014 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1016 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
1018 const int8_t cTxLock = pxQueue->cTxLock;
\r
1019 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1021 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1023 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
\r
1024 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
\r
1025 * in a task disinheriting a priority and prvCopyDataToQueue() can be
\r
1026 * called here even though the disinherit function does not check if
\r
1027 * the scheduler is suspended before accessing the ready lists. */
\r
1028 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
1030 /* The event list is not altered if the queue is locked. This will
\r
1031 * be done when the queue is unlocked later. */
\r
1032 if( cTxLock == queueUNLOCKED )
\r
1034 #if ( configUSE_QUEUE_SETS == 1 )
\r
1036 if( pxQueue->pxQueueSetContainer != NULL )
\r
1038 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
1040 /* Do not notify the queue set as an existing item
\r
1041 * was overwritten in the queue so the number of items
\r
1042 * in the queue has not changed. */
\r
1043 mtCOVERAGE_TEST_MARKER();
\r
1045 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1047 /* The queue is a member of a queue set, and posting
\r
1048 * to the queue set caused a higher priority task to
\r
1049 * unblock. A context switch is required. */
\r
1050 if( pxHigherPriorityTaskWoken != NULL )
\r
1052 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1056 mtCOVERAGE_TEST_MARKER();
\r
1061 mtCOVERAGE_TEST_MARKER();
\r
1066 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1068 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1070 /* The task waiting has a higher priority so
\r
1071 * record that a context switch is required. */
\r
1072 if( pxHigherPriorityTaskWoken != NULL )
\r
1074 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1078 mtCOVERAGE_TEST_MARKER();
\r
1083 mtCOVERAGE_TEST_MARKER();
\r
1088 mtCOVERAGE_TEST_MARKER();
\r
1092 #else /* configUSE_QUEUE_SETS */
\r
1094 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1096 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1098 /* The task waiting has a higher priority so record that a
\r
1099 * context switch is required. */
\r
1100 if( pxHigherPriorityTaskWoken != NULL )
\r
1102 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1106 mtCOVERAGE_TEST_MARKER();
\r
1111 mtCOVERAGE_TEST_MARKER();
\r
1116 mtCOVERAGE_TEST_MARKER();
\r
1119 /* Not used in this path. */
\r
1120 ( void ) uxPreviousMessagesWaiting;
\r
1122 #endif /* configUSE_QUEUE_SETS */
\r
1126 /* Increment the lock count so the task that unlocks the queue
\r
1127 * knows that data was posted while it was locked. */
\r
1128 configASSERT( cTxLock != queueINT8_MAX );
\r
1130 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1137 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1138 xReturn = errQUEUE_FULL;
\r
1141 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1145 /*-----------------------------------------------------------*/
\r
1147 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
\r
1148 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1150 BaseType_t xReturn;
\r
1151 UBaseType_t uxSavedInterruptStatus;
\r
1152 Queue_t * const pxQueue = xQueue;
\r
1154 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
\r
1155 * item size is 0. Don't directly wake a task that was blocked on a queue
\r
1156 * read, instead return a flag to say whether a context switch is required or
\r
1157 * not (i.e. has a task with a higher priority than us been woken by this
\r
1160 configASSERT( pxQueue );
\r
1162 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
\r
1163 * if the item size is not 0. */
\r
1164 configASSERT( pxQueue->uxItemSize == 0 );
\r
1166 /* Normally a mutex would not be given from an interrupt, especially if
\r
1167 * there is a mutex holder, as priority inheritance makes no sense for an
\r
1168 * interrupts, only tasks. */
\r
1169 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
\r
1171 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1172 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1173 * above the maximum system call priority are kept permanently enabled, even
\r
1174 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1175 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1176 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1177 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1178 * assigned a priority above the configured maximum system call priority.
\r
1179 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1180 * that have been assigned a priority at or (logically) below the maximum
\r
1181 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1182 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1183 * More information (albeit Cortex-M specific) is provided on the following
\r
1184 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1185 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1187 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1189 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1191 /* When the queue is used to implement a semaphore no data is ever
\r
1192 * moved through the queue but it is still valid to see if the queue 'has
\r
1194 if( uxMessagesWaiting < pxQueue->uxLength )
\r
1196 const int8_t cTxLock = pxQueue->cTxLock;
\r
1198 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1200 /* A task can only have an inherited priority if it is a mutex
\r
1201 * holder - and if there is a mutex holder then the mutex cannot be
\r
1202 * given from an ISR. As this is the ISR version of the function it
\r
1203 * can be assumed there is no mutex holder and no need to determine if
\r
1204 * priority disinheritance is needed. Simply increase the count of
\r
1205 * messages (semaphores) available. */
\r
1206 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
1208 /* The event list is not altered if the queue is locked. This will
\r
1209 * be done when the queue is unlocked later. */
\r
1210 if( cTxLock == queueUNLOCKED )
\r
1212 #if ( configUSE_QUEUE_SETS == 1 )
\r
1214 if( pxQueue->pxQueueSetContainer != NULL )
\r
1216 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1218 /* The semaphore is a member of a queue set, and
\r
1219 * posting to the queue set caused a higher priority
\r
1220 * task to unblock. A context switch is required. */
\r
1221 if( pxHigherPriorityTaskWoken != NULL )
\r
1223 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1227 mtCOVERAGE_TEST_MARKER();
\r
1232 mtCOVERAGE_TEST_MARKER();
\r
1237 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1239 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1241 /* The task waiting has a higher priority so
\r
1242 * record that a context switch is required. */
\r
1243 if( pxHigherPriorityTaskWoken != NULL )
\r
1245 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1249 mtCOVERAGE_TEST_MARKER();
\r
1254 mtCOVERAGE_TEST_MARKER();
\r
1259 mtCOVERAGE_TEST_MARKER();
\r
1263 #else /* configUSE_QUEUE_SETS */
\r
1265 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1267 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1269 /* The task waiting has a higher priority so record that a
\r
1270 * context switch is required. */
\r
1271 if( pxHigherPriorityTaskWoken != NULL )
\r
1273 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1277 mtCOVERAGE_TEST_MARKER();
\r
1282 mtCOVERAGE_TEST_MARKER();
\r
1287 mtCOVERAGE_TEST_MARKER();
\r
1290 #endif /* configUSE_QUEUE_SETS */
\r
1294 /* Increment the lock count so the task that unlocks the queue
\r
1295 * knows that data was posted while it was locked. */
\r
1296 configASSERT( cTxLock != queueINT8_MAX );
\r
1298 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1305 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1306 xReturn = errQUEUE_FULL;
\r
1309 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1313 /*-----------------------------------------------------------*/
\r
1315 BaseType_t xQueueReceive( QueueHandle_t xQueue,
\r
1316 void * const pvBuffer,
\r
1317 TickType_t xTicksToWait )
\r
1319 BaseType_t xEntryTimeSet = pdFALSE;
\r
1320 TimeOut_t xTimeOut;
\r
1321 Queue_t * const pxQueue = xQueue;
\r
1323 /* Check the pointer is not NULL. */
\r
1324 configASSERT( ( pxQueue ) );
\r
1326 /* The buffer into which data is received can only be NULL if the data size
\r
1327 * is zero (so no data is copied into the buffer). */
\r
1328 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1330 /* Cannot block if the scheduler is suspended. */
\r
1331 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1333 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1337 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1338 * allow return statements within the function itself. This is done in the
\r
1339 * interest of execution time efficiency. */
\r
1342 taskENTER_CRITICAL();
\r
1344 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1346 /* Is there data in the queue now? To be running the calling task
\r
1347 * must be the highest priority task wanting to access the queue. */
\r
1348 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1350 /* Data available, remove one item. */
\r
1351 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1352 traceQUEUE_RECEIVE( pxQueue );
\r
1353 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1355 /* There is now space in the queue, were any tasks waiting to
\r
1356 * post to the queue? If so, unblock the highest priority waiting
\r
1358 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1360 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1362 queueYIELD_IF_USING_PREEMPTION();
\r
1366 mtCOVERAGE_TEST_MARKER();
\r
1371 mtCOVERAGE_TEST_MARKER();
\r
1374 taskEXIT_CRITICAL();
\r
1379 if( xTicksToWait == ( TickType_t ) 0 )
\r
1381 /* The queue was empty and no block time is specified (or
\r
1382 * the block time has expired) so leave now. */
\r
1383 taskEXIT_CRITICAL();
\r
1384 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1385 return errQUEUE_EMPTY;
\r
1387 else if( xEntryTimeSet == pdFALSE )
\r
1389 /* The queue was empty and a block time was specified so
\r
1390 * configure the timeout structure. */
\r
1391 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1392 xEntryTimeSet = pdTRUE;
\r
1396 /* Entry time was already set. */
\r
1397 mtCOVERAGE_TEST_MARKER();
\r
1401 taskEXIT_CRITICAL();
\r
1403 /* Interrupts and other tasks can send to and receive from the queue
\r
1404 * now the critical section has been exited. */
\r
1406 vTaskSuspendAll();
\r
1407 prvLockQueue( pxQueue );
\r
1409 /* Update the timeout state to see if it has expired yet. */
\r
1410 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1412 /* The timeout has not expired. If the queue is still empty place
\r
1413 * the task on the list of tasks waiting to receive from the queue. */
\r
1414 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1416 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1417 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1418 prvUnlockQueue( pxQueue );
\r
1420 if( xTaskResumeAll() == pdFALSE )
\r
1422 portYIELD_WITHIN_API();
\r
1426 mtCOVERAGE_TEST_MARKER();
\r
1431 /* The queue contains data again. Loop back to try and read the
\r
1433 prvUnlockQueue( pxQueue );
\r
1434 ( void ) xTaskResumeAll();
\r
1439 /* Timed out. If there is no data in the queue exit, otherwise loop
\r
1440 * back and attempt to read the data. */
\r
1441 prvUnlockQueue( pxQueue );
\r
1442 ( void ) xTaskResumeAll();
\r
1444 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1446 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1447 return errQUEUE_EMPTY;
\r
1451 mtCOVERAGE_TEST_MARKER();
\r
1454 } /*lint -restore */
\r
1456 /*-----------------------------------------------------------*/
\r
1458 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
\r
1459 TickType_t xTicksToWait )
\r
1461 BaseType_t xEntryTimeSet = pdFALSE;
\r
1462 TimeOut_t xTimeOut;
\r
1463 Queue_t * const pxQueue = xQueue;
\r
1465 #if ( configUSE_MUTEXES == 1 )
\r
1466 BaseType_t xInheritanceOccurred = pdFALSE;
\r
1469 /* Check the queue pointer is not NULL. */
\r
1470 configASSERT( ( pxQueue ) );
\r
1472 /* Check this really is a semaphore, in which case the item size will be
\r
1474 configASSERT( pxQueue->uxItemSize == 0 );
\r
1476 /* Cannot block if the scheduler is suspended. */
\r
1477 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1479 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1483 /*lint -save -e904 This function relaxes the coding standard somewhat to allow return
\r
1484 * statements within the function itself. This is done in the interest
\r
1485 * of execution time efficiency. */
\r
1488 taskENTER_CRITICAL();
\r
1490 /* Semaphores are queues with an item size of 0, and where the
\r
1491 * number of messages in the queue is the semaphore's count value. */
\r
1492 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
\r
1494 /* Is there data in the queue now? To be running the calling task
\r
1495 * must be the highest priority task wanting to access the queue. */
\r
1496 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
\r
1498 traceQUEUE_RECEIVE( pxQueue );
\r
1500 /* Semaphores are queues with a data size of zero and where the
\r
1501 * messages waiting is the semaphore's count. Reduce the count. */
\r
1502 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
\r
1504 #if ( configUSE_MUTEXES == 1 )
\r
1506 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1508 /* Record the information required to implement
\r
1509 * priority inheritance should it become necessary. */
\r
1510 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
\r
1514 mtCOVERAGE_TEST_MARKER();
\r
1517 #endif /* configUSE_MUTEXES */
\r
1519 /* Check to see if other tasks are blocked waiting to give the
\r
1520 * semaphore, and if so, unblock the highest priority such task. */
\r
1521 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1523 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1525 queueYIELD_IF_USING_PREEMPTION();
\r
1529 mtCOVERAGE_TEST_MARKER();
\r
1534 mtCOVERAGE_TEST_MARKER();
\r
1537 taskEXIT_CRITICAL();
\r
1542 if( xTicksToWait == ( TickType_t ) 0 )
\r
1544 /* For inheritance to have occurred there must have been an
\r
1545 * initial timeout, and an adjusted timeout cannot become 0, as
\r
1546 * if it were 0 the function would have exited. */
\r
1547 #if ( configUSE_MUTEXES == 1 )
\r
1549 configASSERT( xInheritanceOccurred == pdFALSE );
\r
1551 #endif /* configUSE_MUTEXES */
\r
1553 /* The semaphore count was 0 and no block time is specified
\r
1554 * (or the block time has expired) so exit now. */
\r
1555 taskEXIT_CRITICAL();
\r
1556 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1557 return errQUEUE_EMPTY;
\r
1559 else if( xEntryTimeSet == pdFALSE )
\r
1561 /* The semaphore count was 0 and a block time was specified
\r
1562 * so configure the timeout structure ready to block. */
\r
1563 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1564 xEntryTimeSet = pdTRUE;
\r
1568 /* Entry time was already set. */
\r
1569 mtCOVERAGE_TEST_MARKER();
\r
1573 taskEXIT_CRITICAL();
\r
1575 /* Interrupts and other tasks can give to and take from the semaphore
\r
1576 * now the critical section has been exited. */
\r
1578 vTaskSuspendAll();
\r
1579 prvLockQueue( pxQueue );
\r
1581 /* Update the timeout state to see if it has expired yet. */
\r
1582 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1584 /* A block time is specified and not expired. If the semaphore
\r
1585 * count is 0 then enter the Blocked state to wait for a semaphore to
\r
1586 * become available. As semaphores are implemented with queues the
\r
1587 * queue being empty is equivalent to the semaphore count being 0. */
\r
1588 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1590 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1592 #if ( configUSE_MUTEXES == 1 )
\r
1594 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1596 taskENTER_CRITICAL();
\r
1598 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
1600 taskEXIT_CRITICAL();
\r
1604 mtCOVERAGE_TEST_MARKER();
\r
1607 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1609 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1610 prvUnlockQueue( pxQueue );
\r
1612 if( xTaskResumeAll() == pdFALSE )
\r
1614 portYIELD_WITHIN_API();
\r
1618 mtCOVERAGE_TEST_MARKER();
\r
1623 /* There was no timeout and the semaphore count was not 0, so
\r
1624 * attempt to take the semaphore again. */
\r
1625 prvUnlockQueue( pxQueue );
\r
1626 ( void ) xTaskResumeAll();
\r
1632 prvUnlockQueue( pxQueue );
\r
1633 ( void ) xTaskResumeAll();
\r
1635 /* If the semaphore count is 0 exit now as the timeout has
\r
1636 * expired. Otherwise return to attempt to take the semaphore that is
\r
1637 * known to be available. As semaphores are implemented by queues the
\r
1638 * queue being empty is equivalent to the semaphore count being 0. */
\r
1639 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1641 #if ( configUSE_MUTEXES == 1 )
\r
1643 /* xInheritanceOccurred could only have be set if
\r
1644 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
\r
1645 * test the mutex type again to check it is actually a mutex. */
\r
1646 if( xInheritanceOccurred != pdFALSE )
\r
1648 taskENTER_CRITICAL();
\r
1650 UBaseType_t uxHighestWaitingPriority;
\r
1652 /* This task blocking on the mutex caused another
\r
1653 * task to inherit this task's priority. Now this task
\r
1654 * has timed out the priority should be disinherited
\r
1655 * again, but only as low as the next highest priority
\r
1656 * task that is waiting for the same mutex. */
\r
1657 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
\r
1658 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
\r
1660 taskEXIT_CRITICAL();
\r
1663 #endif /* configUSE_MUTEXES */
\r
1665 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1666 return errQUEUE_EMPTY;
\r
1670 mtCOVERAGE_TEST_MARKER();
\r
1673 } /*lint -restore */
\r
1675 /*-----------------------------------------------------------*/
\r
1677 BaseType_t xQueuePeek( QueueHandle_t xQueue,
\r
1678 void * const pvBuffer,
\r
1679 TickType_t xTicksToWait )
\r
1681 BaseType_t xEntryTimeSet = pdFALSE;
\r
1682 TimeOut_t xTimeOut;
\r
1683 int8_t * pcOriginalReadPosition;
\r
1684 Queue_t * const pxQueue = xQueue;
\r
1686 /* Check the pointer is not NULL. */
\r
1687 configASSERT( ( pxQueue ) );
\r
1689 /* The buffer into which data is received can only be NULL if the data size
\r
1690 * is zero (so no data is copied into the buffer. */
\r
1691 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1693 /* Cannot block if the scheduler is suspended. */
\r
1694 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1696 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1700 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1701 * allow return statements within the function itself. This is done in the
\r
1702 * interest of execution time efficiency. */
\r
1705 taskENTER_CRITICAL();
\r
1707 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1709 /* Is there data in the queue now? To be running the calling task
\r
1710 * must be the highest priority task wanting to access the queue. */
\r
1711 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1713 /* Remember the read position so it can be reset after the data
\r
1714 * is read from the queue as this function is only peeking the
\r
1715 * data, not removing it. */
\r
1716 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1718 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1719 traceQUEUE_PEEK( pxQueue );
\r
1721 /* The data is not being removed, so reset the read pointer. */
\r
1722 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1724 /* The data is being left in the queue, so see if there are
\r
1725 * any other tasks waiting for the data. */
\r
1726 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1728 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1730 /* The task waiting has a higher priority than this task. */
\r
1731 queueYIELD_IF_USING_PREEMPTION();
\r
1735 mtCOVERAGE_TEST_MARKER();
\r
1740 mtCOVERAGE_TEST_MARKER();
\r
1743 taskEXIT_CRITICAL();
\r
1748 if( xTicksToWait == ( TickType_t ) 0 )
\r
1750 /* The queue was empty and no block time is specified (or
\r
1751 * the block time has expired) so leave now. */
\r
1752 taskEXIT_CRITICAL();
\r
1753 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1754 return errQUEUE_EMPTY;
\r
1756 else if( xEntryTimeSet == pdFALSE )
\r
1758 /* The queue was empty and a block time was specified so
\r
1759 * configure the timeout structure ready to enter the blocked
\r
1761 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1762 xEntryTimeSet = pdTRUE;
\r
1766 /* Entry time was already set. */
\r
1767 mtCOVERAGE_TEST_MARKER();
\r
1771 taskEXIT_CRITICAL();
\r
1773 /* Interrupts and other tasks can send to and receive from the queue
\r
1774 * now the critical section has been exited. */
\r
1776 vTaskSuspendAll();
\r
1777 prvLockQueue( pxQueue );
\r
1779 /* Update the timeout state to see if it has expired yet. */
\r
1780 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1782 /* Timeout has not expired yet, check to see if there is data in the
\r
1783 * queue now, and if not enter the Blocked state to wait for data. */
\r
1784 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1786 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
\r
1787 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1788 prvUnlockQueue( pxQueue );
\r
1790 if( xTaskResumeAll() == pdFALSE )
\r
1792 portYIELD_WITHIN_API();
\r
1796 mtCOVERAGE_TEST_MARKER();
\r
1801 /* There is data in the queue now, so don't enter the blocked
\r
1802 * state, instead return to try and obtain the data. */
\r
1803 prvUnlockQueue( pxQueue );
\r
1804 ( void ) xTaskResumeAll();
\r
1809 /* The timeout has expired. If there is still no data in the queue
\r
1810 * exit, otherwise go back and try to read the data again. */
\r
1811 prvUnlockQueue( pxQueue );
\r
1812 ( void ) xTaskResumeAll();
\r
1814 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1816 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1817 return errQUEUE_EMPTY;
\r
1821 mtCOVERAGE_TEST_MARKER();
\r
1824 } /*lint -restore */
\r
1826 /*-----------------------------------------------------------*/
\r
1828 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
\r
1829 void * const pvBuffer,
\r
1830 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1832 BaseType_t xReturn;
\r
1833 UBaseType_t uxSavedInterruptStatus;
\r
1834 Queue_t * const pxQueue = xQueue;
\r
1836 configASSERT( pxQueue );
\r
1837 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1839 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1840 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1841 * above the maximum system call priority are kept permanently enabled, even
\r
1842 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1843 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1844 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1845 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1846 * assigned a priority above the configured maximum system call priority.
\r
1847 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1848 * that have been assigned a priority at or (logically) below the maximum
\r
1849 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1850 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1851 * More information (albeit Cortex-M specific) is provided on the following
\r
1852 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1853 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1855 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1857 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1859 /* Cannot block in an ISR, so check there is data available. */
\r
1860 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1862 const int8_t cRxLock = pxQueue->cRxLock;
\r
1864 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
\r
1866 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1867 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1869 /* If the queue is locked the event list will not be modified.
\r
1870 * Instead update the lock count so the task that unlocks the queue
\r
1871 * will know that an ISR has removed data while the queue was
\r
1873 if( cRxLock == queueUNLOCKED )
\r
1875 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1877 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1879 /* The task waiting has a higher priority than us so
\r
1880 * force a context switch. */
\r
1881 if( pxHigherPriorityTaskWoken != NULL )
\r
1883 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1887 mtCOVERAGE_TEST_MARKER();
\r
1892 mtCOVERAGE_TEST_MARKER();
\r
1897 mtCOVERAGE_TEST_MARKER();
\r
1902 /* Increment the lock count so the task that unlocks the queue
\r
1903 * knows that data was removed while it was locked. */
\r
1904 configASSERT( cRxLock != queueINT8_MAX );
\r
1906 pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
\r
1914 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
\r
1917 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1921 /*-----------------------------------------------------------*/
\r
1923 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
\r
1924 void * const pvBuffer )
\r
1926 BaseType_t xReturn;
\r
1927 UBaseType_t uxSavedInterruptStatus;
\r
1928 int8_t * pcOriginalReadPosition;
\r
1929 Queue_t * const pxQueue = xQueue;
\r
1931 configASSERT( pxQueue );
\r
1932 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1933 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
\r
1935 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1936 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1937 * above the maximum system call priority are kept permanently enabled, even
\r
1938 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1939 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1940 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1941 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1942 * assigned a priority above the configured maximum system call priority.
\r
1943 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1944 * that have been assigned a priority at or (logically) below the maximum
\r
1945 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1946 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1947 * More information (albeit Cortex-M specific) is provided on the following
\r
1948 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1949 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1951 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1953 /* Cannot block in an ISR, so check there is data available. */
\r
1954 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1956 traceQUEUE_PEEK_FROM_ISR( pxQueue );
\r
1958 /* Remember the read position so it can be reset as nothing is
\r
1959 * actually being removed from the queue. */
\r
1960 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1961 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1962 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1969 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
\r
1972 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1976 /*-----------------------------------------------------------*/
\r
1978 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
\r
1980 UBaseType_t uxReturn;
\r
1982 configASSERT( xQueue );
\r
1984 taskENTER_CRITICAL();
\r
1986 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
\r
1988 taskEXIT_CRITICAL();
\r
1991 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
1992 /*-----------------------------------------------------------*/
\r
1994 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
\r
1996 UBaseType_t uxReturn;
\r
1997 Queue_t * const pxQueue = xQueue;
\r
1999 configASSERT( pxQueue );
\r
2001 taskENTER_CRITICAL();
\r
2003 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
\r
2005 taskEXIT_CRITICAL();
\r
2008 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2009 /*-----------------------------------------------------------*/
\r
2011 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
\r
2013 UBaseType_t uxReturn;
\r
2014 Queue_t * const pxQueue = xQueue;
\r
2016 configASSERT( pxQueue );
\r
2017 uxReturn = pxQueue->uxMessagesWaiting;
\r
2020 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2021 /*-----------------------------------------------------------*/
\r
2023 void vQueueDelete( QueueHandle_t xQueue )
\r
2025 Queue_t * const pxQueue = xQueue;
\r
2027 configASSERT( pxQueue );
\r
2028 traceQUEUE_DELETE( pxQueue );
\r
2030 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2032 vQueueUnregisterQueue( pxQueue );
\r
2036 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
\r
2038 /* The queue can only have been allocated dynamically - free it
\r
2040 vPortFree( pxQueue );
\r
2042 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
2044 /* The queue could have been allocated statically or dynamically, so
\r
2045 * check before attempting to free the memory. */
\r
2046 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
\r
2048 vPortFree( pxQueue );
\r
2052 mtCOVERAGE_TEST_MARKER();
\r
2055 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
\r
2057 /* The queue must have been statically allocated, so is not going to be
\r
2058 * deleted. Avoid compiler warnings about the unused parameter. */
\r
2061 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
2063 /*-----------------------------------------------------------*/
\r
2065 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2067 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
\r
2069 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
\r
2072 #endif /* configUSE_TRACE_FACILITY */
\r
2073 /*-----------------------------------------------------------*/
\r
2075 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2077 void vQueueSetQueueNumber( QueueHandle_t xQueue,
\r
2078 UBaseType_t uxQueueNumber )
\r
2080 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
\r
2083 #endif /* configUSE_TRACE_FACILITY */
\r
2084 /*-----------------------------------------------------------*/
\r
2086 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2088 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
\r
2090 return ( ( Queue_t * ) xQueue )->ucQueueType;
\r
2093 #endif /* configUSE_TRACE_FACILITY */
\r
2094 /*-----------------------------------------------------------*/
\r
2096 #if ( configUSE_MUTEXES == 1 )
\r
2098 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
\r
2100 UBaseType_t uxHighestPriorityOfWaitingTasks;
\r
2102 /* If a task waiting for a mutex causes the mutex holder to inherit a
\r
2103 * priority, but the waiting task times out, then the holder should
\r
2104 * disinherit the priority - but only down to the highest priority of any
\r
2105 * other tasks that are waiting for the same mutex. For this purpose,
\r
2106 * return the priority of the highest priority task that is waiting for the
\r
2108 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
\r
2110 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) );
\r
2114 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
\r
2117 return uxHighestPriorityOfWaitingTasks;
\r
2120 #endif /* configUSE_MUTEXES */
\r
2121 /*-----------------------------------------------------------*/
\r
2123 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
2124 const void * pvItemToQueue,
\r
2125 const BaseType_t xPosition )
\r
2127 BaseType_t xReturn = pdFALSE;
\r
2128 UBaseType_t uxMessagesWaiting;
\r
2130 /* This function is called from a critical section. */
\r
2132 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
2134 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
\r
2136 #if ( configUSE_MUTEXES == 1 )
\r
2138 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
2140 /* The mutex is no longer being held. */
\r
2141 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
2142 pxQueue->u.xSemaphore.xMutexHolder = NULL;
\r
2146 mtCOVERAGE_TEST_MARKER();
\r
2149 #endif /* configUSE_MUTEXES */
\r
2151 else if( xPosition == queueSEND_TO_BACK )
\r
2153 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2154 pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2156 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2158 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
2162 mtCOVERAGE_TEST_MARKER();
\r
2167 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
\r
2168 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
\r
2170 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2172 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
\r
2176 mtCOVERAGE_TEST_MARKER();
\r
2179 if( xPosition == queueOVERWRITE )
\r
2181 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2183 /* An item is not being added but overwritten, so subtract
\r
2184 * one from the recorded number of items in the queue so when
\r
2185 * one is added again below the number of recorded items remains
\r
2187 --uxMessagesWaiting;
\r
2191 mtCOVERAGE_TEST_MARKER();
\r
2196 mtCOVERAGE_TEST_MARKER();
\r
2200 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
2204 /*-----------------------------------------------------------*/
\r
2206 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
2207 void * const pvBuffer )
\r
2209 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
\r
2211 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2213 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
\r
2215 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2219 mtCOVERAGE_TEST_MARKER();
\r
2222 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2225 /*-----------------------------------------------------------*/
\r
2227 static void prvUnlockQueue( Queue_t * const pxQueue )
\r
2229 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
\r
2231 /* The lock counts contains the number of extra data items placed or
\r
2232 * removed from the queue while the queue was locked. When a queue is
\r
2233 * locked items can be added or removed, but the event lists cannot be
\r
2235 taskENTER_CRITICAL();
\r
2237 int8_t cTxLock = pxQueue->cTxLock;
\r
2239 /* See if data was added to the queue while it was locked. */
\r
2240 while( cTxLock > queueLOCKED_UNMODIFIED )
\r
2242 /* Data was posted while the queue was locked. Are any tasks
\r
2243 * blocked waiting for data to become available? */
\r
2244 #if ( configUSE_QUEUE_SETS == 1 )
\r
2246 if( pxQueue->pxQueueSetContainer != NULL )
\r
2248 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
2250 /* The queue is a member of a queue set, and posting to
\r
2251 * the queue set caused a higher priority task to unblock.
\r
2252 * A context switch is required. */
\r
2253 vTaskMissedYield();
\r
2257 mtCOVERAGE_TEST_MARKER();
\r
2262 /* Tasks that are removed from the event list will get
\r
2263 * added to the pending ready list as the scheduler is still
\r
2265 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2267 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2269 /* The task waiting has a higher priority so record that a
\r
2270 * context switch is required. */
\r
2271 vTaskMissedYield();
\r
2275 mtCOVERAGE_TEST_MARKER();
\r
2284 #else /* configUSE_QUEUE_SETS */
\r
2286 /* Tasks that are removed from the event list will get added to
\r
2287 * the pending ready list as the scheduler is still suspended. */
\r
2288 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2290 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2292 /* The task waiting has a higher priority so record that
\r
2293 * a context switch is required. */
\r
2294 vTaskMissedYield();
\r
2298 mtCOVERAGE_TEST_MARKER();
\r
2306 #endif /* configUSE_QUEUE_SETS */
\r
2311 pxQueue->cTxLock = queueUNLOCKED;
\r
2313 taskEXIT_CRITICAL();
\r
2315 /* Do the same for the Rx lock. */
\r
2316 taskENTER_CRITICAL();
\r
2318 int8_t cRxLock = pxQueue->cRxLock;
\r
2320 while( cRxLock > queueLOCKED_UNMODIFIED )
\r
2322 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2324 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2326 vTaskMissedYield();
\r
2330 mtCOVERAGE_TEST_MARKER();
\r
2341 pxQueue->cRxLock = queueUNLOCKED;
\r
2343 taskEXIT_CRITICAL();
\r
2345 /*-----------------------------------------------------------*/
\r
2347 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
\r
2349 BaseType_t xReturn;
\r
2351 taskENTER_CRITICAL();
\r
2353 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2359 xReturn = pdFALSE;
\r
2362 taskEXIT_CRITICAL();
\r
2366 /*-----------------------------------------------------------*/
\r
2368 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
\r
2370 BaseType_t xReturn;
\r
2371 Queue_t * const pxQueue = xQueue;
\r
2373 configASSERT( pxQueue );
\r
2375 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2381 xReturn = pdFALSE;
\r
2385 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2386 /*-----------------------------------------------------------*/
\r
2388 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
\r
2390 BaseType_t xReturn;
\r
2392 taskENTER_CRITICAL();
\r
2394 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2400 xReturn = pdFALSE;
\r
2403 taskEXIT_CRITICAL();
\r
2407 /*-----------------------------------------------------------*/
\r
2409 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
\r
2411 BaseType_t xReturn;
\r
2412 Queue_t * const pxQueue = xQueue;
\r
2414 configASSERT( pxQueue );
\r
2416 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2422 xReturn = pdFALSE;
\r
2426 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2427 /*-----------------------------------------------------------*/
\r
2429 #if ( configUSE_CO_ROUTINES == 1 )
\r
2431 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
\r
2432 const void * pvItemToQueue,
\r
2433 TickType_t xTicksToWait )
\r
2435 BaseType_t xReturn;
\r
2436 Queue_t * const pxQueue = xQueue;
\r
2438 /* If the queue is already full we may have to block. A critical section
\r
2439 * is required to prevent an interrupt removing something from the queue
\r
2440 * between the check to see if the queue is full and blocking on the queue. */
\r
2441 portDISABLE_INTERRUPTS();
\r
2443 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
2445 /* The queue is full - do we want to block or just leave without
\r
2447 if( xTicksToWait > ( TickType_t ) 0 )
\r
2449 /* As this is called from a coroutine we cannot block directly, but
\r
2450 * return indicating that we need to block. */
\r
2451 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
\r
2452 portENABLE_INTERRUPTS();
\r
2453 return errQUEUE_BLOCKED;
\r
2457 portENABLE_INTERRUPTS();
\r
2458 return errQUEUE_FULL;
\r
2462 portENABLE_INTERRUPTS();
\r
2464 portDISABLE_INTERRUPTS();
\r
2466 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2468 /* There is room in the queue, copy the data into the queue. */
\r
2469 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2472 /* Were any co-routines waiting for data to become available? */
\r
2473 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2475 /* In this instance the co-routine could be placed directly
\r
2476 * into the ready list as we are within a critical section.
\r
2477 * Instead the same pending ready list mechanism is used as if
\r
2478 * the event were caused from within an interrupt. */
\r
2479 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2481 /* The co-routine waiting has a higher priority so record
\r
2482 * that a yield might be appropriate. */
\r
2483 xReturn = errQUEUE_YIELD;
\r
2487 mtCOVERAGE_TEST_MARKER();
\r
2492 mtCOVERAGE_TEST_MARKER();
\r
2497 xReturn = errQUEUE_FULL;
\r
2500 portENABLE_INTERRUPTS();
\r
2505 #endif /* configUSE_CO_ROUTINES */
\r
2506 /*-----------------------------------------------------------*/
\r
2508 #if ( configUSE_CO_ROUTINES == 1 )
\r
2510 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
\r
2512 TickType_t xTicksToWait )
\r
2514 BaseType_t xReturn;
\r
2515 Queue_t * const pxQueue = xQueue;
\r
2517 /* If the queue is already empty we may have to block. A critical section
\r
2518 * is required to prevent an interrupt adding something to the queue
\r
2519 * between the check to see if the queue is empty and blocking on the queue. */
\r
2520 portDISABLE_INTERRUPTS();
\r
2522 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2524 /* There are no messages in the queue, do we want to block or just
\r
2525 * leave with nothing? */
\r
2526 if( xTicksToWait > ( TickType_t ) 0 )
\r
2528 /* As this is a co-routine we cannot block directly, but return
\r
2529 * indicating that we need to block. */
\r
2530 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
\r
2531 portENABLE_INTERRUPTS();
\r
2532 return errQUEUE_BLOCKED;
\r
2536 portENABLE_INTERRUPTS();
\r
2537 return errQUEUE_FULL;
\r
2542 mtCOVERAGE_TEST_MARKER();
\r
2545 portENABLE_INTERRUPTS();
\r
2547 portDISABLE_INTERRUPTS();
\r
2549 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2551 /* Data is available from the queue. */
\r
2552 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2554 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2556 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2560 mtCOVERAGE_TEST_MARKER();
\r
2563 --( pxQueue->uxMessagesWaiting );
\r
2564 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2568 /* Were any co-routines waiting for space to become available? */
\r
2569 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2571 /* In this instance the co-routine could be placed directly
\r
2572 * into the ready list as we are within a critical section.
\r
2573 * Instead the same pending ready list mechanism is used as if
\r
2574 * the event were caused from within an interrupt. */
\r
2575 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2577 xReturn = errQUEUE_YIELD;
\r
2581 mtCOVERAGE_TEST_MARKER();
\r
2586 mtCOVERAGE_TEST_MARKER();
\r
2594 portENABLE_INTERRUPTS();
\r
2599 #endif /* configUSE_CO_ROUTINES */
\r
2600 /*-----------------------------------------------------------*/
\r
2602 #if ( configUSE_CO_ROUTINES == 1 )
\r
2604 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
\r
2605 const void * pvItemToQueue,
\r
2606 BaseType_t xCoRoutinePreviouslyWoken )
\r
2608 Queue_t * const pxQueue = xQueue;
\r
2610 /* Cannot block within an ISR so if there is no space on the queue then
\r
2611 * exit without doing anything. */
\r
2612 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2614 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2616 /* We only want to wake one co-routine per ISR, so check that a
\r
2617 * co-routine has not already been woken. */
\r
2618 if( xCoRoutinePreviouslyWoken == pdFALSE )
\r
2620 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2622 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2628 mtCOVERAGE_TEST_MARKER();
\r
2633 mtCOVERAGE_TEST_MARKER();
\r
2638 mtCOVERAGE_TEST_MARKER();
\r
2643 mtCOVERAGE_TEST_MARKER();
\r
2646 return xCoRoutinePreviouslyWoken;
\r
2649 #endif /* configUSE_CO_ROUTINES */
\r
2650 /*-----------------------------------------------------------*/
\r
2652 #if ( configUSE_CO_ROUTINES == 1 )
\r
2654 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
\r
2656 BaseType_t * pxCoRoutineWoken )
\r
2658 BaseType_t xReturn;
\r
2659 Queue_t * const pxQueue = xQueue;
\r
2661 /* We cannot block from an ISR, so check there is data available. If
\r
2662 * not then just leave without doing anything. */
\r
2663 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2665 /* Copy the data from the queue. */
\r
2666 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2668 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2670 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2674 mtCOVERAGE_TEST_MARKER();
\r
2677 --( pxQueue->uxMessagesWaiting );
\r
2678 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2680 if( ( *pxCoRoutineWoken ) == pdFALSE )
\r
2682 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2684 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2686 *pxCoRoutineWoken = pdTRUE;
\r
2690 mtCOVERAGE_TEST_MARKER();
\r
2695 mtCOVERAGE_TEST_MARKER();
\r
2700 mtCOVERAGE_TEST_MARKER();
\r
2713 #endif /* configUSE_CO_ROUTINES */
\r
2714 /*-----------------------------------------------------------*/
\r
2716 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2718 void vQueueAddToRegistry( QueueHandle_t xQueue,
\r
2719 const char * pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2723 /* See if there is an empty space in the registry. A NULL name denotes
\r
2725 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2727 if( xQueueRegistry[ ux ].pcQueueName == NULL )
\r
2729 /* Store the information on this queue. */
\r
2730 xQueueRegistry[ ux ].pcQueueName = pcQueueName;
\r
2731 xQueueRegistry[ ux ].xHandle = xQueue;
\r
2733 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
\r
2738 mtCOVERAGE_TEST_MARKER();
\r
2743 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2744 /*-----------------------------------------------------------*/
\r
2746 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2748 const char * pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2751 const char * pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2753 /* Note there is nothing here to protect against another task adding or
\r
2754 * removing entries from the registry while it is being searched. */
\r
2756 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2758 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2760 pcReturn = xQueueRegistry[ ux ].pcQueueName;
\r
2765 mtCOVERAGE_TEST_MARKER();
\r
2770 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
\r
2772 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2773 /*-----------------------------------------------------------*/
\r
2775 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2777 void vQueueUnregisterQueue( QueueHandle_t xQueue )
\r
2781 /* See if the handle of the queue being unregistered in actually in the
\r
2783 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2785 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2787 /* Set the name to NULL to show that this slot if free again. */
\r
2788 xQueueRegistry[ ux ].pcQueueName = NULL;
\r
2790 /* Set the handle to NULL to ensure the same queue handle cannot
\r
2791 * appear in the registry twice if it is added, removed, then
\r
2793 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
\r
2798 mtCOVERAGE_TEST_MARKER();
\r
2801 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2803 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2804 /*-----------------------------------------------------------*/
\r
2806 #if ( configUSE_TIMERS == 1 )
\r
2808 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
\r
2809 TickType_t xTicksToWait,
\r
2810 const BaseType_t xWaitIndefinitely )
\r
2812 Queue_t * const pxQueue = xQueue;
\r
2814 /* This function should not be called by application code hence the
\r
2815 * 'Restricted' in its name. It is not part of the public API. It is
\r
2816 * designed for use by kernel code, and has special calling requirements.
\r
2817 * It can result in vListInsert() being called on a list that can only
\r
2818 * possibly ever have one item in it, so the list will be fast, but even
\r
2819 * so it should be called with the scheduler locked and not from a critical
\r
2822 /* Only do anything if there are no messages in the queue. This function
\r
2823 * will not actually cause the task to block, just place it on a blocked
\r
2824 * list. It will not block until the scheduler is unlocked - at which
\r
2825 * time a yield will be performed. If an item is added to the queue while
\r
2826 * the queue is locked, and the calling task blocks on the queue, then the
\r
2827 * calling task will be immediately unblocked when the queue is unlocked. */
\r
2828 prvLockQueue( pxQueue );
\r
2830 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
\r
2832 /* There is nothing in the queue, block for the specified period. */
\r
2833 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
\r
2837 mtCOVERAGE_TEST_MARKER();
\r
2840 prvUnlockQueue( pxQueue );
\r
2843 #endif /* configUSE_TIMERS */
\r
2844 /*-----------------------------------------------------------*/
\r
2846 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
2848 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
\r
2850 QueueSetHandle_t pxQueue;
\r
2852 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
\r
2857 #endif /* configUSE_QUEUE_SETS */
\r
2858 /*-----------------------------------------------------------*/
\r
2860 #if ( configUSE_QUEUE_SETS == 1 )
\r
2862 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2863 QueueSetHandle_t xQueueSet )
\r
2865 BaseType_t xReturn;
\r
2867 taskENTER_CRITICAL();
\r
2869 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
\r
2871 /* Cannot add a queue/semaphore to more than one queue set. */
\r
2874 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2876 /* Cannot add a queue/semaphore to a queue set if there are already
\r
2877 * items in the queue/semaphore. */
\r
2882 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
\r
2886 taskEXIT_CRITICAL();
\r
2891 #endif /* configUSE_QUEUE_SETS */
\r
2892 /*-----------------------------------------------------------*/
\r
2894 #if ( configUSE_QUEUE_SETS == 1 )
\r
2896 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2897 QueueSetHandle_t xQueueSet )
\r
2899 BaseType_t xReturn;
\r
2900 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
\r
2902 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
\r
2904 /* The queue was not a member of the set. */
\r
2907 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2909 /* It is dangerous to remove a queue from a set when the queue is
\r
2910 * not empty because the queue set will still hold pending events for
\r
2916 taskENTER_CRITICAL();
\r
2918 /* The queue is no longer contained in the set. */
\r
2919 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
\r
2921 taskEXIT_CRITICAL();
\r
2926 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
\r
2928 #endif /* configUSE_QUEUE_SETS */
\r
2929 /*-----------------------------------------------------------*/
\r
2931 #if ( configUSE_QUEUE_SETS == 1 )
\r
2933 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
\r
2934 TickType_t const xTicksToWait )
\r
2936 QueueSetMemberHandle_t xReturn = NULL;
\r
2938 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2942 #endif /* configUSE_QUEUE_SETS */
\r
2943 /*-----------------------------------------------------------*/
\r
2945 #if ( configUSE_QUEUE_SETS == 1 )
\r
2947 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
\r
2949 QueueSetMemberHandle_t xReturn = NULL;
\r
2951 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2955 #endif /* configUSE_QUEUE_SETS */
\r
2956 /*-----------------------------------------------------------*/
\r
2958 #if ( configUSE_QUEUE_SETS == 1 )
\r
2960 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
\r
2962 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
\r
2963 BaseType_t xReturn = pdFALSE;
\r
2965 /* This function must be called form a critical section. */
\r
2967 configASSERT( pxQueueSetContainer );
\r
2968 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
\r
2970 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
\r
2972 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
\r
2974 traceQUEUE_SET_SEND( pxQueueSetContainer );
\r
2976 /* The data copied is the handle of the queue that contains data. */
\r
2977 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
\r
2979 if( cTxLock == queueUNLOCKED )
\r
2981 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2983 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2985 /* The task waiting has a higher priority. */
\r
2990 mtCOVERAGE_TEST_MARKER();
\r
2995 mtCOVERAGE_TEST_MARKER();
\r
3000 configASSERT( cTxLock != queueINT8_MAX );
\r
3002 pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
3007 mtCOVERAGE_TEST_MARKER();
\r
3013 #endif /* configUSE_QUEUE_SETS */
\r