2 FreeRTOS V7.1.1 - Copyright (C) 2012 Real Time Engineers Ltd.
\r
5 ***************************************************************************
\r
7 * FreeRTOS tutorial books are available in pdf and paperback. *
\r
8 * Complete, revised, and edited pdf reference manuals are also *
\r
11 * Purchasing FreeRTOS documentation will not only help you, by *
\r
12 * ensuring you get running as quickly as possible and with an *
\r
13 * in-depth knowledge of how to use FreeRTOS, it will also help *
\r
14 * the FreeRTOS project to continue with its mission of providing *
\r
15 * professional grade, cross platform, de facto standard solutions *
\r
16 * for microcontrollers - completely free of charge! *
\r
18 * >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
\r
20 * Thank you for using FreeRTOS, and thank you for your support! *
\r
22 ***************************************************************************
\r
25 This file is part of the FreeRTOS distribution.
\r
27 FreeRTOS is free software; you can redistribute it and/or modify it under
\r
28 the terms of the GNU General Public License (version 2) as published by the
\r
29 Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
\r
30 >>>NOTE<<< The modification to the GPL is included to allow you to
\r
31 distribute a combined work that includes FreeRTOS without being obliged to
\r
32 provide the source code for proprietary components outside of the FreeRTOS
\r
33 kernel. FreeRTOS is distributed in the hope that it will be useful, but
\r
34 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
\r
35 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
\r
36 more details. You should have received a copy of the GNU General Public
\r
37 License and the FreeRTOS license exception along with FreeRTOS; if not it
\r
38 can be viewed here: http://www.freertos.org/a00114.html and also obtained
\r
39 by writing to Richard Barry, contact details for whom are available on the
\r
44 ***************************************************************************
\r
46 * Having a problem? Start by reading the FAQ "My application does *
\r
47 * not run, what could be wrong? *
\r
49 * http://www.FreeRTOS.org/FAQHelp.html *
\r
51 ***************************************************************************
\r
54 http://www.FreeRTOS.org - Documentation, training, latest information,
\r
55 license and contact details.
\r
57 http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
\r
58 including FreeRTOS+Trace - an indispensable productivity tool.
\r
60 Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
\r
61 the code with commercial support, indemnification, and middleware, under
\r
62 the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
\r
63 provide a safety engineered and independently SIL3 certified version under
\r
64 the SafeRTOS brand: http://www.SafeRTOS.com.
\r
67 /* Kernel includes. */
\r
68 #include "FreeRTOS.h"
\r
72 /* Hardware includes. */
\r
75 #include "eth_phy.h"
\r
80 #include "uip_arp.h"
\r
82 /* Delay between polling the PHY to see if a link has been established. */
\r
83 #define fecLINK_DELAY ( 500 / portTICK_RATE_MS )
\r
85 /* Delay to wait for an MII access. */
\r
86 #define fecMII_DELAY ( 10 / portTICK_RATE_MS )
\r
87 #define fecMAX_POLLS ( 20 )
\r
89 /* Constants used to delay while waiting for a tx descriptor to be free. */
\r
90 #define fecMAX_WAIT_FOR_TX_BUFFER ( 200 / portTICK_RATE_MS )
\r
92 /* We only use a single Tx descriptor which can lead to Txed packets being sent
\r
93 twice (due to a bug in the FEC silicon). However, in this case the bug is used
\r
94 to our advantage in that it means the uip-split mechanism is not required. */
\r
95 #define fecNUM_FEC_TX_BUFFERS ( 1 )
\r
96 #define fecTX_BUFFER_TO_USE ( 0 )
\r
97 /*-----------------------------------------------------------*/
\r
99 /* The semaphore used to wake the uIP task when data arrives. */
\r
100 xSemaphoreHandle xFECSemaphore = NULL, xTxSemaphore = NULL;
\r
102 /* The buffer used by the uIP stack. In this case the pointer is used to
\r
103 point to one of the Rx buffers to effect a zero copy policy. */
\r
104 unsigned portCHAR *uip_buf;
\r
106 /* The DMA descriptors. This is a char array to allow us to align it correctly. */
\r
107 static unsigned portCHAR xFECTxDescriptors_unaligned[ ( fecNUM_FEC_TX_BUFFERS * sizeof( FECBD ) ) + 16 ];
\r
108 static unsigned portCHAR xFECRxDescriptors_unaligned[ ( configNUM_FEC_RX_BUFFERS * sizeof( FECBD ) ) + 16 ];
\r
109 static FECBD *xFECTxDescriptors;
\r
110 static FECBD *xFECRxDescriptors;
\r
112 /* The DMA buffers. These are char arrays to allow them to be aligned correctly. */
\r
113 static unsigned portCHAR ucFECRxBuffers[ ( configNUM_FEC_RX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
\r
114 static unsigned portBASE_TYPE uxNextRxBuffer = 0, uxIndexToBufferOwner = 0;
\r
116 /*-----------------------------------------------------------*/
\r
119 * Enable all the required interrupts in the FEC and in the interrupt controller.
\r
121 static void prvEnableFECInterrupts( void );
\r
124 * Reset the FEC if we get into an unrecoverable state.
\r
126 static void prvResetFEC( portBASE_TYPE xCalledFromISR );
\r
128 /********************************************************************/
\r
131 * FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
\r
133 * Write a value to a PHY's MII register.
\r
137 * phy_addr Address of the PHY.
\r
138 * reg_addr Address of the register in the PHY.
\r
139 * data Data to be written to the PHY register.
\r
145 * Please refer to your PHY manual for registers and their meanings.
\r
146 * mii_write() polls for the FEC's MII interrupt event and clears it.
\r
147 * If after a suitable amount of time the event isn't triggered, a
\r
148 * value of 0 is returned.
\r
150 static int fec_mii_write( int phy_addr, int reg_addr, int data )
\r
152 int timeout, iReturn;
\r
155 /* Clear the MII interrupt bit */
\r
156 MCF_FEC_EIR = MCF_FEC_EIR_MII;
\r
158 /* Mask the MII interrupt */
\r
159 eimr = MCF_FEC_EIMR;
\r
160 MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
\r
162 /* Write to the MII Management Frame Register to kick-off the MII write */
\r
163 MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_WRITE | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10 | MCF_FEC_MMFR_DATA( data );
\r
165 /* Poll for the MII interrupt (interrupt should be masked) */
\r
166 for( timeout = 0; timeout < fecMAX_POLLS; timeout++ )
\r
168 if( MCF_FEC_EIR & MCF_FEC_EIR_MII )
\r
174 vTaskDelay( fecMII_DELAY );
\r
178 if( timeout == fecMAX_POLLS )
\r
187 /* Clear the MII interrupt bit */
\r
188 MCF_FEC_EIR = MCF_FEC_EIR_MII;
\r
190 /* Restore the EIMR */
\r
191 MCF_FEC_EIMR = eimr;
\r
196 /********************************************************************/
\r
198 * FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
\r
200 * Read a value from a PHY's MII register.
\r
204 * phy_addr Address of the PHY.
\r
205 * reg_addr Address of the register in the PHY.
\r
206 * data Pointer to storage for the Data to be read
\r
207 * from the PHY register (passed by reference)
\r
213 * Please refer to your PHY manual for registers and their meanings.
\r
214 * mii_read() polls for the FEC's MII interrupt event and clears it.
\r
215 * If after a suitable amount of time the event isn't triggered, a
\r
216 * value of 0 is returned.
\r
218 static int fec_mii_read( int phy_addr, int reg_addr, unsigned portSHORT* data )
\r
220 int timeout, iReturn;
\r
223 /* Clear the MII interrupt bit */
\r
224 MCF_FEC_EIR = MCF_FEC_EIR_MII;
\r
226 /* Mask the MII interrupt */
\r
227 eimr = MCF_FEC_EIMR;
\r
228 MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
\r
230 /* Write to the MII Management Frame Register to kick-off the MII read */
\r
231 MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_READ | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10;
\r
233 /* Poll for the MII interrupt (interrupt should be masked) */
\r
234 for( timeout = 0; timeout < fecMAX_POLLS; timeout++ )
\r
236 if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
\r
242 vTaskDelay( fecMII_DELAY );
\r
246 if( timeout == fecMAX_POLLS )
\r
252 *data = (uint16)(MCF_FEC_MMFR & 0x0000FFFF);
\r
256 /* Clear the MII interrupt bit */
\r
257 MCF_FEC_EIR = MCF_FEC_EIR_MII;
\r
259 /* Restore the EIMR */
\r
260 MCF_FEC_EIMR = eimr;
\r
266 /********************************************************************/
\r
268 * FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
\r
270 * Generate the hash table settings for the given address
\r
273 * addr 48-bit (6 byte) Address to generate the hash for
\r
276 * The 6 most significant bits of the 32-bit CRC result
\r
278 static unsigned portCHAR fec_hash_address( const unsigned portCHAR* addr )
\r
280 unsigned portLONG crc;
\r
281 unsigned portCHAR byte;
\r
290 if((byte & 0x01)^(crc & 0x01))
\r
293 crc = crc ^ 0xEDB88320;
\r
304 return (unsigned portCHAR)(crc >> 26);
\r
307 /********************************************************************/
\r
309 * FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
\r
311 * Set the Physical (Hardware) Address and the Individual Address
\r
312 * Hash in the selected FEC
\r
316 * pa Physical (Hardware) Address for the selected FEC
\r
318 static void fec_set_address( const unsigned portCHAR *pa )
\r
320 unsigned portCHAR crc;
\r
323 * Set the Physical Address
\r
325 /* Set the source address for the controller */
\r
326 MCF_FEC_PALR = ( pa[ 0 ] << 24 ) | ( pa[ 1 ] << 16 ) | ( pa[ 2 ] << 8 ) | ( pa[ 3 ] << 0 );
\r
327 MCF_FEC_PAUR = ( pa[ 4 ] << 24 ) | ( pa[ 5 ] << 16 );
\r
330 * Calculate and set the hash for given Physical Address
\r
331 * in the Individual Address Hash registers
\r
333 crc = fec_hash_address( pa );
\r
336 MCF_FEC_IAUR |= (unsigned portLONG)(1 << (crc - 32));
\r
340 MCF_FEC_IALR |= (unsigned portLONG)(1 << crc);
\r
343 /*-----------------------------------------------------------*/
\r
345 static void prvInitialiseFECBuffers( void )
\r
347 unsigned portBASE_TYPE ux;
\r
348 unsigned portCHAR *pcBufPointer;
\r
350 /* Correctly align the Tx descriptor pointer. */
\r
351 pcBufPointer = &( xFECTxDescriptors_unaligned[ 0 ] );
\r
352 while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
\r
357 xFECTxDescriptors = ( FECBD * ) pcBufPointer;
\r
359 /* Likewise the Rx descriptor pointer. */
\r
360 pcBufPointer = &( xFECRxDescriptors_unaligned[ 0 ] );
\r
361 while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
\r
366 xFECRxDescriptors = ( FECBD * ) pcBufPointer;
\r
369 /* Setup the Tx buffers and descriptors. There is no separate Tx buffer
\r
370 to point to (the Rx buffers are actually used) so the data member is
\r
371 set to NULL for now. */
\r
372 for( ux = 0; ux < fecNUM_FEC_TX_BUFFERS; ux++ )
\r
374 xFECTxDescriptors[ ux ].status = TX_BD_TC;
\r
375 xFECTxDescriptors[ ux ].data = NULL;
\r
376 xFECTxDescriptors[ ux ].length = 0;
\r
379 /* Setup the Rx buffers and descriptors, having first ensured correct
\r
381 pcBufPointer = &( ucFECRxBuffers[ 0 ] );
\r
382 while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
\r
387 for( ux = 0; ux < configNUM_FEC_RX_BUFFERS; ux++ )
\r
389 xFECRxDescriptors[ ux ].status = RX_BD_E;
\r
390 xFECRxDescriptors[ ux ].length = configFEC_BUFFER_SIZE;
\r
391 xFECRxDescriptors[ ux ].data = pcBufPointer;
\r
392 pcBufPointer += configFEC_BUFFER_SIZE;
\r
395 /* Set the wrap bit in the last descriptors to form a ring. */
\r
396 xFECTxDescriptors[ fecNUM_FEC_TX_BUFFERS - 1 ].status |= TX_BD_W;
\r
397 xFECRxDescriptors[ configNUM_FEC_RX_BUFFERS - 1 ].status |= RX_BD_W;
\r
399 uxNextRxBuffer = 0;
\r
401 /*-----------------------------------------------------------*/
\r
403 void vFECInit( void )
\r
405 unsigned portSHORT usData;
\r
406 struct uip_eth_addr xAddr;
\r
407 unsigned portBASE_TYPE ux;
\r
409 /* The MAC address is set at the foot of FreeRTOSConfig.h. */
\r
410 const unsigned portCHAR ucMACAddress[6] =
\r
412 configMAC_0, configMAC_1,configMAC_2, configMAC_3, configMAC_4, configMAC_5
\r
415 /* Create the semaphore used by the ISR to wake the uIP task. */
\r
416 vSemaphoreCreateBinary( xFECSemaphore );
\r
418 /* Create the semaphore used to unblock any tasks that might be waiting
\r
419 for a Tx descriptor. */
\r
420 vSemaphoreCreateBinary( xTxSemaphore );
\r
422 /* Initialise all the buffers and descriptors used by the DMA. */
\r
423 prvInitialiseFECBuffers();
\r
425 for( usData = 0; usData < 6; usData++ )
\r
427 xAddr.addr[ usData ] = ucMACAddress[ usData ];
\r
429 uip_setethaddr( xAddr );
\r
431 /* Set the Reset bit and clear the Enable bit */
\r
432 MCF_FEC_ECR = MCF_FEC_ECR_RESET;
\r
434 /* Wait at least 8 clock cycles */
\r
435 for( usData = 0; usData < 10; usData++ )
\r
440 /* Set MII speed to 2.5MHz. */
\r
441 MCF_FEC_MSCR = MCF_FEC_MSCR_MII_SPEED( ( ( ( configCPU_CLOCK_HZ / 1000000 ) / 5 ) + 1 ) );
\r
443 /* Initialize PLDPAR to enable Ethernet LEDs. */
\r
444 MCF_GPIO_PLDPAR = MCF_GPIO_PLDPAR_ACTLED_ACTLED | MCF_GPIO_PLDPAR_LINKLED_LINKLED | MCF_GPIO_PLDPAR_SPDLED_SPDLED
\r
445 | MCF_GPIO_PLDPAR_DUPLED_DUPLED | MCF_GPIO_PLDPAR_COLLED_COLLED | MCF_GPIO_PLDPAR_RXLED_RXLED
\r
446 | MCF_GPIO_PLDPAR_TXLED_TXLED;
\r
448 /* Initialize Port TA to enable Axcel control. */
\r
449 MCF_GPIO_PTAPAR = 0x00;
\r
450 MCF_GPIO_DDRTA = 0x0F;
\r
451 MCF_GPIO_PORTTA = 0x04;
\r
453 /* Set phy address to zero. */
\r
454 MCF_EPHY_EPHYCTL1 = MCF_EPHY_EPHYCTL1_PHYADD( 0 );
\r
456 /* Enable EPHY module with PHY clocks disabled. Do not turn on PHY clocks
\r
457 until both FEC and EPHY are completely setup (see Below). */
\r
458 MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0_DIS100 | MCF_EPHY_EPHYCTL0_DIS10);
\r
460 /* Enable auto_neg at start-up */
\r
461 MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0 & (MCF_EPHY_EPHYCTL0_ANDIS));
\r
463 /* Enable EPHY module. */
\r
464 MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0_EPHYEN | MCF_EPHY_EPHYCTL0);
\r
466 /* Let PHY PLLs be determined by PHY. */
\r
467 MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0 & ~(MCF_EPHY_EPHYCTL0_DIS100 | MCF_EPHY_EPHYCTL0_DIS10));
\r
470 vTaskDelay( fecLINK_DELAY );
\r
472 /* Can we talk to the PHY? */
\r
475 vTaskDelay( fecLINK_DELAY );
\r
477 fec_mii_read( configPHY_ADDRESS, PHY_PHYIDR1, &usData );
\r
479 } while( usData == 0xffff );
\r
483 /* Start auto negotiate. */
\r
484 fec_mii_write( configPHY_ADDRESS, PHY_BMCR, ( PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE ) );
\r
486 /* Wait for auto negotiate to complete. */
\r
492 /* Hardware bug workaround! Force 100Mbps half duplex. */
\r
493 while( !fec_mii_read( configPHY_ADDRESS, 0, &usData ) ){};
\r
494 usData &= ~0x2000; /* 10Mbps */
\r
495 usData &= ~0x0100; /* Half Duplex */
\r
496 usData &= ~0x1000; /* Manual Mode */
\r
497 while( !fec_mii_write( configPHY_ADDRESS, 0, usData ) ){};
\r
498 while( !fec_mii_write( configPHY_ADDRESS, 0, (usData|0x0200) )){}; /* Force re-negotiate */
\r
501 vTaskDelay( fecLINK_DELAY );
\r
502 fec_mii_read( configPHY_ADDRESS, PHY_BMSR, &usData );
\r
504 } while( !( usData & PHY_BMSR_AN_COMPLETE ) );
\r
506 } while( 0 ); //while( !( usData & PHY_BMSR_LINK ) );
\r
508 /* When we get here we have a link - find out what has been negotiated. */
\r
509 fec_mii_read( configPHY_ADDRESS, PHY_ANLPAR, &usData );
\r
511 if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_100BTX ) )
\r
513 /* Speed is 100. */
\r
520 if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_10BTX_FDX ) )
\r
522 MCF_FEC_RCR &= (unsigned portLONG)~MCF_FEC_RCR_DRT;
\r
523 MCF_FEC_TCR |= MCF_FEC_TCR_FDEN;
\r
527 MCF_FEC_RCR |= MCF_FEC_RCR_DRT;
\r
528 MCF_FEC_TCR &= (unsigned portLONG)~MCF_FEC_TCR_FDEN;
\r
531 /* Clear the Individual and Group Address Hash registers */
\r
537 /* Set the Physical Address for the selected FEC */
\r
538 fec_set_address( ucMACAddress );
\r
540 /* Set Rx Buffer Size */
\r
541 MCF_FEC_EMRBR = (unsigned portSHORT)configFEC_BUFFER_SIZE;
\r
543 /* Point to the start of the circular Rx buffer descriptor queue */
\r
544 MCF_FEC_ERDSR = ( volatile unsigned portLONG ) &( xFECRxDescriptors[ 0 ] );
\r
546 /* Point to the start of the circular Tx buffer descriptor queue */
\r
547 MCF_FEC_ETSDR = ( volatile unsigned portLONG ) &( xFECTxDescriptors[ 0 ] );
\r
549 /* Mask all FEC interrupts */
\r
550 MCF_FEC_EIMR = ( unsigned portLONG ) -1;
\r
552 /* Clear all FEC interrupt events */
\r
553 MCF_FEC_EIR = ( unsigned portLONG ) -1;
\r
555 /* Initialize the Receive Control Register */
\r
556 MCF_FEC_RCR = MCF_FEC_RCR_MAX_FL(ETH_MAX_FRM) | MCF_FEC_RCR_FCE;
\r
558 MCF_FEC_RCR |= MCF_FEC_RCR_MII_MODE;
\r
560 #if( configUSE_PROMISCUOUS_MODE == 1 )
\r
562 MCF_FEC_RCR |= MCF_FEC_RCR_PROM;
\r
566 prvEnableFECInterrupts();
\r
568 /* Finally... enable. */
\r
569 MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
\r
570 MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
\r
572 /*-----------------------------------------------------------*/
\r
574 static void prvEnableFECInterrupts( void )
\r
576 const unsigned portBASE_TYPE uxFirstFECVector = 23, uxLastFECVector = 35;
\r
577 unsigned portBASE_TYPE ux;
\r
579 #if configFEC_INTERRUPT_PRIORITY > configMAX_SYSCALL_INTERRUPT_PRIORITY
\r
580 #error configFEC_INTERRUPT_PRIORITY must be less than or equal to configMAX_SYSCALL_INTERRUPT_PRIORITY
\r
583 /* Set the priority of each of the FEC interrupts. */
\r
584 for( ux = uxFirstFECVector; ux <= uxLastFECVector; ux++ )
\r
586 MCF_INTC0_ICR( ux ) = MCF_INTC_ICR_IL( configFEC_INTERRUPT_PRIORITY );
\r
589 /* Enable the FEC interrupts in the mask register */
\r
590 MCF_INTC0_IMRH &= ~( MCF_INTC_IMRH_INT_MASK33 | MCF_INTC_IMRH_INT_MASK34 | MCF_INTC_IMRH_INT_MASK35 );
\r
591 MCF_INTC0_IMRL &= ~( MCF_INTC_IMRL_INT_MASK25 | MCF_INTC_IMRL_INT_MASK26 | MCF_INTC_IMRL_INT_MASK27
\r
592 | MCF_INTC_IMRL_INT_MASK28 | MCF_INTC_IMRL_INT_MASK29 | MCF_INTC_IMRL_INT_MASK30
\r
593 | MCF_INTC_IMRL_INT_MASK31 | MCF_INTC_IMRL_INT_MASK23 | MCF_INTC_IMRL_INT_MASK24
\r
594 | MCF_INTC_IMRL_MASKALL );
\r
596 /* Clear any pending FEC interrupt events */
\r
597 MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;
\r
599 /* Unmask all FEC interrupts */
\r
600 MCF_FEC_EIMR = MCF_FEC_EIMR_UNMASK_ALL;
\r
602 /*-----------------------------------------------------------*/
\r
604 static void prvResetFEC( portBASE_TYPE xCalledFromISR )
\r
608 /* A critical section is used unless this function is being called from
\r
610 if( xCalledFromISR == pdFALSE )
\r
612 taskENTER_CRITICAL();
\r
616 /* Reset all buffers and descriptors. */
\r
617 prvInitialiseFECBuffers();
\r
619 /* Set the Reset bit and clear the Enable bit */
\r
620 MCF_FEC_ECR = MCF_FEC_ECR_RESET;
\r
622 /* Wait at least 8 clock cycles */
\r
623 for( x = 0; x < 10; x++ )
\r
629 MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
\r
630 MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
\r
633 if( xCalledFromISR == pdFALSE )
\r
635 taskEXIT_CRITICAL();
\r
638 /*-----------------------------------------------------------*/
\r
640 unsigned short usFECGetRxedData( void )
\r
642 unsigned portSHORT usLen;
\r
644 /* Obtain the size of the packet and put it into the "len" variable. */
\r
645 usLen = xFECRxDescriptors[ uxNextRxBuffer ].length;
\r
647 if( ( usLen != 0 ) && ( ( xFECRxDescriptors[ uxNextRxBuffer ].status & RX_BD_E ) == 0 ) )
\r
649 uip_buf = xFECRxDescriptors[ uxNextRxBuffer ].data;
\r
658 /*-----------------------------------------------------------*/
\r
660 void vFECRxProcessingCompleted( void )
\r
662 /* Free the descriptor as the buffer it points to is no longer in use. */
\r
663 xFECRxDescriptors[ uxNextRxBuffer ].status |= RX_BD_E;
\r
664 MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
\r
666 if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
\r
668 uxNextRxBuffer = 0;
\r
671 /*-----------------------------------------------------------*/
\r
673 void vFECSendData( void )
\r
675 /* Ensure no Tx frames are outstanding. */
\r
676 if( xSemaphoreTake( xTxSemaphore, fecMAX_WAIT_FOR_TX_BUFFER ) == pdPASS )
\r
678 /* Get a DMA buffer into which we can write the data to send. */
\r
679 if( xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].status & TX_BD_R )
\r
681 /*** ERROR didn't expect this. Sledge hammer error handling. ***/
\r
682 prvResetFEC( pdFALSE );
\r
684 /* Make sure we leave the semaphore in the expected state as nothing
\r
685 is being transmitted this will not happen in the Tx ISR. */
\r
686 xSemaphoreGive( xTxSemaphore );
\r
690 /* Setup the buffer descriptor for transmission. The data being
\r
691 sent is actually stored in one of the Rx descriptor buffers,
\r
692 pointed to by uip_buf. */
\r
693 xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].length = uip_len;
\r
694 xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].status |= ( TX_BD_R | TX_BD_L );
\r
695 xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].data = uip_buf;
\r
697 /* Remember which Rx descriptor owns the buffer we are sending. */
\r
698 uxIndexToBufferOwner = uxNextRxBuffer;
\r
700 /* We have finished with this Rx descriptor now. */
\r
702 if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
\r
704 uxNextRxBuffer = 0;
\r
707 /* Continue the Tx DMA (in case it was waiting for a new TxBD) */
\r
708 MCF_FEC_TDAR = MCF_FEC_TDAR_X_DES_ACTIVE;
\r
713 /* Gave up waiting. Free the buffer back to the DMA. */
\r
714 vFECRxProcessingCompleted();
\r
717 /*-----------------------------------------------------------*/
\r
719 void vFEC_ISR( void )
\r
721 unsigned portLONG ulEvent;
\r
722 portBASE_TYPE xHighPriorityTaskWoken = pdFALSE;
\r
724 /* This handler is called in response to any of the many separate FEC
\r
727 /* Find the cause of the interrupt, then clear the interrupt. */
\r
728 ulEvent = MCF_FEC_EIR & MCF_FEC_EIMR;
\r
729 MCF_FEC_EIR = ulEvent;
\r
731 if( ( ulEvent & MCF_FEC_EIR_RXB ) || ( ulEvent & MCF_FEC_EIR_RXF ) )
\r
733 /* A packet has been received. Wake the handler task. */
\r
734 xSemaphoreGiveFromISR( xFECSemaphore, &xHighPriorityTaskWoken );
\r
737 if( ulEvent & ( MCF_FEC_EIR_UN | MCF_FEC_EIR_RL | MCF_FEC_EIR_LC | MCF_FEC_EIR_EBERR | MCF_FEC_EIR_BABT | MCF_FEC_EIR_BABR | MCF_FEC_EIR_HBERR ) )
\r
739 /* Sledge hammer error handling. */
\r
740 prvResetFEC( pdTRUE );
\r
743 if( ( ulEvent & MCF_FEC_EIR_TXF ) || ( ulEvent & MCF_FEC_EIR_TXB ) )
\r
745 /* The buffer being sent is pointed to by an Rx descriptor, now the
\r
746 buffer has been sent we can mark the Rx descriptor as free again. */
\r
747 xFECRxDescriptors[ uxIndexToBufferOwner ].status |= RX_BD_E;
\r
748 MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
\r
749 xSemaphoreGiveFromISR( xTxSemaphore, &xHighPriorityTaskWoken );
\r
752 portEND_SWITCHING_ISR( xHighPriorityTaskWoken );
\r
754 /*-----------------------------------------------------------*/
\r
756 /* Install the many different interrupt vectors, all of which call the same
\r
757 handler function. */
\r
758 void __attribute__ ((interrupt)) __cs3_isr_interrupt_87( void ) { vFEC_ISR(); }
\r
759 void __attribute__ ((interrupt)) __cs3_isr_interrupt_88( void ) { vFEC_ISR(); }
\r
760 void __attribute__ ((interrupt)) __cs3_isr_interrupt_89( void ) { vFEC_ISR(); }
\r
761 void __attribute__ ((interrupt)) __cs3_isr_interrupt_90( void ) { vFEC_ISR(); }
\r
762 void __attribute__ ((interrupt)) __cs3_isr_interrupt_91( void ) { vFEC_ISR(); }
\r
763 void __attribute__ ((interrupt)) __cs3_isr_interrupt_92( void ) { vFEC_ISR(); }
\r
764 void __attribute__ ((interrupt)) __cs3_isr_interrupt_93( void ) { vFEC_ISR(); }
\r
765 void __attribute__ ((interrupt)) __cs3_isr_interrupt_94( void ) { vFEC_ISR(); }
\r
766 void __attribute__ ((interrupt)) __cs3_isr_interrupt_95( void ) { vFEC_ISR(); }
\r
767 void __attribute__ ((interrupt)) __cs3_isr_interrupt_96( void ) { vFEC_ISR(); }
\r
768 void __attribute__ ((interrupt)) __cs3_isr_interrupt_97( void ) { vFEC_ISR(); }
\r
769 void __attribute__ ((interrupt)) __cs3_isr_interrupt_98( void ) { vFEC_ISR(); }
\r
770 void __attribute__ ((interrupt)) __cs3_isr_interrupt_99( void ) { vFEC_ISR(); }
\r