2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * SPDX-License-Identifier: MIT
\r
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
8 * this software and associated documentation files (the "Software"), to deal in
\r
9 * the Software without restriction, including without limitation the rights to
\r
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
11 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
12 * subject to the following conditions:
\r
14 * The above copyright notice and this permission notice shall be included in all
\r
15 * copies or substantial portions of the Software.
\r
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
24 * https://www.FreeRTOS.org
\r
25 * https://github.com/FreeRTOS
\r
29 /* Standard includes. */
\r
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
34 * all the API functions to use the MPU wrappers. That should only be done when
\r
35 * task.h is included from an application file. */
\r
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
38 /* FreeRTOS includes. */
\r
39 #include "FreeRTOS.h"
\r
42 #include "stack_macros.h"
\r
44 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
45 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
46 * for the header files above, but not in this file, in order to generate the
\r
47 * correct privileged Vs unprivileged linkage and placement. */
\r
48 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
51 * functions but without including stdio.h here. */
\r
52 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
54 /* At the bottom of this file are two optional functions that can be used
\r
55 * to generate human readable text from the raw data generated by the
\r
56 * uxTaskGetSystemState() function. Note the formatting functions are provided
\r
57 * for convenience only, and are NOT considered part of the kernel. */
\r
59 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
61 #if ( configUSE_PREEMPTION == 0 )
\r
63 /* If the cooperative scheduler is being used then a yield should not be
\r
64 * performed just because a higher priority task has been woken. */
\r
65 #define taskYIELD_IF_USING_PREEMPTION()
\r
67 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
70 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
71 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
\r
72 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
73 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
76 * The value used to fill the stack of a task when the task is created. This
\r
77 * is used purely for checking the high water mark for tasks.
\r
79 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
81 /* Bits used to record how a task's stack and TCB were allocated. */
\r
82 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
83 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
84 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
86 /* If any of the following are set then task stacks are filled with a known
\r
87 * value so the high water mark can be determined. If none of the following are
\r
88 * set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
89 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
92 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
96 * Macros used by vListTask to indicate which state a task is in.
\r
98 #define tskRUNNING_CHAR ( 'X' )
\r
99 #define tskBLOCKED_CHAR ( 'B' )
\r
100 #define tskREADY_CHAR ( 'R' )
\r
101 #define tskDELETED_CHAR ( 'D' )
\r
102 #define tskSUSPENDED_CHAR ( 'S' )
\r
105 * Some kernel aware debuggers require the data the debugger needs access to to
\r
106 * be global, rather than file scope.
\r
108 #ifdef portREMOVE_STATIC_QUALIFIER
\r
112 /* The name allocated to the Idle task. This can be overridden by defining
\r
113 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
114 #ifndef configIDLE_TASK_NAME
\r
115 #define configIDLE_TASK_NAME "IDLE"
\r
118 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
120 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
121 * performed in a generic way that is not optimised to any particular
\r
122 * microcontroller architecture. */
\r
124 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
126 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
128 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
130 uxTopReadyPriority = ( uxPriority ); \
\r
132 } /* taskRECORD_READY_PRIORITY */
\r
134 /*-----------------------------------------------------------*/
\r
136 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
138 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
140 /* Find the highest priority queue that contains ready tasks. */ \
\r
141 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
143 configASSERT( uxTopPriority ); \
\r
147 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
148 * the same priority get an equal share of the processor time. */ \
\r
149 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
150 uxTopReadyPriority = uxTopPriority; \
\r
151 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
153 /*-----------------------------------------------------------*/
\r
155 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
156 * they are only required when a port optimised method of task selection is
\r
158 #define taskRESET_READY_PRIORITY( uxPriority )
\r
159 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
161 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
163 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
164 * performed in a way that is tailored to the particular microcontroller
\r
165 * architecture being used. */
\r
167 /* A port optimised version is provided. Call the port defined macros. */
\r
168 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
170 /*-----------------------------------------------------------*/
\r
172 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
174 UBaseType_t uxTopPriority; \
\r
176 /* Find the highest priority list that contains ready tasks. */ \
\r
177 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
178 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
179 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
180 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
182 /*-----------------------------------------------------------*/
\r
184 /* A port optimised version is provided, call it only if the TCB being reset
\r
185 * is being referenced from a ready list. If it is referenced from a delayed
\r
186 * or suspended list then it won't be in a ready list. */
\r
187 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
189 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
191 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
195 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
197 /*-----------------------------------------------------------*/
\r
199 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
200 * count overflows. */
\r
201 #define taskSWITCH_DELAYED_LISTS() \
\r
205 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
206 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
208 pxTemp = pxDelayedTaskList; \
\r
209 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
210 pxOverflowDelayedTaskList = pxTemp; \
\r
211 xNumOfOverflows++; \
\r
212 prvResetNextTaskUnblockTime(); \
\r
215 /*-----------------------------------------------------------*/
\r
218 * Place the task represented by pxTCB into the appropriate ready list for
\r
219 * the task. It is inserted at the end of the list.
\r
221 #define prvAddTaskToReadyList( pxTCB ) \
\r
222 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
223 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
224 listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
225 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
226 /*-----------------------------------------------------------*/
\r
229 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
\r
230 * where NULL is used to indicate that the handle of the currently executing
\r
231 * task should be used in place of the parameter. This macro simply checks to
\r
232 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
234 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
236 /* The item value of the event list item is normally used to hold the priority
\r
237 * of the task to which it belongs (coded to allow it to be held in reverse
\r
238 * priority order). However, it is occasionally borrowed for other purposes. It
\r
239 * is important its value is not updated due to a task priority change while it is
\r
240 * being used for another purpose. The following bit definition is used to inform
\r
241 * the scheduler that the value should not be changed - in which case it is the
\r
242 * responsibility of whichever module is using the value to ensure it gets set back
\r
243 * to its original value when it is released. */
\r
244 #if ( configUSE_16_BIT_TICKS == 1 )
\r
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
247 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
251 * Task control block. A task control block (TCB) is allocated for each task,
\r
252 * and stores task state information, including a pointer to the task's context
\r
253 * (the task's run time environment, including register values)
\r
255 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
257 volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
259 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
260 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
263 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
264 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
265 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
266 StackType_t * pxStack; /*< Points to the start of the stack. */
\r
267 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
269 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
270 StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
273 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
274 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
277 #if ( configUSE_TRACE_FACILITY == 1 )
\r
278 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
279 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
282 #if ( configUSE_MUTEXES == 1 )
\r
283 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
284 UBaseType_t uxMutexesHeld;
\r
287 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
288 TaskHookFunction_t pxTaskTag;
\r
291 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
292 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
295 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
296 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
299 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
301 /* Allocate a Newlib reent structure that is specific to this task.
\r
302 * Note Newlib support has been included by popular demand, but is not
\r
303 * used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
304 * responsible for resulting newlib operation. User must be familiar with
\r
305 * newlib and must provide system-wide implementations of the necessary
\r
306 * stubs. Be warned that (at the time of writing) the current newlib design
\r
307 * implements a system-wide malloc() that must be provided with locks.
\r
309 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
310 * for additional information. */
\r
311 struct _reent xNewLib_reent;
\r
314 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
315 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
316 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
319 /* See the comments in FreeRTOS.h with the definition of
\r
320 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
321 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
322 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
325 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
326 uint8_t ucDelayAborted;
\r
329 #if ( configUSE_POSIX_ERRNO == 1 )
\r
334 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
335 * below to enable the use of older kernel aware debuggers. */
\r
336 typedef tskTCB TCB_t;
\r
338 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
339 * which static variables must be declared volatile. */
\r
340 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
342 /* Lists for ready and blocked tasks. --------------------
\r
343 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
\r
344 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
345 * the static qualifier. */
\r
346 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
\r
347 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
348 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
349 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
350 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
351 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
353 #if ( INCLUDE_vTaskDelete == 1 )
\r
355 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
356 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
360 #if ( INCLUDE_vTaskSuspend == 1 )
\r
362 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
366 /* Global POSIX errno. Its value is changed upon context switching to match
\r
367 * the errno of the currently running task. */
\r
368 #if ( configUSE_POSIX_ERRNO == 1 )
\r
369 int FreeRTOS_errno = 0;
\r
372 /* Other file private variables. --------------------------------*/
\r
373 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
374 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
375 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
376 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
377 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
378 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
379 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
380 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
381 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
382 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
384 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
\r
385 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
\r
386 * to determine the number of priority lists to read back from the remote target. */
\r
387 const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
\r
389 /* Context switches are held pending while the scheduler is suspended. Also,
\r
390 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
391 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
392 * If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
393 * moves the task's event list item into the xPendingReadyList, ready for the
\r
394 * kernel to move the task from the pending ready list into the real ready list
\r
395 * when the scheduler is unsuspended. The pending ready list itself can only be
\r
396 * accessed from a critical section. */
\r
397 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
399 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
401 /* Do not move these variables to function scope as doing so prevents the
\r
402 * code working with debuggers that need to remove the static qualifier. */
\r
403 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
404 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
410 /*-----------------------------------------------------------*/
\r
412 /* File private functions. --------------------------------*/
\r
415 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
416 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
417 * is in any other state.
\r
419 #if ( INCLUDE_vTaskSuspend == 1 )
\r
421 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
423 #endif /* INCLUDE_vTaskSuspend */
\r
426 * Utility to ready all the lists used by the scheduler. This is called
\r
427 * automatically upon the creation of the first task.
\r
429 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
432 * The idle task, which as all tasks is implemented as a never ending loop.
\r
433 * The idle task is automatically created and added to the ready lists upon
\r
434 * creation of the first user task.
\r
436 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
437 * language extensions. The equivalent prototype for this function is:
\r
439 * void prvIdleTask( void *pvParameters );
\r
442 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
\r
445 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
446 * including the stack pointed to by the TCB.
\r
448 * This does not free memory allocated by the task itself (i.e. memory
\r
449 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
451 #if ( INCLUDE_vTaskDelete == 1 )
\r
453 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
\r
458 * Used only by the idle task. This checks to see if anything has been placed
\r
459 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
460 * and its TCB deleted.
\r
462 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
465 * The currently executing task is entering the Blocked state. Add the task to
\r
466 * either the current or the overflow delayed task list.
\r
468 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
469 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
472 * Fills an TaskStatus_t structure with information on each task that is
\r
473 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
474 * a suspended list, etc.).
\r
476 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
477 * NORMAL APPLICATION CODE.
\r
479 #if ( configUSE_TRACE_FACILITY == 1 )
\r
481 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
483 eTaskState eState ) PRIVILEGED_FUNCTION;
\r
488 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
489 * the task if it is found, or NULL if the task is not found.
\r
491 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
493 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
494 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
499 * When a task is created, the stack of the task is filled with a known value.
\r
500 * This function determines the 'high water mark' of the task stack by
\r
501 * determining how much of the stack remains at the original preset value.
\r
503 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
505 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
510 * Return the amount of time, in ticks, that will pass before the kernel will
\r
511 * next move a task from the Blocked state to the Running state.
\r
513 * This conditional compilation should use inequality to 0, not equality to 1.
\r
514 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
515 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
516 * set to a value other than 1.
\r
518 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
520 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
525 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
526 * will exit the Blocked state.
\r
528 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
\r
530 #if ( ( ( configUSE_TRACE_FACILITY == 1 ) || ( configGENERATE_RUN_TIME_STATS == 1 ) ) && \
\r
531 ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && \
\r
532 ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
535 * Helper function used to pad task names with spaces when printing out
\r
536 * human readable tables of task information.
\r
538 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
539 const char * pcTaskName ) PRIVILEGED_FUNCTION;
\r
544 * Called after a Task_t structure has been allocated either statically or
\r
545 * dynamically to fill in the structure's members.
\r
547 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
548 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
549 const uint32_t ulStackDepth,
\r
550 void * const pvParameters,
\r
551 UBaseType_t uxPriority,
\r
552 TaskHandle_t * const pxCreatedTask,
\r
554 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
557 * Called after a new task has been created and initialised to place the task
\r
558 * under the control of the scheduler.
\r
560 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
\r
563 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
564 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
565 * called by the function.
\r
567 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
569 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
573 /*-----------------------------------------------------------*/
\r
575 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
577 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
578 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
579 const uint32_t ulStackDepth,
\r
580 void * const pvParameters,
\r
581 UBaseType_t uxPriority,
\r
582 StackType_t * const puxStackBuffer,
\r
583 StaticTask_t * const pxTaskBuffer )
\r
586 TaskHandle_t xReturn;
\r
588 configASSERT( puxStackBuffer != NULL );
\r
589 configASSERT( pxTaskBuffer != NULL );
\r
591 #if ( configASSERT_DEFINED == 1 )
\r
593 /* Sanity check that the size of the structure used to declare a
\r
594 * variable of type StaticTask_t equals the size of the real task
\r
596 volatile size_t xSize = sizeof( StaticTask_t );
\r
597 configASSERT( xSize == sizeof( TCB_t ) );
\r
598 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
600 #endif /* configASSERT_DEFINED */
\r
602 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
604 /* The memory used for the task's TCB and stack are passed into this
\r
605 * function - use them. */
\r
606 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
607 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
608 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
610 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
612 /* Tasks can be created statically or dynamically, so note this
\r
613 * task was created statically in case the task is later deleted. */
\r
614 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
616 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
618 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
619 prvAddNewTaskToReadyList( pxNewTCB );
\r
629 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
630 /*-----------------------------------------------------------*/
\r
632 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
634 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
\r
635 TaskHandle_t * pxCreatedTask )
\r
638 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
640 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
641 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
643 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
645 /* Allocate space for the TCB. Where the memory comes from depends
\r
646 * on the implementation of the port malloc function and whether or
\r
647 * not static allocation is being used. */
\r
648 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
649 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
651 /* Store the stack location in the TCB. */
\r
652 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
654 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
656 /* Tasks can be created statically or dynamically, so note this
\r
657 * task was created statically in case the task is later deleted. */
\r
658 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
660 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
662 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
663 pxTaskDefinition->pcName,
\r
664 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
665 pxTaskDefinition->pvParameters,
\r
666 pxTaskDefinition->uxPriority,
\r
667 pxCreatedTask, pxNewTCB,
\r
668 pxTaskDefinition->xRegions );
\r
670 prvAddNewTaskToReadyList( pxNewTCB );
\r
677 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
678 /*-----------------------------------------------------------*/
\r
680 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
682 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
\r
683 TaskHandle_t * pxCreatedTask )
\r
686 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
688 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
690 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
692 /* Allocate space for the TCB. Where the memory comes from depends
\r
693 * on the implementation of the port malloc function and whether or
\r
694 * not static allocation is being used. */
\r
695 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
697 if( pxNewTCB != NULL )
\r
699 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
701 /* Store the stack location in the TCB. */
\r
702 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
704 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
706 /* Tasks can be created statically or dynamically, so note
\r
707 * this task had a statically allocated stack in case it is
\r
708 * later deleted. The TCB was allocated dynamically. */
\r
709 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
711 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
713 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
714 pxTaskDefinition->pcName,
\r
715 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
716 pxTaskDefinition->pvParameters,
\r
717 pxTaskDefinition->uxPriority,
\r
718 pxCreatedTask, pxNewTCB,
\r
719 pxTaskDefinition->xRegions );
\r
721 prvAddNewTaskToReadyList( pxNewTCB );
\r
729 #endif /* portUSING_MPU_WRAPPERS */
\r
730 /*-----------------------------------------------------------*/
\r
732 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
734 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
735 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
736 const configSTACK_DEPTH_TYPE usStackDepth,
\r
737 void * const pvParameters,
\r
738 UBaseType_t uxPriority,
\r
739 TaskHandle_t * const pxCreatedTask )
\r
742 BaseType_t xReturn;
\r
744 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
745 * does not grow into the TCB. Likewise if the stack grows up then allocate
\r
746 * the TCB then the stack. */
\r
747 #if ( portSTACK_GROWTH > 0 )
\r
749 /* Allocate space for the TCB. Where the memory comes from depends on
\r
750 * the implementation of the port malloc function and whether or not static
\r
751 * allocation is being used. */
\r
752 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
754 if( pxNewTCB != NULL )
\r
756 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
758 /* Allocate space for the stack used by the task being created.
\r
759 * The base of the stack memory stored in the TCB so the task can
\r
760 * be deleted later if required. */
\r
761 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
763 if( pxNewTCB->pxStack == NULL )
\r
765 /* Could not allocate the stack. Delete the allocated TCB. */
\r
766 vPortFree( pxNewTCB );
\r
771 #else /* portSTACK_GROWTH */
\r
773 StackType_t * pxStack;
\r
775 /* Allocate space for the stack used by the task being created. */
\r
776 pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
778 if( pxStack != NULL )
\r
780 /* Allocate space for the TCB. */
\r
781 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
783 if( pxNewTCB != NULL )
\r
785 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
787 /* Store the stack location in the TCB. */
\r
788 pxNewTCB->pxStack = pxStack;
\r
792 /* The stack cannot be used as the TCB was not created. Free
\r
794 vPortFreeStack( pxStack );
\r
802 #endif /* portSTACK_GROWTH */
\r
804 if( pxNewTCB != NULL )
\r
806 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
808 /* Tasks can be created statically or dynamically, so note this
\r
809 * task was created dynamically in case it is later deleted. */
\r
810 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
812 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
814 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
815 prvAddNewTaskToReadyList( pxNewTCB );
\r
820 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
826 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
827 /*-----------------------------------------------------------*/
\r
829 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
830 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
831 const uint32_t ulStackDepth,
\r
832 void * const pvParameters,
\r
833 UBaseType_t uxPriority,
\r
834 TaskHandle_t * const pxCreatedTask,
\r
836 const MemoryRegion_t * const xRegions )
\r
838 StackType_t * pxTopOfStack;
\r
841 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
842 /* Should the task be created in privileged mode? */
\r
843 BaseType_t xRunPrivileged;
\r
845 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
847 xRunPrivileged = pdTRUE;
\r
851 xRunPrivileged = pdFALSE;
\r
853 uxPriority &= ~portPRIVILEGE_BIT;
\r
854 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
856 /* Avoid dependency on memset() if it is not required. */
\r
857 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
859 /* Fill the stack with a known value to assist debugging. */
\r
860 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
862 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
864 /* Calculate the top of stack address. This depends on whether the stack
\r
865 * grows from high memory to low (as per the 80x86) or vice versa.
\r
866 * portSTACK_GROWTH is used to make the result positive or negative as required
\r
868 #if ( portSTACK_GROWTH < 0 )
\r
870 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
871 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
873 /* Check the alignment of the calculated top of stack is correct. */
\r
874 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
876 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
878 /* Also record the stack's high address, which may assist
\r
880 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
882 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
884 #else /* portSTACK_GROWTH */
\r
886 pxTopOfStack = pxNewTCB->pxStack;
\r
888 /* Check the alignment of the stack buffer is correct. */
\r
889 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
891 /* The other extreme of the stack space is required if stack checking is
\r
893 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
895 #endif /* portSTACK_GROWTH */
\r
897 /* Store the task name in the TCB. */
\r
898 if( pcName != NULL )
\r
900 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
902 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
904 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
905 * configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
906 * string is not accessible (extremely unlikely). */
\r
907 if( pcName[ x ] == ( char ) 0x00 )
\r
913 mtCOVERAGE_TEST_MARKER();
\r
917 /* Ensure the name string is terminated in the case that the string length
\r
918 * was greater or equal to configMAX_TASK_NAME_LEN. */
\r
919 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
923 mtCOVERAGE_TEST_MARKER();
\r
926 /* This is used as an array index so must ensure it's not too large. */
\r
927 configASSERT( uxPriority < configMAX_PRIORITIES );
\r
929 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
931 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
935 mtCOVERAGE_TEST_MARKER();
\r
938 pxNewTCB->uxPriority = uxPriority;
\r
939 #if ( configUSE_MUTEXES == 1 )
\r
941 pxNewTCB->uxBasePriority = uxPriority;
\r
943 #endif /* configUSE_MUTEXES */
\r
945 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
946 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
948 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
949 * back to the containing TCB from a generic item in a list. */
\r
950 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
952 /* Event lists are always in priority order. */
\r
953 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
954 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
956 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
958 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
962 /* Avoid compiler warning about unreferenced parameter. */
\r
967 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
969 /* Initialise this task's Newlib reent structure.
\r
970 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
971 * for additional information. */
\r
972 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
976 /* Initialize the TCB stack to look as if the task was already running,
\r
977 * but had been interrupted by the scheduler. The return address is set
\r
978 * to the start of the task function. Once the stack has been initialised
\r
979 * the top of stack variable is updated. */
\r
980 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
982 /* If the port has capability to detect stack overflow,
\r
983 * pass the stack end address to the stack initialization
\r
984 * function as well. */
\r
985 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
987 #if ( portSTACK_GROWTH < 0 )
\r
989 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
991 #else /* portSTACK_GROWTH */
\r
993 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
995 #endif /* portSTACK_GROWTH */
\r
997 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
999 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1001 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1003 #else /* portUSING_MPU_WRAPPERS */
\r
1005 /* If the port has capability to detect stack overflow,
\r
1006 * pass the stack end address to the stack initialization
\r
1007 * function as well. */
\r
1008 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1010 #if ( portSTACK_GROWTH < 0 )
\r
1012 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
1014 #else /* portSTACK_GROWTH */
\r
1016 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1018 #endif /* portSTACK_GROWTH */
\r
1020 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1022 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1024 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1026 #endif /* portUSING_MPU_WRAPPERS */
\r
1028 if( pxCreatedTask != NULL )
\r
1030 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1031 * change the created task's priority, delete the created task, etc.*/
\r
1032 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1036 mtCOVERAGE_TEST_MARKER();
\r
1039 /*-----------------------------------------------------------*/
\r
1041 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
\r
1043 /* Ensure interrupts don't access the task lists while the lists are being
\r
1045 taskENTER_CRITICAL();
\r
1047 uxCurrentNumberOfTasks++;
\r
1049 if( pxCurrentTCB == NULL )
\r
1051 /* There are no other tasks, or all the other tasks are in
\r
1052 * the suspended state - make this the current task. */
\r
1053 pxCurrentTCB = pxNewTCB;
\r
1055 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1057 /* This is the first task to be created so do the preliminary
\r
1058 * initialisation required. We will not recover if this call
\r
1059 * fails, but we will report the failure. */
\r
1060 prvInitialiseTaskLists();
\r
1064 mtCOVERAGE_TEST_MARKER();
\r
1069 /* If the scheduler is not already running, make this task the
\r
1070 * current task if it is the highest priority task to be created
\r
1072 if( xSchedulerRunning == pdFALSE )
\r
1074 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1076 pxCurrentTCB = pxNewTCB;
\r
1080 mtCOVERAGE_TEST_MARKER();
\r
1085 mtCOVERAGE_TEST_MARKER();
\r
1091 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1093 /* Add a counter into the TCB for tracing only. */
\r
1094 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1096 #endif /* configUSE_TRACE_FACILITY */
\r
1097 traceTASK_CREATE( pxNewTCB );
\r
1099 prvAddTaskToReadyList( pxNewTCB );
\r
1101 portSETUP_TCB( pxNewTCB );
\r
1103 taskEXIT_CRITICAL();
\r
1105 if( xSchedulerRunning != pdFALSE )
\r
1107 /* If the created task is of a higher priority than the current task
\r
1108 * then it should run now. */
\r
1109 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1111 taskYIELD_IF_USING_PREEMPTION();
\r
1115 mtCOVERAGE_TEST_MARKER();
\r
1120 mtCOVERAGE_TEST_MARKER();
\r
1123 /*-----------------------------------------------------------*/
\r
1125 #if ( INCLUDE_vTaskDelete == 1 )
\r
1127 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1131 taskENTER_CRITICAL();
\r
1133 /* If null is passed in here then it is the calling task that is
\r
1134 * being deleted. */
\r
1135 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1137 /* Remove task from the ready/delayed list. */
\r
1138 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1140 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1144 mtCOVERAGE_TEST_MARKER();
\r
1147 /* Is the task waiting on an event also? */
\r
1148 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1150 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1154 mtCOVERAGE_TEST_MARKER();
\r
1157 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1158 * detect that the task lists need re-generating. This is done before
\r
1159 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1163 if( pxTCB == pxCurrentTCB )
\r
1165 /* A task is deleting itself. This cannot complete within the
\r
1166 * task itself, as a context switch to another task is required.
\r
1167 * Place the task in the termination list. The idle task will
\r
1168 * check the termination list and free up any memory allocated by
\r
1169 * the scheduler for the TCB and stack of the deleted task. */
\r
1170 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1172 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1173 * there is a task that has been deleted and that it should therefore
\r
1174 * check the xTasksWaitingTermination list. */
\r
1175 ++uxDeletedTasksWaitingCleanUp;
\r
1177 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1178 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1179 traceTASK_DELETE( pxTCB );
\r
1181 /* The pre-delete hook is primarily for the Windows simulator,
\r
1182 * in which Windows specific clean up operations are performed,
\r
1183 * after which it is not possible to yield away from this task -
\r
1184 * hence xYieldPending is used to latch that a context switch is
\r
1186 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1190 --uxCurrentNumberOfTasks;
\r
1191 traceTASK_DELETE( pxTCB );
\r
1193 /* Reset the next expected unblock time in case it referred to
\r
1194 * the task that has just been deleted. */
\r
1195 prvResetNextTaskUnblockTime();
\r
1198 taskEXIT_CRITICAL();
\r
1200 /* If the task is not deleting itself, call prvDeleteTCB from outside of
\r
1201 * critical section. If a task deletes itself, prvDeleteTCB is called
\r
1202 * from prvCheckTasksWaitingTermination which is called from Idle task. */
\r
1203 if( pxTCB != pxCurrentTCB )
\r
1205 prvDeleteTCB( pxTCB );
\r
1208 /* Force a reschedule if it is the currently running task that has just
\r
1209 * been deleted. */
\r
1210 if( xSchedulerRunning != pdFALSE )
\r
1212 if( pxTCB == pxCurrentTCB )
\r
1214 configASSERT( uxSchedulerSuspended == 0 );
\r
1215 portYIELD_WITHIN_API();
\r
1219 mtCOVERAGE_TEST_MARKER();
\r
1224 #endif /* INCLUDE_vTaskDelete */
\r
1225 /*-----------------------------------------------------------*/
\r
1227 #if ( INCLUDE_xTaskDelayUntil == 1 )
\r
1229 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
\r
1230 const TickType_t xTimeIncrement )
\r
1232 TickType_t xTimeToWake;
\r
1233 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1235 configASSERT( pxPreviousWakeTime );
\r
1236 configASSERT( ( xTimeIncrement > 0U ) );
\r
1237 configASSERT( uxSchedulerSuspended == 0 );
\r
1239 vTaskSuspendAll();
\r
1241 /* Minor optimisation. The tick count cannot change in this
\r
1243 const TickType_t xConstTickCount = xTickCount;
\r
1245 /* Generate the tick time at which the task wants to wake. */
\r
1246 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1248 if( xConstTickCount < *pxPreviousWakeTime )
\r
1250 /* The tick count has overflowed since this function was
\r
1251 * lasted called. In this case the only time we should ever
\r
1252 * actually delay is if the wake time has also overflowed,
\r
1253 * and the wake time is greater than the tick time. When this
\r
1254 * is the case it is as if neither time had overflowed. */
\r
1255 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1257 xShouldDelay = pdTRUE;
\r
1261 mtCOVERAGE_TEST_MARKER();
\r
1266 /* The tick time has not overflowed. In this case we will
\r
1267 * delay if either the wake time has overflowed, and/or the
\r
1268 * tick time is less than the wake time. */
\r
1269 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1271 xShouldDelay = pdTRUE;
\r
1275 mtCOVERAGE_TEST_MARKER();
\r
1279 /* Update the wake time ready for the next call. */
\r
1280 *pxPreviousWakeTime = xTimeToWake;
\r
1282 if( xShouldDelay != pdFALSE )
\r
1284 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1286 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1287 * the time to wake, so subtract the current tick count. */
\r
1288 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1292 mtCOVERAGE_TEST_MARKER();
\r
1295 xAlreadyYielded = xTaskResumeAll();
\r
1297 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1298 * have put ourselves to sleep. */
\r
1299 if( xAlreadyYielded == pdFALSE )
\r
1301 portYIELD_WITHIN_API();
\r
1305 mtCOVERAGE_TEST_MARKER();
\r
1308 return xShouldDelay;
\r
1311 #endif /* INCLUDE_xTaskDelayUntil */
\r
1312 /*-----------------------------------------------------------*/
\r
1314 #if ( INCLUDE_vTaskDelay == 1 )
\r
1316 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1318 BaseType_t xAlreadyYielded = pdFALSE;
\r
1320 /* A delay time of zero just forces a reschedule. */
\r
1321 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1323 configASSERT( uxSchedulerSuspended == 0 );
\r
1324 vTaskSuspendAll();
\r
1326 traceTASK_DELAY();
\r
1328 /* A task that is removed from the event list while the
\r
1329 * scheduler is suspended will not get placed in the ready
\r
1330 * list or removed from the blocked list until the scheduler
\r
1333 * This task cannot be in an event list as it is the currently
\r
1334 * executing task. */
\r
1335 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1337 xAlreadyYielded = xTaskResumeAll();
\r
1341 mtCOVERAGE_TEST_MARKER();
\r
1344 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1345 * have put ourselves to sleep. */
\r
1346 if( xAlreadyYielded == pdFALSE )
\r
1348 portYIELD_WITHIN_API();
\r
1352 mtCOVERAGE_TEST_MARKER();
\r
1356 #endif /* INCLUDE_vTaskDelay */
\r
1357 /*-----------------------------------------------------------*/
\r
1359 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1361 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1363 eTaskState eReturn;
\r
1364 List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
\r
1365 const TCB_t * const pxTCB = xTask;
\r
1367 configASSERT( pxTCB );
\r
1369 if( pxTCB == pxCurrentTCB )
\r
1371 /* The task calling this function is querying its own state. */
\r
1372 eReturn = eRunning;
\r
1376 taskENTER_CRITICAL();
\r
1378 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1379 pxDelayedList = pxDelayedTaskList;
\r
1380 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1382 taskEXIT_CRITICAL();
\r
1384 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1386 /* The task being queried is referenced from one of the Blocked
\r
1388 eReturn = eBlocked;
\r
1391 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1392 else if( pxStateList == &xSuspendedTaskList )
\r
1394 /* The task being queried is referenced from the suspended
\r
1395 * list. Is it genuinely suspended or is it blocked
\r
1396 * indefinitely? */
\r
1397 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1399 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1403 /* The task does not appear on the event list item of
\r
1404 * and of the RTOS objects, but could still be in the
\r
1405 * blocked state if it is waiting on its notification
\r
1406 * rather than waiting on an object. If not, is
\r
1408 eReturn = eSuspended;
\r
1410 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1412 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1414 eReturn = eBlocked;
\r
1419 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1421 eReturn = eSuspended;
\r
1423 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1427 eReturn = eBlocked;
\r
1430 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
\r
1432 #if ( INCLUDE_vTaskDelete == 1 )
\r
1433 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1435 /* The task being queried is referenced from the deleted
\r
1436 * tasks list, or it is not referenced from any lists at
\r
1438 eReturn = eDeleted;
\r
1442 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1444 /* If the task is not in any other state, it must be in the
\r
1445 * Ready (including pending ready) state. */
\r
1451 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1453 #endif /* INCLUDE_eTaskGetState */
\r
1454 /*-----------------------------------------------------------*/
\r
1456 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1458 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1460 TCB_t const * pxTCB;
\r
1461 UBaseType_t uxReturn;
\r
1463 taskENTER_CRITICAL();
\r
1465 /* If null is passed in here then it is the priority of the task
\r
1466 * that called uxTaskPriorityGet() that is being queried. */
\r
1467 pxTCB = prvGetTCBFromHandle( xTask );
\r
1468 uxReturn = pxTCB->uxPriority;
\r
1470 taskEXIT_CRITICAL();
\r
1475 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1476 /*-----------------------------------------------------------*/
\r
1478 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1480 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1482 TCB_t const * pxTCB;
\r
1483 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1485 /* RTOS ports that support interrupt nesting have the concept of a
\r
1486 * maximum system call (or maximum API call) interrupt priority.
\r
1487 * Interrupts that are above the maximum system call priority are keep
\r
1488 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1489 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1490 * is defined in FreeRTOSConfig.h then
\r
1491 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1492 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1493 * been assigned a priority above the configured maximum system call
\r
1494 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1495 * from interrupts that have been assigned a priority at or (logically)
\r
1496 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1497 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1498 * simple as possible. More information (albeit Cortex-M specific) is
\r
1499 * provided on the following link:
\r
1500 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1501 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1503 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1505 /* If null is passed in here then it is the priority of the calling
\r
1506 * task that is being queried. */
\r
1507 pxTCB = prvGetTCBFromHandle( xTask );
\r
1508 uxReturn = pxTCB->uxPriority;
\r
1510 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1515 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1516 /*-----------------------------------------------------------*/
\r
1518 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1520 void vTaskPrioritySet( TaskHandle_t xTask,
\r
1521 UBaseType_t uxNewPriority )
\r
1524 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1525 BaseType_t xYieldRequired = pdFALSE;
\r
1527 configASSERT( uxNewPriority < configMAX_PRIORITIES );
\r
1529 /* Ensure the new priority is valid. */
\r
1530 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1532 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1536 mtCOVERAGE_TEST_MARKER();
\r
1539 taskENTER_CRITICAL();
\r
1541 /* If null is passed in here then it is the priority of the calling
\r
1542 * task that is being changed. */
\r
1543 pxTCB = prvGetTCBFromHandle( xTask );
\r
1545 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1547 #if ( configUSE_MUTEXES == 1 )
\r
1549 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1553 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1557 if( uxCurrentBasePriority != uxNewPriority )
\r
1559 /* The priority change may have readied a task of higher
\r
1560 * priority than the calling task. */
\r
1561 if( uxNewPriority > uxCurrentBasePriority )
\r
1563 if( pxTCB != pxCurrentTCB )
\r
1565 /* The priority of a task other than the currently
\r
1566 * running task is being raised. Is the priority being
\r
1567 * raised above that of the running task? */
\r
1568 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1570 xYieldRequired = pdTRUE;
\r
1574 mtCOVERAGE_TEST_MARKER();
\r
1579 /* The priority of the running task is being raised,
\r
1580 * but the running task must already be the highest
\r
1581 * priority task able to run so no yield is required. */
\r
1584 else if( pxTCB == pxCurrentTCB )
\r
1586 /* Setting the priority of the running task down means
\r
1587 * there may now be another task of higher priority that
\r
1588 * is ready to execute. */
\r
1589 xYieldRequired = pdTRUE;
\r
1593 /* Setting the priority of any other task down does not
\r
1594 * require a yield as the running task must be above the
\r
1595 * new priority of the task being modified. */
\r
1598 /* Remember the ready list the task might be referenced from
\r
1599 * before its uxPriority member is changed so the
\r
1600 * taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1601 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1603 #if ( configUSE_MUTEXES == 1 )
\r
1605 /* Only change the priority being used if the task is not
\r
1606 * currently using an inherited priority. */
\r
1607 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1609 pxTCB->uxPriority = uxNewPriority;
\r
1613 mtCOVERAGE_TEST_MARKER();
\r
1616 /* The base priority gets set whatever. */
\r
1617 pxTCB->uxBasePriority = uxNewPriority;
\r
1619 #else /* if ( configUSE_MUTEXES == 1 ) */
\r
1621 pxTCB->uxPriority = uxNewPriority;
\r
1623 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1625 /* Only reset the event list item value if the value is not
\r
1626 * being used for anything else. */
\r
1627 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1629 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1633 mtCOVERAGE_TEST_MARKER();
\r
1636 /* If the task is in the blocked or suspended list we need do
\r
1637 * nothing more than change its priority variable. However, if
\r
1638 * the task is in a ready list it needs to be removed and placed
\r
1639 * in the list appropriate to its new priority. */
\r
1640 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1642 /* The task is currently in its ready list - remove before
\r
1643 * adding it to its new ready list. As we are in a critical
\r
1644 * section we can do this even if the scheduler is suspended. */
\r
1645 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1647 /* It is known that the task is in its ready list so
\r
1648 * there is no need to check again and the port level
\r
1649 * reset macro can be called directly. */
\r
1650 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1654 mtCOVERAGE_TEST_MARKER();
\r
1657 prvAddTaskToReadyList( pxTCB );
\r
1661 mtCOVERAGE_TEST_MARKER();
\r
1664 if( xYieldRequired != pdFALSE )
\r
1666 taskYIELD_IF_USING_PREEMPTION();
\r
1670 mtCOVERAGE_TEST_MARKER();
\r
1673 /* Remove compiler warning about unused variables when the port
\r
1674 * optimised task selection is not being used. */
\r
1675 ( void ) uxPriorityUsedOnEntry;
\r
1678 taskEXIT_CRITICAL();
\r
1681 #endif /* INCLUDE_vTaskPrioritySet */
\r
1682 /*-----------------------------------------------------------*/
\r
1684 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1686 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1690 taskENTER_CRITICAL();
\r
1692 /* If null is passed in here then it is the running task that is
\r
1693 * being suspended. */
\r
1694 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1696 traceTASK_SUSPEND( pxTCB );
\r
1698 /* Remove task from the ready/delayed list and place in the
\r
1699 * suspended list. */
\r
1700 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1702 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1706 mtCOVERAGE_TEST_MARKER();
\r
1709 /* Is the task waiting on an event also? */
\r
1710 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1712 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1716 mtCOVERAGE_TEST_MARKER();
\r
1719 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1721 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1725 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1727 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1729 /* The task was blocked to wait for a notification, but is
\r
1730 * now suspended, so no notification was received. */
\r
1731 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
\r
1735 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1737 taskEXIT_CRITICAL();
\r
1739 if( xSchedulerRunning != pdFALSE )
\r
1741 /* Reset the next expected unblock time in case it referred to the
\r
1742 * task that is now in the Suspended state. */
\r
1743 taskENTER_CRITICAL();
\r
1745 prvResetNextTaskUnblockTime();
\r
1747 taskEXIT_CRITICAL();
\r
1751 mtCOVERAGE_TEST_MARKER();
\r
1754 if( pxTCB == pxCurrentTCB )
\r
1756 if( xSchedulerRunning != pdFALSE )
\r
1758 /* The current task has just been suspended. */
\r
1759 configASSERT( uxSchedulerSuspended == 0 );
\r
1760 portYIELD_WITHIN_API();
\r
1764 /* The scheduler is not running, but the task that was pointed
\r
1765 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1766 * must be adjusted to point to a different task. */
\r
1767 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1769 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1770 * NULL so when the next task is created pxCurrentTCB will
\r
1771 * be set to point to it no matter what its relative priority
\r
1773 pxCurrentTCB = NULL;
\r
1777 vTaskSwitchContext();
\r
1783 mtCOVERAGE_TEST_MARKER();
\r
1787 #endif /* INCLUDE_vTaskSuspend */
\r
1788 /*-----------------------------------------------------------*/
\r
1790 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1792 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1794 BaseType_t xReturn = pdFALSE;
\r
1795 const TCB_t * const pxTCB = xTask;
\r
1797 /* Accesses xPendingReadyList so must be called from a critical
\r
1800 /* It does not make sense to check if the calling task is suspended. */
\r
1801 configASSERT( xTask );
\r
1803 /* Is the task being resumed actually in the suspended list? */
\r
1804 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1806 /* Has the task already been resumed from within an ISR? */
\r
1807 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1809 /* Is it in the suspended list because it is in the Suspended
\r
1810 * state, or because is is blocked with no timeout? */
\r
1811 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1817 mtCOVERAGE_TEST_MARKER();
\r
1822 mtCOVERAGE_TEST_MARKER();
\r
1827 mtCOVERAGE_TEST_MARKER();
\r
1831 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1833 #endif /* INCLUDE_vTaskSuspend */
\r
1834 /*-----------------------------------------------------------*/
\r
1836 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1838 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1840 TCB_t * const pxTCB = xTaskToResume;
\r
1842 /* It does not make sense to resume the calling task. */
\r
1843 configASSERT( xTaskToResume );
\r
1845 /* The parameter cannot be NULL as it is impossible to resume the
\r
1846 * currently executing task. */
\r
1847 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1849 taskENTER_CRITICAL();
\r
1851 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1853 traceTASK_RESUME( pxTCB );
\r
1855 /* The ready list can be accessed even if the scheduler is
\r
1856 * suspended because this is inside a critical section. */
\r
1857 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1858 prvAddTaskToReadyList( pxTCB );
\r
1860 /* A higher priority task may have just been resumed. */
\r
1861 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1863 /* This yield may not cause the task just resumed to run,
\r
1864 * but will leave the lists in the correct state for the
\r
1866 taskYIELD_IF_USING_PREEMPTION();
\r
1870 mtCOVERAGE_TEST_MARKER();
\r
1875 mtCOVERAGE_TEST_MARKER();
\r
1878 taskEXIT_CRITICAL();
\r
1882 mtCOVERAGE_TEST_MARKER();
\r
1886 #endif /* INCLUDE_vTaskSuspend */
\r
1888 /*-----------------------------------------------------------*/
\r
1890 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1892 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1894 BaseType_t xYieldRequired = pdFALSE;
\r
1895 TCB_t * const pxTCB = xTaskToResume;
\r
1896 UBaseType_t uxSavedInterruptStatus;
\r
1898 configASSERT( xTaskToResume );
\r
1900 /* RTOS ports that support interrupt nesting have the concept of a
\r
1901 * maximum system call (or maximum API call) interrupt priority.
\r
1902 * Interrupts that are above the maximum system call priority are keep
\r
1903 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1904 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1905 * is defined in FreeRTOSConfig.h then
\r
1906 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1907 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1908 * been assigned a priority above the configured maximum system call
\r
1909 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1910 * from interrupts that have been assigned a priority at or (logically)
\r
1911 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1912 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1913 * simple as possible. More information (albeit Cortex-M specific) is
\r
1914 * provided on the following link:
\r
1915 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1916 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1918 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1920 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1922 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1924 /* Check the ready lists can be accessed. */
\r
1925 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1927 /* Ready lists can be accessed so move the task from the
\r
1928 * suspended list to the ready list directly. */
\r
1929 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1931 xYieldRequired = pdTRUE;
\r
1933 /* Mark that a yield is pending in case the user is not
\r
1934 * using the return value to initiate a context switch
\r
1935 * from the ISR using portYIELD_FROM_ISR. */
\r
1936 xYieldPending = pdTRUE;
\r
1940 mtCOVERAGE_TEST_MARKER();
\r
1943 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1944 prvAddTaskToReadyList( pxTCB );
\r
1948 /* The delayed or ready lists cannot be accessed so the task
\r
1949 * is held in the pending ready list until the scheduler is
\r
1951 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1956 mtCOVERAGE_TEST_MARKER();
\r
1959 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1961 return xYieldRequired;
\r
1964 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1965 /*-----------------------------------------------------------*/
\r
1967 void vTaskStartScheduler( void )
\r
1969 BaseType_t xReturn;
\r
1971 /* Add the idle task at the lowest priority. */
\r
1972 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1974 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
\r
1975 StackType_t * pxIdleTaskStackBuffer = NULL;
\r
1976 uint32_t ulIdleTaskStackSize;
\r
1978 /* The Idle task is created using user provided RAM - obtain the
\r
1979 * address of the RAM then create the idle task. */
\r
1980 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
1981 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
1982 configIDLE_TASK_NAME,
\r
1983 ulIdleTaskStackSize,
\r
1984 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
1985 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
1986 pxIdleTaskStackBuffer,
\r
1987 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
1989 if( xIdleTaskHandle != NULL )
\r
1998 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
2000 /* The Idle task is being created using dynamically allocated RAM. */
\r
2001 xReturn = xTaskCreate( prvIdleTask,
\r
2002 configIDLE_TASK_NAME,
\r
2003 configMINIMAL_STACK_SIZE,
\r
2005 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2006 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2008 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
2010 #if ( configUSE_TIMERS == 1 )
\r
2012 if( xReturn == pdPASS )
\r
2014 xReturn = xTimerCreateTimerTask();
\r
2018 mtCOVERAGE_TEST_MARKER();
\r
2021 #endif /* configUSE_TIMERS */
\r
2023 if( xReturn == pdPASS )
\r
2025 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2026 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2027 * the only macro called by the function. */
\r
2028 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2030 freertos_tasks_c_additions_init();
\r
2034 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2035 * before or during the call to xPortStartScheduler(). The stacks of
\r
2036 * the created tasks contain a status word with interrupts switched on
\r
2037 * so interrupts will automatically get re-enabled when the first task
\r
2038 * starts to run. */
\r
2039 portDISABLE_INTERRUPTS();
\r
2041 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2043 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2044 * structure specific to the task that will run first.
\r
2045 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
2046 * for additional information. */
\r
2047 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2049 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2051 xNextTaskUnblockTime = portMAX_DELAY;
\r
2052 xSchedulerRunning = pdTRUE;
\r
2053 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2055 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2056 * macro must be defined to configure the timer/counter used to generate
\r
2057 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2058 * is set to 0 and the following line fails to build then ensure you do not
\r
2059 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2060 * FreeRTOSConfig.h file. */
\r
2061 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2063 traceTASK_SWITCHED_IN();
\r
2065 /* Setting up the timer tick is hardware specific and thus in the
\r
2066 * portable interface. */
\r
2067 if( xPortStartScheduler() != pdFALSE )
\r
2069 /* Should not reach here as if the scheduler is running the
\r
2070 * function will not return. */
\r
2074 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2079 /* This line will only be reached if the kernel could not be started,
\r
2080 * because there was not enough FreeRTOS heap to create the idle task
\r
2081 * or the timer task. */
\r
2082 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2085 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2086 * meaning xIdleTaskHandle is not used anywhere else. */
\r
2087 ( void ) xIdleTaskHandle;
\r
2089 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
\r
2090 * from getting optimized out as it is no longer used by the kernel. */
\r
2091 ( void ) uxTopUsedPriority;
\r
2093 /*-----------------------------------------------------------*/
\r
2095 void vTaskEndScheduler( void )
\r
2097 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2098 * routine so the original ISRs can be restored if necessary. The port
\r
2099 * layer must ensure interrupts enable bit is left in the correct state. */
\r
2100 portDISABLE_INTERRUPTS();
\r
2101 xSchedulerRunning = pdFALSE;
\r
2102 vPortEndScheduler();
\r
2104 /*----------------------------------------------------------*/
\r
2106 void vTaskSuspendAll( void )
\r
2108 /* A critical section is not required as the variable is of type
\r
2109 * BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2110 * post in the FreeRTOS support forum before reporting this as a bug! -
\r
2111 * https://goo.gl/wu4acr */
\r
2113 /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2114 * do not otherwise exhibit real time behaviour. */
\r
2115 portSOFTWARE_BARRIER();
\r
2117 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2118 * is used to allow calls to vTaskSuspendAll() to nest. */
\r
2119 ++uxSchedulerSuspended;
\r
2121 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2122 * the above increment elsewhere. */
\r
2123 portMEMORY_BARRIER();
\r
2125 /*----------------------------------------------------------*/
\r
2127 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2129 static TickType_t prvGetExpectedIdleTime( void )
\r
2131 TickType_t xReturn;
\r
2132 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2134 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2135 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2136 * task that are in the Ready state, even though the idle task is
\r
2138 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2140 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2142 uxHigherPriorityReadyTasks = pdTRUE;
\r
2147 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2149 /* When port optimised task selection is used the uxTopReadyPriority
\r
2150 * variable is used as a bit map. If bits other than the least
\r
2151 * significant bit are set then there are tasks that have a priority
\r
2152 * above the idle priority that are in the Ready state. This takes
\r
2153 * care of the case where the co-operative scheduler is in use. */
\r
2154 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2156 uxHigherPriorityReadyTasks = pdTRUE;
\r
2159 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
\r
2161 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2165 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2167 /* There are other idle priority tasks in the ready state. If
\r
2168 * time slicing is used then the very next tick interrupt must be
\r
2172 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2174 /* There are tasks in the Ready state that have a priority above the
\r
2175 * idle priority. This path can only be reached if
\r
2176 * configUSE_PREEMPTION is 0. */
\r
2181 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2187 #endif /* configUSE_TICKLESS_IDLE */
\r
2188 /*----------------------------------------------------------*/
\r
2190 BaseType_t xTaskResumeAll( void )
\r
2192 TCB_t * pxTCB = NULL;
\r
2193 BaseType_t xAlreadyYielded = pdFALSE;
\r
2195 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2196 * previous call to vTaskSuspendAll(). */
\r
2197 configASSERT( uxSchedulerSuspended );
\r
2199 /* It is possible that an ISR caused a task to be removed from an event
\r
2200 * list while the scheduler was suspended. If this was the case then the
\r
2201 * removed task will have been added to the xPendingReadyList. Once the
\r
2202 * scheduler has been resumed it is safe to move all the pending ready
\r
2203 * tasks from this list into their appropriate ready list. */
\r
2204 taskENTER_CRITICAL();
\r
2206 --uxSchedulerSuspended;
\r
2208 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2210 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2212 /* Move any readied tasks from the pending list into the
\r
2213 * appropriate ready list. */
\r
2214 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2216 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2217 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2218 portMEMORY_BARRIER();
\r
2219 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2220 prvAddTaskToReadyList( pxTCB );
\r
2222 /* If the moved task has a priority higher than or equal to
\r
2223 * the current task then a yield must be performed. */
\r
2224 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2226 xYieldPending = pdTRUE;
\r
2230 mtCOVERAGE_TEST_MARKER();
\r
2234 if( pxTCB != NULL )
\r
2236 /* A task was unblocked while the scheduler was suspended,
\r
2237 * which may have prevented the next unblock time from being
\r
2238 * re-calculated, in which case re-calculate it now. Mainly
\r
2239 * important for low power tickless implementations, where
\r
2240 * this can prevent an unnecessary exit from low power
\r
2242 prvResetNextTaskUnblockTime();
\r
2245 /* If any ticks occurred while the scheduler was suspended then
\r
2246 * they should be processed now. This ensures the tick count does
\r
2247 * not slip, and that any delayed tasks are resumed at the correct
\r
2250 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2252 if( xPendedCounts > ( TickType_t ) 0U )
\r
2256 if( xTaskIncrementTick() != pdFALSE )
\r
2258 xYieldPending = pdTRUE;
\r
2262 mtCOVERAGE_TEST_MARKER();
\r
2266 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2272 mtCOVERAGE_TEST_MARKER();
\r
2276 if( xYieldPending != pdFALSE )
\r
2278 #if ( configUSE_PREEMPTION != 0 )
\r
2280 xAlreadyYielded = pdTRUE;
\r
2283 taskYIELD_IF_USING_PREEMPTION();
\r
2287 mtCOVERAGE_TEST_MARKER();
\r
2293 mtCOVERAGE_TEST_MARKER();
\r
2296 taskEXIT_CRITICAL();
\r
2298 return xAlreadyYielded;
\r
2300 /*-----------------------------------------------------------*/
\r
2302 TickType_t xTaskGetTickCount( void )
\r
2304 TickType_t xTicks;
\r
2306 /* Critical section required if running on a 16 bit processor. */
\r
2307 portTICK_TYPE_ENTER_CRITICAL();
\r
2309 xTicks = xTickCount;
\r
2311 portTICK_TYPE_EXIT_CRITICAL();
\r
2315 /*-----------------------------------------------------------*/
\r
2317 TickType_t xTaskGetTickCountFromISR( void )
\r
2319 TickType_t xReturn;
\r
2320 UBaseType_t uxSavedInterruptStatus;
\r
2322 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2323 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
2324 * above the maximum system call priority are kept permanently enabled, even
\r
2325 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2326 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2327 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2328 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2329 * assigned a priority above the configured maximum system call priority.
\r
2330 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2331 * that have been assigned a priority at or (logically) below the maximum
\r
2332 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2333 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2334 * More information (albeit Cortex-M specific) is provided on the following
\r
2335 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
2336 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2338 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2340 xReturn = xTickCount;
\r
2342 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2346 /*-----------------------------------------------------------*/
\r
2348 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2350 /* A critical section is not required because the variables are of type
\r
2352 return uxCurrentNumberOfTasks;
\r
2354 /*-----------------------------------------------------------*/
\r
2356 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2360 /* If null is passed in here then the name of the calling task is being
\r
2362 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2363 configASSERT( pxTCB );
\r
2364 return &( pxTCB->pcTaskName[ 0 ] );
\r
2366 /*-----------------------------------------------------------*/
\r
2368 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2370 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
2371 const char pcNameToQuery[] )
\r
2373 TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
\r
2376 BaseType_t xBreakLoop;
\r
2378 /* This function is called with the scheduler suspended. */
\r
2380 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2382 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2386 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2388 /* Check each character in the name looking for a match or
\r
2390 xBreakLoop = pdFALSE;
\r
2392 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2394 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2396 if( cNextChar != pcNameToQuery[ x ] )
\r
2398 /* Characters didn't match. */
\r
2399 xBreakLoop = pdTRUE;
\r
2401 else if( cNextChar == ( char ) 0x00 )
\r
2403 /* Both strings terminated, a match must have been
\r
2405 pxReturn = pxNextTCB;
\r
2406 xBreakLoop = pdTRUE;
\r
2410 mtCOVERAGE_TEST_MARKER();
\r
2413 if( xBreakLoop != pdFALSE )
\r
2419 if( pxReturn != NULL )
\r
2421 /* The handle has been found. */
\r
2424 } while( pxNextTCB != pxFirstTCB );
\r
2428 mtCOVERAGE_TEST_MARKER();
\r
2434 #endif /* INCLUDE_xTaskGetHandle */
\r
2435 /*-----------------------------------------------------------*/
\r
2437 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2439 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2441 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2444 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2445 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2447 vTaskSuspendAll();
\r
2449 /* Search the ready lists. */
\r
2453 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2455 if( pxTCB != NULL )
\r
2457 /* Found the handle. */
\r
2460 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2462 /* Search the delayed lists. */
\r
2463 if( pxTCB == NULL )
\r
2465 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2468 if( pxTCB == NULL )
\r
2470 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2473 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2475 if( pxTCB == NULL )
\r
2477 /* Search the suspended list. */
\r
2478 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2483 #if ( INCLUDE_vTaskDelete == 1 )
\r
2485 if( pxTCB == NULL )
\r
2487 /* Search the deleted list. */
\r
2488 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2493 ( void ) xTaskResumeAll();
\r
2498 #endif /* INCLUDE_xTaskGetHandle */
\r
2499 /*-----------------------------------------------------------*/
\r
2501 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2503 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
\r
2504 const UBaseType_t uxArraySize,
\r
2505 configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
\r
2507 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2509 vTaskSuspendAll();
\r
2511 /* Is there a space in the array for each task in the system? */
\r
2512 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2514 /* Fill in an TaskStatus_t structure with information on each
\r
2515 * task in the Ready state. */
\r
2519 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2520 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2522 /* Fill in an TaskStatus_t structure with information on each
\r
2523 * task in the Blocked state. */
\r
2524 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2525 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2527 #if ( INCLUDE_vTaskDelete == 1 )
\r
2529 /* Fill in an TaskStatus_t structure with information on
\r
2530 * each task that has been deleted but not yet cleaned up. */
\r
2531 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2535 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2537 /* Fill in an TaskStatus_t structure with information on
\r
2538 * each task in the Suspended state. */
\r
2539 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2543 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2545 if( pulTotalRunTime != NULL )
\r
2547 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2548 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2550 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2554 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2556 if( pulTotalRunTime != NULL )
\r
2558 *pulTotalRunTime = 0;
\r
2561 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2565 mtCOVERAGE_TEST_MARKER();
\r
2568 ( void ) xTaskResumeAll();
\r
2573 #endif /* configUSE_TRACE_FACILITY */
\r
2574 /*----------------------------------------------------------*/
\r
2576 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2578 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2580 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2581 * started, then xIdleTaskHandle will be NULL. */
\r
2582 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2583 return xIdleTaskHandle;
\r
2586 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2587 /*----------------------------------------------------------*/
\r
2589 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2590 * This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2591 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2593 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2595 void vTaskStepTick( TickType_t xTicksToJump )
\r
2597 /* Correct the tick count value after a period during which the tick
\r
2598 * was suppressed. Note this does *not* call the tick hook function for
\r
2599 * each stepped tick. */
\r
2600 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2602 if( ( xTickCount + xTicksToJump ) == xNextTaskUnblockTime )
\r
2604 /* Arrange for xTickCount to reach xNextTaskUnblockTime in
\r
2605 * xTaskIncrementTick() when the scheduler resumes. This ensures
\r
2606 * that any delayed tasks are resumed at the correct time. */
\r
2607 configASSERT( uxSchedulerSuspended );
\r
2608 configASSERT( xTicksToJump != ( TickType_t ) 0 );
\r
2610 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
\r
2611 taskENTER_CRITICAL();
\r
2615 taskEXIT_CRITICAL();
\r
2620 mtCOVERAGE_TEST_MARKER();
\r
2623 xTickCount += xTicksToJump;
\r
2624 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2627 #endif /* configUSE_TICKLESS_IDLE */
\r
2628 /*----------------------------------------------------------*/
\r
2630 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2632 BaseType_t xYieldOccurred;
\r
2634 /* Must not be called with the scheduler suspended as the implementation
\r
2635 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2636 configASSERT( uxSchedulerSuspended == 0 );
\r
2638 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2639 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2640 vTaskSuspendAll();
\r
2642 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
\r
2643 taskENTER_CRITICAL();
\r
2645 xPendedTicks += xTicksToCatchUp;
\r
2647 taskEXIT_CRITICAL();
\r
2648 xYieldOccurred = xTaskResumeAll();
\r
2650 return xYieldOccurred;
\r
2652 /*----------------------------------------------------------*/
\r
2654 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2656 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2658 TCB_t * pxTCB = xTask;
\r
2659 BaseType_t xReturn;
\r
2661 configASSERT( pxTCB );
\r
2663 vTaskSuspendAll();
\r
2665 /* A task can only be prematurely removed from the Blocked state if
\r
2666 * it is actually in the Blocked state. */
\r
2667 if( eTaskGetState( xTask ) == eBlocked )
\r
2671 /* Remove the reference to the task from the blocked list. An
\r
2672 * interrupt won't touch the xStateListItem because the
\r
2673 * scheduler is suspended. */
\r
2674 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2676 /* Is the task waiting on an event also? If so remove it from
\r
2677 * the event list too. Interrupts can touch the event list item,
\r
2678 * even though the scheduler is suspended, so a critical section
\r
2680 taskENTER_CRITICAL();
\r
2682 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2684 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2686 /* This lets the task know it was forcibly removed from the
\r
2687 * blocked state so it should not re-evaluate its block time and
\r
2688 * then block again. */
\r
2689 pxTCB->ucDelayAborted = pdTRUE;
\r
2693 mtCOVERAGE_TEST_MARKER();
\r
2696 taskEXIT_CRITICAL();
\r
2698 /* Place the unblocked task into the appropriate ready list. */
\r
2699 prvAddTaskToReadyList( pxTCB );
\r
2701 /* A task being unblocked cannot cause an immediate context
\r
2702 * switch if preemption is turned off. */
\r
2703 #if ( configUSE_PREEMPTION == 1 )
\r
2705 /* Preemption is on, but a context switch should only be
\r
2706 * performed if the unblocked task has a priority that is
\r
2707 * higher than the currently executing task. */
\r
2708 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2710 /* Pend the yield to be performed when the scheduler
\r
2711 * is unsuspended. */
\r
2712 xYieldPending = pdTRUE;
\r
2716 mtCOVERAGE_TEST_MARKER();
\r
2719 #endif /* configUSE_PREEMPTION */
\r
2726 ( void ) xTaskResumeAll();
\r
2731 #endif /* INCLUDE_xTaskAbortDelay */
\r
2732 /*----------------------------------------------------------*/
\r
2734 BaseType_t xTaskIncrementTick( void )
\r
2737 TickType_t xItemValue;
\r
2738 BaseType_t xSwitchRequired = pdFALSE;
\r
2740 /* Called by the portable layer each time a tick interrupt occurs.
\r
2741 * Increments the tick then checks to see if the new tick value will cause any
\r
2742 * tasks to be unblocked. */
\r
2743 traceTASK_INCREMENT_TICK( xTickCount );
\r
2745 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2747 /* Minor optimisation. The tick count cannot change in this
\r
2749 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2751 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2752 * delayed lists if it wraps to 0. */
\r
2753 xTickCount = xConstTickCount;
\r
2755 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2757 taskSWITCH_DELAYED_LISTS();
\r
2761 mtCOVERAGE_TEST_MARKER();
\r
2764 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2765 * the queue in the order of their wake time - meaning once one task
\r
2766 * has been found whose block time has not expired there is no need to
\r
2767 * look any further down the list. */
\r
2768 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2772 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2774 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2775 * to the maximum possible value so it is extremely
\r
2776 * unlikely that the
\r
2777 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2778 * next time through. */
\r
2779 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2784 /* The delayed list is not empty, get the value of the
\r
2785 * item at the head of the delayed list. This is the time
\r
2786 * at which the task at the head of the delayed list must
\r
2787 * be removed from the Blocked state. */
\r
2788 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2789 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2791 if( xConstTickCount < xItemValue )
\r
2793 /* It is not time to unblock this item yet, but the
\r
2794 * item value is the time at which the task at the head
\r
2795 * of the blocked list must be removed from the Blocked
\r
2796 * state - so record the item value in
\r
2797 * xNextTaskUnblockTime. */
\r
2798 xNextTaskUnblockTime = xItemValue;
\r
2799 break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
\r
2803 mtCOVERAGE_TEST_MARKER();
\r
2806 /* It is time to remove the item from the Blocked state. */
\r
2807 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2809 /* Is the task waiting on an event also? If so remove
\r
2810 * it from the event list. */
\r
2811 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2813 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2817 mtCOVERAGE_TEST_MARKER();
\r
2820 /* Place the unblocked task into the appropriate ready
\r
2822 prvAddTaskToReadyList( pxTCB );
\r
2824 /* A task being unblocked cannot cause an immediate
\r
2825 * context switch if preemption is turned off. */
\r
2826 #if ( configUSE_PREEMPTION == 1 )
\r
2828 /* Preemption is on, but a context switch should
\r
2829 * only be performed if the unblocked task has a
\r
2830 * priority that is equal to or higher than the
\r
2831 * currently executing task. */
\r
2832 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2834 xSwitchRequired = pdTRUE;
\r
2838 mtCOVERAGE_TEST_MARKER();
\r
2841 #endif /* configUSE_PREEMPTION */
\r
2846 /* Tasks of equal priority to the currently running task will share
\r
2847 * processing time (time slice) if preemption is on, and the application
\r
2848 * writer has not explicitly turned time slicing off. */
\r
2849 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2851 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2853 xSwitchRequired = pdTRUE;
\r
2857 mtCOVERAGE_TEST_MARKER();
\r
2860 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2862 #if ( configUSE_TICK_HOOK == 1 )
\r
2864 /* Guard against the tick hook being called when the pended tick
\r
2865 * count is being unwound (when the scheduler is being unlocked). */
\r
2866 if( xPendedTicks == ( TickType_t ) 0 )
\r
2868 vApplicationTickHook();
\r
2872 mtCOVERAGE_TEST_MARKER();
\r
2875 #endif /* configUSE_TICK_HOOK */
\r
2877 #if ( configUSE_PREEMPTION == 1 )
\r
2879 if( xYieldPending != pdFALSE )
\r
2881 xSwitchRequired = pdTRUE;
\r
2885 mtCOVERAGE_TEST_MARKER();
\r
2888 #endif /* configUSE_PREEMPTION */
\r
2894 /* The tick hook gets called at regular intervals, even if the
\r
2895 * scheduler is locked. */
\r
2896 #if ( configUSE_TICK_HOOK == 1 )
\r
2898 vApplicationTickHook();
\r
2903 return xSwitchRequired;
\r
2905 /*-----------------------------------------------------------*/
\r
2907 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2909 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
\r
2910 TaskHookFunction_t pxHookFunction )
\r
2914 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2916 if( xTask == NULL )
\r
2918 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2925 /* Save the hook function in the TCB. A critical section is required as
\r
2926 * the value can be accessed from an interrupt. */
\r
2927 taskENTER_CRITICAL();
\r
2929 xTCB->pxTaskTag = pxHookFunction;
\r
2931 taskEXIT_CRITICAL();
\r
2934 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2935 /*-----------------------------------------------------------*/
\r
2937 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2939 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2942 TaskHookFunction_t xReturn;
\r
2944 /* If xTask is NULL then set the calling task's hook. */
\r
2945 pxTCB = prvGetTCBFromHandle( xTask );
\r
2947 /* Save the hook function in the TCB. A critical section is required as
\r
2948 * the value can be accessed from an interrupt. */
\r
2949 taskENTER_CRITICAL();
\r
2951 xReturn = pxTCB->pxTaskTag;
\r
2953 taskEXIT_CRITICAL();
\r
2958 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2959 /*-----------------------------------------------------------*/
\r
2961 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2963 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2966 TaskHookFunction_t xReturn;
\r
2967 UBaseType_t uxSavedInterruptStatus;
\r
2969 /* If xTask is NULL then set the calling task's hook. */
\r
2970 pxTCB = prvGetTCBFromHandle( xTask );
\r
2972 /* Save the hook function in the TCB. A critical section is required as
\r
2973 * the value can be accessed from an interrupt. */
\r
2974 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2976 xReturn = pxTCB->pxTaskTag;
\r
2978 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2983 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2984 /*-----------------------------------------------------------*/
\r
2986 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2988 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
\r
2989 void * pvParameter )
\r
2992 BaseType_t xReturn;
\r
2994 /* If xTask is NULL then we are calling our own task hook. */
\r
2995 if( xTask == NULL )
\r
2997 xTCB = pxCurrentTCB;
\r
3004 if( xTCB->pxTaskTag != NULL )
\r
3006 xReturn = xTCB->pxTaskTag( pvParameter );
\r
3016 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
3017 /*-----------------------------------------------------------*/
\r
3019 void vTaskSwitchContext( void )
\r
3021 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
3023 /* The scheduler is currently suspended - do not allow a context
\r
3025 xYieldPending = pdTRUE;
\r
3029 xYieldPending = pdFALSE;
\r
3030 traceTASK_SWITCHED_OUT();
\r
3032 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3034 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3035 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3037 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3040 /* Add the amount of time the task has been running to the
\r
3041 * accumulated time so far. The time the task started running was
\r
3042 * stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3043 * protection here so count values are only valid until the timer
\r
3044 * overflows. The guard against negative values is to protect
\r
3045 * against suspect run time stat counter implementations - which
\r
3046 * are provided by the application, not the kernel. */
\r
3047 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3049 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3053 mtCOVERAGE_TEST_MARKER();
\r
3056 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3058 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3060 /* Check for stack overflow, if configured. */
\r
3061 taskCHECK_FOR_STACK_OVERFLOW();
\r
3063 /* Before the currently running task is switched out, save its errno. */
\r
3064 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3066 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3070 /* Select a new task to run using either the generic C or port
\r
3071 * optimised asm code. */
\r
3072 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3073 traceTASK_SWITCHED_IN();
\r
3075 /* After the new task is switched in, update the global errno. */
\r
3076 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3078 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3082 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3084 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
3085 * structure specific to this task.
\r
3086 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3087 * for additional information. */
\r
3088 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
3090 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3093 /*-----------------------------------------------------------*/
\r
3095 void vTaskPlaceOnEventList( List_t * const pxEventList,
\r
3096 const TickType_t xTicksToWait )
\r
3098 configASSERT( pxEventList );
\r
3100 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3101 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3103 /* Place the event list item of the TCB in the appropriate event list.
\r
3104 * This is placed in the list in priority order so the highest priority task
\r
3105 * is the first to be woken by the event.
\r
3107 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
\r
3108 * Normally, the xItemValue of a TCB's ListItem_t members is:
\r
3109 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
\r
3110 * Therefore, the event list is sorted in descending priority order.
\r
3112 * The queue that contains the event list is locked, preventing
\r
3113 * simultaneous access from interrupts. */
\r
3114 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3116 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3118 /*-----------------------------------------------------------*/
\r
3120 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
\r
3121 const TickType_t xItemValue,
\r
3122 const TickType_t xTicksToWait )
\r
3124 configASSERT( pxEventList );
\r
3126 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3127 * the event groups implementation. */
\r
3128 configASSERT( uxSchedulerSuspended != 0 );
\r
3130 /* Store the item value in the event list item. It is safe to access the
\r
3131 * event list item here as interrupts won't access the event list item of a
\r
3132 * task that is not in the Blocked state. */
\r
3133 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3135 /* Place the event list item of the TCB at the end of the appropriate event
\r
3136 * list. It is safe to access the event list here because it is part of an
\r
3137 * event group implementation - and interrupts don't access event groups
\r
3138 * directly (instead they access them indirectly by pending function calls to
\r
3139 * the task level). */
\r
3140 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3142 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3144 /*-----------------------------------------------------------*/
\r
3146 #if ( configUSE_TIMERS == 1 )
\r
3148 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
\r
3149 TickType_t xTicksToWait,
\r
3150 const BaseType_t xWaitIndefinitely )
\r
3152 configASSERT( pxEventList );
\r
3154 /* This function should not be called by application code hence the
\r
3155 * 'Restricted' in its name. It is not part of the public API. It is
\r
3156 * designed for use by kernel code, and has special calling requirements -
\r
3157 * it should be called with the scheduler suspended. */
\r
3160 /* Place the event list item of the TCB in the appropriate event list.
\r
3161 * In this case it is assume that this is the only task that is going to
\r
3162 * be waiting on this event list, so the faster vListInsertEnd() function
\r
3163 * can be used in place of vListInsert. */
\r
3164 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3166 /* If the task should block indefinitely then set the block time to a
\r
3167 * value that will be recognised as an indefinite delay inside the
\r
3168 * prvAddCurrentTaskToDelayedList() function. */
\r
3169 if( xWaitIndefinitely != pdFALSE )
\r
3171 xTicksToWait = portMAX_DELAY;
\r
3174 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3175 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3178 #endif /* configUSE_TIMERS */
\r
3179 /*-----------------------------------------------------------*/
\r
3181 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3183 TCB_t * pxUnblockedTCB;
\r
3184 BaseType_t xReturn;
\r
3186 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3187 * called from a critical section within an ISR. */
\r
3189 /* The event list is sorted in priority order, so the first in the list can
\r
3190 * be removed as it is known to be the highest priority. Remove the TCB from
\r
3191 * the delayed list, and add it to the ready list.
\r
3193 * If an event is for a queue that is locked then this function will never
\r
3194 * get called - the lock count on the queue will get modified instead. This
\r
3195 * means exclusive access to the event list is guaranteed here.
\r
3197 * This function assumes that a check has already been made to ensure that
\r
3198 * pxEventList is not empty. */
\r
3199 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3200 configASSERT( pxUnblockedTCB );
\r
3201 listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
\r
3203 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3205 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3206 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3208 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3210 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3211 * might be set to the blocked task's time out time. If the task is
\r
3212 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3213 * normally left unchanged, because it is automatically reset to a new
\r
3214 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3215 * tickless idling is used it might be more important to enter sleep mode
\r
3216 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3217 * ensure it is updated at the earliest possible time. */
\r
3218 prvResetNextTaskUnblockTime();
\r
3224 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3225 * pending until the scheduler is resumed. */
\r
3226 listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3229 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3231 /* Return true if the task removed from the event list has a higher
\r
3232 * priority than the calling task. This allows the calling task to know if
\r
3233 * it should force a context switch now. */
\r
3236 /* Mark that a yield is pending in case the user is not using the
\r
3237 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3238 xYieldPending = pdTRUE;
\r
3242 xReturn = pdFALSE;
\r
3247 /*-----------------------------------------------------------*/
\r
3249 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
\r
3250 const TickType_t xItemValue )
\r
3252 TCB_t * pxUnblockedTCB;
\r
3254 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3255 * the event flags implementation. */
\r
3256 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3258 /* Store the new item value in the event list. */
\r
3259 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3261 /* Remove the event list form the event flag. Interrupts do not access
\r
3263 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3264 configASSERT( pxUnblockedTCB );
\r
3265 listREMOVE_ITEM( pxEventListItem );
\r
3267 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3269 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3270 * might be set to the blocked task's time out time. If the task is
\r
3271 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3272 * normally left unchanged, because it is automatically reset to a new
\r
3273 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3274 * tickless idling is used it might be more important to enter sleep mode
\r
3275 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3276 * ensure it is updated at the earliest possible time. */
\r
3277 prvResetNextTaskUnblockTime();
\r
3281 /* Remove the task from the delayed list and add it to the ready list. The
\r
3282 * scheduler is suspended so interrupts will not be accessing the ready
\r
3284 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3285 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3287 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3289 /* The unblocked task has a priority above that of the calling task, so
\r
3290 * a context switch is required. This function is called with the
\r
3291 * scheduler suspended so xYieldPending is set so the context switch
\r
3292 * occurs immediately that the scheduler is resumed (unsuspended). */
\r
3293 xYieldPending = pdTRUE;
\r
3296 /*-----------------------------------------------------------*/
\r
3298 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3300 configASSERT( pxTimeOut );
\r
3301 taskENTER_CRITICAL();
\r
3303 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3304 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3306 taskEXIT_CRITICAL();
\r
3308 /*-----------------------------------------------------------*/
\r
3310 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3312 /* For internal use only as it does not use a critical section. */
\r
3313 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3314 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3316 /*-----------------------------------------------------------*/
\r
3318 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
\r
3319 TickType_t * const pxTicksToWait )
\r
3321 BaseType_t xReturn;
\r
3323 configASSERT( pxTimeOut );
\r
3324 configASSERT( pxTicksToWait );
\r
3326 taskENTER_CRITICAL();
\r
3328 /* Minor optimisation. The tick count cannot change in this block. */
\r
3329 const TickType_t xConstTickCount = xTickCount;
\r
3330 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3332 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
3333 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3335 /* The delay was aborted, which is not the same as a time out,
\r
3336 * but has the same result. */
\r
3337 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3343 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3344 if( *pxTicksToWait == portMAX_DELAY )
\r
3346 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3347 * specified is the maximum block time then the task should block
\r
3348 * indefinitely, and therefore never time out. */
\r
3349 xReturn = pdFALSE;
\r
3354 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3356 /* The tick count is greater than the time at which
\r
3357 * vTaskSetTimeout() was called, but has also overflowed since
\r
3358 * vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3359 * around and gone past again. This passed since vTaskSetTimeout()
\r
3362 *pxTicksToWait = ( TickType_t ) 0;
\r
3364 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3366 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3367 *pxTicksToWait -= xElapsedTime;
\r
3368 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3369 xReturn = pdFALSE;
\r
3373 *pxTicksToWait = ( TickType_t ) 0;
\r
3377 taskEXIT_CRITICAL();
\r
3381 /*-----------------------------------------------------------*/
\r
3383 void vTaskMissedYield( void )
\r
3385 xYieldPending = pdTRUE;
\r
3387 /*-----------------------------------------------------------*/
\r
3389 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3391 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3393 UBaseType_t uxReturn;
\r
3394 TCB_t const * pxTCB;
\r
3396 if( xTask != NULL )
\r
3399 uxReturn = pxTCB->uxTaskNumber;
\r
3409 #endif /* configUSE_TRACE_FACILITY */
\r
3410 /*-----------------------------------------------------------*/
\r
3412 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3414 void vTaskSetTaskNumber( TaskHandle_t xTask,
\r
3415 const UBaseType_t uxHandle )
\r
3419 if( xTask != NULL )
\r
3422 pxTCB->uxTaskNumber = uxHandle;
\r
3426 #endif /* configUSE_TRACE_FACILITY */
\r
3429 * -----------------------------------------------------------
\r
3431 * ----------------------------------------------------------
\r
3433 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3434 * language extensions. The equivalent prototype for this function is:
\r
3436 * void prvIdleTask( void *pvParameters );
\r
3439 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3441 /* Stop warnings. */
\r
3442 ( void ) pvParameters;
\r
3444 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3445 * SCHEDULER IS STARTED. **/
\r
3447 /* In case a task that has a secure context deletes itself, in which case
\r
3448 * the idle task is responsible for deleting the task's secure context, if
\r
3450 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3454 /* See if any tasks have deleted themselves - if so then the idle task
\r
3455 * is responsible for freeing the deleted task's TCB and stack. */
\r
3456 prvCheckTasksWaitingTermination();
\r
3458 #if ( configUSE_PREEMPTION == 0 )
\r
3460 /* If we are not using preemption we keep forcing a task switch to
\r
3461 * see if any other task has become available. If we are using
\r
3462 * preemption we don't need to do this as any task becoming available
\r
3463 * will automatically get the processor anyway. */
\r
3466 #endif /* configUSE_PREEMPTION */
\r
3468 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3470 /* When using preemption tasks of equal priority will be
\r
3471 * timesliced. If a task that is sharing the idle priority is ready
\r
3472 * to run then the idle task should yield before the end of the
\r
3475 * A critical region is not required here as we are just reading from
\r
3476 * the list, and an occasional incorrect value will not matter. If
\r
3477 * the ready list at the idle priority contains more than one task
\r
3478 * then a task other than the idle task is ready to execute. */
\r
3479 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3485 mtCOVERAGE_TEST_MARKER();
\r
3488 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3490 #if ( configUSE_IDLE_HOOK == 1 )
\r
3492 extern void vApplicationIdleHook( void );
\r
3494 /* Call the user defined function from within the idle task. This
\r
3495 * allows the application designer to add background functionality
\r
3496 * without the overhead of a separate task.
\r
3497 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3498 * CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3499 vApplicationIdleHook();
\r
3501 #endif /* configUSE_IDLE_HOOK */
\r
3503 /* This conditional compilation should use inequality to 0, not equality
\r
3504 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3505 * user defined low power mode implementations require
\r
3506 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3507 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3509 TickType_t xExpectedIdleTime;
\r
3511 /* It is not desirable to suspend then resume the scheduler on
\r
3512 * each iteration of the idle task. Therefore, a preliminary
\r
3513 * test of the expected idle time is performed without the
\r
3514 * scheduler suspended. The result here is not necessarily
\r
3516 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3518 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3520 vTaskSuspendAll();
\r
3522 /* Now the scheduler is suspended, the expected idle
\r
3523 * time can be sampled again, and this time its value can
\r
3525 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3526 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3528 /* Define the following macro to set xExpectedIdleTime to 0
\r
3529 * if the application does not want
\r
3530 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3531 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3533 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3535 traceLOW_POWER_IDLE_BEGIN();
\r
3536 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3537 traceLOW_POWER_IDLE_END();
\r
3541 mtCOVERAGE_TEST_MARKER();
\r
3544 ( void ) xTaskResumeAll();
\r
3548 mtCOVERAGE_TEST_MARKER();
\r
3551 #endif /* configUSE_TICKLESS_IDLE */
\r
3554 /*-----------------------------------------------------------*/
\r
3556 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3558 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3560 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3561 /* The idle task exists in addition to the application tasks. */
\r
3562 const UBaseType_t uxNonApplicationTasks = 1;
\r
3563 #endif /* INCLUDE_vTaskSuspend */
\r
3565 eSleepModeStatus eReturn = eStandardSleep;
\r
3567 /* This function must be called from a critical section. */
\r
3569 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3571 /* A task was made ready while the scheduler was suspended. */
\r
3572 eReturn = eAbortSleep;
\r
3574 else if( xYieldPending != pdFALSE )
\r
3576 /* A yield was pended while the scheduler was suspended. */
\r
3577 eReturn = eAbortSleep;
\r
3579 else if( xPendedTicks != 0 )
\r
3581 /* A tick interrupt has already occurred but was held pending
\r
3582 * because the scheduler is suspended. */
\r
3583 eReturn = eAbortSleep;
\r
3586 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3587 else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3589 /* If all the tasks are in the suspended list (which might mean they
\r
3590 * have an infinite block time rather than actually being suspended)
\r
3591 * then it is safe to turn all clocks off and just wait for external
\r
3593 eReturn = eNoTasksWaitingTimeout;
\r
3595 #endif /* INCLUDE_vTaskSuspend */
\r
3598 mtCOVERAGE_TEST_MARKER();
\r
3604 #endif /* configUSE_TICKLESS_IDLE */
\r
3605 /*-----------------------------------------------------------*/
\r
3607 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3609 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
\r
3610 BaseType_t xIndex,
\r
3615 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3617 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3618 configASSERT( pxTCB != NULL );
\r
3619 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3623 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3624 /*-----------------------------------------------------------*/
\r
3626 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3628 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
\r
3629 BaseType_t xIndex )
\r
3631 void * pvReturn = NULL;
\r
3634 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3636 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3637 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3647 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3648 /*-----------------------------------------------------------*/
\r
3650 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3652 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
\r
3653 const MemoryRegion_t * const xRegions )
\r
3657 /* If null is passed in here then we are modifying the MPU settings of
\r
3658 * the calling task. */
\r
3659 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3661 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3664 #endif /* portUSING_MPU_WRAPPERS */
\r
3665 /*-----------------------------------------------------------*/
\r
3667 static void prvInitialiseTaskLists( void )
\r
3669 UBaseType_t uxPriority;
\r
3671 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3673 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3676 vListInitialise( &xDelayedTaskList1 );
\r
3677 vListInitialise( &xDelayedTaskList2 );
\r
3678 vListInitialise( &xPendingReadyList );
\r
3680 #if ( INCLUDE_vTaskDelete == 1 )
\r
3682 vListInitialise( &xTasksWaitingTermination );
\r
3684 #endif /* INCLUDE_vTaskDelete */
\r
3686 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3688 vListInitialise( &xSuspendedTaskList );
\r
3690 #endif /* INCLUDE_vTaskSuspend */
\r
3692 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3694 pxDelayedTaskList = &xDelayedTaskList1;
\r
3695 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3697 /*-----------------------------------------------------------*/
\r
3699 static void prvCheckTasksWaitingTermination( void )
\r
3701 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3703 #if ( INCLUDE_vTaskDelete == 1 )
\r
3707 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3708 * being called too often in the idle task. */
\r
3709 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3711 taskENTER_CRITICAL();
\r
3713 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3714 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3715 --uxCurrentNumberOfTasks;
\r
3716 --uxDeletedTasksWaitingCleanUp;
\r
3718 taskEXIT_CRITICAL();
\r
3720 prvDeleteTCB( pxTCB );
\r
3723 #endif /* INCLUDE_vTaskDelete */
\r
3725 /*-----------------------------------------------------------*/
\r
3727 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3729 void vTaskGetInfo( TaskHandle_t xTask,
\r
3730 TaskStatus_t * pxTaskStatus,
\r
3731 BaseType_t xGetFreeStackSpace,
\r
3732 eTaskState eState )
\r
3736 /* xTask is NULL then get the state of the calling task. */
\r
3737 pxTCB = prvGetTCBFromHandle( xTask );
\r
3739 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3740 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
\r
3741 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3742 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3743 #if ( ( portSTACK_GROWTH > 0 ) && ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
3744 pxTaskStatus->pxTopOfStack = pxTCB->pxTopOfStack;
\r
3745 pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
\r
3747 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3749 #if ( configUSE_MUTEXES == 1 )
\r
3751 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3755 pxTaskStatus->uxBasePriority = 0;
\r
3759 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3761 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3765 pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
\r
3769 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3770 * value of eState passed into this function is eInvalid - otherwise the
\r
3771 * state is just set to whatever is passed in. */
\r
3772 if( eState != eInvalid )
\r
3774 if( pxTCB == pxCurrentTCB )
\r
3776 pxTaskStatus->eCurrentState = eRunning;
\r
3780 pxTaskStatus->eCurrentState = eState;
\r
3782 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3784 /* If the task is in the suspended list then there is a
\r
3785 * chance it is actually just blocked indefinitely - so really
\r
3786 * it should be reported as being in the Blocked state. */
\r
3787 if( eState == eSuspended )
\r
3789 vTaskSuspendAll();
\r
3791 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3793 pxTaskStatus->eCurrentState = eBlocked;
\r
3796 ( void ) xTaskResumeAll();
\r
3799 #endif /* INCLUDE_vTaskSuspend */
\r
3804 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3807 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3808 * parameter is provided to allow it to be skipped. */
\r
3809 if( xGetFreeStackSpace != pdFALSE )
\r
3811 #if ( portSTACK_GROWTH > 0 )
\r
3813 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3817 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3823 pxTaskStatus->usStackHighWaterMark = 0;
\r
3827 #endif /* configUSE_TRACE_FACILITY */
\r
3828 /*-----------------------------------------------------------*/
\r
3830 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3832 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
3834 eTaskState eState )
\r
3836 configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
\r
3837 UBaseType_t uxTask = 0;
\r
3839 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3841 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3843 /* Populate an TaskStatus_t structure within the
\r
3844 * pxTaskStatusArray array for each task that is referenced from
\r
3845 * pxList. See the definition of TaskStatus_t in task.h for the
\r
3846 * meaning of each TaskStatus_t structure member. */
\r
3849 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3850 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3852 } while( pxNextTCB != pxFirstTCB );
\r
3856 mtCOVERAGE_TEST_MARKER();
\r
3862 #endif /* configUSE_TRACE_FACILITY */
\r
3863 /*-----------------------------------------------------------*/
\r
3865 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3867 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3869 uint32_t ulCount = 0U;
\r
3871 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3873 pucStackByte -= portSTACK_GROWTH;
\r
3877 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3879 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3882 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3883 /*-----------------------------------------------------------*/
\r
3885 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3887 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3888 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3889 * user to determine the return type. It gets around the problem of the value
\r
3890 * overflowing on 8-bit types without breaking backward compatibility for
\r
3891 * applications that expect an 8-bit return type. */
\r
3892 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3895 uint8_t * pucEndOfStack;
\r
3896 configSTACK_DEPTH_TYPE uxReturn;
\r
3898 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3899 * the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3900 * allows the user to determine the return type. It gets around the
\r
3901 * problem of the value overflowing on 8-bit types without breaking
\r
3902 * backward compatibility for applications that expect an 8-bit return
\r
3905 pxTCB = prvGetTCBFromHandle( xTask );
\r
3907 #if portSTACK_GROWTH < 0
\r
3909 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3913 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3917 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3922 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3923 /*-----------------------------------------------------------*/
\r
3925 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3927 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3930 uint8_t * pucEndOfStack;
\r
3931 UBaseType_t uxReturn;
\r
3933 pxTCB = prvGetTCBFromHandle( xTask );
\r
3935 #if portSTACK_GROWTH < 0
\r
3937 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3941 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3945 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3950 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3951 /*-----------------------------------------------------------*/
\r
3953 #if ( INCLUDE_vTaskDelete == 1 )
\r
3955 static void prvDeleteTCB( TCB_t * pxTCB )
\r
3957 /* This call is required specifically for the TriCore port. It must be
\r
3958 * above the vPortFree() calls. The call is also used by ports/demos that
\r
3959 * want to allocate and clean RAM statically. */
\r
3960 portCLEAN_UP_TCB( pxTCB );
\r
3962 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3963 * to the task to free any memory allocated at the application level.
\r
3964 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3965 * for additional information. */
\r
3966 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3968 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3970 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3972 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3974 /* The task can only have been allocated dynamically - free both
\r
3975 * the stack and TCB. */
\r
3976 vPortFreeStack( pxTCB->pxStack );
\r
3977 vPortFree( pxTCB );
\r
3979 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3981 /* The task could have been allocated statically or dynamically, so
\r
3982 * check what was statically allocated before trying to free the
\r
3984 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3986 /* Both the stack and TCB were allocated dynamically, so both
\r
3987 * must be freed. */
\r
3988 vPortFreeStack( pxTCB->pxStack );
\r
3989 vPortFree( pxTCB );
\r
3991 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3993 /* Only the stack was statically allocated, so the TCB is the
\r
3994 * only memory that must be freed. */
\r
3995 vPortFree( pxTCB );
\r
3999 /* Neither the stack nor the TCB were allocated dynamically, so
\r
4000 * nothing needs to be freed. */
\r
4001 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
4002 mtCOVERAGE_TEST_MARKER();
\r
4005 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
4008 #endif /* INCLUDE_vTaskDelete */
\r
4009 /*-----------------------------------------------------------*/
\r
4011 static void prvResetNextTaskUnblockTime( void )
\r
4013 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
4015 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
4016 * the maximum possible value so it is extremely unlikely that the
\r
4017 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
4018 * there is an item in the delayed list. */
\r
4019 xNextTaskUnblockTime = portMAX_DELAY;
\r
4023 /* The new current delayed list is not empty, get the value of
\r
4024 * the item at the head of the delayed list. This is the time at
\r
4025 * which the task at the head of the delayed list should be removed
\r
4026 * from the Blocked state. */
\r
4027 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
4030 /*-----------------------------------------------------------*/
\r
4032 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
4034 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
4036 TaskHandle_t xReturn;
\r
4038 /* A critical section is not required as this is not called from
\r
4039 * an interrupt and the current TCB will always be the same for any
\r
4040 * individual execution thread. */
\r
4041 xReturn = pxCurrentTCB;
\r
4046 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
4047 /*-----------------------------------------------------------*/
\r
4049 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
4051 BaseType_t xTaskGetSchedulerState( void )
\r
4053 BaseType_t xReturn;
\r
4055 if( xSchedulerRunning == pdFALSE )
\r
4057 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4061 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4063 xReturn = taskSCHEDULER_RUNNING;
\r
4067 xReturn = taskSCHEDULER_SUSPENDED;
\r
4074 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4075 /*-----------------------------------------------------------*/
\r
4077 #if ( configUSE_MUTEXES == 1 )
\r
4079 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4081 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4082 BaseType_t xReturn = pdFALSE;
\r
4084 /* If the mutex was given back by an interrupt while the queue was
\r
4085 * locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4086 * needed as interrupts can no longer use mutexes? */
\r
4087 if( pxMutexHolder != NULL )
\r
4089 /* If the holder of the mutex has a priority below the priority of
\r
4090 * the task attempting to obtain the mutex then it will temporarily
\r
4091 * inherit the priority of the task attempting to obtain the mutex. */
\r
4092 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4094 /* Adjust the mutex holder state to account for its new
\r
4095 * priority. Only reset the event list item value if the value is
\r
4096 * not being used for anything else. */
\r
4097 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4099 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4103 mtCOVERAGE_TEST_MARKER();
\r
4106 /* If the task being modified is in the ready state it will need
\r
4107 * to be moved into a new list. */
\r
4108 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4110 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4112 /* It is known that the task is in its ready list so
\r
4113 * there is no need to check again and the port level
\r
4114 * reset macro can be called directly. */
\r
4115 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4119 mtCOVERAGE_TEST_MARKER();
\r
4122 /* Inherit the priority before being moved into the new list. */
\r
4123 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4124 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4128 /* Just inherit the priority. */
\r
4129 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4132 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4134 /* Inheritance occurred. */
\r
4139 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4141 /* The base priority of the mutex holder is lower than the
\r
4142 * priority of the task attempting to take the mutex, but the
\r
4143 * current priority of the mutex holder is not lower than the
\r
4144 * priority of the task attempting to take the mutex.
\r
4145 * Therefore the mutex holder must have already inherited a
\r
4146 * priority, but inheritance would have occurred if that had
\r
4147 * not been the case. */
\r
4152 mtCOVERAGE_TEST_MARKER();
\r
4158 mtCOVERAGE_TEST_MARKER();
\r
4164 #endif /* configUSE_MUTEXES */
\r
4165 /*-----------------------------------------------------------*/
\r
4167 #if ( configUSE_MUTEXES == 1 )
\r
4169 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4171 TCB_t * const pxTCB = pxMutexHolder;
\r
4172 BaseType_t xReturn = pdFALSE;
\r
4174 if( pxMutexHolder != NULL )
\r
4176 /* A task can only have an inherited priority if it holds the mutex.
\r
4177 * If the mutex is held by a task then it cannot be given from an
\r
4178 * interrupt, and if a mutex is given by the holding task then it must
\r
4179 * be the running state task. */
\r
4180 configASSERT( pxTCB == pxCurrentTCB );
\r
4181 configASSERT( pxTCB->uxMutexesHeld );
\r
4182 ( pxTCB->uxMutexesHeld )--;
\r
4184 /* Has the holder of the mutex inherited the priority of another
\r
4186 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4188 /* Only disinherit if no other mutexes are held. */
\r
4189 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4191 /* A task can only have an inherited priority if it holds
\r
4192 * the mutex. If the mutex is held by a task then it cannot be
\r
4193 * given from an interrupt, and if a mutex is given by the
\r
4194 * holding task then it must be the running state task. Remove
\r
4195 * the holding task from the ready list. */
\r
4196 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4198 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4202 mtCOVERAGE_TEST_MARKER();
\r
4205 /* Disinherit the priority before adding the task into the
\r
4206 * new ready list. */
\r
4207 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4208 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4210 /* Reset the event list item value. It cannot be in use for
\r
4211 * any other purpose if this task is running, and it must be
\r
4212 * running to give back the mutex. */
\r
4213 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4214 prvAddTaskToReadyList( pxTCB );
\r
4216 /* Return true to indicate that a context switch is required.
\r
4217 * This is only actually required in the corner case whereby
\r
4218 * multiple mutexes were held and the mutexes were given back
\r
4219 * in an order different to that in which they were taken.
\r
4220 * If a context switch did not occur when the first mutex was
\r
4221 * returned, even if a task was waiting on it, then a context
\r
4222 * switch should occur when the last mutex is returned whether
\r
4223 * a task is waiting on it or not. */
\r
4228 mtCOVERAGE_TEST_MARKER();
\r
4233 mtCOVERAGE_TEST_MARKER();
\r
4238 mtCOVERAGE_TEST_MARKER();
\r
4244 #endif /* configUSE_MUTEXES */
\r
4245 /*-----------------------------------------------------------*/
\r
4247 #if ( configUSE_MUTEXES == 1 )
\r
4249 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
\r
4250 UBaseType_t uxHighestPriorityWaitingTask )
\r
4252 TCB_t * const pxTCB = pxMutexHolder;
\r
4253 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4254 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4256 if( pxMutexHolder != NULL )
\r
4258 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4260 configASSERT( pxTCB->uxMutexesHeld );
\r
4262 /* Determine the priority to which the priority of the task that
\r
4263 * holds the mutex should be set. This will be the greater of the
\r
4264 * holding task's base priority and the priority of the highest
\r
4265 * priority task that is waiting to obtain the mutex. */
\r
4266 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4268 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4272 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4275 /* Does the priority need to change? */
\r
4276 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4278 /* Only disinherit if no other mutexes are held. This is a
\r
4279 * simplification in the priority inheritance implementation. If
\r
4280 * the task that holds the mutex is also holding other mutexes then
\r
4281 * the other mutexes may have caused the priority inheritance. */
\r
4282 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4284 /* If a task has timed out because it already holds the
\r
4285 * mutex it was trying to obtain then it cannot of inherited
\r
4286 * its own priority. */
\r
4287 configASSERT( pxTCB != pxCurrentTCB );
\r
4289 /* Disinherit the priority, remembering the previous
\r
4290 * priority to facilitate determining the subject task's
\r
4292 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
\r
4293 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4294 pxTCB->uxPriority = uxPriorityToUse;
\r
4296 /* Only reset the event list item value if the value is not
\r
4297 * being used for anything else. */
\r
4298 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4300 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4304 mtCOVERAGE_TEST_MARKER();
\r
4307 /* If the running task is not the task that holds the mutex
\r
4308 * then the task that holds the mutex could be in either the
\r
4309 * Ready, Blocked or Suspended states. Only remove the task
\r
4310 * from its current state list if it is in the Ready state as
\r
4311 * the task's priority is going to change and there is one
\r
4312 * Ready list per priority. */
\r
4313 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4315 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4317 /* It is known that the task is in its ready list so
\r
4318 * there is no need to check again and the port level
\r
4319 * reset macro can be called directly. */
\r
4320 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4324 mtCOVERAGE_TEST_MARKER();
\r
4327 prvAddTaskToReadyList( pxTCB );
\r
4331 mtCOVERAGE_TEST_MARKER();
\r
4336 mtCOVERAGE_TEST_MARKER();
\r
4341 mtCOVERAGE_TEST_MARKER();
\r
4346 mtCOVERAGE_TEST_MARKER();
\r
4350 #endif /* configUSE_MUTEXES */
\r
4351 /*-----------------------------------------------------------*/
\r
4353 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4355 void vTaskEnterCritical( void )
\r
4357 portDISABLE_INTERRUPTS();
\r
4359 if( xSchedulerRunning != pdFALSE )
\r
4361 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4363 /* This is not the interrupt safe version of the enter critical
\r
4364 * function so assert() if it is being called from an interrupt
\r
4365 * context. Only API functions that end in "FromISR" can be used in an
\r
4366 * interrupt. Only assert if the critical nesting count is 1 to
\r
4367 * protect against recursive calls if the assert function also uses a
\r
4368 * critical section. */
\r
4369 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4371 portASSERT_IF_IN_ISR();
\r
4376 mtCOVERAGE_TEST_MARKER();
\r
4380 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4381 /*-----------------------------------------------------------*/
\r
4383 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4385 void vTaskExitCritical( void )
\r
4387 if( xSchedulerRunning != pdFALSE )
\r
4389 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4391 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4393 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4395 portENABLE_INTERRUPTS();
\r
4399 mtCOVERAGE_TEST_MARKER();
\r
4404 mtCOVERAGE_TEST_MARKER();
\r
4409 mtCOVERAGE_TEST_MARKER();
\r
4413 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4414 /*-----------------------------------------------------------*/
\r
4416 #if ( ( ( configUSE_TRACE_FACILITY == 1 ) || ( configGENERATE_RUN_TIME_STATS == 1 ) ) && \
\r
4417 ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && \
\r
4418 ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4420 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
4421 const char * pcTaskName )
\r
4425 /* Start by copying the entire string. */
\r
4426 strcpy( pcBuffer, pcTaskName );
\r
4428 /* Pad the end of the string with spaces to ensure columns line up when
\r
4430 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4432 pcBuffer[ x ] = ' ';
\r
4436 pcBuffer[ x ] = ( char ) 0x00;
\r
4438 /* Return the new end of string. */
\r
4439 return &( pcBuffer[ x ] );
\r
4442 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4443 /*-----------------------------------------------------------*/
\r
4445 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4447 void vTaskList( char * pcWriteBuffer )
\r
4449 TaskStatus_t * pxTaskStatusArray;
\r
4450 UBaseType_t uxArraySize, x;
\r
4456 * This function is provided for convenience only, and is used by many
\r
4457 * of the demo applications. Do not consider it to be part of the
\r
4460 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4461 * uxTaskGetSystemState() output into a human readable table that
\r
4462 * displays task: names, states, priority, stack usage and task number.
\r
4463 * Stack usage specified as the number of unused StackType_t words stack can hold
\r
4464 * on top of stack - not the number of bytes.
\r
4466 * vTaskList() has a dependency on the sprintf() C library function that
\r
4467 * might bloat the code size, use a lot of stack, and provide different
\r
4468 * results on different platforms. An alternative, tiny, third party,
\r
4469 * and limited functionality implementation of sprintf() is provided in
\r
4470 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4471 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4472 * snprintf() implementation!).
\r
4474 * It is recommended that production systems call uxTaskGetSystemState()
\r
4475 * directly to get access to raw stats data, rather than indirectly
\r
4476 * through a call to vTaskList().
\r
4480 /* Make sure the write buffer does not contain a string. */
\r
4481 *pcWriteBuffer = ( char ) 0x00;
\r
4483 /* Take a snapshot of the number of tasks in case it changes while this
\r
4484 * function is executing. */
\r
4485 uxArraySize = uxCurrentNumberOfTasks;
\r
4487 /* Allocate an array index for each task. NOTE! if
\r
4488 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4489 * equate to NULL. */
\r
4490 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4492 if( pxTaskStatusArray != NULL )
\r
4494 /* Generate the (binary) data. */
\r
4495 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4497 /* Create a human readable table from the binary data. */
\r
4498 for( x = 0; x < uxArraySize; x++ )
\r
4500 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4503 cStatus = tskRUNNING_CHAR;
\r
4507 cStatus = tskREADY_CHAR;
\r
4511 cStatus = tskBLOCKED_CHAR;
\r
4515 cStatus = tskSUSPENDED_CHAR;
\r
4519 cStatus = tskDELETED_CHAR;
\r
4522 case eInvalid: /* Fall through. */
\r
4523 default: /* Should not get here, but it is included
\r
4524 * to prevent static checking errors. */
\r
4525 cStatus = ( char ) 0x00;
\r
4529 /* Write the task name to the string, padding with spaces so it
\r
4530 * can be printed in tabular form more easily. */
\r
4531 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4533 /* Write the rest of the string. */
\r
4534 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4535 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4538 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4539 * is 0 then vPortFree() will be #defined to nothing. */
\r
4540 vPortFree( pxTaskStatusArray );
\r
4544 mtCOVERAGE_TEST_MARKER();
\r
4548 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4549 /*----------------------------------------------------------*/
\r
4551 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4553 void vTaskGetRunTimeStats( char * pcWriteBuffer )
\r
4555 TaskStatus_t * pxTaskStatusArray;
\r
4556 UBaseType_t uxArraySize, x;
\r
4557 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulStatsAsPercentage;
\r
4559 #if ( configUSE_TRACE_FACILITY != 1 )
\r
4561 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4568 * This function is provided for convenience only, and is used by many
\r
4569 * of the demo applications. Do not consider it to be part of the
\r
4572 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4573 * of the uxTaskGetSystemState() output into a human readable table that
\r
4574 * displays the amount of time each task has spent in the Running state
\r
4575 * in both absolute and percentage terms.
\r
4577 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4578 * function that might bloat the code size, use a lot of stack, and
\r
4579 * provide different results on different platforms. An alternative,
\r
4580 * tiny, third party, and limited functionality implementation of
\r
4581 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4582 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4583 * a full snprintf() implementation!).
\r
4585 * It is recommended that production systems call uxTaskGetSystemState()
\r
4586 * directly to get access to raw stats data, rather than indirectly
\r
4587 * through a call to vTaskGetRunTimeStats().
\r
4590 /* Make sure the write buffer does not contain a string. */
\r
4591 *pcWriteBuffer = ( char ) 0x00;
\r
4593 /* Take a snapshot of the number of tasks in case it changes while this
\r
4594 * function is executing. */
\r
4595 uxArraySize = uxCurrentNumberOfTasks;
\r
4597 /* Allocate an array index for each task. NOTE! If
\r
4598 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4599 * equate to NULL. */
\r
4600 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4602 if( pxTaskStatusArray != NULL )
\r
4604 /* Generate the (binary) data. */
\r
4605 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4607 /* For percentage calculations. */
\r
4608 ulTotalTime /= 100UL;
\r
4610 /* Avoid divide by zero errors. */
\r
4611 if( ulTotalTime > 0UL )
\r
4613 /* Create a human readable table from the binary data. */
\r
4614 for( x = 0; x < uxArraySize; x++ )
\r
4616 /* What percentage of the total run time has the task used?
\r
4617 * This will always be rounded down to the nearest integer.
\r
4618 * ulTotalRunTime has already been divided by 100. */
\r
4619 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4621 /* Write the task name to the string, padding with
\r
4622 * spaces so it can be printed in tabular form more
\r
4624 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4626 if( ulStatsAsPercentage > 0UL )
\r
4628 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4630 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4634 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4635 * printf() library can be used. */
\r
4636 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4642 /* If the percentage is zero here then the task has
\r
4643 * consumed less than 1% of the total run time. */
\r
4644 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4646 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4650 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4651 * printf() library can be used. */
\r
4652 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4657 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4662 mtCOVERAGE_TEST_MARKER();
\r
4665 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4666 * is 0 then vPortFree() will be #defined to nothing. */
\r
4667 vPortFree( pxTaskStatusArray );
\r
4671 mtCOVERAGE_TEST_MARKER();
\r
4675 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4676 /*-----------------------------------------------------------*/
\r
4678 TickType_t uxTaskResetEventItemValue( void )
\r
4680 TickType_t uxReturn;
\r
4682 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4684 /* Reset the event list item to its normal value - so it can be used with
\r
4685 * queues and semaphores. */
\r
4686 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4690 /*-----------------------------------------------------------*/
\r
4692 #if ( configUSE_MUTEXES == 1 )
\r
4694 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4696 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4697 * then pxCurrentTCB will be NULL. */
\r
4698 if( pxCurrentTCB != NULL )
\r
4700 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4703 return pxCurrentTCB;
\r
4706 #endif /* configUSE_MUTEXES */
\r
4707 /*-----------------------------------------------------------*/
\r
4709 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4711 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
\r
4712 BaseType_t xClearCountOnExit,
\r
4713 TickType_t xTicksToWait )
\r
4715 uint32_t ulReturn;
\r
4717 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4719 taskENTER_CRITICAL();
\r
4721 /* Only block if the notification count is not already non-zero. */
\r
4722 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
\r
4724 /* Mark this task as waiting for a notification. */
\r
4725 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4727 if( xTicksToWait > ( TickType_t ) 0 )
\r
4729 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4730 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
\r
4732 /* All ports are written to allow a yield in a critical
\r
4733 * section (some will yield immediately, others wait until the
\r
4734 * critical section exits) - but it is not something that
\r
4735 * application code should ever do. */
\r
4736 portYIELD_WITHIN_API();
\r
4740 mtCOVERAGE_TEST_MARKER();
\r
4745 mtCOVERAGE_TEST_MARKER();
\r
4748 taskEXIT_CRITICAL();
\r
4750 taskENTER_CRITICAL();
\r
4752 traceTASK_NOTIFY_TAKE( uxIndexToWait );
\r
4753 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4755 if( ulReturn != 0UL )
\r
4757 if( xClearCountOnExit != pdFALSE )
\r
4759 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
\r
4763 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
\r
4768 mtCOVERAGE_TEST_MARKER();
\r
4771 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4773 taskEXIT_CRITICAL();
\r
4778 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4779 /*-----------------------------------------------------------*/
\r
4781 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4783 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
\r
4784 uint32_t ulBitsToClearOnEntry,
\r
4785 uint32_t ulBitsToClearOnExit,
\r
4786 uint32_t * pulNotificationValue,
\r
4787 TickType_t xTicksToWait )
\r
4789 BaseType_t xReturn;
\r
4791 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4793 taskENTER_CRITICAL();
\r
4795 /* Only block if a notification is not already pending. */
\r
4796 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4798 /* Clear bits in the task's notification value as bits may get
\r
4799 * set by the notifying task or interrupt. This can be used to
\r
4800 * clear the value to zero. */
\r
4801 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
\r
4803 /* Mark this task as waiting for a notification. */
\r
4804 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4806 if( xTicksToWait > ( TickType_t ) 0 )
\r
4808 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4809 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
\r
4811 /* All ports are written to allow a yield in a critical
\r
4812 * section (some will yield immediately, others wait until the
\r
4813 * critical section exits) - but it is not something that
\r
4814 * application code should ever do. */
\r
4815 portYIELD_WITHIN_API();
\r
4819 mtCOVERAGE_TEST_MARKER();
\r
4824 mtCOVERAGE_TEST_MARKER();
\r
4827 taskEXIT_CRITICAL();
\r
4829 taskENTER_CRITICAL();
\r
4831 traceTASK_NOTIFY_WAIT( uxIndexToWait );
\r
4833 if( pulNotificationValue != NULL )
\r
4835 /* Output the current notification value, which may or may not
\r
4836 * have changed. */
\r
4837 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4840 /* If ucNotifyValue is set then either the task never entered the
\r
4841 * blocked state (because a notification was already pending) or the
\r
4842 * task unblocked because of a notification. Otherwise the task
\r
4843 * unblocked because of a timeout. */
\r
4844 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4846 /* A notification was not received. */
\r
4847 xReturn = pdFALSE;
\r
4851 /* A notification was already pending or a notification was
\r
4852 * received while the task was waiting. */
\r
4853 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
\r
4857 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4859 taskEXIT_CRITICAL();
\r
4864 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4865 /*-----------------------------------------------------------*/
\r
4867 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4869 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
\r
4870 UBaseType_t uxIndexToNotify,
\r
4872 eNotifyAction eAction,
\r
4873 uint32_t * pulPreviousNotificationValue )
\r
4876 BaseType_t xReturn = pdPASS;
\r
4877 uint8_t ucOriginalNotifyState;
\r
4879 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4880 configASSERT( xTaskToNotify );
\r
4881 pxTCB = xTaskToNotify;
\r
4883 taskENTER_CRITICAL();
\r
4885 if( pulPreviousNotificationValue != NULL )
\r
4887 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
4890 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
4892 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
4897 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
4901 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
4904 case eSetValueWithOverwrite:
\r
4905 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4908 case eSetValueWithoutOverwrite:
\r
4910 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4912 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4916 /* The value could not be written to the task. */
\r
4924 /* The task is being notified without its notify value being
\r
4930 /* Should not get here if all enums are handled.
\r
4931 * Artificially force an assert by testing a value the
\r
4932 * compiler can't assume is const. */
\r
4933 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
4938 traceTASK_NOTIFY( uxIndexToNotify );
\r
4940 /* If the task is in the blocked state specifically to wait for a
\r
4941 * notification then unblock it now. */
\r
4942 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4944 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
4945 prvAddTaskToReadyList( pxTCB );
\r
4947 /* The task should not have been on an event list. */
\r
4948 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4950 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
4952 /* If a task is blocked waiting for a notification then
\r
4953 * xNextTaskUnblockTime might be set to the blocked task's time
\r
4954 * out time. If the task is unblocked for a reason other than
\r
4955 * a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4956 * because it will automatically get reset to a new value when
\r
4957 * the tick count equals xNextTaskUnblockTime. However if
\r
4958 * tickless idling is used it might be more important to enter
\r
4959 * sleep mode at the earliest possible time - so reset
\r
4960 * xNextTaskUnblockTime here to ensure it is updated at the
\r
4961 * earliest possible time. */
\r
4962 prvResetNextTaskUnblockTime();
\r
4966 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4968 /* The notified task has a priority above the currently
\r
4969 * executing task so a yield is required. */
\r
4970 taskYIELD_IF_USING_PREEMPTION();
\r
4974 mtCOVERAGE_TEST_MARKER();
\r
4979 mtCOVERAGE_TEST_MARKER();
\r
4982 taskEXIT_CRITICAL();
\r
4987 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4988 /*-----------------------------------------------------------*/
\r
4990 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4992 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
\r
4993 UBaseType_t uxIndexToNotify,
\r
4995 eNotifyAction eAction,
\r
4996 uint32_t * pulPreviousNotificationValue,
\r
4997 BaseType_t * pxHigherPriorityTaskWoken )
\r
5000 uint8_t ucOriginalNotifyState;
\r
5001 BaseType_t xReturn = pdPASS;
\r
5002 UBaseType_t uxSavedInterruptStatus;
\r
5004 configASSERT( xTaskToNotify );
\r
5005 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5007 /* RTOS ports that support interrupt nesting have the concept of a
\r
5008 * maximum system call (or maximum API call) interrupt priority.
\r
5009 * Interrupts that are above the maximum system call priority are keep
\r
5010 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5011 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5012 * is defined in FreeRTOSConfig.h then
\r
5013 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5014 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5015 * been assigned a priority above the configured maximum system call
\r
5016 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5017 * from interrupts that have been assigned a priority at or (logically)
\r
5018 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5019 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5020 * simple as possible. More information (albeit Cortex-M specific) is
\r
5021 * provided on the following link:
\r
5022 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5023 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5025 pxTCB = xTaskToNotify;
\r
5027 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5029 if( pulPreviousNotificationValue != NULL )
\r
5031 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
5034 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5035 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5040 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
5044 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5047 case eSetValueWithOverwrite:
\r
5048 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5051 case eSetValueWithoutOverwrite:
\r
5053 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
5055 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5059 /* The value could not be written to the task. */
\r
5067 /* The task is being notified without its notify value being
\r
5073 /* Should not get here if all enums are handled.
\r
5074 * Artificially force an assert by testing a value the
\r
5075 * compiler can't assume is const. */
\r
5076 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
5080 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
\r
5082 /* If the task is in the blocked state specifically to wait for a
\r
5083 * notification then unblock it now. */
\r
5084 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5086 /* The task should not have been on an event list. */
\r
5087 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5089 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5091 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5092 prvAddTaskToReadyList( pxTCB );
\r
5096 /* The delayed and ready lists cannot be accessed, so hold
\r
5097 * this task pending until the scheduler is resumed. */
\r
5098 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5101 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5103 /* The notified task has a priority above the currently
\r
5104 * executing task so a yield is required. */
\r
5105 if( pxHigherPriorityTaskWoken != NULL )
\r
5107 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5110 /* Mark that a yield is pending in case the user is not
\r
5111 * using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5112 * safe FreeRTOS function. */
\r
5113 xYieldPending = pdTRUE;
\r
5117 mtCOVERAGE_TEST_MARKER();
\r
5121 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5126 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5127 /*-----------------------------------------------------------*/
\r
5129 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5131 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
\r
5132 UBaseType_t uxIndexToNotify,
\r
5133 BaseType_t * pxHigherPriorityTaskWoken )
\r
5136 uint8_t ucOriginalNotifyState;
\r
5137 UBaseType_t uxSavedInterruptStatus;
\r
5139 configASSERT( xTaskToNotify );
\r
5140 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5142 /* RTOS ports that support interrupt nesting have the concept of a
\r
5143 * maximum system call (or maximum API call) interrupt priority.
\r
5144 * Interrupts that are above the maximum system call priority are keep
\r
5145 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5146 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5147 * is defined in FreeRTOSConfig.h then
\r
5148 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5149 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5150 * been assigned a priority above the configured maximum system call
\r
5151 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5152 * from interrupts that have been assigned a priority at or (logically)
\r
5153 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5154 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5155 * simple as possible. More information (albeit Cortex-M specific) is
\r
5156 * provided on the following link:
\r
5157 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5158 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5160 pxTCB = xTaskToNotify;
\r
5162 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5164 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5165 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5167 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5169 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5171 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
\r
5173 /* If the task is in the blocked state specifically to wait for a
\r
5174 * notification then unblock it now. */
\r
5175 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5177 /* The task should not have been on an event list. */
\r
5178 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5180 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5182 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5183 prvAddTaskToReadyList( pxTCB );
\r
5187 /* The delayed and ready lists cannot be accessed, so hold
\r
5188 * this task pending until the scheduler is resumed. */
\r
5189 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5192 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5194 /* The notified task has a priority above the currently
\r
5195 * executing task so a yield is required. */
\r
5196 if( pxHigherPriorityTaskWoken != NULL )
\r
5198 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5201 /* Mark that a yield is pending in case the user is not
\r
5202 * using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5203 * safe FreeRTOS function. */
\r
5204 xYieldPending = pdTRUE;
\r
5208 mtCOVERAGE_TEST_MARKER();
\r
5212 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5215 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5216 /*-----------------------------------------------------------*/
\r
5218 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5220 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
\r
5221 UBaseType_t uxIndexToClear )
\r
5224 BaseType_t xReturn;
\r
5226 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5228 /* If null is passed in here then it is the calling task that is having
\r
5229 * its notification state cleared. */
\r
5230 pxTCB = prvGetTCBFromHandle( xTask );
\r
5232 taskENTER_CRITICAL();
\r
5234 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
\r
5236 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
\r
5244 taskEXIT_CRITICAL();
\r
5249 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5250 /*-----------------------------------------------------------*/
\r
5252 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5254 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
\r
5255 UBaseType_t uxIndexToClear,
\r
5256 uint32_t ulBitsToClear )
\r
5259 uint32_t ulReturn;
\r
5261 /* If null is passed in here then it is the calling task that is having
\r
5262 * its notification state cleared. */
\r
5263 pxTCB = prvGetTCBFromHandle( xTask );
\r
5265 taskENTER_CRITICAL();
\r
5267 /* Return the notification as it was before the bits were cleared,
\r
5268 * then clear the bit mask. */
\r
5269 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
\r
5270 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
\r
5272 taskEXIT_CRITICAL();
\r
5277 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5278 /*-----------------------------------------------------------*/
\r
5280 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5282 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
\r
5284 return xIdleTaskHandle->ulRunTimeCounter;
\r
5288 /*-----------------------------------------------------------*/
\r
5290 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5292 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
\r
5294 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
\r
5296 ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
5298 /* For percentage calculations. */
\r
5299 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
\r
5301 /* Avoid divide by zero errors. */
\r
5302 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
\r
5304 ulReturn = xIdleTaskHandle->ulRunTimeCounter / ulTotalTime;
\r
5314 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
\r
5315 /*-----------------------------------------------------------*/
\r
5317 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
5318 const BaseType_t xCanBlockIndefinitely )
\r
5320 TickType_t xTimeToWake;
\r
5321 const TickType_t xConstTickCount = xTickCount;
\r
5323 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
5325 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5326 * reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5327 * when the task leaves the Blocked state. */
\r
5328 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5332 /* Remove the task from the ready list before adding it to the blocked list
\r
5333 * as the same list item is used for both lists. */
\r
5334 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5336 /* The current task must be in a ready list, so there is no need to
\r
5337 * check, and the port reset macro can be called directly. */
\r
5338 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5342 mtCOVERAGE_TEST_MARKER();
\r
5345 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5347 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5349 /* Add the task to the suspended task list instead of a delayed task
\r
5350 * list to ensure it is not woken by a timing event. It will block
\r
5351 * indefinitely. */
\r
5352 listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5356 /* Calculate the time at which the task should be woken if the event
\r
5357 * does not occur. This may overflow but this doesn't matter, the
\r
5358 * kernel will manage it correctly. */
\r
5359 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5361 /* The list item will be inserted in wake time order. */
\r
5362 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5364 if( xTimeToWake < xConstTickCount )
\r
5366 /* Wake time has overflowed. Place this item in the overflow
\r
5368 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5372 /* The wake time has not overflowed, so the current block list
\r
5374 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5376 /* If the task entering the blocked state was placed at the
\r
5377 * head of the list of blocked tasks then xNextTaskUnblockTime
\r
5378 * needs to be updated too. */
\r
5379 if( xTimeToWake < xNextTaskUnblockTime )
\r
5381 xNextTaskUnblockTime = xTimeToWake;
\r
5385 mtCOVERAGE_TEST_MARKER();
\r
5390 #else /* INCLUDE_vTaskSuspend */
\r
5392 /* Calculate the time at which the task should be woken if the event
\r
5393 * does not occur. This may overflow but this doesn't matter, the kernel
\r
5394 * will manage it correctly. */
\r
5395 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5397 /* The list item will be inserted in wake time order. */
\r
5398 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5400 if( xTimeToWake < xConstTickCount )
\r
5402 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5403 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5407 /* The wake time has not overflowed, so the current block list is used. */
\r
5408 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5410 /* If the task entering the blocked state was placed at the head of the
\r
5411 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5413 if( xTimeToWake < xNextTaskUnblockTime )
\r
5415 xNextTaskUnblockTime = xTimeToWake;
\r
5419 mtCOVERAGE_TEST_MARKER();
\r
5423 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5424 ( void ) xCanBlockIndefinitely;
\r
5426 #endif /* INCLUDE_vTaskSuspend */
\r
5429 /* Code below here allows additional code to be inserted into this source file,
\r
5430 * especially where access to file scope functions and data is needed (for example
\r
5431 * when performing module tests). */
\r
5433 #ifdef FREERTOS_MODULE_TEST
\r
5434 #include "tasks_test_access_functions.h"
\r
5438 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5440 #include "freertos_tasks_c_additions.h"
\r
5442 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5443 static void freertos_tasks_c_additions_init( void )
\r
5445 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r
5449 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
\r