2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * SPDX-License-Identifier: MIT
\r
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
8 * this software and associated documentation files (the "Software"), to deal in
\r
9 * the Software without restriction, including without limitation the rights to
\r
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
11 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
12 * subject to the following conditions:
\r
14 * The above copyright notice and this permission notice shall be included in all
\r
15 * copies or substantial portions of the Software.
\r
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
24 * https://www.FreeRTOS.org
\r
25 * https://github.com/FreeRTOS
\r
29 /* Standard includes. */
\r
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
34 * all the API functions to use the MPU wrappers. That should only be done when
\r
35 * task.h is included from an application file. */
\r
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
38 /* FreeRTOS includes. */
\r
39 #include "FreeRTOS.h"
\r
42 #include "stack_macros.h"
\r
44 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
45 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
46 * for the header files above, but not in this file, in order to generate the
\r
47 * correct privileged Vs unprivileged linkage and placement. */
\r
48 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
51 * functions but without including stdio.h here. */
\r
52 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
54 /* At the bottom of this file are two optional functions that can be used
\r
55 * to generate human readable text from the raw data generated by the
\r
56 * uxTaskGetSystemState() function. Note the formatting functions are provided
\r
57 * for convenience only, and are NOT considered part of the kernel. */
\r
59 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
61 #if ( configUSE_PREEMPTION == 0 )
\r
63 /* If the cooperative scheduler is being used then a yield should not be
\r
64 * performed just because a higher priority task has been woken. */
\r
65 #define taskYIELD_IF_USING_PREEMPTION()
\r
67 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
70 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
71 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
\r
72 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
73 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
76 * The value used to fill the stack of a task when the task is created. This
\r
77 * is used purely for checking the high water mark for tasks.
\r
79 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
81 /* Bits used to record how a task's stack and TCB were allocated. */
\r
82 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
83 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
84 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
86 /* If any of the following are set then task stacks are filled with a known
\r
87 * value so the high water mark can be determined. If none of the following are
\r
88 * set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
89 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
92 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
96 * Macros used by vListTask to indicate which state a task is in.
\r
98 #define tskRUNNING_CHAR ( 'X' )
\r
99 #define tskBLOCKED_CHAR ( 'B' )
\r
100 #define tskREADY_CHAR ( 'R' )
\r
101 #define tskDELETED_CHAR ( 'D' )
\r
102 #define tskSUSPENDED_CHAR ( 'S' )
\r
105 * Some kernel aware debuggers require the data the debugger needs access to to
\r
106 * be global, rather than file scope.
\r
108 #ifdef portREMOVE_STATIC_QUALIFIER
\r
112 /* The name allocated to the Idle task. This can be overridden by defining
\r
113 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
114 #ifndef configIDLE_TASK_NAME
\r
115 #define configIDLE_TASK_NAME "IDLE"
\r
118 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
120 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
121 * performed in a generic way that is not optimised to any particular
\r
122 * microcontroller architecture. */
\r
124 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
126 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
128 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
130 uxTopReadyPriority = ( uxPriority ); \
\r
132 } /* taskRECORD_READY_PRIORITY */
\r
134 /*-----------------------------------------------------------*/
\r
136 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
138 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
140 /* Find the highest priority queue that contains ready tasks. */ \
\r
141 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
143 configASSERT( uxTopPriority ); \
\r
147 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
148 * the same priority get an equal share of the processor time. */ \
\r
149 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
150 uxTopReadyPriority = uxTopPriority; \
\r
151 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
153 /*-----------------------------------------------------------*/
\r
155 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
156 * they are only required when a port optimised method of task selection is
\r
158 #define taskRESET_READY_PRIORITY( uxPriority )
\r
159 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
161 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
163 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
164 * performed in a way that is tailored to the particular microcontroller
\r
165 * architecture being used. */
\r
167 /* A port optimised version is provided. Call the port defined macros. */
\r
168 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
\r
170 /*-----------------------------------------------------------*/
\r
172 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
174 UBaseType_t uxTopPriority; \
\r
176 /* Find the highest priority list that contains ready tasks. */ \
\r
177 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
178 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
179 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
180 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
182 /*-----------------------------------------------------------*/
\r
184 /* A port optimised version is provided, call it only if the TCB being reset
\r
185 * is being referenced from a ready list. If it is referenced from a delayed
\r
186 * or suspended list then it won't be in a ready list. */
\r
187 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
189 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
191 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
195 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
197 /*-----------------------------------------------------------*/
\r
199 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
200 * count overflows. */
\r
201 #define taskSWITCH_DELAYED_LISTS() \
\r
205 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
206 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
208 pxTemp = pxDelayedTaskList; \
\r
209 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
210 pxOverflowDelayedTaskList = pxTemp; \
\r
211 xNumOfOverflows++; \
\r
212 prvResetNextTaskUnblockTime(); \
\r
215 /*-----------------------------------------------------------*/
\r
218 * Place the task represented by pxTCB into the appropriate ready list for
\r
219 * the task. It is inserted at the end of the list.
\r
221 #define prvAddTaskToReadyList( pxTCB ) \
\r
222 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
223 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
224 listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
225 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
226 /*-----------------------------------------------------------*/
\r
229 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
\r
230 * where NULL is used to indicate that the handle of the currently executing
\r
231 * task should be used in place of the parameter. This macro simply checks to
\r
232 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
234 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
236 /* The item value of the event list item is normally used to hold the priority
\r
237 * of the task to which it belongs (coded to allow it to be held in reverse
\r
238 * priority order). However, it is occasionally borrowed for other purposes. It
\r
239 * is important its value is not updated due to a task priority change while it is
\r
240 * being used for another purpose. The following bit definition is used to inform
\r
241 * the scheduler that the value should not be changed - in which case it is the
\r
242 * responsibility of whichever module is using the value to ensure it gets set back
\r
243 * to its original value when it is released. */
\r
244 #if ( configUSE_16_BIT_TICKS == 1 )
\r
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
247 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
251 * Task control block. A task control block (TCB) is allocated for each task,
\r
252 * and stores task state information, including a pointer to the task's context
\r
253 * (the task's run time environment, including register values)
\r
255 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
257 volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
259 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
260 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
263 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
264 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
265 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
266 StackType_t * pxStack; /*< Points to the start of the stack. */
\r
267 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
269 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
270 StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
273 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
274 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
277 #if ( configUSE_TRACE_FACILITY == 1 )
\r
278 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
279 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
282 #if ( configUSE_MUTEXES == 1 )
\r
283 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
284 UBaseType_t uxMutexesHeld;
\r
287 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
288 TaskHookFunction_t pxTaskTag;
\r
291 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
292 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
295 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
296 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
299 #if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
\r
300 configTLS_BLOCK_TYPE xTLSBlock; /*< Memory block used as Thread Local Storage (TLS) Block for the task. */
\r
303 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
304 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
305 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
308 /* See the comments in FreeRTOS.h with the definition of
\r
309 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
310 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
311 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
314 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
315 uint8_t ucDelayAborted;
\r
318 #if ( configUSE_POSIX_ERRNO == 1 )
\r
323 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
324 * below to enable the use of older kernel aware debuggers. */
\r
325 typedef tskTCB TCB_t;
\r
327 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
328 * which static variables must be declared volatile. */
\r
329 portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
331 /* Lists for ready and blocked tasks. --------------------
\r
332 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
\r
333 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
334 * the static qualifier. */
\r
335 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
\r
336 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
337 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
338 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
339 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
340 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
342 #if ( INCLUDE_vTaskDelete == 1 )
\r
344 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
345 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
349 #if ( INCLUDE_vTaskSuspend == 1 )
\r
351 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
355 /* Global POSIX errno. Its value is changed upon context switching to match
\r
356 * the errno of the currently running task. */
\r
357 #if ( configUSE_POSIX_ERRNO == 1 )
\r
358 int FreeRTOS_errno = 0;
\r
361 /* Other file private variables. --------------------------------*/
\r
362 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
363 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
364 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
365 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
366 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
367 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
368 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
369 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
370 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
371 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
373 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
\r
374 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
\r
375 * to determine the number of priority lists to read back from the remote target. */
\r
376 const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
\r
378 /* Context switches are held pending while the scheduler is suspended. Also,
\r
379 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
380 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
381 * If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
382 * moves the task's event list item into the xPendingReadyList, ready for the
\r
383 * kernel to move the task from the pending ready list into the real ready list
\r
384 * when the scheduler is unsuspended. The pending ready list itself can only be
\r
385 * accessed from a critical section. */
\r
386 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
388 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
390 /* Do not move these variables to function scope as doing so prevents the
\r
391 * code working with debuggers that need to remove the static qualifier. */
\r
392 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
393 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
399 /*-----------------------------------------------------------*/
\r
401 /* File private functions. --------------------------------*/
\r
404 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
405 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
406 * is in any other state.
\r
408 #if ( INCLUDE_vTaskSuspend == 1 )
\r
410 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
412 #endif /* INCLUDE_vTaskSuspend */
\r
415 * Utility to ready all the lists used by the scheduler. This is called
\r
416 * automatically upon the creation of the first task.
\r
418 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
421 * The idle task, which as all tasks is implemented as a never ending loop.
\r
422 * The idle task is automatically created and added to the ready lists upon
\r
423 * creation of the first user task.
\r
425 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
426 * language extensions. The equivalent prototype for this function is:
\r
428 * void prvIdleTask( void *pvParameters );
\r
431 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
\r
434 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
435 * including the stack pointed to by the TCB.
\r
437 * This does not free memory allocated by the task itself (i.e. memory
\r
438 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
440 #if ( INCLUDE_vTaskDelete == 1 )
\r
442 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
\r
447 * Used only by the idle task. This checks to see if anything has been placed
\r
448 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
449 * and its TCB deleted.
\r
451 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
454 * The currently executing task is entering the Blocked state. Add the task to
\r
455 * either the current or the overflow delayed task list.
\r
457 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
458 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
461 * Fills an TaskStatus_t structure with information on each task that is
\r
462 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
463 * a suspended list, etc.).
\r
465 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
466 * NORMAL APPLICATION CODE.
\r
468 #if ( configUSE_TRACE_FACILITY == 1 )
\r
470 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
472 eTaskState eState ) PRIVILEGED_FUNCTION;
\r
477 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
478 * the task if it is found, or NULL if the task is not found.
\r
480 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
482 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
483 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
488 * When a task is created, the stack of the task is filled with a known value.
\r
489 * This function determines the 'high water mark' of the task stack by
\r
490 * determining how much of the stack remains at the original preset value.
\r
492 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
494 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
499 * Return the amount of time, in ticks, that will pass before the kernel will
\r
500 * next move a task from the Blocked state to the Running state.
\r
502 * This conditional compilation should use inequality to 0, not equality to 1.
\r
503 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
504 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
505 * set to a value other than 1.
\r
507 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
509 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
514 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
515 * will exit the Blocked state.
\r
517 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
\r
519 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
\r
522 * Helper function used to pad task names with spaces when printing out
\r
523 * human readable tables of task information.
\r
525 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
526 const char * pcTaskName ) PRIVILEGED_FUNCTION;
\r
531 * Called after a Task_t structure has been allocated either statically or
\r
532 * dynamically to fill in the structure's members.
\r
534 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
535 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
536 const uint32_t ulStackDepth,
\r
537 void * const pvParameters,
\r
538 UBaseType_t uxPriority,
\r
539 TaskHandle_t * const pxCreatedTask,
\r
541 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
544 * Called after a new task has been created and initialised to place the task
\r
545 * under the control of the scheduler.
\r
547 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
\r
550 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
551 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
552 * called by the function.
\r
554 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
556 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
560 /*-----------------------------------------------------------*/
\r
562 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
564 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
565 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
566 const uint32_t ulStackDepth,
\r
567 void * const pvParameters,
\r
568 UBaseType_t uxPriority,
\r
569 StackType_t * const puxStackBuffer,
\r
570 StaticTask_t * const pxTaskBuffer )
\r
573 TaskHandle_t xReturn;
\r
575 configASSERT( puxStackBuffer != NULL );
\r
576 configASSERT( pxTaskBuffer != NULL );
\r
578 #if ( configASSERT_DEFINED == 1 )
\r
580 /* Sanity check that the size of the structure used to declare a
\r
581 * variable of type StaticTask_t equals the size of the real task
\r
583 volatile size_t xSize = sizeof( StaticTask_t );
\r
584 configASSERT( xSize == sizeof( TCB_t ) );
\r
585 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
587 #endif /* configASSERT_DEFINED */
\r
589 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
591 /* The memory used for the task's TCB and stack are passed into this
\r
592 * function - use them. */
\r
593 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
594 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
595 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
597 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
599 /* Tasks can be created statically or dynamically, so note this
\r
600 * task was created statically in case the task is later deleted. */
\r
601 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
603 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
605 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
606 prvAddNewTaskToReadyList( pxNewTCB );
\r
616 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
617 /*-----------------------------------------------------------*/
\r
619 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
621 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
\r
622 TaskHandle_t * pxCreatedTask )
\r
625 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
627 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
628 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
630 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
632 /* Allocate space for the TCB. Where the memory comes from depends
\r
633 * on the implementation of the port malloc function and whether or
\r
634 * not static allocation is being used. */
\r
635 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
636 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
638 /* Store the stack location in the TCB. */
\r
639 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
641 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
643 /* Tasks can be created statically or dynamically, so note this
\r
644 * task was created statically in case the task is later deleted. */
\r
645 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
647 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
649 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
650 pxTaskDefinition->pcName,
\r
651 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
652 pxTaskDefinition->pvParameters,
\r
653 pxTaskDefinition->uxPriority,
\r
654 pxCreatedTask, pxNewTCB,
\r
655 pxTaskDefinition->xRegions );
\r
657 prvAddNewTaskToReadyList( pxNewTCB );
\r
664 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
665 /*-----------------------------------------------------------*/
\r
667 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
669 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
\r
670 TaskHandle_t * pxCreatedTask )
\r
673 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
675 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
677 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
679 /* Allocate space for the TCB. Where the memory comes from depends
\r
680 * on the implementation of the port malloc function and whether or
\r
681 * not static allocation is being used. */
\r
682 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
684 if( pxNewTCB != NULL )
\r
686 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
688 /* Store the stack location in the TCB. */
\r
689 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
691 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
693 /* Tasks can be created statically or dynamically, so note
\r
694 * this task had a statically allocated stack in case it is
\r
695 * later deleted. The TCB was allocated dynamically. */
\r
696 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
698 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
700 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
701 pxTaskDefinition->pcName,
\r
702 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
703 pxTaskDefinition->pvParameters,
\r
704 pxTaskDefinition->uxPriority,
\r
705 pxCreatedTask, pxNewTCB,
\r
706 pxTaskDefinition->xRegions );
\r
708 prvAddNewTaskToReadyList( pxNewTCB );
\r
716 #endif /* portUSING_MPU_WRAPPERS */
\r
717 /*-----------------------------------------------------------*/
\r
719 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
721 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
722 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
723 const configSTACK_DEPTH_TYPE usStackDepth,
\r
724 void * const pvParameters,
\r
725 UBaseType_t uxPriority,
\r
726 TaskHandle_t * const pxCreatedTask )
\r
729 BaseType_t xReturn;
\r
731 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
732 * does not grow into the TCB. Likewise if the stack grows up then allocate
\r
733 * the TCB then the stack. */
\r
734 #if ( portSTACK_GROWTH > 0 )
\r
736 /* Allocate space for the TCB. Where the memory comes from depends on
\r
737 * the implementation of the port malloc function and whether or not static
\r
738 * allocation is being used. */
\r
739 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
741 if( pxNewTCB != NULL )
\r
743 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
745 /* Allocate space for the stack used by the task being created.
\r
746 * The base of the stack memory stored in the TCB so the task can
\r
747 * be deleted later if required. */
\r
748 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
750 if( pxNewTCB->pxStack == NULL )
\r
752 /* Could not allocate the stack. Delete the allocated TCB. */
\r
753 vPortFree( pxNewTCB );
\r
758 #else /* portSTACK_GROWTH */
\r
760 StackType_t * pxStack;
\r
762 /* Allocate space for the stack used by the task being created. */
\r
763 pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
765 if( pxStack != NULL )
\r
767 /* Allocate space for the TCB. */
\r
768 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
770 if( pxNewTCB != NULL )
\r
772 memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
\r
774 /* Store the stack location in the TCB. */
\r
775 pxNewTCB->pxStack = pxStack;
\r
779 /* The stack cannot be used as the TCB was not created. Free
\r
781 vPortFreeStack( pxStack );
\r
789 #endif /* portSTACK_GROWTH */
\r
791 if( pxNewTCB != NULL )
\r
793 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
795 /* Tasks can be created statically or dynamically, so note this
\r
796 * task was created dynamically in case it is later deleted. */
\r
797 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
799 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
801 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
802 prvAddNewTaskToReadyList( pxNewTCB );
\r
807 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
813 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
814 /*-----------------------------------------------------------*/
\r
816 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
817 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
818 const uint32_t ulStackDepth,
\r
819 void * const pvParameters,
\r
820 UBaseType_t uxPriority,
\r
821 TaskHandle_t * const pxCreatedTask,
\r
823 const MemoryRegion_t * const xRegions )
\r
825 StackType_t * pxTopOfStack;
\r
828 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
829 /* Should the task be created in privileged mode? */
\r
830 BaseType_t xRunPrivileged;
\r
832 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
834 xRunPrivileged = pdTRUE;
\r
838 xRunPrivileged = pdFALSE;
\r
840 uxPriority &= ~portPRIVILEGE_BIT;
\r
841 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
843 /* Avoid dependency on memset() if it is not required. */
\r
844 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
846 /* Fill the stack with a known value to assist debugging. */
\r
847 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
849 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
851 /* Calculate the top of stack address. This depends on whether the stack
\r
852 * grows from high memory to low (as per the 80x86) or vice versa.
\r
853 * portSTACK_GROWTH is used to make the result positive or negative as required
\r
855 #if ( portSTACK_GROWTH < 0 )
\r
857 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
858 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
860 /* Check the alignment of the calculated top of stack is correct. */
\r
861 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
863 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
865 /* Also record the stack's high address, which may assist
\r
867 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
869 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
871 #else /* portSTACK_GROWTH */
\r
873 pxTopOfStack = pxNewTCB->pxStack;
\r
875 /* Check the alignment of the stack buffer is correct. */
\r
876 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
878 /* The other extreme of the stack space is required if stack checking is
\r
880 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
882 #endif /* portSTACK_GROWTH */
\r
884 /* Store the task name in the TCB. */
\r
885 if( pcName != NULL )
\r
887 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
889 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
891 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
892 * configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
893 * string is not accessible (extremely unlikely). */
\r
894 if( pcName[ x ] == ( char ) 0x00 )
\r
900 mtCOVERAGE_TEST_MARKER();
\r
904 /* Ensure the name string is terminated in the case that the string length
\r
905 * was greater or equal to configMAX_TASK_NAME_LEN. */
\r
906 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
910 mtCOVERAGE_TEST_MARKER();
\r
913 /* This is used as an array index so must ensure it's not too large. */
\r
914 configASSERT( uxPriority < configMAX_PRIORITIES );
\r
916 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
918 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
922 mtCOVERAGE_TEST_MARKER();
\r
925 pxNewTCB->uxPriority = uxPriority;
\r
926 #if ( configUSE_MUTEXES == 1 )
\r
928 pxNewTCB->uxBasePriority = uxPriority;
\r
930 #endif /* configUSE_MUTEXES */
\r
932 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
933 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
935 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
936 * back to the containing TCB from a generic item in a list. */
\r
937 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
939 /* Event lists are always in priority order. */
\r
940 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
941 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
943 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
945 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
949 /* Avoid compiler warning about unreferenced parameter. */
\r
954 #if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
\r
956 /* Allocate and initialize memory for the task's TLS Block. */
\r
957 configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock );
\r
961 /* Initialize the TCB stack to look as if the task was already running,
\r
962 * but had been interrupted by the scheduler. The return address is set
\r
963 * to the start of the task function. Once the stack has been initialised
\r
964 * the top of stack variable is updated. */
\r
965 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
967 /* If the port has capability to detect stack overflow,
\r
968 * pass the stack end address to the stack initialization
\r
969 * function as well. */
\r
970 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
972 #if ( portSTACK_GROWTH < 0 )
\r
974 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
976 #else /* portSTACK_GROWTH */
\r
978 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
980 #endif /* portSTACK_GROWTH */
\r
982 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
984 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
986 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
988 #else /* portUSING_MPU_WRAPPERS */
\r
990 /* If the port has capability to detect stack overflow,
\r
991 * pass the stack end address to the stack initialization
\r
992 * function as well. */
\r
993 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
995 #if ( portSTACK_GROWTH < 0 )
\r
997 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
999 #else /* portSTACK_GROWTH */
\r
1001 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1003 #endif /* portSTACK_GROWTH */
\r
1005 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1007 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1009 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1011 #endif /* portUSING_MPU_WRAPPERS */
\r
1013 if( pxCreatedTask != NULL )
\r
1015 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1016 * change the created task's priority, delete the created task, etc.*/
\r
1017 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1021 mtCOVERAGE_TEST_MARKER();
\r
1024 /*-----------------------------------------------------------*/
\r
1026 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
\r
1028 /* Ensure interrupts don't access the task lists while the lists are being
\r
1030 taskENTER_CRITICAL();
\r
1032 uxCurrentNumberOfTasks++;
\r
1034 if( pxCurrentTCB == NULL )
\r
1036 /* There are no other tasks, or all the other tasks are in
\r
1037 * the suspended state - make this the current task. */
\r
1038 pxCurrentTCB = pxNewTCB;
\r
1040 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1042 /* This is the first task to be created so do the preliminary
\r
1043 * initialisation required. We will not recover if this call
\r
1044 * fails, but we will report the failure. */
\r
1045 prvInitialiseTaskLists();
\r
1049 mtCOVERAGE_TEST_MARKER();
\r
1054 /* If the scheduler is not already running, make this task the
\r
1055 * current task if it is the highest priority task to be created
\r
1057 if( xSchedulerRunning == pdFALSE )
\r
1059 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1061 pxCurrentTCB = pxNewTCB;
\r
1065 mtCOVERAGE_TEST_MARKER();
\r
1070 mtCOVERAGE_TEST_MARKER();
\r
1076 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1078 /* Add a counter into the TCB for tracing only. */
\r
1079 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1081 #endif /* configUSE_TRACE_FACILITY */
\r
1082 traceTASK_CREATE( pxNewTCB );
\r
1084 prvAddTaskToReadyList( pxNewTCB );
\r
1086 portSETUP_TCB( pxNewTCB );
\r
1088 taskEXIT_CRITICAL();
\r
1090 if( xSchedulerRunning != pdFALSE )
\r
1092 /* If the created task is of a higher priority than the current task
\r
1093 * then it should run now. */
\r
1094 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1096 taskYIELD_IF_USING_PREEMPTION();
\r
1100 mtCOVERAGE_TEST_MARKER();
\r
1105 mtCOVERAGE_TEST_MARKER();
\r
1108 /*-----------------------------------------------------------*/
\r
1110 #if ( INCLUDE_vTaskDelete == 1 )
\r
1112 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1116 taskENTER_CRITICAL();
\r
1118 /* If null is passed in here then it is the calling task that is
\r
1119 * being deleted. */
\r
1120 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1122 /* Remove task from the ready/delayed list. */
\r
1123 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1125 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1129 mtCOVERAGE_TEST_MARKER();
\r
1132 /* Is the task waiting on an event also? */
\r
1133 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1135 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1139 mtCOVERAGE_TEST_MARKER();
\r
1142 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1143 * detect that the task lists need re-generating. This is done before
\r
1144 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1148 if( pxTCB == pxCurrentTCB )
\r
1150 /* A task is deleting itself. This cannot complete within the
\r
1151 * task itself, as a context switch to another task is required.
\r
1152 * Place the task in the termination list. The idle task will
\r
1153 * check the termination list and free up any memory allocated by
\r
1154 * the scheduler for the TCB and stack of the deleted task. */
\r
1155 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1157 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1158 * there is a task that has been deleted and that it should therefore
\r
1159 * check the xTasksWaitingTermination list. */
\r
1160 ++uxDeletedTasksWaitingCleanUp;
\r
1162 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1163 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1164 traceTASK_DELETE( pxTCB );
\r
1166 /* The pre-delete hook is primarily for the Windows simulator,
\r
1167 * in which Windows specific clean up operations are performed,
\r
1168 * after which it is not possible to yield away from this task -
\r
1169 * hence xYieldPending is used to latch that a context switch is
\r
1171 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1175 --uxCurrentNumberOfTasks;
\r
1176 traceTASK_DELETE( pxTCB );
\r
1178 /* Reset the next expected unblock time in case it referred to
\r
1179 * the task that has just been deleted. */
\r
1180 prvResetNextTaskUnblockTime();
\r
1183 taskEXIT_CRITICAL();
\r
1185 /* If the task is not deleting itself, call prvDeleteTCB from outside of
\r
1186 * critical section. If a task deletes itself, prvDeleteTCB is called
\r
1187 * from prvCheckTasksWaitingTermination which is called from Idle task. */
\r
1188 if( pxTCB != pxCurrentTCB )
\r
1190 prvDeleteTCB( pxTCB );
\r
1193 /* Force a reschedule if it is the currently running task that has just
\r
1194 * been deleted. */
\r
1195 if( xSchedulerRunning != pdFALSE )
\r
1197 if( pxTCB == pxCurrentTCB )
\r
1199 configASSERT( uxSchedulerSuspended == 0 );
\r
1200 portYIELD_WITHIN_API();
\r
1204 mtCOVERAGE_TEST_MARKER();
\r
1209 #endif /* INCLUDE_vTaskDelete */
\r
1210 /*-----------------------------------------------------------*/
\r
1212 #if ( INCLUDE_xTaskDelayUntil == 1 )
\r
1214 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
\r
1215 const TickType_t xTimeIncrement )
\r
1217 TickType_t xTimeToWake;
\r
1218 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1220 configASSERT( pxPreviousWakeTime );
\r
1221 configASSERT( ( xTimeIncrement > 0U ) );
\r
1222 configASSERT( uxSchedulerSuspended == 0 );
\r
1224 vTaskSuspendAll();
\r
1226 /* Minor optimisation. The tick count cannot change in this
\r
1228 const TickType_t xConstTickCount = xTickCount;
\r
1230 /* Generate the tick time at which the task wants to wake. */
\r
1231 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1233 if( xConstTickCount < *pxPreviousWakeTime )
\r
1235 /* The tick count has overflowed since this function was
\r
1236 * lasted called. In this case the only time we should ever
\r
1237 * actually delay is if the wake time has also overflowed,
\r
1238 * and the wake time is greater than the tick time. When this
\r
1239 * is the case it is as if neither time had overflowed. */
\r
1240 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1242 xShouldDelay = pdTRUE;
\r
1246 mtCOVERAGE_TEST_MARKER();
\r
1251 /* The tick time has not overflowed. In this case we will
\r
1252 * delay if either the wake time has overflowed, and/or the
\r
1253 * tick time is less than the wake time. */
\r
1254 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1256 xShouldDelay = pdTRUE;
\r
1260 mtCOVERAGE_TEST_MARKER();
\r
1264 /* Update the wake time ready for the next call. */
\r
1265 *pxPreviousWakeTime = xTimeToWake;
\r
1267 if( xShouldDelay != pdFALSE )
\r
1269 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1271 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1272 * the time to wake, so subtract the current tick count. */
\r
1273 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1277 mtCOVERAGE_TEST_MARKER();
\r
1280 xAlreadyYielded = xTaskResumeAll();
\r
1282 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1283 * have put ourselves to sleep. */
\r
1284 if( xAlreadyYielded == pdFALSE )
\r
1286 portYIELD_WITHIN_API();
\r
1290 mtCOVERAGE_TEST_MARKER();
\r
1293 return xShouldDelay;
\r
1296 #endif /* INCLUDE_xTaskDelayUntil */
\r
1297 /*-----------------------------------------------------------*/
\r
1299 #if ( INCLUDE_vTaskDelay == 1 )
\r
1301 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1303 BaseType_t xAlreadyYielded = pdFALSE;
\r
1305 /* A delay time of zero just forces a reschedule. */
\r
1306 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1308 configASSERT( uxSchedulerSuspended == 0 );
\r
1309 vTaskSuspendAll();
\r
1311 traceTASK_DELAY();
\r
1313 /* A task that is removed from the event list while the
\r
1314 * scheduler is suspended will not get placed in the ready
\r
1315 * list or removed from the blocked list until the scheduler
\r
1318 * This task cannot be in an event list as it is the currently
\r
1319 * executing task. */
\r
1320 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1322 xAlreadyYielded = xTaskResumeAll();
\r
1326 mtCOVERAGE_TEST_MARKER();
\r
1329 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1330 * have put ourselves to sleep. */
\r
1331 if( xAlreadyYielded == pdFALSE )
\r
1333 portYIELD_WITHIN_API();
\r
1337 mtCOVERAGE_TEST_MARKER();
\r
1341 #endif /* INCLUDE_vTaskDelay */
\r
1342 /*-----------------------------------------------------------*/
\r
1344 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1346 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1348 eTaskState eReturn;
\r
1349 List_t const * pxStateList;
\r
1350 List_t const * pxDelayedList;
\r
1351 List_t const * pxOverflowedDelayedList;
\r
1352 const TCB_t * const pxTCB = xTask;
\r
1354 configASSERT( pxTCB );
\r
1356 if( pxTCB == pxCurrentTCB )
\r
1358 /* The task calling this function is querying its own state. */
\r
1359 eReturn = eRunning;
\r
1363 taskENTER_CRITICAL();
\r
1365 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1366 pxDelayedList = pxDelayedTaskList;
\r
1367 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1369 taskEXIT_CRITICAL();
\r
1371 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1373 /* The task being queried is referenced from one of the Blocked
\r
1375 eReturn = eBlocked;
\r
1378 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1379 else if( pxStateList == &xSuspendedTaskList )
\r
1381 /* The task being queried is referenced from the suspended
\r
1382 * list. Is it genuinely suspended or is it blocked
\r
1383 * indefinitely? */
\r
1384 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1386 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1390 /* The task does not appear on the event list item of
\r
1391 * and of the RTOS objects, but could still be in the
\r
1392 * blocked state if it is waiting on its notification
\r
1393 * rather than waiting on an object. If not, is
\r
1395 eReturn = eSuspended;
\r
1397 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1399 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1401 eReturn = eBlocked;
\r
1406 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1408 eReturn = eSuspended;
\r
1410 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1414 eReturn = eBlocked;
\r
1417 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
\r
1419 #if ( INCLUDE_vTaskDelete == 1 )
\r
1420 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1422 /* The task being queried is referenced from the deleted
\r
1423 * tasks list, or it is not referenced from any lists at
\r
1425 eReturn = eDeleted;
\r
1429 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1431 /* If the task is not in any other state, it must be in the
\r
1432 * Ready (including pending ready) state. */
\r
1438 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1440 #endif /* INCLUDE_eTaskGetState */
\r
1441 /*-----------------------------------------------------------*/
\r
1443 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1445 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1447 TCB_t const * pxTCB;
\r
1448 UBaseType_t uxReturn;
\r
1450 taskENTER_CRITICAL();
\r
1452 /* If null is passed in here then it is the priority of the task
\r
1453 * that called uxTaskPriorityGet() that is being queried. */
\r
1454 pxTCB = prvGetTCBFromHandle( xTask );
\r
1455 uxReturn = pxTCB->uxPriority;
\r
1457 taskEXIT_CRITICAL();
\r
1462 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1463 /*-----------------------------------------------------------*/
\r
1465 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1467 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1469 TCB_t const * pxTCB;
\r
1470 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1472 /* RTOS ports that support interrupt nesting have the concept of a
\r
1473 * maximum system call (or maximum API call) interrupt priority.
\r
1474 * Interrupts that are above the maximum system call priority are keep
\r
1475 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1476 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1477 * is defined in FreeRTOSConfig.h then
\r
1478 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1479 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1480 * been assigned a priority above the configured maximum system call
\r
1481 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1482 * from interrupts that have been assigned a priority at or (logically)
\r
1483 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1484 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1485 * simple as possible. More information (albeit Cortex-M specific) is
\r
1486 * provided on the following link:
\r
1487 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1488 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1490 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1492 /* If null is passed in here then it is the priority of the calling
\r
1493 * task that is being queried. */
\r
1494 pxTCB = prvGetTCBFromHandle( xTask );
\r
1495 uxReturn = pxTCB->uxPriority;
\r
1497 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1502 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1503 /*-----------------------------------------------------------*/
\r
1505 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1507 void vTaskPrioritySet( TaskHandle_t xTask,
\r
1508 UBaseType_t uxNewPriority )
\r
1511 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1512 BaseType_t xYieldRequired = pdFALSE;
\r
1514 configASSERT( uxNewPriority < configMAX_PRIORITIES );
\r
1516 /* Ensure the new priority is valid. */
\r
1517 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1519 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1523 mtCOVERAGE_TEST_MARKER();
\r
1526 taskENTER_CRITICAL();
\r
1528 /* If null is passed in here then it is the priority of the calling
\r
1529 * task that is being changed. */
\r
1530 pxTCB = prvGetTCBFromHandle( xTask );
\r
1532 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1534 #if ( configUSE_MUTEXES == 1 )
\r
1536 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1540 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1544 if( uxCurrentBasePriority != uxNewPriority )
\r
1546 /* The priority change may have readied a task of higher
\r
1547 * priority than the calling task. */
\r
1548 if( uxNewPriority > uxCurrentBasePriority )
\r
1550 if( pxTCB != pxCurrentTCB )
\r
1552 /* The priority of a task other than the currently
\r
1553 * running task is being raised. Is the priority being
\r
1554 * raised above that of the running task? */
\r
1555 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1557 xYieldRequired = pdTRUE;
\r
1561 mtCOVERAGE_TEST_MARKER();
\r
1566 /* The priority of the running task is being raised,
\r
1567 * but the running task must already be the highest
\r
1568 * priority task able to run so no yield is required. */
\r
1571 else if( pxTCB == pxCurrentTCB )
\r
1573 /* Setting the priority of the running task down means
\r
1574 * there may now be another task of higher priority that
\r
1575 * is ready to execute. */
\r
1576 xYieldRequired = pdTRUE;
\r
1580 /* Setting the priority of any other task down does not
\r
1581 * require a yield as the running task must be above the
\r
1582 * new priority of the task being modified. */
\r
1585 /* Remember the ready list the task might be referenced from
\r
1586 * before its uxPriority member is changed so the
\r
1587 * taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1588 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1590 #if ( configUSE_MUTEXES == 1 )
\r
1592 /* Only change the priority being used if the task is not
\r
1593 * currently using an inherited priority. */
\r
1594 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1596 pxTCB->uxPriority = uxNewPriority;
\r
1600 mtCOVERAGE_TEST_MARKER();
\r
1603 /* The base priority gets set whatever. */
\r
1604 pxTCB->uxBasePriority = uxNewPriority;
\r
1606 #else /* if ( configUSE_MUTEXES == 1 ) */
\r
1608 pxTCB->uxPriority = uxNewPriority;
\r
1610 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1612 /* Only reset the event list item value if the value is not
\r
1613 * being used for anything else. */
\r
1614 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1616 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1620 mtCOVERAGE_TEST_MARKER();
\r
1623 /* If the task is in the blocked or suspended list we need do
\r
1624 * nothing more than change its priority variable. However, if
\r
1625 * the task is in a ready list it needs to be removed and placed
\r
1626 * in the list appropriate to its new priority. */
\r
1627 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1629 /* The task is currently in its ready list - remove before
\r
1630 * adding it to its new ready list. As we are in a critical
\r
1631 * section we can do this even if the scheduler is suspended. */
\r
1632 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1634 /* It is known that the task is in its ready list so
\r
1635 * there is no need to check again and the port level
\r
1636 * reset macro can be called directly. */
\r
1637 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1641 mtCOVERAGE_TEST_MARKER();
\r
1644 prvAddTaskToReadyList( pxTCB );
\r
1648 mtCOVERAGE_TEST_MARKER();
\r
1651 if( xYieldRequired != pdFALSE )
\r
1653 taskYIELD_IF_USING_PREEMPTION();
\r
1657 mtCOVERAGE_TEST_MARKER();
\r
1660 /* Remove compiler warning about unused variables when the port
\r
1661 * optimised task selection is not being used. */
\r
1662 ( void ) uxPriorityUsedOnEntry;
\r
1665 taskEXIT_CRITICAL();
\r
1668 #endif /* INCLUDE_vTaskPrioritySet */
\r
1669 /*-----------------------------------------------------------*/
\r
1671 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1673 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1677 taskENTER_CRITICAL();
\r
1679 /* If null is passed in here then it is the running task that is
\r
1680 * being suspended. */
\r
1681 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1683 traceTASK_SUSPEND( pxTCB );
\r
1685 /* Remove task from the ready/delayed list and place in the
\r
1686 * suspended list. */
\r
1687 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1689 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1693 mtCOVERAGE_TEST_MARKER();
\r
1696 /* Is the task waiting on an event also? */
\r
1697 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1699 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1703 mtCOVERAGE_TEST_MARKER();
\r
1706 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1708 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1712 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1714 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1716 /* The task was blocked to wait for a notification, but is
\r
1717 * now suspended, so no notification was received. */
\r
1718 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
\r
1722 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1724 taskEXIT_CRITICAL();
\r
1726 if( xSchedulerRunning != pdFALSE )
\r
1728 /* Reset the next expected unblock time in case it referred to the
\r
1729 * task that is now in the Suspended state. */
\r
1730 taskENTER_CRITICAL();
\r
1732 prvResetNextTaskUnblockTime();
\r
1734 taskEXIT_CRITICAL();
\r
1738 mtCOVERAGE_TEST_MARKER();
\r
1741 if( pxTCB == pxCurrentTCB )
\r
1743 if( xSchedulerRunning != pdFALSE )
\r
1745 /* The current task has just been suspended. */
\r
1746 configASSERT( uxSchedulerSuspended == 0 );
\r
1747 portYIELD_WITHIN_API();
\r
1751 /* The scheduler is not running, but the task that was pointed
\r
1752 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1753 * must be adjusted to point to a different task. */
\r
1754 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1756 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1757 * NULL so when the next task is created pxCurrentTCB will
\r
1758 * be set to point to it no matter what its relative priority
\r
1760 pxCurrentTCB = NULL;
\r
1764 vTaskSwitchContext();
\r
1770 mtCOVERAGE_TEST_MARKER();
\r
1774 #endif /* INCLUDE_vTaskSuspend */
\r
1775 /*-----------------------------------------------------------*/
\r
1777 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1779 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1781 BaseType_t xReturn = pdFALSE;
\r
1782 const TCB_t * const pxTCB = xTask;
\r
1784 /* Accesses xPendingReadyList so must be called from a critical
\r
1787 /* It does not make sense to check if the calling task is suspended. */
\r
1788 configASSERT( xTask );
\r
1790 /* Is the task being resumed actually in the suspended list? */
\r
1791 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1793 /* Has the task already been resumed from within an ISR? */
\r
1794 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1796 /* Is it in the suspended list because it is in the Suspended
\r
1797 * state, or because is is blocked with no timeout? */
\r
1798 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1804 mtCOVERAGE_TEST_MARKER();
\r
1809 mtCOVERAGE_TEST_MARKER();
\r
1814 mtCOVERAGE_TEST_MARKER();
\r
1818 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1820 #endif /* INCLUDE_vTaskSuspend */
\r
1821 /*-----------------------------------------------------------*/
\r
1823 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1825 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1827 TCB_t * const pxTCB = xTaskToResume;
\r
1829 /* It does not make sense to resume the calling task. */
\r
1830 configASSERT( xTaskToResume );
\r
1832 /* The parameter cannot be NULL as it is impossible to resume the
\r
1833 * currently executing task. */
\r
1834 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1836 taskENTER_CRITICAL();
\r
1838 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1840 traceTASK_RESUME( pxTCB );
\r
1842 /* The ready list can be accessed even if the scheduler is
\r
1843 * suspended because this is inside a critical section. */
\r
1844 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1845 prvAddTaskToReadyList( pxTCB );
\r
1847 /* A higher priority task may have just been resumed. */
\r
1848 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1850 /* This yield may not cause the task just resumed to run,
\r
1851 * but will leave the lists in the correct state for the
\r
1853 taskYIELD_IF_USING_PREEMPTION();
\r
1857 mtCOVERAGE_TEST_MARKER();
\r
1862 mtCOVERAGE_TEST_MARKER();
\r
1865 taskEXIT_CRITICAL();
\r
1869 mtCOVERAGE_TEST_MARKER();
\r
1873 #endif /* INCLUDE_vTaskSuspend */
\r
1875 /*-----------------------------------------------------------*/
\r
1877 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1879 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1881 BaseType_t xYieldRequired = pdFALSE;
\r
1882 TCB_t * const pxTCB = xTaskToResume;
\r
1883 UBaseType_t uxSavedInterruptStatus;
\r
1885 configASSERT( xTaskToResume );
\r
1887 /* RTOS ports that support interrupt nesting have the concept of a
\r
1888 * maximum system call (or maximum API call) interrupt priority.
\r
1889 * Interrupts that are above the maximum system call priority are keep
\r
1890 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1891 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1892 * is defined in FreeRTOSConfig.h then
\r
1893 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1894 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1895 * been assigned a priority above the configured maximum system call
\r
1896 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1897 * from interrupts that have been assigned a priority at or (logically)
\r
1898 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1899 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1900 * simple as possible. More information (albeit Cortex-M specific) is
\r
1901 * provided on the following link:
\r
1902 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1903 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1905 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1907 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1909 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1911 /* Check the ready lists can be accessed. */
\r
1912 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1914 /* Ready lists can be accessed so move the task from the
\r
1915 * suspended list to the ready list directly. */
\r
1916 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1918 xYieldRequired = pdTRUE;
\r
1920 /* Mark that a yield is pending in case the user is not
\r
1921 * using the return value to initiate a context switch
\r
1922 * from the ISR using portYIELD_FROM_ISR. */
\r
1923 xYieldPending = pdTRUE;
\r
1927 mtCOVERAGE_TEST_MARKER();
\r
1930 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1931 prvAddTaskToReadyList( pxTCB );
\r
1935 /* The delayed or ready lists cannot be accessed so the task
\r
1936 * is held in the pending ready list until the scheduler is
\r
1938 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1943 mtCOVERAGE_TEST_MARKER();
\r
1946 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1948 return xYieldRequired;
\r
1951 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1952 /*-----------------------------------------------------------*/
\r
1954 void vTaskStartScheduler( void )
\r
1956 BaseType_t xReturn;
\r
1958 /* Add the idle task at the lowest priority. */
\r
1959 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1961 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
\r
1962 StackType_t * pxIdleTaskStackBuffer = NULL;
\r
1963 uint32_t ulIdleTaskStackSize;
\r
1965 /* The Idle task is created using user provided RAM - obtain the
\r
1966 * address of the RAM then create the idle task. */
\r
1967 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
1968 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
1969 configIDLE_TASK_NAME,
\r
1970 ulIdleTaskStackSize,
\r
1971 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
1972 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
1973 pxIdleTaskStackBuffer,
\r
1974 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
1976 if( xIdleTaskHandle != NULL )
\r
1985 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
1987 /* The Idle task is being created using dynamically allocated RAM. */
\r
1988 xReturn = xTaskCreate( prvIdleTask,
\r
1989 configIDLE_TASK_NAME,
\r
1990 configMINIMAL_STACK_SIZE,
\r
1992 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
1993 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
1995 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
1997 #if ( configUSE_TIMERS == 1 )
\r
1999 if( xReturn == pdPASS )
\r
2001 xReturn = xTimerCreateTimerTask();
\r
2005 mtCOVERAGE_TEST_MARKER();
\r
2008 #endif /* configUSE_TIMERS */
\r
2010 if( xReturn == pdPASS )
\r
2012 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2013 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2014 * the only macro called by the function. */
\r
2015 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2017 freertos_tasks_c_additions_init();
\r
2021 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2022 * before or during the call to xPortStartScheduler(). The stacks of
\r
2023 * the created tasks contain a status word with interrupts switched on
\r
2024 * so interrupts will automatically get re-enabled when the first task
\r
2025 * starts to run. */
\r
2026 portDISABLE_INTERRUPTS();
\r
2028 #if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
\r
2030 /* Switch C-Runtime's TLS Block to point to the TLS
\r
2031 * block specific to the task that will run first. */
\r
2032 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
\r
2036 xNextTaskUnblockTime = portMAX_DELAY;
\r
2037 xSchedulerRunning = pdTRUE;
\r
2038 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2040 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2041 * macro must be defined to configure the timer/counter used to generate
\r
2042 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2043 * is set to 0 and the following line fails to build then ensure you do not
\r
2044 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2045 * FreeRTOSConfig.h file. */
\r
2046 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2048 traceTASK_SWITCHED_IN();
\r
2050 /* Setting up the timer tick is hardware specific and thus in the
\r
2051 * portable interface. */
\r
2052 xPortStartScheduler();
\r
2054 /* In most cases, xPortStartScheduler() will not return. If it
\r
2055 * returns pdTRUE then there was not enough heap memory available
\r
2056 * to create either the Idle or the Timer task. If it returned
\r
2057 * pdFALSE, then the application called xTaskEndScheduler().
\r
2058 * Most ports don't implement xTaskEndScheduler() as there is
\r
2059 * nothing to return to. */
\r
2063 /* This line will only be reached if the kernel could not be started,
\r
2064 * because there was not enough FreeRTOS heap to create the idle task
\r
2065 * or the timer task. */
\r
2066 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2069 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2070 * meaning xIdleTaskHandle is not used anywhere else. */
\r
2071 ( void ) xIdleTaskHandle;
\r
2073 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
\r
2074 * from getting optimized out as it is no longer used by the kernel. */
\r
2075 ( void ) uxTopUsedPriority;
\r
2077 /*-----------------------------------------------------------*/
\r
2079 void vTaskEndScheduler( void )
\r
2081 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2082 * routine so the original ISRs can be restored if necessary. The port
\r
2083 * layer must ensure interrupts enable bit is left in the correct state. */
\r
2084 portDISABLE_INTERRUPTS();
\r
2085 xSchedulerRunning = pdFALSE;
\r
2086 vPortEndScheduler();
\r
2088 /*----------------------------------------------------------*/
\r
2090 void vTaskSuspendAll( void )
\r
2092 /* A critical section is not required as the variable is of type
\r
2093 * BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2094 * post in the FreeRTOS support forum before reporting this as a bug! -
\r
2095 * https://goo.gl/wu4acr */
\r
2097 /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2098 * do not otherwise exhibit real time behaviour. */
\r
2099 portSOFTWARE_BARRIER();
\r
2101 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2102 * is used to allow calls to vTaskSuspendAll() to nest. */
\r
2103 ++uxSchedulerSuspended;
\r
2105 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2106 * the above increment elsewhere. */
\r
2107 portMEMORY_BARRIER();
\r
2109 /*----------------------------------------------------------*/
\r
2111 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2113 static TickType_t prvGetExpectedIdleTime( void )
\r
2115 TickType_t xReturn;
\r
2116 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2118 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2119 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2120 * task that are in the Ready state, even though the idle task is
\r
2122 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2124 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2126 uxHigherPriorityReadyTasks = pdTRUE;
\r
2131 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2133 /* When port optimised task selection is used the uxTopReadyPriority
\r
2134 * variable is used as a bit map. If bits other than the least
\r
2135 * significant bit are set then there are tasks that have a priority
\r
2136 * above the idle priority that are in the Ready state. This takes
\r
2137 * care of the case where the co-operative scheduler is in use. */
\r
2138 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2140 uxHigherPriorityReadyTasks = pdTRUE;
\r
2143 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
\r
2145 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2149 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2151 /* There are other idle priority tasks in the ready state. If
\r
2152 * time slicing is used then the very next tick interrupt must be
\r
2156 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2158 /* There are tasks in the Ready state that have a priority above the
\r
2159 * idle priority. This path can only be reached if
\r
2160 * configUSE_PREEMPTION is 0. */
\r
2165 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2171 #endif /* configUSE_TICKLESS_IDLE */
\r
2172 /*----------------------------------------------------------*/
\r
2174 BaseType_t xTaskResumeAll( void )
\r
2176 TCB_t * pxTCB = NULL;
\r
2177 BaseType_t xAlreadyYielded = pdFALSE;
\r
2179 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2180 * previous call to vTaskSuspendAll(). */
\r
2181 configASSERT( uxSchedulerSuspended );
\r
2183 /* It is possible that an ISR caused a task to be removed from an event
\r
2184 * list while the scheduler was suspended. If this was the case then the
\r
2185 * removed task will have been added to the xPendingReadyList. Once the
\r
2186 * scheduler has been resumed it is safe to move all the pending ready
\r
2187 * tasks from this list into their appropriate ready list. */
\r
2188 taskENTER_CRITICAL();
\r
2190 --uxSchedulerSuspended;
\r
2192 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2194 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2196 /* Move any readied tasks from the pending list into the
\r
2197 * appropriate ready list. */
\r
2198 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2200 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2201 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2202 portMEMORY_BARRIER();
\r
2203 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2204 prvAddTaskToReadyList( pxTCB );
\r
2206 /* If the moved task has a priority higher than or equal to
\r
2207 * the current task then a yield must be performed. */
\r
2208 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2210 xYieldPending = pdTRUE;
\r
2214 mtCOVERAGE_TEST_MARKER();
\r
2218 if( pxTCB != NULL )
\r
2220 /* A task was unblocked while the scheduler was suspended,
\r
2221 * which may have prevented the next unblock time from being
\r
2222 * re-calculated, in which case re-calculate it now. Mainly
\r
2223 * important for low power tickless implementations, where
\r
2224 * this can prevent an unnecessary exit from low power
\r
2226 prvResetNextTaskUnblockTime();
\r
2229 /* If any ticks occurred while the scheduler was suspended then
\r
2230 * they should be processed now. This ensures the tick count does
\r
2231 * not slip, and that any delayed tasks are resumed at the correct
\r
2234 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2236 if( xPendedCounts > ( TickType_t ) 0U )
\r
2240 if( xTaskIncrementTick() != pdFALSE )
\r
2242 xYieldPending = pdTRUE;
\r
2246 mtCOVERAGE_TEST_MARKER();
\r
2250 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2256 mtCOVERAGE_TEST_MARKER();
\r
2260 if( xYieldPending != pdFALSE )
\r
2262 #if ( configUSE_PREEMPTION != 0 )
\r
2264 xAlreadyYielded = pdTRUE;
\r
2267 taskYIELD_IF_USING_PREEMPTION();
\r
2271 mtCOVERAGE_TEST_MARKER();
\r
2277 mtCOVERAGE_TEST_MARKER();
\r
2280 taskEXIT_CRITICAL();
\r
2282 return xAlreadyYielded;
\r
2284 /*-----------------------------------------------------------*/
\r
2286 TickType_t xTaskGetTickCount( void )
\r
2288 TickType_t xTicks;
\r
2290 /* Critical section required if running on a 16 bit processor. */
\r
2291 portTICK_TYPE_ENTER_CRITICAL();
\r
2293 xTicks = xTickCount;
\r
2295 portTICK_TYPE_EXIT_CRITICAL();
\r
2299 /*-----------------------------------------------------------*/
\r
2301 TickType_t xTaskGetTickCountFromISR( void )
\r
2303 TickType_t xReturn;
\r
2304 UBaseType_t uxSavedInterruptStatus;
\r
2306 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2307 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
2308 * above the maximum system call priority are kept permanently enabled, even
\r
2309 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2310 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2311 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2312 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2313 * assigned a priority above the configured maximum system call priority.
\r
2314 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2315 * that have been assigned a priority at or (logically) below the maximum
\r
2316 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2317 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2318 * More information (albeit Cortex-M specific) is provided on the following
\r
2319 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
2320 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2322 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2324 xReturn = xTickCount;
\r
2326 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2330 /*-----------------------------------------------------------*/
\r
2332 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2334 /* A critical section is not required because the variables are of type
\r
2336 return uxCurrentNumberOfTasks;
\r
2338 /*-----------------------------------------------------------*/
\r
2340 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2344 /* If null is passed in here then the name of the calling task is being
\r
2346 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2347 configASSERT( pxTCB );
\r
2348 return &( pxTCB->pcTaskName[ 0 ] );
\r
2350 /*-----------------------------------------------------------*/
\r
2352 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2354 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
2355 const char pcNameToQuery[] )
\r
2357 TCB_t * pxNextTCB;
\r
2358 TCB_t * pxFirstTCB;
\r
2359 TCB_t * pxReturn = NULL;
\r
2362 BaseType_t xBreakLoop;
\r
2364 /* This function is called with the scheduler suspended. */
\r
2366 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2368 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2372 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2374 /* Check each character in the name looking for a match or
\r
2376 xBreakLoop = pdFALSE;
\r
2378 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2380 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2382 if( cNextChar != pcNameToQuery[ x ] )
\r
2384 /* Characters didn't match. */
\r
2385 xBreakLoop = pdTRUE;
\r
2387 else if( cNextChar == ( char ) 0x00 )
\r
2389 /* Both strings terminated, a match must have been
\r
2391 pxReturn = pxNextTCB;
\r
2392 xBreakLoop = pdTRUE;
\r
2396 mtCOVERAGE_TEST_MARKER();
\r
2399 if( xBreakLoop != pdFALSE )
\r
2405 if( pxReturn != NULL )
\r
2407 /* The handle has been found. */
\r
2410 } while( pxNextTCB != pxFirstTCB );
\r
2414 mtCOVERAGE_TEST_MARKER();
\r
2420 #endif /* INCLUDE_xTaskGetHandle */
\r
2421 /*-----------------------------------------------------------*/
\r
2423 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2425 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2427 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2430 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2431 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2433 vTaskSuspendAll();
\r
2435 /* Search the ready lists. */
\r
2439 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2441 if( pxTCB != NULL )
\r
2443 /* Found the handle. */
\r
2446 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2448 /* Search the delayed lists. */
\r
2449 if( pxTCB == NULL )
\r
2451 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2454 if( pxTCB == NULL )
\r
2456 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2459 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2461 if( pxTCB == NULL )
\r
2463 /* Search the suspended list. */
\r
2464 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2469 #if ( INCLUDE_vTaskDelete == 1 )
\r
2471 if( pxTCB == NULL )
\r
2473 /* Search the deleted list. */
\r
2474 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2479 ( void ) xTaskResumeAll();
\r
2484 #endif /* INCLUDE_xTaskGetHandle */
\r
2485 /*-----------------------------------------------------------*/
\r
2487 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2489 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
\r
2490 const UBaseType_t uxArraySize,
\r
2491 configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
\r
2493 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2495 vTaskSuspendAll();
\r
2497 /* Is there a space in the array for each task in the system? */
\r
2498 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2500 /* Fill in an TaskStatus_t structure with information on each
\r
2501 * task in the Ready state. */
\r
2505 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2506 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2508 /* Fill in an TaskStatus_t structure with information on each
\r
2509 * task in the Blocked state. */
\r
2510 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2511 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2513 #if ( INCLUDE_vTaskDelete == 1 )
\r
2515 /* Fill in an TaskStatus_t structure with information on
\r
2516 * each task that has been deleted but not yet cleaned up. */
\r
2517 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2521 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2523 /* Fill in an TaskStatus_t structure with information on
\r
2524 * each task in the Suspended state. */
\r
2525 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2529 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2531 if( pulTotalRunTime != NULL )
\r
2533 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2534 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2536 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2540 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2542 if( pulTotalRunTime != NULL )
\r
2544 *pulTotalRunTime = 0;
\r
2547 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2551 mtCOVERAGE_TEST_MARKER();
\r
2554 ( void ) xTaskResumeAll();
\r
2559 #endif /* configUSE_TRACE_FACILITY */
\r
2560 /*----------------------------------------------------------*/
\r
2562 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2564 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2566 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2567 * started, then xIdleTaskHandle will be NULL. */
\r
2568 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2569 return xIdleTaskHandle;
\r
2572 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2573 /*----------------------------------------------------------*/
\r
2575 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2576 * This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2577 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2579 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2581 void vTaskStepTick( TickType_t xTicksToJump )
\r
2583 /* Correct the tick count value after a period during which the tick
\r
2584 * was suppressed. Note this does *not* call the tick hook function for
\r
2585 * each stepped tick. */
\r
2586 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2588 if( ( xTickCount + xTicksToJump ) == xNextTaskUnblockTime )
\r
2590 /* Arrange for xTickCount to reach xNextTaskUnblockTime in
\r
2591 * xTaskIncrementTick() when the scheduler resumes. This ensures
\r
2592 * that any delayed tasks are resumed at the correct time. */
\r
2593 configASSERT( uxSchedulerSuspended );
\r
2594 configASSERT( xTicksToJump != ( TickType_t ) 0 );
\r
2596 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
\r
2597 taskENTER_CRITICAL();
\r
2601 taskEXIT_CRITICAL();
\r
2606 mtCOVERAGE_TEST_MARKER();
\r
2609 xTickCount += xTicksToJump;
\r
2610 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2613 #endif /* configUSE_TICKLESS_IDLE */
\r
2614 /*----------------------------------------------------------*/
\r
2616 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2618 BaseType_t xYieldOccurred;
\r
2620 /* Must not be called with the scheduler suspended as the implementation
\r
2621 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2622 configASSERT( uxSchedulerSuspended == 0 );
\r
2624 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2625 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2626 vTaskSuspendAll();
\r
2628 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
\r
2629 taskENTER_CRITICAL();
\r
2631 xPendedTicks += xTicksToCatchUp;
\r
2633 taskEXIT_CRITICAL();
\r
2634 xYieldOccurred = xTaskResumeAll();
\r
2636 return xYieldOccurred;
\r
2638 /*----------------------------------------------------------*/
\r
2640 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2642 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2644 TCB_t * pxTCB = xTask;
\r
2645 BaseType_t xReturn;
\r
2647 configASSERT( pxTCB );
\r
2649 vTaskSuspendAll();
\r
2651 /* A task can only be prematurely removed from the Blocked state if
\r
2652 * it is actually in the Blocked state. */
\r
2653 if( eTaskGetState( xTask ) == eBlocked )
\r
2657 /* Remove the reference to the task from the blocked list. An
\r
2658 * interrupt won't touch the xStateListItem because the
\r
2659 * scheduler is suspended. */
\r
2660 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2662 /* Is the task waiting on an event also? If so remove it from
\r
2663 * the event list too. Interrupts can touch the event list item,
\r
2664 * even though the scheduler is suspended, so a critical section
\r
2666 taskENTER_CRITICAL();
\r
2668 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2670 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2672 /* This lets the task know it was forcibly removed from the
\r
2673 * blocked state so it should not re-evaluate its block time and
\r
2674 * then block again. */
\r
2675 pxTCB->ucDelayAborted = pdTRUE;
\r
2679 mtCOVERAGE_TEST_MARKER();
\r
2682 taskEXIT_CRITICAL();
\r
2684 /* Place the unblocked task into the appropriate ready list. */
\r
2685 prvAddTaskToReadyList( pxTCB );
\r
2687 /* A task being unblocked cannot cause an immediate context
\r
2688 * switch if preemption is turned off. */
\r
2689 #if ( configUSE_PREEMPTION == 1 )
\r
2691 /* Preemption is on, but a context switch should only be
\r
2692 * performed if the unblocked task has a priority that is
\r
2693 * higher than the currently executing task. */
\r
2694 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2696 /* Pend the yield to be performed when the scheduler
\r
2697 * is unsuspended. */
\r
2698 xYieldPending = pdTRUE;
\r
2702 mtCOVERAGE_TEST_MARKER();
\r
2705 #endif /* configUSE_PREEMPTION */
\r
2712 ( void ) xTaskResumeAll();
\r
2717 #endif /* INCLUDE_xTaskAbortDelay */
\r
2718 /*----------------------------------------------------------*/
\r
2720 BaseType_t xTaskIncrementTick( void )
\r
2723 TickType_t xItemValue;
\r
2724 BaseType_t xSwitchRequired = pdFALSE;
\r
2726 /* Called by the portable layer each time a tick interrupt occurs.
\r
2727 * Increments the tick then checks to see if the new tick value will cause any
\r
2728 * tasks to be unblocked. */
\r
2729 traceTASK_INCREMENT_TICK( xTickCount );
\r
2731 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2733 /* Minor optimisation. The tick count cannot change in this
\r
2735 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2737 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2738 * delayed lists if it wraps to 0. */
\r
2739 xTickCount = xConstTickCount;
\r
2741 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2743 taskSWITCH_DELAYED_LISTS();
\r
2747 mtCOVERAGE_TEST_MARKER();
\r
2750 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2751 * the queue in the order of their wake time - meaning once one task
\r
2752 * has been found whose block time has not expired there is no need to
\r
2753 * look any further down the list. */
\r
2754 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2758 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2760 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2761 * to the maximum possible value so it is extremely
\r
2762 * unlikely that the
\r
2763 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2764 * next time through. */
\r
2765 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2770 /* The delayed list is not empty, get the value of the
\r
2771 * item at the head of the delayed list. This is the time
\r
2772 * at which the task at the head of the delayed list must
\r
2773 * be removed from the Blocked state. */
\r
2774 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2775 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2777 if( xConstTickCount < xItemValue )
\r
2779 /* It is not time to unblock this item yet, but the
\r
2780 * item value is the time at which the task at the head
\r
2781 * of the blocked list must be removed from the Blocked
\r
2782 * state - so record the item value in
\r
2783 * xNextTaskUnblockTime. */
\r
2784 xNextTaskUnblockTime = xItemValue;
\r
2785 break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
\r
2789 mtCOVERAGE_TEST_MARKER();
\r
2792 /* It is time to remove the item from the Blocked state. */
\r
2793 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2795 /* Is the task waiting on an event also? If so remove
\r
2796 * it from the event list. */
\r
2797 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2799 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2803 mtCOVERAGE_TEST_MARKER();
\r
2806 /* Place the unblocked task into the appropriate ready
\r
2808 prvAddTaskToReadyList( pxTCB );
\r
2810 /* A task being unblocked cannot cause an immediate
\r
2811 * context switch if preemption is turned off. */
\r
2812 #if ( configUSE_PREEMPTION == 1 )
\r
2814 /* Preemption is on, but a context switch should
\r
2815 * only be performed if the unblocked task has a
\r
2816 * priority that is equal to or higher than the
\r
2817 * currently executing task. */
\r
2818 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2820 xSwitchRequired = pdTRUE;
\r
2824 mtCOVERAGE_TEST_MARKER();
\r
2827 #endif /* configUSE_PREEMPTION */
\r
2832 /* Tasks of equal priority to the currently running task will share
\r
2833 * processing time (time slice) if preemption is on, and the application
\r
2834 * writer has not explicitly turned time slicing off. */
\r
2835 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2837 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2839 xSwitchRequired = pdTRUE;
\r
2843 mtCOVERAGE_TEST_MARKER();
\r
2846 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2848 #if ( configUSE_TICK_HOOK == 1 )
\r
2850 /* Guard against the tick hook being called when the pended tick
\r
2851 * count is being unwound (when the scheduler is being unlocked). */
\r
2852 if( xPendedTicks == ( TickType_t ) 0 )
\r
2854 vApplicationTickHook();
\r
2858 mtCOVERAGE_TEST_MARKER();
\r
2861 #endif /* configUSE_TICK_HOOK */
\r
2863 #if ( configUSE_PREEMPTION == 1 )
\r
2865 if( xYieldPending != pdFALSE )
\r
2867 xSwitchRequired = pdTRUE;
\r
2871 mtCOVERAGE_TEST_MARKER();
\r
2874 #endif /* configUSE_PREEMPTION */
\r
2880 /* The tick hook gets called at regular intervals, even if the
\r
2881 * scheduler is locked. */
\r
2882 #if ( configUSE_TICK_HOOK == 1 )
\r
2884 vApplicationTickHook();
\r
2889 return xSwitchRequired;
\r
2891 /*-----------------------------------------------------------*/
\r
2893 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2895 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
\r
2896 TaskHookFunction_t pxHookFunction )
\r
2900 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2902 if( xTask == NULL )
\r
2904 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2911 /* Save the hook function in the TCB. A critical section is required as
\r
2912 * the value can be accessed from an interrupt. */
\r
2913 taskENTER_CRITICAL();
\r
2915 xTCB->pxTaskTag = pxHookFunction;
\r
2917 taskEXIT_CRITICAL();
\r
2920 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2921 /*-----------------------------------------------------------*/
\r
2923 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2925 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2928 TaskHookFunction_t xReturn;
\r
2930 /* If xTask is NULL then set the calling task's hook. */
\r
2931 pxTCB = prvGetTCBFromHandle( xTask );
\r
2933 /* Save the hook function in the TCB. A critical section is required as
\r
2934 * the value can be accessed from an interrupt. */
\r
2935 taskENTER_CRITICAL();
\r
2937 xReturn = pxTCB->pxTaskTag;
\r
2939 taskEXIT_CRITICAL();
\r
2944 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2945 /*-----------------------------------------------------------*/
\r
2947 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2949 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2952 TaskHookFunction_t xReturn;
\r
2953 UBaseType_t uxSavedInterruptStatus;
\r
2955 /* If xTask is NULL then set the calling task's hook. */
\r
2956 pxTCB = prvGetTCBFromHandle( xTask );
\r
2958 /* Save the hook function in the TCB. A critical section is required as
\r
2959 * the value can be accessed from an interrupt. */
\r
2960 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2962 xReturn = pxTCB->pxTaskTag;
\r
2964 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2969 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2970 /*-----------------------------------------------------------*/
\r
2972 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2974 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
\r
2975 void * pvParameter )
\r
2978 BaseType_t xReturn;
\r
2980 /* If xTask is NULL then we are calling our own task hook. */
\r
2981 if( xTask == NULL )
\r
2983 xTCB = pxCurrentTCB;
\r
2990 if( xTCB->pxTaskTag != NULL )
\r
2992 xReturn = xTCB->pxTaskTag( pvParameter );
\r
3002 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
3003 /*-----------------------------------------------------------*/
\r
3005 void vTaskSwitchContext( void )
\r
3007 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
3009 /* The scheduler is currently suspended - do not allow a context
\r
3011 xYieldPending = pdTRUE;
\r
3015 xYieldPending = pdFALSE;
\r
3016 traceTASK_SWITCHED_OUT();
\r
3018 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3020 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3021 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3023 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3026 /* Add the amount of time the task has been running to the
\r
3027 * accumulated time so far. The time the task started running was
\r
3028 * stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3029 * protection here so count values are only valid until the timer
\r
3030 * overflows. The guard against negative values is to protect
\r
3031 * against suspect run time stat counter implementations - which
\r
3032 * are provided by the application, not the kernel. */
\r
3033 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3035 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3039 mtCOVERAGE_TEST_MARKER();
\r
3042 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3044 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3046 /* Check for stack overflow, if configured. */
\r
3047 taskCHECK_FOR_STACK_OVERFLOW();
\r
3049 /* Before the currently running task is switched out, save its errno. */
\r
3050 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3052 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3056 /* Select a new task to run using either the generic C or port
\r
3057 * optimised asm code. */
\r
3058 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3059 traceTASK_SWITCHED_IN();
\r
3061 /* After the new task is switched in, update the global errno. */
\r
3062 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3064 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3068 #if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
\r
3070 /* Switch C-Runtime's TLS Block to point to the TLS
\r
3071 * Block specific to this task. */
\r
3072 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
\r
3077 /*-----------------------------------------------------------*/
\r
3079 void vTaskPlaceOnEventList( List_t * const pxEventList,
\r
3080 const TickType_t xTicksToWait )
\r
3082 configASSERT( pxEventList );
\r
3084 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3085 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3087 /* Place the event list item of the TCB in the appropriate event list.
\r
3088 * This is placed in the list in priority order so the highest priority task
\r
3089 * is the first to be woken by the event.
\r
3091 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
\r
3092 * Normally, the xItemValue of a TCB's ListItem_t members is:
\r
3093 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
\r
3094 * Therefore, the event list is sorted in descending priority order.
\r
3096 * The queue that contains the event list is locked, preventing
\r
3097 * simultaneous access from interrupts. */
\r
3098 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3100 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3102 /*-----------------------------------------------------------*/
\r
3104 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
\r
3105 const TickType_t xItemValue,
\r
3106 const TickType_t xTicksToWait )
\r
3108 configASSERT( pxEventList );
\r
3110 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3111 * the event groups implementation. */
\r
3112 configASSERT( uxSchedulerSuspended != 0 );
\r
3114 /* Store the item value in the event list item. It is safe to access the
\r
3115 * event list item here as interrupts won't access the event list item of a
\r
3116 * task that is not in the Blocked state. */
\r
3117 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3119 /* Place the event list item of the TCB at the end of the appropriate event
\r
3120 * list. It is safe to access the event list here because it is part of an
\r
3121 * event group implementation - and interrupts don't access event groups
\r
3122 * directly (instead they access them indirectly by pending function calls to
\r
3123 * the task level). */
\r
3124 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3126 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3128 /*-----------------------------------------------------------*/
\r
3130 #if ( configUSE_TIMERS == 1 )
\r
3132 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
\r
3133 TickType_t xTicksToWait,
\r
3134 const BaseType_t xWaitIndefinitely )
\r
3136 configASSERT( pxEventList );
\r
3138 /* This function should not be called by application code hence the
\r
3139 * 'Restricted' in its name. It is not part of the public API. It is
\r
3140 * designed for use by kernel code, and has special calling requirements -
\r
3141 * it should be called with the scheduler suspended. */
\r
3144 /* Place the event list item of the TCB in the appropriate event list.
\r
3145 * In this case it is assume that this is the only task that is going to
\r
3146 * be waiting on this event list, so the faster vListInsertEnd() function
\r
3147 * can be used in place of vListInsert. */
\r
3148 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3150 /* If the task should block indefinitely then set the block time to a
\r
3151 * value that will be recognised as an indefinite delay inside the
\r
3152 * prvAddCurrentTaskToDelayedList() function. */
\r
3153 if( xWaitIndefinitely != pdFALSE )
\r
3155 xTicksToWait = portMAX_DELAY;
\r
3158 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3159 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3162 #endif /* configUSE_TIMERS */
\r
3163 /*-----------------------------------------------------------*/
\r
3165 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3167 TCB_t * pxUnblockedTCB;
\r
3168 BaseType_t xReturn;
\r
3170 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3171 * called from a critical section within an ISR. */
\r
3173 /* The event list is sorted in priority order, so the first in the list can
\r
3174 * be removed as it is known to be the highest priority. Remove the TCB from
\r
3175 * the delayed list, and add it to the ready list.
\r
3177 * If an event is for a queue that is locked then this function will never
\r
3178 * get called - the lock count on the queue will get modified instead. This
\r
3179 * means exclusive access to the event list is guaranteed here.
\r
3181 * This function assumes that a check has already been made to ensure that
\r
3182 * pxEventList is not empty. */
\r
3183 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3184 configASSERT( pxUnblockedTCB );
\r
3185 listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
\r
3187 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3189 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3190 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3192 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3194 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3195 * might be set to the blocked task's time out time. If the task is
\r
3196 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3197 * normally left unchanged, because it is automatically reset to a new
\r
3198 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3199 * tickless idling is used it might be more important to enter sleep mode
\r
3200 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3201 * ensure it is updated at the earliest possible time. */
\r
3202 prvResetNextTaskUnblockTime();
\r
3208 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3209 * pending until the scheduler is resumed. */
\r
3210 listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3213 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3215 /* Return true if the task removed from the event list has a higher
\r
3216 * priority than the calling task. This allows the calling task to know if
\r
3217 * it should force a context switch now. */
\r
3220 /* Mark that a yield is pending in case the user is not using the
\r
3221 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3222 xYieldPending = pdTRUE;
\r
3226 xReturn = pdFALSE;
\r
3231 /*-----------------------------------------------------------*/
\r
3233 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
\r
3234 const TickType_t xItemValue )
\r
3236 TCB_t * pxUnblockedTCB;
\r
3238 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3239 * the event flags implementation. */
\r
3240 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3242 /* Store the new item value in the event list. */
\r
3243 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3245 /* Remove the event list form the event flag. Interrupts do not access
\r
3247 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3248 configASSERT( pxUnblockedTCB );
\r
3249 listREMOVE_ITEM( pxEventListItem );
\r
3251 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3253 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3254 * might be set to the blocked task's time out time. If the task is
\r
3255 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3256 * normally left unchanged, because it is automatically reset to a new
\r
3257 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3258 * tickless idling is used it might be more important to enter sleep mode
\r
3259 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3260 * ensure it is updated at the earliest possible time. */
\r
3261 prvResetNextTaskUnblockTime();
\r
3265 /* Remove the task from the delayed list and add it to the ready list. The
\r
3266 * scheduler is suspended so interrupts will not be accessing the ready
\r
3268 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3269 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3271 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3273 /* The unblocked task has a priority above that of the calling task, so
\r
3274 * a context switch is required. This function is called with the
\r
3275 * scheduler suspended so xYieldPending is set so the context switch
\r
3276 * occurs immediately that the scheduler is resumed (unsuspended). */
\r
3277 xYieldPending = pdTRUE;
\r
3280 /*-----------------------------------------------------------*/
\r
3282 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3284 configASSERT( pxTimeOut );
\r
3285 taskENTER_CRITICAL();
\r
3287 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3288 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3290 taskEXIT_CRITICAL();
\r
3292 /*-----------------------------------------------------------*/
\r
3294 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3296 /* For internal use only as it does not use a critical section. */
\r
3297 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3298 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3300 /*-----------------------------------------------------------*/
\r
3302 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
\r
3303 TickType_t * const pxTicksToWait )
\r
3305 BaseType_t xReturn;
\r
3307 configASSERT( pxTimeOut );
\r
3308 configASSERT( pxTicksToWait );
\r
3310 taskENTER_CRITICAL();
\r
3312 /* Minor optimisation. The tick count cannot change in this block. */
\r
3313 const TickType_t xConstTickCount = xTickCount;
\r
3314 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3316 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
3317 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3319 /* The delay was aborted, which is not the same as a time out,
\r
3320 * but has the same result. */
\r
3321 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3327 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3328 if( *pxTicksToWait == portMAX_DELAY )
\r
3330 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3331 * specified is the maximum block time then the task should block
\r
3332 * indefinitely, and therefore never time out. */
\r
3333 xReturn = pdFALSE;
\r
3338 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3340 /* The tick count is greater than the time at which
\r
3341 * vTaskSetTimeout() was called, but has also overflowed since
\r
3342 * vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3343 * around and gone past again. This passed since vTaskSetTimeout()
\r
3346 *pxTicksToWait = ( TickType_t ) 0;
\r
3348 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3350 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3351 *pxTicksToWait -= xElapsedTime;
\r
3352 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3353 xReturn = pdFALSE;
\r
3357 *pxTicksToWait = ( TickType_t ) 0;
\r
3361 taskEXIT_CRITICAL();
\r
3365 /*-----------------------------------------------------------*/
\r
3367 void vTaskMissedYield( void )
\r
3369 xYieldPending = pdTRUE;
\r
3371 /*-----------------------------------------------------------*/
\r
3373 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3375 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3377 UBaseType_t uxReturn;
\r
3378 TCB_t const * pxTCB;
\r
3380 if( xTask != NULL )
\r
3383 uxReturn = pxTCB->uxTaskNumber;
\r
3393 #endif /* configUSE_TRACE_FACILITY */
\r
3394 /*-----------------------------------------------------------*/
\r
3396 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3398 void vTaskSetTaskNumber( TaskHandle_t xTask,
\r
3399 const UBaseType_t uxHandle )
\r
3403 if( xTask != NULL )
\r
3406 pxTCB->uxTaskNumber = uxHandle;
\r
3410 #endif /* configUSE_TRACE_FACILITY */
\r
3413 * -----------------------------------------------------------
\r
3415 * ----------------------------------------------------------
\r
3417 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3418 * language extensions. The equivalent prototype for this function is:
\r
3420 * void prvIdleTask( void *pvParameters );
\r
3423 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3425 /* Stop warnings. */
\r
3426 ( void ) pvParameters;
\r
3428 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3429 * SCHEDULER IS STARTED. **/
\r
3431 /* In case a task that has a secure context deletes itself, in which case
\r
3432 * the idle task is responsible for deleting the task's secure context, if
\r
3434 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3438 /* See if any tasks have deleted themselves - if so then the idle task
\r
3439 * is responsible for freeing the deleted task's TCB and stack. */
\r
3440 prvCheckTasksWaitingTermination();
\r
3442 #if ( configUSE_PREEMPTION == 0 )
\r
3444 /* If we are not using preemption we keep forcing a task switch to
\r
3445 * see if any other task has become available. If we are using
\r
3446 * preemption we don't need to do this as any task becoming available
\r
3447 * will automatically get the processor anyway. */
\r
3450 #endif /* configUSE_PREEMPTION */
\r
3452 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3454 /* When using preemption tasks of equal priority will be
\r
3455 * timesliced. If a task that is sharing the idle priority is ready
\r
3456 * to run then the idle task should yield before the end of the
\r
3459 * A critical region is not required here as we are just reading from
\r
3460 * the list, and an occasional incorrect value will not matter. If
\r
3461 * the ready list at the idle priority contains more than one task
\r
3462 * then a task other than the idle task is ready to execute. */
\r
3463 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3469 mtCOVERAGE_TEST_MARKER();
\r
3472 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3474 #if ( configUSE_IDLE_HOOK == 1 )
\r
3476 extern void vApplicationIdleHook( void );
\r
3478 /* Call the user defined function from within the idle task. This
\r
3479 * allows the application designer to add background functionality
\r
3480 * without the overhead of a separate task.
\r
3481 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3482 * CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3483 vApplicationIdleHook();
\r
3485 #endif /* configUSE_IDLE_HOOK */
\r
3487 /* This conditional compilation should use inequality to 0, not equality
\r
3488 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3489 * user defined low power mode implementations require
\r
3490 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3491 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3493 TickType_t xExpectedIdleTime;
\r
3495 /* It is not desirable to suspend then resume the scheduler on
\r
3496 * each iteration of the idle task. Therefore, a preliminary
\r
3497 * test of the expected idle time is performed without the
\r
3498 * scheduler suspended. The result here is not necessarily
\r
3500 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3502 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3504 vTaskSuspendAll();
\r
3506 /* Now the scheduler is suspended, the expected idle
\r
3507 * time can be sampled again, and this time its value can
\r
3509 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3510 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3512 /* Define the following macro to set xExpectedIdleTime to 0
\r
3513 * if the application does not want
\r
3514 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3515 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3517 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3519 traceLOW_POWER_IDLE_BEGIN();
\r
3520 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3521 traceLOW_POWER_IDLE_END();
\r
3525 mtCOVERAGE_TEST_MARKER();
\r
3528 ( void ) xTaskResumeAll();
\r
3532 mtCOVERAGE_TEST_MARKER();
\r
3535 #endif /* configUSE_TICKLESS_IDLE */
\r
3538 /*-----------------------------------------------------------*/
\r
3540 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3542 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3544 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3545 /* The idle task exists in addition to the application tasks. */
\r
3546 const UBaseType_t uxNonApplicationTasks = 1;
\r
3547 #endif /* INCLUDE_vTaskSuspend */
\r
3549 eSleepModeStatus eReturn = eStandardSleep;
\r
3551 /* This function must be called from a critical section. */
\r
3553 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3555 /* A task was made ready while the scheduler was suspended. */
\r
3556 eReturn = eAbortSleep;
\r
3558 else if( xYieldPending != pdFALSE )
\r
3560 /* A yield was pended while the scheduler was suspended. */
\r
3561 eReturn = eAbortSleep;
\r
3563 else if( xPendedTicks != 0 )
\r
3565 /* A tick interrupt has already occurred but was held pending
\r
3566 * because the scheduler is suspended. */
\r
3567 eReturn = eAbortSleep;
\r
3570 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3571 else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3573 /* If all the tasks are in the suspended list (which might mean they
\r
3574 * have an infinite block time rather than actually being suspended)
\r
3575 * then it is safe to turn all clocks off and just wait for external
\r
3577 eReturn = eNoTasksWaitingTimeout;
\r
3579 #endif /* INCLUDE_vTaskSuspend */
\r
3582 mtCOVERAGE_TEST_MARKER();
\r
3588 #endif /* configUSE_TICKLESS_IDLE */
\r
3589 /*-----------------------------------------------------------*/
\r
3591 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3593 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
\r
3594 BaseType_t xIndex,
\r
3599 if( ( xIndex >= 0 ) &&
\r
3600 ( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
\r
3602 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3603 configASSERT( pxTCB != NULL );
\r
3604 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3608 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3609 /*-----------------------------------------------------------*/
\r
3611 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3613 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
\r
3614 BaseType_t xIndex )
\r
3616 void * pvReturn = NULL;
\r
3619 if( ( xIndex >= 0 ) &&
\r
3620 ( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
\r
3622 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3623 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3633 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3634 /*-----------------------------------------------------------*/
\r
3636 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3638 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
\r
3639 const MemoryRegion_t * const xRegions )
\r
3643 /* If null is passed in here then we are modifying the MPU settings of
\r
3644 * the calling task. */
\r
3645 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3647 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3650 #endif /* portUSING_MPU_WRAPPERS */
\r
3651 /*-----------------------------------------------------------*/
\r
3653 static void prvInitialiseTaskLists( void )
\r
3655 UBaseType_t uxPriority;
\r
3657 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3659 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3662 vListInitialise( &xDelayedTaskList1 );
\r
3663 vListInitialise( &xDelayedTaskList2 );
\r
3664 vListInitialise( &xPendingReadyList );
\r
3666 #if ( INCLUDE_vTaskDelete == 1 )
\r
3668 vListInitialise( &xTasksWaitingTermination );
\r
3670 #endif /* INCLUDE_vTaskDelete */
\r
3672 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3674 vListInitialise( &xSuspendedTaskList );
\r
3676 #endif /* INCLUDE_vTaskSuspend */
\r
3678 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3680 pxDelayedTaskList = &xDelayedTaskList1;
\r
3681 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3683 /*-----------------------------------------------------------*/
\r
3685 static void prvCheckTasksWaitingTermination( void )
\r
3687 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3689 #if ( INCLUDE_vTaskDelete == 1 )
\r
3693 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3694 * being called too often in the idle task. */
\r
3695 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3697 taskENTER_CRITICAL();
\r
3699 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3700 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3701 --uxCurrentNumberOfTasks;
\r
3702 --uxDeletedTasksWaitingCleanUp;
\r
3704 taskEXIT_CRITICAL();
\r
3706 prvDeleteTCB( pxTCB );
\r
3709 #endif /* INCLUDE_vTaskDelete */
\r
3711 /*-----------------------------------------------------------*/
\r
3713 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3715 void vTaskGetInfo( TaskHandle_t xTask,
\r
3716 TaskStatus_t * pxTaskStatus,
\r
3717 BaseType_t xGetFreeStackSpace,
\r
3718 eTaskState eState )
\r
3722 /* xTask is NULL then get the state of the calling task. */
\r
3723 pxTCB = prvGetTCBFromHandle( xTask );
\r
3725 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3726 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
\r
3727 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3728 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3729 #if ( ( portSTACK_GROWTH > 0 ) && ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
3730 pxTaskStatus->pxTopOfStack = pxTCB->pxTopOfStack;
\r
3731 pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
\r
3733 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3735 #if ( configUSE_MUTEXES == 1 )
\r
3737 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3741 pxTaskStatus->uxBasePriority = 0;
\r
3745 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3747 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3751 pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
\r
3755 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3756 * value of eState passed into this function is eInvalid - otherwise the
\r
3757 * state is just set to whatever is passed in. */
\r
3758 if( eState != eInvalid )
\r
3760 if( pxTCB == pxCurrentTCB )
\r
3762 pxTaskStatus->eCurrentState = eRunning;
\r
3766 pxTaskStatus->eCurrentState = eState;
\r
3768 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3770 /* If the task is in the suspended list then there is a
\r
3771 * chance it is actually just blocked indefinitely - so really
\r
3772 * it should be reported as being in the Blocked state. */
\r
3773 if( eState == eSuspended )
\r
3775 vTaskSuspendAll();
\r
3777 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3779 pxTaskStatus->eCurrentState = eBlocked;
\r
3782 ( void ) xTaskResumeAll();
\r
3785 #endif /* INCLUDE_vTaskSuspend */
\r
3790 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3793 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3794 * parameter is provided to allow it to be skipped. */
\r
3795 if( xGetFreeStackSpace != pdFALSE )
\r
3797 #if ( portSTACK_GROWTH > 0 )
\r
3799 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3803 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3809 pxTaskStatus->usStackHighWaterMark = 0;
\r
3813 #endif /* configUSE_TRACE_FACILITY */
\r
3814 /*-----------------------------------------------------------*/
\r
3816 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3818 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
3820 eTaskState eState )
\r
3822 configLIST_VOLATILE TCB_t * pxNextTCB;
\r
3823 configLIST_VOLATILE TCB_t * pxFirstTCB;
\r
3824 UBaseType_t uxTask = 0;
\r
3826 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3828 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3830 /* Populate an TaskStatus_t structure within the
\r
3831 * pxTaskStatusArray array for each task that is referenced from
\r
3832 * pxList. See the definition of TaskStatus_t in task.h for the
\r
3833 * meaning of each TaskStatus_t structure member. */
\r
3836 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3837 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3839 } while( pxNextTCB != pxFirstTCB );
\r
3843 mtCOVERAGE_TEST_MARKER();
\r
3849 #endif /* configUSE_TRACE_FACILITY */
\r
3850 /*-----------------------------------------------------------*/
\r
3852 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3854 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3856 uint32_t ulCount = 0U;
\r
3858 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3860 pucStackByte -= portSTACK_GROWTH;
\r
3864 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3866 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3869 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3870 /*-----------------------------------------------------------*/
\r
3872 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3874 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3875 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3876 * user to determine the return type. It gets around the problem of the value
\r
3877 * overflowing on 8-bit types without breaking backward compatibility for
\r
3878 * applications that expect an 8-bit return type. */
\r
3879 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3882 uint8_t * pucEndOfStack;
\r
3883 configSTACK_DEPTH_TYPE uxReturn;
\r
3885 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3886 * the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3887 * allows the user to determine the return type. It gets around the
\r
3888 * problem of the value overflowing on 8-bit types without breaking
\r
3889 * backward compatibility for applications that expect an 8-bit return
\r
3892 pxTCB = prvGetTCBFromHandle( xTask );
\r
3894 #if portSTACK_GROWTH < 0
\r
3896 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3900 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3904 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3909 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3910 /*-----------------------------------------------------------*/
\r
3912 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3914 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3917 uint8_t * pucEndOfStack;
\r
3918 UBaseType_t uxReturn;
\r
3920 pxTCB = prvGetTCBFromHandle( xTask );
\r
3922 #if portSTACK_GROWTH < 0
\r
3924 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3928 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3932 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3937 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3938 /*-----------------------------------------------------------*/
\r
3940 #if ( INCLUDE_vTaskDelete == 1 )
\r
3942 static void prvDeleteTCB( TCB_t * pxTCB )
\r
3944 /* This call is required specifically for the TriCore port. It must be
\r
3945 * above the vPortFree() calls. The call is also used by ports/demos that
\r
3946 * want to allocate and clean RAM statically. */
\r
3947 portCLEAN_UP_TCB( pxTCB );
\r
3949 #if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
\r
3951 /* Free up the memory allocated for the task's TLS Block. */
\r
3952 configDEINIT_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
\r
3956 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3958 /* The task can only have been allocated dynamically - free both
\r
3959 * the stack and TCB. */
\r
3960 vPortFreeStack( pxTCB->pxStack );
\r
3961 vPortFree( pxTCB );
\r
3963 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3965 /* The task could have been allocated statically or dynamically, so
\r
3966 * check what was statically allocated before trying to free the
\r
3968 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3970 /* Both the stack and TCB were allocated dynamically, so both
\r
3971 * must be freed. */
\r
3972 vPortFreeStack( pxTCB->pxStack );
\r
3973 vPortFree( pxTCB );
\r
3975 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3977 /* Only the stack was statically allocated, so the TCB is the
\r
3978 * only memory that must be freed. */
\r
3979 vPortFree( pxTCB );
\r
3983 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3984 * nothing needs to be freed. */
\r
3985 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
3986 mtCOVERAGE_TEST_MARKER();
\r
3989 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3992 #endif /* INCLUDE_vTaskDelete */
\r
3993 /*-----------------------------------------------------------*/
\r
3995 static void prvResetNextTaskUnblockTime( void )
\r
3997 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
3999 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
4000 * the maximum possible value so it is extremely unlikely that the
\r
4001 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
4002 * there is an item in the delayed list. */
\r
4003 xNextTaskUnblockTime = portMAX_DELAY;
\r
4007 /* The new current delayed list is not empty, get the value of
\r
4008 * the item at the head of the delayed list. This is the time at
\r
4009 * which the task at the head of the delayed list should be removed
\r
4010 * from the Blocked state. */
\r
4011 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
4014 /*-----------------------------------------------------------*/
\r
4016 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
4018 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
4020 TaskHandle_t xReturn;
\r
4022 /* A critical section is not required as this is not called from
\r
4023 * an interrupt and the current TCB will always be the same for any
\r
4024 * individual execution thread. */
\r
4025 xReturn = pxCurrentTCB;
\r
4030 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
4031 /*-----------------------------------------------------------*/
\r
4033 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
4035 BaseType_t xTaskGetSchedulerState( void )
\r
4037 BaseType_t xReturn;
\r
4039 if( xSchedulerRunning == pdFALSE )
\r
4041 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4045 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4047 xReturn = taskSCHEDULER_RUNNING;
\r
4051 xReturn = taskSCHEDULER_SUSPENDED;
\r
4058 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4059 /*-----------------------------------------------------------*/
\r
4061 #if ( configUSE_MUTEXES == 1 )
\r
4063 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4065 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4066 BaseType_t xReturn = pdFALSE;
\r
4068 /* If the mutex was given back by an interrupt while the queue was
\r
4069 * locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4070 * needed as interrupts can no longer use mutexes? */
\r
4071 if( pxMutexHolder != NULL )
\r
4073 /* If the holder of the mutex has a priority below the priority of
\r
4074 * the task attempting to obtain the mutex then it will temporarily
\r
4075 * inherit the priority of the task attempting to obtain the mutex. */
\r
4076 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4078 /* Adjust the mutex holder state to account for its new
\r
4079 * priority. Only reset the event list item value if the value is
\r
4080 * not being used for anything else. */
\r
4081 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4083 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4087 mtCOVERAGE_TEST_MARKER();
\r
4090 /* If the task being modified is in the ready state it will need
\r
4091 * to be moved into a new list. */
\r
4092 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4094 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4096 /* It is known that the task is in its ready list so
\r
4097 * there is no need to check again and the port level
\r
4098 * reset macro can be called directly. */
\r
4099 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4103 mtCOVERAGE_TEST_MARKER();
\r
4106 /* Inherit the priority before being moved into the new list. */
\r
4107 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4108 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4112 /* Just inherit the priority. */
\r
4113 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4116 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4118 /* Inheritance occurred. */
\r
4123 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4125 /* The base priority of the mutex holder is lower than the
\r
4126 * priority of the task attempting to take the mutex, but the
\r
4127 * current priority of the mutex holder is not lower than the
\r
4128 * priority of the task attempting to take the mutex.
\r
4129 * Therefore the mutex holder must have already inherited a
\r
4130 * priority, but inheritance would have occurred if that had
\r
4131 * not been the case. */
\r
4136 mtCOVERAGE_TEST_MARKER();
\r
4142 mtCOVERAGE_TEST_MARKER();
\r
4148 #endif /* configUSE_MUTEXES */
\r
4149 /*-----------------------------------------------------------*/
\r
4151 #if ( configUSE_MUTEXES == 1 )
\r
4153 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4155 TCB_t * const pxTCB = pxMutexHolder;
\r
4156 BaseType_t xReturn = pdFALSE;
\r
4158 if( pxMutexHolder != NULL )
\r
4160 /* A task can only have an inherited priority if it holds the mutex.
\r
4161 * If the mutex is held by a task then it cannot be given from an
\r
4162 * interrupt, and if a mutex is given by the holding task then it must
\r
4163 * be the running state task. */
\r
4164 configASSERT( pxTCB == pxCurrentTCB );
\r
4165 configASSERT( pxTCB->uxMutexesHeld );
\r
4166 ( pxTCB->uxMutexesHeld )--;
\r
4168 /* Has the holder of the mutex inherited the priority of another
\r
4170 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4172 /* Only disinherit if no other mutexes are held. */
\r
4173 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4175 /* A task can only have an inherited priority if it holds
\r
4176 * the mutex. If the mutex is held by a task then it cannot be
\r
4177 * given from an interrupt, and if a mutex is given by the
\r
4178 * holding task then it must be the running state task. Remove
\r
4179 * the holding task from the ready list. */
\r
4180 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4182 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4186 mtCOVERAGE_TEST_MARKER();
\r
4189 /* Disinherit the priority before adding the task into the
\r
4190 * new ready list. */
\r
4191 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4192 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4194 /* Reset the event list item value. It cannot be in use for
\r
4195 * any other purpose if this task is running, and it must be
\r
4196 * running to give back the mutex. */
\r
4197 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4198 prvAddTaskToReadyList( pxTCB );
\r
4200 /* Return true to indicate that a context switch is required.
\r
4201 * This is only actually required in the corner case whereby
\r
4202 * multiple mutexes were held and the mutexes were given back
\r
4203 * in an order different to that in which they were taken.
\r
4204 * If a context switch did not occur when the first mutex was
\r
4205 * returned, even if a task was waiting on it, then a context
\r
4206 * switch should occur when the last mutex is returned whether
\r
4207 * a task is waiting on it or not. */
\r
4212 mtCOVERAGE_TEST_MARKER();
\r
4217 mtCOVERAGE_TEST_MARKER();
\r
4222 mtCOVERAGE_TEST_MARKER();
\r
4228 #endif /* configUSE_MUTEXES */
\r
4229 /*-----------------------------------------------------------*/
\r
4231 #if ( configUSE_MUTEXES == 1 )
\r
4233 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
\r
4234 UBaseType_t uxHighestPriorityWaitingTask )
\r
4236 TCB_t * const pxTCB = pxMutexHolder;
\r
4237 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4238 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4240 if( pxMutexHolder != NULL )
\r
4242 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4244 configASSERT( pxTCB->uxMutexesHeld );
\r
4246 /* Determine the priority to which the priority of the task that
\r
4247 * holds the mutex should be set. This will be the greater of the
\r
4248 * holding task's base priority and the priority of the highest
\r
4249 * priority task that is waiting to obtain the mutex. */
\r
4250 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4252 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4256 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4259 /* Does the priority need to change? */
\r
4260 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4262 /* Only disinherit if no other mutexes are held. This is a
\r
4263 * simplification in the priority inheritance implementation. If
\r
4264 * the task that holds the mutex is also holding other mutexes then
\r
4265 * the other mutexes may have caused the priority inheritance. */
\r
4266 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4268 /* If a task has timed out because it already holds the
\r
4269 * mutex it was trying to obtain then it cannot of inherited
\r
4270 * its own priority. */
\r
4271 configASSERT( pxTCB != pxCurrentTCB );
\r
4273 /* Disinherit the priority, remembering the previous
\r
4274 * priority to facilitate determining the subject task's
\r
4276 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
\r
4277 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4278 pxTCB->uxPriority = uxPriorityToUse;
\r
4280 /* Only reset the event list item value if the value is not
\r
4281 * being used for anything else. */
\r
4282 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4284 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4288 mtCOVERAGE_TEST_MARKER();
\r
4291 /* If the running task is not the task that holds the mutex
\r
4292 * then the task that holds the mutex could be in either the
\r
4293 * Ready, Blocked or Suspended states. Only remove the task
\r
4294 * from its current state list if it is in the Ready state as
\r
4295 * the task's priority is going to change and there is one
\r
4296 * Ready list per priority. */
\r
4297 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4299 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4301 /* It is known that the task is in its ready list so
\r
4302 * there is no need to check again and the port level
\r
4303 * reset macro can be called directly. */
\r
4304 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4308 mtCOVERAGE_TEST_MARKER();
\r
4311 prvAddTaskToReadyList( pxTCB );
\r
4315 mtCOVERAGE_TEST_MARKER();
\r
4320 mtCOVERAGE_TEST_MARKER();
\r
4325 mtCOVERAGE_TEST_MARKER();
\r
4330 mtCOVERAGE_TEST_MARKER();
\r
4334 #endif /* configUSE_MUTEXES */
\r
4335 /*-----------------------------------------------------------*/
\r
4337 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4339 void vTaskEnterCritical( void )
\r
4341 portDISABLE_INTERRUPTS();
\r
4343 if( xSchedulerRunning != pdFALSE )
\r
4345 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4347 /* This is not the interrupt safe version of the enter critical
\r
4348 * function so assert() if it is being called from an interrupt
\r
4349 * context. Only API functions that end in "FromISR" can be used in an
\r
4350 * interrupt. Only assert if the critical nesting count is 1 to
\r
4351 * protect against recursive calls if the assert function also uses a
\r
4352 * critical section. */
\r
4353 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4355 portASSERT_IF_IN_ISR();
\r
4360 mtCOVERAGE_TEST_MARKER();
\r
4364 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4365 /*-----------------------------------------------------------*/
\r
4367 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4369 void vTaskExitCritical( void )
\r
4371 if( xSchedulerRunning != pdFALSE )
\r
4373 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4375 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4377 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4379 portENABLE_INTERRUPTS();
\r
4383 mtCOVERAGE_TEST_MARKER();
\r
4388 mtCOVERAGE_TEST_MARKER();
\r
4393 mtCOVERAGE_TEST_MARKER();
\r
4397 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4398 /*-----------------------------------------------------------*/
\r
4400 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
\r
4402 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
4403 const char * pcTaskName )
\r
4407 /* Start by copying the entire string. */
\r
4408 strcpy( pcBuffer, pcTaskName );
\r
4410 /* Pad the end of the string with spaces to ensure columns line up when
\r
4412 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4414 pcBuffer[ x ] = ' ';
\r
4418 pcBuffer[ x ] = ( char ) 0x00;
\r
4420 /* Return the new end of string. */
\r
4421 return &( pcBuffer[ x ] );
\r
4424 #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4425 /*-----------------------------------------------------------*/
\r
4427 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4429 void vTaskList( char * pcWriteBuffer )
\r
4431 TaskStatus_t * pxTaskStatusArray;
\r
4432 UBaseType_t uxArraySize, x;
\r
4438 * This function is provided for convenience only, and is used by many
\r
4439 * of the demo applications. Do not consider it to be part of the
\r
4442 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4443 * uxTaskGetSystemState() output into a human readable table that
\r
4444 * displays task: names, states, priority, stack usage and task number.
\r
4445 * Stack usage specified as the number of unused StackType_t words stack can hold
\r
4446 * on top of stack - not the number of bytes.
\r
4448 * vTaskList() has a dependency on the sprintf() C library function that
\r
4449 * might bloat the code size, use a lot of stack, and provide different
\r
4450 * results on different platforms. An alternative, tiny, third party,
\r
4451 * and limited functionality implementation of sprintf() is provided in
\r
4452 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4453 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4454 * snprintf() implementation!).
\r
4456 * It is recommended that production systems call uxTaskGetSystemState()
\r
4457 * directly to get access to raw stats data, rather than indirectly
\r
4458 * through a call to vTaskList().
\r
4462 /* Make sure the write buffer does not contain a string. */
\r
4463 *pcWriteBuffer = ( char ) 0x00;
\r
4465 /* Take a snapshot of the number of tasks in case it changes while this
\r
4466 * function is executing. */
\r
4467 uxArraySize = uxCurrentNumberOfTasks;
\r
4469 /* Allocate an array index for each task. NOTE! if
\r
4470 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4471 * equate to NULL. */
\r
4472 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4474 if( pxTaskStatusArray != NULL )
\r
4476 /* Generate the (binary) data. */
\r
4477 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4479 /* Create a human readable table from the binary data. */
\r
4480 for( x = 0; x < uxArraySize; x++ )
\r
4482 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4485 cStatus = tskRUNNING_CHAR;
\r
4489 cStatus = tskREADY_CHAR;
\r
4493 cStatus = tskBLOCKED_CHAR;
\r
4497 cStatus = tskSUSPENDED_CHAR;
\r
4501 cStatus = tskDELETED_CHAR;
\r
4504 case eInvalid: /* Fall through. */
\r
4505 default: /* Should not get here, but it is included
\r
4506 * to prevent static checking errors. */
\r
4507 cStatus = ( char ) 0x00;
\r
4511 /* Write the task name to the string, padding with spaces so it
\r
4512 * can be printed in tabular form more easily. */
\r
4513 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4515 /* Write the rest of the string. */
\r
4516 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4517 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4520 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4521 * is 0 then vPortFree() will be #defined to nothing. */
\r
4522 vPortFree( pxTaskStatusArray );
\r
4526 mtCOVERAGE_TEST_MARKER();
\r
4530 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
\r
4531 /*----------------------------------------------------------*/
\r
4533 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
\r
4535 void vTaskGetRunTimeStats( char * pcWriteBuffer )
\r
4537 TaskStatus_t * pxTaskStatusArray;
\r
4538 UBaseType_t uxArraySize, x;
\r
4539 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulStatsAsPercentage;
\r
4544 * This function is provided for convenience only, and is used by many
\r
4545 * of the demo applications. Do not consider it to be part of the
\r
4548 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4549 * of the uxTaskGetSystemState() output into a human readable table that
\r
4550 * displays the amount of time each task has spent in the Running state
\r
4551 * in both absolute and percentage terms.
\r
4553 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4554 * function that might bloat the code size, use a lot of stack, and
\r
4555 * provide different results on different platforms. An alternative,
\r
4556 * tiny, third party, and limited functionality implementation of
\r
4557 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4558 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4559 * a full snprintf() implementation!).
\r
4561 * It is recommended that production systems call uxTaskGetSystemState()
\r
4562 * directly to get access to raw stats data, rather than indirectly
\r
4563 * through a call to vTaskGetRunTimeStats().
\r
4566 /* Make sure the write buffer does not contain a string. */
\r
4567 *pcWriteBuffer = ( char ) 0x00;
\r
4569 /* Take a snapshot of the number of tasks in case it changes while this
\r
4570 * function is executing. */
\r
4571 uxArraySize = uxCurrentNumberOfTasks;
\r
4573 /* Allocate an array index for each task. NOTE! If
\r
4574 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4575 * equate to NULL. */
\r
4576 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4578 if( pxTaskStatusArray != NULL )
\r
4580 /* Generate the (binary) data. */
\r
4581 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4583 /* For percentage calculations. */
\r
4584 ulTotalTime /= 100UL;
\r
4586 /* Avoid divide by zero errors. */
\r
4587 if( ulTotalTime > 0UL )
\r
4589 /* Create a human readable table from the binary data. */
\r
4590 for( x = 0; x < uxArraySize; x++ )
\r
4592 /* What percentage of the total run time has the task used?
\r
4593 * This will always be rounded down to the nearest integer.
\r
4594 * ulTotalRunTime has already been divided by 100. */
\r
4595 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4597 /* Write the task name to the string, padding with
\r
4598 * spaces so it can be printed in tabular form more
\r
4600 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4602 if( ulStatsAsPercentage > 0UL )
\r
4604 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4606 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4610 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4611 * printf() library can be used. */
\r
4612 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4618 /* If the percentage is zero here then the task has
\r
4619 * consumed less than 1% of the total run time. */
\r
4620 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4622 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4626 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4627 * printf() library can be used. */
\r
4628 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4633 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4638 mtCOVERAGE_TEST_MARKER();
\r
4641 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4642 * is 0 then vPortFree() will be #defined to nothing. */
\r
4643 vPortFree( pxTaskStatusArray );
\r
4647 mtCOVERAGE_TEST_MARKER();
\r
4651 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
\r
4652 /*-----------------------------------------------------------*/
\r
4654 TickType_t uxTaskResetEventItemValue( void )
\r
4656 TickType_t uxReturn;
\r
4658 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4660 /* Reset the event list item to its normal value - so it can be used with
\r
4661 * queues and semaphores. */
\r
4662 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4666 /*-----------------------------------------------------------*/
\r
4668 #if ( configUSE_MUTEXES == 1 )
\r
4670 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4672 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4673 * then pxCurrentTCB will be NULL. */
\r
4674 if( pxCurrentTCB != NULL )
\r
4676 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4679 return pxCurrentTCB;
\r
4682 #endif /* configUSE_MUTEXES */
\r
4683 /*-----------------------------------------------------------*/
\r
4685 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4687 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
\r
4688 BaseType_t xClearCountOnExit,
\r
4689 TickType_t xTicksToWait )
\r
4691 uint32_t ulReturn;
\r
4693 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4695 taskENTER_CRITICAL();
\r
4697 /* Only block if the notification count is not already non-zero. */
\r
4698 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
\r
4700 /* Mark this task as waiting for a notification. */
\r
4701 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4703 if( xTicksToWait > ( TickType_t ) 0 )
\r
4705 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4706 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
\r
4708 /* All ports are written to allow a yield in a critical
\r
4709 * section (some will yield immediately, others wait until the
\r
4710 * critical section exits) - but it is not something that
\r
4711 * application code should ever do. */
\r
4712 portYIELD_WITHIN_API();
\r
4716 mtCOVERAGE_TEST_MARKER();
\r
4721 mtCOVERAGE_TEST_MARKER();
\r
4724 taskEXIT_CRITICAL();
\r
4726 taskENTER_CRITICAL();
\r
4728 traceTASK_NOTIFY_TAKE( uxIndexToWait );
\r
4729 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4731 if( ulReturn != 0UL )
\r
4733 if( xClearCountOnExit != pdFALSE )
\r
4735 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
\r
4739 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
\r
4744 mtCOVERAGE_TEST_MARKER();
\r
4747 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4749 taskEXIT_CRITICAL();
\r
4754 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4755 /*-----------------------------------------------------------*/
\r
4757 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4759 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
\r
4760 uint32_t ulBitsToClearOnEntry,
\r
4761 uint32_t ulBitsToClearOnExit,
\r
4762 uint32_t * pulNotificationValue,
\r
4763 TickType_t xTicksToWait )
\r
4765 BaseType_t xReturn;
\r
4767 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4769 taskENTER_CRITICAL();
\r
4771 /* Only block if a notification is not already pending. */
\r
4772 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4774 /* Clear bits in the task's notification value as bits may get
\r
4775 * set by the notifying task or interrupt. This can be used to
\r
4776 * clear the value to zero. */
\r
4777 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
\r
4779 /* Mark this task as waiting for a notification. */
\r
4780 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4782 if( xTicksToWait > ( TickType_t ) 0 )
\r
4784 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4785 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
\r
4787 /* All ports are written to allow a yield in a critical
\r
4788 * section (some will yield immediately, others wait until the
\r
4789 * critical section exits) - but it is not something that
\r
4790 * application code should ever do. */
\r
4791 portYIELD_WITHIN_API();
\r
4795 mtCOVERAGE_TEST_MARKER();
\r
4800 mtCOVERAGE_TEST_MARKER();
\r
4803 taskEXIT_CRITICAL();
\r
4805 taskENTER_CRITICAL();
\r
4807 traceTASK_NOTIFY_WAIT( uxIndexToWait );
\r
4809 if( pulNotificationValue != NULL )
\r
4811 /* Output the current notification value, which may or may not
\r
4812 * have changed. */
\r
4813 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4816 /* If ucNotifyValue is set then either the task never entered the
\r
4817 * blocked state (because a notification was already pending) or the
\r
4818 * task unblocked because of a notification. Otherwise the task
\r
4819 * unblocked because of a timeout. */
\r
4820 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4822 /* A notification was not received. */
\r
4823 xReturn = pdFALSE;
\r
4827 /* A notification was already pending or a notification was
\r
4828 * received while the task was waiting. */
\r
4829 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
\r
4833 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4835 taskEXIT_CRITICAL();
\r
4840 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4841 /*-----------------------------------------------------------*/
\r
4843 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4845 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
\r
4846 UBaseType_t uxIndexToNotify,
\r
4848 eNotifyAction eAction,
\r
4849 uint32_t * pulPreviousNotificationValue )
\r
4852 BaseType_t xReturn = pdPASS;
\r
4853 uint8_t ucOriginalNotifyState;
\r
4855 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4856 configASSERT( xTaskToNotify );
\r
4857 pxTCB = xTaskToNotify;
\r
4859 taskENTER_CRITICAL();
\r
4861 if( pulPreviousNotificationValue != NULL )
\r
4863 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
4866 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
4868 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
4873 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
4877 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
4880 case eSetValueWithOverwrite:
\r
4881 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4884 case eSetValueWithoutOverwrite:
\r
4886 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4888 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4892 /* The value could not be written to the task. */
\r
4900 /* The task is being notified without its notify value being
\r
4906 /* Should not get here if all enums are handled.
\r
4907 * Artificially force an assert by testing a value the
\r
4908 * compiler can't assume is const. */
\r
4909 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
4914 traceTASK_NOTIFY( uxIndexToNotify );
\r
4916 /* If the task is in the blocked state specifically to wait for a
\r
4917 * notification then unblock it now. */
\r
4918 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4920 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
4921 prvAddTaskToReadyList( pxTCB );
\r
4923 /* The task should not have been on an event list. */
\r
4924 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4926 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
4928 /* If a task is blocked waiting for a notification then
\r
4929 * xNextTaskUnblockTime might be set to the blocked task's time
\r
4930 * out time. If the task is unblocked for a reason other than
\r
4931 * a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4932 * because it will automatically get reset to a new value when
\r
4933 * the tick count equals xNextTaskUnblockTime. However if
\r
4934 * tickless idling is used it might be more important to enter
\r
4935 * sleep mode at the earliest possible time - so reset
\r
4936 * xNextTaskUnblockTime here to ensure it is updated at the
\r
4937 * earliest possible time. */
\r
4938 prvResetNextTaskUnblockTime();
\r
4942 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4944 /* The notified task has a priority above the currently
\r
4945 * executing task so a yield is required. */
\r
4946 taskYIELD_IF_USING_PREEMPTION();
\r
4950 mtCOVERAGE_TEST_MARKER();
\r
4955 mtCOVERAGE_TEST_MARKER();
\r
4958 taskEXIT_CRITICAL();
\r
4963 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4964 /*-----------------------------------------------------------*/
\r
4966 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4968 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
\r
4969 UBaseType_t uxIndexToNotify,
\r
4971 eNotifyAction eAction,
\r
4972 uint32_t * pulPreviousNotificationValue,
\r
4973 BaseType_t * pxHigherPriorityTaskWoken )
\r
4976 uint8_t ucOriginalNotifyState;
\r
4977 BaseType_t xReturn = pdPASS;
\r
4978 UBaseType_t uxSavedInterruptStatus;
\r
4980 configASSERT( xTaskToNotify );
\r
4981 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4983 /* RTOS ports that support interrupt nesting have the concept of a
\r
4984 * maximum system call (or maximum API call) interrupt priority.
\r
4985 * Interrupts that are above the maximum system call priority are keep
\r
4986 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
4987 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4988 * is defined in FreeRTOSConfig.h then
\r
4989 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4990 * failure if a FreeRTOS API function is called from an interrupt that has
\r
4991 * been assigned a priority above the configured maximum system call
\r
4992 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
4993 * from interrupts that have been assigned a priority at or (logically)
\r
4994 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
4995 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
4996 * simple as possible. More information (albeit Cortex-M specific) is
\r
4997 * provided on the following link:
\r
4998 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
4999 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5001 pxTCB = xTaskToNotify;
\r
5003 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5005 if( pulPreviousNotificationValue != NULL )
\r
5007 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
5010 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5011 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5016 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
5020 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5023 case eSetValueWithOverwrite:
\r
5024 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5027 case eSetValueWithoutOverwrite:
\r
5029 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
5031 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5035 /* The value could not be written to the task. */
\r
5043 /* The task is being notified without its notify value being
\r
5049 /* Should not get here if all enums are handled.
\r
5050 * Artificially force an assert by testing a value the
\r
5051 * compiler can't assume is const. */
\r
5052 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
5056 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
\r
5058 /* If the task is in the blocked state specifically to wait for a
\r
5059 * notification then unblock it now. */
\r
5060 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5062 /* The task should not have been on an event list. */
\r
5063 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5065 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5067 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5068 prvAddTaskToReadyList( pxTCB );
\r
5072 /* The delayed and ready lists cannot be accessed, so hold
\r
5073 * this task pending until the scheduler is resumed. */
\r
5074 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5077 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5079 /* The notified task has a priority above the currently
\r
5080 * executing task so a yield is required. */
\r
5081 if( pxHigherPriorityTaskWoken != NULL )
\r
5083 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5086 /* Mark that a yield is pending in case the user is not
\r
5087 * using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5088 * safe FreeRTOS function. */
\r
5089 xYieldPending = pdTRUE;
\r
5093 mtCOVERAGE_TEST_MARKER();
\r
5097 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5102 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5103 /*-----------------------------------------------------------*/
\r
5105 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5107 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
\r
5108 UBaseType_t uxIndexToNotify,
\r
5109 BaseType_t * pxHigherPriorityTaskWoken )
\r
5112 uint8_t ucOriginalNotifyState;
\r
5113 UBaseType_t uxSavedInterruptStatus;
\r
5115 configASSERT( xTaskToNotify );
\r
5116 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5118 /* RTOS ports that support interrupt nesting have the concept of a
\r
5119 * maximum system call (or maximum API call) interrupt priority.
\r
5120 * Interrupts that are above the maximum system call priority are keep
\r
5121 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5122 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5123 * is defined in FreeRTOSConfig.h then
\r
5124 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5125 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5126 * been assigned a priority above the configured maximum system call
\r
5127 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5128 * from interrupts that have been assigned a priority at or (logically)
\r
5129 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5130 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5131 * simple as possible. More information (albeit Cortex-M specific) is
\r
5132 * provided on the following link:
\r
5133 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5134 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5136 pxTCB = xTaskToNotify;
\r
5138 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5140 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5141 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5143 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5145 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5147 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
\r
5149 /* If the task is in the blocked state specifically to wait for a
\r
5150 * notification then unblock it now. */
\r
5151 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5153 /* The task should not have been on an event list. */
\r
5154 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5156 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5158 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5159 prvAddTaskToReadyList( pxTCB );
\r
5163 /* The delayed and ready lists cannot be accessed, so hold
\r
5164 * this task pending until the scheduler is resumed. */
\r
5165 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5168 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5170 /* The notified task has a priority above the currently
\r
5171 * executing task so a yield is required. */
\r
5172 if( pxHigherPriorityTaskWoken != NULL )
\r
5174 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5177 /* Mark that a yield is pending in case the user is not
\r
5178 * using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5179 * safe FreeRTOS function. */
\r
5180 xYieldPending = pdTRUE;
\r
5184 mtCOVERAGE_TEST_MARKER();
\r
5188 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5191 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5192 /*-----------------------------------------------------------*/
\r
5194 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5196 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
\r
5197 UBaseType_t uxIndexToClear )
\r
5200 BaseType_t xReturn;
\r
5202 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5204 /* If null is passed in here then it is the calling task that is having
\r
5205 * its notification state cleared. */
\r
5206 pxTCB = prvGetTCBFromHandle( xTask );
\r
5208 taskENTER_CRITICAL();
\r
5210 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
\r
5212 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
\r
5220 taskEXIT_CRITICAL();
\r
5225 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5226 /*-----------------------------------------------------------*/
\r
5228 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5230 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
\r
5231 UBaseType_t uxIndexToClear,
\r
5232 uint32_t ulBitsToClear )
\r
5235 uint32_t ulReturn;
\r
5237 /* If null is passed in here then it is the calling task that is having
\r
5238 * its notification state cleared. */
\r
5239 pxTCB = prvGetTCBFromHandle( xTask );
\r
5241 taskENTER_CRITICAL();
\r
5243 /* Return the notification as it was before the bits were cleared,
\r
5244 * then clear the bit mask. */
\r
5245 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
\r
5246 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
\r
5248 taskEXIT_CRITICAL();
\r
5253 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5254 /*-----------------------------------------------------------*/
\r
5256 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5258 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
\r
5260 return xIdleTaskHandle->ulRunTimeCounter;
\r
5264 /*-----------------------------------------------------------*/
\r
5266 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5268 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
\r
5270 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
\r
5272 ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
5274 /* For percentage calculations. */
\r
5275 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
\r
5277 /* Avoid divide by zero errors. */
\r
5278 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
\r
5280 ulReturn = xIdleTaskHandle->ulRunTimeCounter / ulTotalTime;
\r
5290 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
\r
5291 /*-----------------------------------------------------------*/
\r
5293 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
5294 const BaseType_t xCanBlockIndefinitely )
\r
5296 TickType_t xTimeToWake;
\r
5297 const TickType_t xConstTickCount = xTickCount;
\r
5299 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
5301 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5302 * reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5303 * when the task leaves the Blocked state. */
\r
5304 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5308 /* Remove the task from the ready list before adding it to the blocked list
\r
5309 * as the same list item is used for both lists. */
\r
5310 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5312 /* The current task must be in a ready list, so there is no need to
\r
5313 * check, and the port reset macro can be called directly. */
\r
5314 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5318 mtCOVERAGE_TEST_MARKER();
\r
5321 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5323 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5325 /* Add the task to the suspended task list instead of a delayed task
\r
5326 * list to ensure it is not woken by a timing event. It will block
\r
5327 * indefinitely. */
\r
5328 listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5332 /* Calculate the time at which the task should be woken if the event
\r
5333 * does not occur. This may overflow but this doesn't matter, the
\r
5334 * kernel will manage it correctly. */
\r
5335 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5337 /* The list item will be inserted in wake time order. */
\r
5338 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5340 if( xTimeToWake < xConstTickCount )
\r
5342 /* Wake time has overflowed. Place this item in the overflow
\r
5344 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5348 /* The wake time has not overflowed, so the current block list
\r
5350 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5352 /* If the task entering the blocked state was placed at the
\r
5353 * head of the list of blocked tasks then xNextTaskUnblockTime
\r
5354 * needs to be updated too. */
\r
5355 if( xTimeToWake < xNextTaskUnblockTime )
\r
5357 xNextTaskUnblockTime = xTimeToWake;
\r
5361 mtCOVERAGE_TEST_MARKER();
\r
5366 #else /* INCLUDE_vTaskSuspend */
\r
5368 /* Calculate the time at which the task should be woken if the event
\r
5369 * does not occur. This may overflow but this doesn't matter, the kernel
\r
5370 * will manage it correctly. */
\r
5371 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5373 /* The list item will be inserted in wake time order. */
\r
5374 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5376 if( xTimeToWake < xConstTickCount )
\r
5378 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5379 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5383 /* The wake time has not overflowed, so the current block list is used. */
\r
5384 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5386 /* If the task entering the blocked state was placed at the head of the
\r
5387 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5389 if( xTimeToWake < xNextTaskUnblockTime )
\r
5391 xNextTaskUnblockTime = xTimeToWake;
\r
5395 mtCOVERAGE_TEST_MARKER();
\r
5399 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5400 ( void ) xCanBlockIndefinitely;
\r
5402 #endif /* INCLUDE_vTaskSuspend */
\r
5405 /* Code below here allows additional code to be inserted into this source file,
\r
5406 * especially where access to file scope functions and data is needed (for example
\r
5407 * when performing module tests). */
\r
5409 #ifdef FREERTOS_MODULE_TEST
\r
5410 #include "tasks_test_access_functions.h"
\r
5414 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5416 #include "freertos_tasks_c_additions.h"
\r
5418 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5419 static void freertos_tasks_c_additions_init( void )
\r
5421 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r
5425 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
\r