]> begriffs open source - freertos/blob - tasks.c
Use Regex for Copyright Year in Header Check (#1002)
[freertos] / tasks.c
1 /*
2  * FreeRTOS Kernel <DEVELOPMENT BRANCH>
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28
29 /* Standard includes. */
30 #include <stdlib.h>
31 #include <string.h>
32
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
34  * all the API functions to use the MPU wrappers.  That should only be done when
35  * task.h is included from an application file. */
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
37
38 /* FreeRTOS includes. */
39 #include "FreeRTOS.h"
40 #include "task.h"
41 #include "timers.h"
42 #include "stack_macros.h"
43
44 /* The default definitions are only available for non-MPU ports. The
45  * reason is that the stack alignment requirements vary for different
46  * architectures.*/
47 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS != 0 ) )
48     #error configKERNEL_PROVIDED_STATIC_MEMORY cannot be set to 1 when using an MPU port. The vApplicationGet*TaskMemory() functions must be provided manually.
49 #endif
50
51 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
52  * for the header files above, but not in this file, in order to generate the
53  * correct privileged Vs unprivileged linkage and placement. */
54 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
55
56 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
57  * functions but without including stdio.h here. */
58 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
59
60 /* At the bottom of this file are two optional functions that can be used
61  * to generate human readable text from the raw data generated by the
62  * uxTaskGetSystemState() function.  Note the formatting functions are provided
63  * for convenience only, and are NOT considered part of the kernel. */
64     #include <stdio.h>
65 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
66
67 #if ( configUSE_PREEMPTION == 0 )
68
69 /* If the cooperative scheduler is being used then a yield should not be
70  * performed just because a higher priority task has been woken. */
71     #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )
72     #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )
73 #else
74
75     #if ( configNUMBER_OF_CORES == 1 )
76
77 /* This macro requests the running task pxTCB to yield. In single core
78  * scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API()
79  * can be used to request the task running on core 0 to yield. Therefore, pxTCB
80  * is not used in this macro. */
81         #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \
82     do {                                                         \
83         ( void ) ( pxTCB );                                      \
84         portYIELD_WITHIN_API();                                  \
85     } while( 0 )
86
87         #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \
88     do {                                                        \
89         if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority )  \
90         {                                                       \
91             portYIELD_WITHIN_API();                             \
92         }                                                       \
93         else                                                    \
94         {                                                       \
95             mtCOVERAGE_TEST_MARKER();                           \
96         }                                                       \
97     } while( 0 )
98
99     #else /* if ( configNUMBER_OF_CORES == 1 ) */
100
101 /* Yield the core on which this task is running. */
102         #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )    prvYieldCore( ( pxTCB )->xTaskRunState )
103
104 /* Yield for the task if a running task has priority lower than this task. */
105         #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )     prvYieldForTask( pxTCB )
106
107     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
108
109 #endif /* if ( configUSE_PREEMPTION == 0 ) */
110
111 /* Values that can be assigned to the ucNotifyState member of the TCB. */
112 #define taskNOT_WAITING_NOTIFICATION              ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
113 #define taskWAITING_NOTIFICATION                  ( ( uint8_t ) 1 )
114 #define taskNOTIFICATION_RECEIVED                 ( ( uint8_t ) 2 )
115
116 /*
117  * The value used to fill the stack of a task when the task is created.  This
118  * is used purely for checking the high water mark for tasks.
119  */
120 #define tskSTACK_FILL_BYTE                        ( 0xa5U )
121
122 /* Bits used to record how a task's stack and TCB were allocated. */
123 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB    ( ( uint8_t ) 0 )
124 #define tskSTATICALLY_ALLOCATED_STACK_ONLY        ( ( uint8_t ) 1 )
125 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB     ( ( uint8_t ) 2 )
126
127 /* If any of the following are set then task stacks are filled with a known
128  * value so the high water mark can be determined.  If none of the following are
129  * set then don't fill the stack so there is no unnecessary dependency on memset. */
130 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
131     #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    1
132 #else
133     #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    0
134 #endif
135
136 /*
137  * Macros used by vListTask to indicate which state a task is in.
138  */
139 #define tskRUNNING_CHAR      ( 'X' )
140 #define tskBLOCKED_CHAR      ( 'B' )
141 #define tskREADY_CHAR        ( 'R' )
142 #define tskDELETED_CHAR      ( 'D' )
143 #define tskSUSPENDED_CHAR    ( 'S' )
144
145 /*
146  * Some kernel aware debuggers require the data the debugger needs access to be
147  * global, rather than file scope.
148  */
149 #ifdef portREMOVE_STATIC_QUALIFIER
150     #define static
151 #endif
152
153 /* The name allocated to the Idle task.  This can be overridden by defining
154  * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
155 #ifndef configIDLE_TASK_NAME
156     #define configIDLE_TASK_NAME    "IDLE"
157 #endif
158
159 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
160
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
162  * performed in a generic way that is not optimised to any particular
163  * microcontroller architecture. */
164
165 /* uxTopReadyPriority holds the priority of the highest priority ready
166  * state task. */
167     #define taskRECORD_READY_PRIORITY( uxPriority ) \
168     do {                                            \
169         if( ( uxPriority ) > uxTopReadyPriority )   \
170         {                                           \
171             uxTopReadyPriority = ( uxPriority );    \
172         }                                           \
173     } while( 0 ) /* taskRECORD_READY_PRIORITY */
174
175 /*-----------------------------------------------------------*/
176
177     #if ( configNUMBER_OF_CORES == 1 )
178         #define taskSELECT_HIGHEST_PRIORITY_TASK()                                       \
179     do {                                                                                 \
180         UBaseType_t uxTopPriority = uxTopReadyPriority;                                  \
181                                                                                          \
182         /* Find the highest priority queue that contains ready tasks. */                 \
183         while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) != pdFALSE ) \
184         {                                                                                \
185             configASSERT( uxTopPriority );                                               \
186             --uxTopPriority;                                                             \
187         }                                                                                \
188                                                                                          \
189         /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
190          * the  same priority get an equal share of the processor time. */                    \
191         listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
192         uxTopReadyPriority = uxTopPriority;                                                   \
193     } while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */
194     #else /* if ( configNUMBER_OF_CORES == 1 ) */
195
196         #define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID )    prvSelectHighestPriorityTask( xCoreID )
197
198     #endif /* if ( configNUMBER_OF_CORES == 1 ) */
199
200 /*-----------------------------------------------------------*/
201
202 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
203  * they are only required when a port optimised method of task selection is
204  * being used. */
205     #define taskRESET_READY_PRIORITY( uxPriority )
206     #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
207
208 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
209
210 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
211  * performed in a way that is tailored to the particular microcontroller
212  * architecture being used. */
213
214 /* A port optimised version is provided.  Call the port defined macros. */
215     #define taskRECORD_READY_PRIORITY( uxPriority )    portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
216
217 /*-----------------------------------------------------------*/
218
219     #define taskSELECT_HIGHEST_PRIORITY_TASK()                                                  \
220     do {                                                                                        \
221         UBaseType_t uxTopPriority;                                                              \
222                                                                                                 \
223         /* Find the highest priority list that contains ready tasks. */                         \
224         portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );                          \
225         configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
226         listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );   \
227     } while( 0 )
228
229 /*-----------------------------------------------------------*/
230
231 /* A port optimised version is provided, call it only if the TCB being reset
232  * is being referenced from a ready list.  If it is referenced from a delayed
233  * or suspended list then it won't be in a ready list. */
234     #define taskRESET_READY_PRIORITY( uxPriority )                                                     \
235     do {                                                                                               \
236         if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
237         {                                                                                              \
238             portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );                        \
239         }                                                                                              \
240     } while( 0 )
241
242 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
243
244 /*-----------------------------------------------------------*/
245
246 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
247  * count overflows. */
248 #define taskSWITCH_DELAYED_LISTS()                                                \
249     do {                                                                          \
250         List_t * pxTemp;                                                          \
251                                                                                   \
252         /* The delayed tasks list should be empty when the lists are switched. */ \
253         configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) );               \
254                                                                                   \
255         pxTemp = pxDelayedTaskList;                                               \
256         pxDelayedTaskList = pxOverflowDelayedTaskList;                            \
257         pxOverflowDelayedTaskList = pxTemp;                                       \
258         xNumOfOverflows += ( BaseType_t ) 1;                                      \
259         prvResetNextTaskUnblockTime();                                            \
260     } while( 0 )
261
262 /*-----------------------------------------------------------*/
263
264 /*
265  * Place the task represented by pxTCB into the appropriate ready list for
266  * the task.  It is inserted at the end of the list.
267  */
268 #define prvAddTaskToReadyList( pxTCB )                                                                     \
269     do {                                                                                                   \
270         traceMOVED_TASK_TO_READY_STATE( pxTCB );                                                           \
271         taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );                                                \
272         listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
273         tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB );                                                      \
274     } while( 0 )
275 /*-----------------------------------------------------------*/
276
277 /*
278  * Several functions take a TaskHandle_t parameter that can optionally be NULL,
279  * where NULL is used to indicate that the handle of the currently executing
280  * task should be used in place of the parameter.  This macro simply checks to
281  * see if the parameter is NULL and returns a pointer to the appropriate TCB.
282  */
283 #define prvGetTCBFromHandle( pxHandle )    ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
284
285 /* The item value of the event list item is normally used to hold the priority
286  * of the task to which it belongs (coded to allow it to be held in reverse
287  * priority order).  However, it is occasionally borrowed for other purposes.  It
288  * is important its value is not updated due to a task priority change while it is
289  * being used for another purpose.  The following bit definition is used to inform
290  * the scheduler that the value should not be changed - in which case it is the
291  * responsibility of whichever module is using the value to ensure it gets set back
292  * to its original value when it is released. */
293 #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
294     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint16_t ) 0x8000U )
295 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
296     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint32_t ) 0x80000000UL )
297 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS )
298     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint64_t ) 0x8000000000000000ULL )
299 #endif
300
301 /* Indicates that the task is not actively running on any core. */
302 #define taskTASK_NOT_RUNNING           ( ( BaseType_t ) ( -1 ) )
303
304 /* Indicates that the task is actively running but scheduled to yield. */
305 #define taskTASK_SCHEDULED_TO_YIELD    ( ( BaseType_t ) ( -2 ) )
306
307 /* Returns pdTRUE if the task is actively running and not scheduled to yield. */
308 #if ( configNUMBER_OF_CORES == 1 )
309     #define taskTASK_IS_RUNNING( pxTCB )                          ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
310     #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB )    ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
311 #else
312     #define taskTASK_IS_RUNNING( pxTCB )                          ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) )
313     #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB )    ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) )
314 #endif
315
316 /* Indicates that the task is an Idle task. */
317 #define taskATTRIBUTE_IS_IDLE    ( UBaseType_t ) ( 1UL << 0UL )
318
319 #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) )
320     #define portGET_CRITICAL_NESTING_COUNT()          ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting )
321     #define portSET_CRITICAL_NESTING_COUNT( x )       ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) )
322     #define portINCREMENT_CRITICAL_NESTING_COUNT()    ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ )
323     #define portDECREMENT_CRITICAL_NESTING_COUNT()    ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- )
324 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */
325
326 #define taskBITS_PER_BYTE    ( ( size_t ) 8 )
327
328 #if ( configNUMBER_OF_CORES > 1 )
329
330 /* Yields the given core. This must be called from a critical section and xCoreID
331  * must be valid. This macro is not required in single core since there is only
332  * one core to yield. */
333     #define prvYieldCore( xCoreID )                                                          \
334     do {                                                                                     \
335         if( ( xCoreID ) == ( BaseType_t ) portGET_CORE_ID() )                                \
336         {                                                                                    \
337             /* Pending a yield for this core since it is in the critical section. */         \
338             xYieldPendings[ ( xCoreID ) ] = pdTRUE;                                          \
339         }                                                                                    \
340         else                                                                                 \
341         {                                                                                    \
342             /* Request other core to yield if it is not requested before. */                 \
343             if( pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \
344             {                                                                                \
345                 portYIELD_CORE( xCoreID );                                                   \
346                 pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD;   \
347             }                                                                                \
348         }                                                                                    \
349     } while( 0 )
350 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
351 /*-----------------------------------------------------------*/
352
353 /*
354  * Task control block.  A task control block (TCB) is allocated for each task,
355  * and stores task state information, including a pointer to the task's context
356  * (the task's run time environment, including register values)
357  */
358 typedef struct tskTaskControlBlock       /* The old naming convention is used to prevent breaking kernel aware debuggers. */
359 {
360     volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack.  THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
361
362     #if ( portUSING_MPU_WRAPPERS == 1 )
363         xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer.  THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
364     #endif
365
366     #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
367         UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores.  UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */
368     #endif
369
370     ListItem_t xStateListItem;                  /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
371     ListItem_t xEventListItem;                  /**< Used to reference a task from an event list. */
372     UBaseType_t uxPriority;                     /**< The priority of the task.  0 is the lowest priority. */
373     StackType_t * pxStack;                      /**< Points to the start of the stack. */
374     #if ( configNUMBER_OF_CORES > 1 )
375         volatile BaseType_t xTaskRunState;      /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */
376         UBaseType_t uxTaskAttributes;           /**< Task's attributes - currently used to identify the idle tasks. */
377     #endif
378     char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created.  Facilitates debugging only. */
379
380     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
381         BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */
382     #endif
383
384     #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
385         StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */
386     #endif
387
388     #if ( portCRITICAL_NESTING_IN_TCB == 1 )
389         UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
390     #endif
391
392     #if ( configUSE_TRACE_FACILITY == 1 )
393         UBaseType_t uxTCBNumber;  /**< Stores a number that increments each time a TCB is created.  It allows debuggers to determine when a task has been deleted and then recreated. */
394         UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */
395     #endif
396
397     #if ( configUSE_MUTEXES == 1 )
398         UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */
399         UBaseType_t uxMutexesHeld;
400     #endif
401
402     #if ( configUSE_APPLICATION_TASK_TAG == 1 )
403         TaskHookFunction_t pxTaskTag;
404     #endif
405
406     #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
407         void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
408     #endif
409
410     #if ( configGENERATE_RUN_TIME_STATS == 1 )
411         configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */
412     #endif
413
414     #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
415         configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */
416     #endif
417
418     #if ( configUSE_TASK_NOTIFICATIONS == 1 )
419         volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
420         volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
421     #endif
422
423     /* See the comments in FreeRTOS.h with the definition of
424      * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
425     #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
426         uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
427     #endif
428
429     #if ( INCLUDE_xTaskAbortDelay == 1 )
430         uint8_t ucDelayAborted;
431     #endif
432
433     #if ( configUSE_POSIX_ERRNO == 1 )
434         int iTaskErrno;
435     #endif
436 } tskTCB;
437
438 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
439  * below to enable the use of older kernel aware debuggers. */
440 typedef tskTCB TCB_t;
441
442 #if ( configNUMBER_OF_CORES == 1 )
443     /* MISRA Ref 8.4.1 [Declaration shall be visible] */
444     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
445     /* coverity[misra_c_2012_rule_8_4_violation] */
446     portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
447 #else
448     /* MISRA Ref 8.4.1 [Declaration shall be visible] */
449     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
450     /* coverity[misra_c_2012_rule_8_4_violation] */
451     portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ];
452     #define pxCurrentTCB    xTaskGetCurrentTaskHandle()
453 #endif
454
455 /* Lists for ready and blocked tasks. --------------------
456  * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
457  * doing so breaks some kernel aware debuggers and debuggers that rely on removing
458  * the static qualifier. */
459 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */
460 PRIVILEGED_DATA static List_t xDelayedTaskList1;                         /**< Delayed tasks. */
461 PRIVILEGED_DATA static List_t xDelayedTaskList2;                         /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
462 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList;              /**< Points to the delayed task list currently being used. */
463 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList;      /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
464 PRIVILEGED_DATA static List_t xPendingReadyList;                         /**< Tasks that have been readied while the scheduler was suspended.  They will be moved to the ready list when the scheduler is resumed. */
465
466 #if ( INCLUDE_vTaskDelete == 1 )
467
468     PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */
469     PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
470
471 #endif
472
473 #if ( INCLUDE_vTaskSuspend == 1 )
474
475     PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */
476
477 #endif
478
479 /* Global POSIX errno. Its value is changed upon context switching to match
480  * the errno of the currently running task. */
481 #if ( configUSE_POSIX_ERRNO == 1 )
482     int FreeRTOS_errno = 0;
483 #endif
484
485 /* Other file private variables. --------------------------------*/
486 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
487 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
488 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
489 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
490 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
491 PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE };
492 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
493 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
494 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
495 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ];       /**< Holds the handles of the idle tasks.  The idle tasks are created automatically when the scheduler is started. */
496
497 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
498  * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
499  * to determine the number of priority lists to read back from the remote target. */
500 static const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
501
502 /* Context switches are held pending while the scheduler is suspended.  Also,
503  * interrupts must not manipulate the xStateListItem of a TCB, or any of the
504  * lists the xStateListItem can be referenced from, if the scheduler is suspended.
505  * If an interrupt needs to unblock a task while the scheduler is suspended then it
506  * moves the task's event list item into the xPendingReadyList, ready for the
507  * kernel to move the task from the pending ready list into the real ready list
508  * when the scheduler is unsuspended.  The pending ready list itself can only be
509  * accessed from a critical section.
510  *
511  * Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock
512  * and must not be done from an ISR. Reads must be protected by either lock and may be done
513  * from either an ISR or a task. */
514 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U;
515
516 #if ( configGENERATE_RUN_TIME_STATS == 1 )
517
518 /* Do not move these variables to function scope as doing so prevents the
519  * code working with debuggers that need to remove the static qualifier. */
520 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U };    /**< Holds the value of a timer/counter the last time a task was switched in. */
521 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */
522
523 #endif
524
525 /*-----------------------------------------------------------*/
526
527 /* File private functions. --------------------------------*/
528
529 /*
530  * Creates the idle tasks during scheduler start.
531  */
532 static BaseType_t prvCreateIdleTasks( void );
533
534 #if ( configNUMBER_OF_CORES > 1 )
535
536 /*
537  * Checks to see if another task moved the current task out of the ready
538  * list while it was waiting to enter a critical section and yields, if so.
539  */
540     static void prvCheckForRunStateChange( void );
541 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
542
543 #if ( configNUMBER_OF_CORES > 1 )
544
545 /*
546  * Yields a core, or cores if multiple priorities are not allowed to run
547  * simultaneously, to allow the task pxTCB to run.
548  */
549     static void prvYieldForTask( const TCB_t * pxTCB );
550 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
551
552 #if ( configNUMBER_OF_CORES > 1 )
553
554 /*
555  * Selects the highest priority available task for the given core.
556  */
557     static void prvSelectHighestPriorityTask( BaseType_t xCoreID );
558 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
559
560 /**
561  * Utility task that simply returns pdTRUE if the task referenced by xTask is
562  * currently in the Suspended state, or pdFALSE if the task referenced by xTask
563  * is in any other state.
564  */
565 #if ( INCLUDE_vTaskSuspend == 1 )
566
567     static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
568
569 #endif /* INCLUDE_vTaskSuspend */
570
571 /*
572  * Utility to ready all the lists used by the scheduler.  This is called
573  * automatically upon the creation of the first task.
574  */
575 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
576
577 /*
578  * The idle task, which as all tasks is implemented as a never ending loop.
579  * The idle task is automatically created and added to the ready lists upon
580  * creation of the first user task.
581  *
582  * In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also
583  * created to ensure that each core has an idle task to run when no other
584  * task is available to run.
585  *
586  * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
587  * language extensions.  The equivalent prototype for these functions are:
588  *
589  * void prvIdleTask( void *pvParameters );
590  * void prvPassiveIdleTask( void *pvParameters );
591  *
592  */
593 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
594 #if ( configNUMBER_OF_CORES > 1 )
595     static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
596 #endif
597
598 /*
599  * Utility to free all memory allocated by the scheduler to hold a TCB,
600  * including the stack pointed to by the TCB.
601  *
602  * This does not free memory allocated by the task itself (i.e. memory
603  * allocated by calls to pvPortMalloc from within the tasks application code).
604  */
605 #if ( INCLUDE_vTaskDelete == 1 )
606
607     static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
608
609 #endif
610
611 /*
612  * Used only by the idle task.  This checks to see if anything has been placed
613  * in the list of tasks waiting to be deleted.  If so the task is cleaned up
614  * and its TCB deleted.
615  */
616 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
617
618 /*
619  * The currently executing task is entering the Blocked state.  Add the task to
620  * either the current or the overflow delayed task list.
621  */
622 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
623                                             const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
624
625 /*
626  * Fills an TaskStatus_t structure with information on each task that is
627  * referenced from the pxList list (which may be a ready list, a delayed list,
628  * a suspended list, etc.).
629  *
630  * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
631  * NORMAL APPLICATION CODE.
632  */
633 #if ( configUSE_TRACE_FACILITY == 1 )
634
635     static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
636                                                      List_t * pxList,
637                                                      eTaskState eState ) PRIVILEGED_FUNCTION;
638
639 #endif
640
641 /*
642  * Searches pxList for a task with name pcNameToQuery - returning a handle to
643  * the task if it is found, or NULL if the task is not found.
644  */
645 #if ( INCLUDE_xTaskGetHandle == 1 )
646
647     static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
648                                                      const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
649
650 #endif
651
652 /*
653  * When a task is created, the stack of the task is filled with a known value.
654  * This function determines the 'high water mark' of the task stack by
655  * determining how much of the stack remains at the original preset value.
656  */
657 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
658
659     static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
660
661 #endif
662
663 /*
664  * Return the amount of time, in ticks, that will pass before the kernel will
665  * next move a task from the Blocked state to the Running state.
666  *
667  * This conditional compilation should use inequality to 0, not equality to 1.
668  * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
669  * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
670  * set to a value other than 1.
671  */
672 #if ( configUSE_TICKLESS_IDLE != 0 )
673
674     static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
675
676 #endif
677
678 /*
679  * Set xNextTaskUnblockTime to the time at which the next Blocked state task
680  * will exit the Blocked state.
681  */
682 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
683
684 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
685
686 /*
687  * Helper function used to pad task names with spaces when printing out
688  * human readable tables of task information.
689  */
690     static char * prvWriteNameToBuffer( char * pcBuffer,
691                                         const char * pcTaskName ) PRIVILEGED_FUNCTION;
692
693 #endif
694
695 /*
696  * Called after a Task_t structure has been allocated either statically or
697  * dynamically to fill in the structure's members.
698  */
699 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
700                                   const char * const pcName,
701                                   const configSTACK_DEPTH_TYPE uxStackDepth,
702                                   void * const pvParameters,
703                                   UBaseType_t uxPriority,
704                                   TaskHandle_t * const pxCreatedTask,
705                                   TCB_t * pxNewTCB,
706                                   const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
707
708 /*
709  * Called after a new task has been created and initialised to place the task
710  * under the control of the scheduler.
711  */
712 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
713
714 /*
715  * Create a task with static buffer for both TCB and stack. Returns a handle to
716  * the task if it is created successfully. Otherwise, returns NULL.
717  */
718 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
719     static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
720                                         const char * const pcName,
721                                         const configSTACK_DEPTH_TYPE uxStackDepth,
722                                         void * const pvParameters,
723                                         UBaseType_t uxPriority,
724                                         StackType_t * const puxStackBuffer,
725                                         StaticTask_t * const pxTaskBuffer,
726                                         TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
727 #endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
728
729 /*
730  * Create a restricted task with static buffer for both TCB and stack. Returns
731  * a handle to the task if it is created successfully. Otherwise, returns NULL.
732  */
733 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
734     static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
735                                                   TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
736 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
737
738 /*
739  * Create a restricted task with static buffer for task stack and allocated buffer
740  * for TCB. Returns a handle to the task if it is created successfully. Otherwise,
741  * returns NULL.
742  */
743 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
744     static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
745                                             TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
746 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
747
748 /*
749  * Create a task with allocated buffer for both TCB and stack. Returns a handle to
750  * the task if it is created successfully. Otherwise, returns NULL.
751  */
752 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
753     static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
754                                   const char * const pcName,
755                                   const configSTACK_DEPTH_TYPE uxStackDepth,
756                                   void * const pvParameters,
757                                   UBaseType_t uxPriority,
758                                   TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
759 #endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */
760
761 /*
762  * freertos_tasks_c_additions_init() should only be called if the user definable
763  * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
764  * called by the function.
765  */
766 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
767
768     static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
769
770 #endif
771
772 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
773     extern void vApplicationPassiveIdleHook( void );
774 #endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */
775
776 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
777
778 /*
779  * Convert the snprintf return value to the number of characters
780  * written. The following are the possible cases:
781  *
782  * 1. The buffer supplied to snprintf is large enough to hold the
783  *    generated string. The return value in this case is the number
784  *    of characters actually written, not counting the terminating
785  *    null character.
786  * 2. The buffer supplied to snprintf is NOT large enough to hold
787  *    the generated string. The return value in this case is the
788  *    number of characters that would have been written if the
789  *    buffer had been sufficiently large, not counting the
790  *    terminating null character.
791  * 3. Encoding error. The return value in this case is a negative
792  *    number.
793  *
794  * From 1 and 2 above ==> Only when the return value is non-negative
795  * and less than the supplied buffer length, the string has been
796  * completely written.
797  */
798     static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
799                                                         size_t n );
800
801 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
802 /*-----------------------------------------------------------*/
803
804 #if ( configNUMBER_OF_CORES > 1 )
805     static void prvCheckForRunStateChange( void )
806     {
807         UBaseType_t uxPrevCriticalNesting;
808         const TCB_t * pxThisTCB;
809
810         /* This must only be called from within a task. */
811         portASSERT_IF_IN_ISR();
812
813         /* This function is always called with interrupts disabled
814          * so this is safe. */
815         pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];
816
817         while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD )
818         {
819             /* We are only here if we just entered a critical section
820             * or if we just suspended the scheduler, and another task
821             * has requested that we yield.
822             *
823             * This is slightly complicated since we need to save and restore
824             * the suspension and critical nesting counts, as well as release
825             * and reacquire the correct locks. And then, do it all over again
826             * if our state changed again during the reacquisition. */
827             uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT();
828
829             if( uxPrevCriticalNesting > 0U )
830             {
831                 portSET_CRITICAL_NESTING_COUNT( 0U );
832                 portRELEASE_ISR_LOCK();
833             }
834             else
835             {
836                 /* The scheduler is suspended. uxSchedulerSuspended is updated
837                  * only when the task is not requested to yield. */
838                 mtCOVERAGE_TEST_MARKER();
839             }
840
841             portRELEASE_TASK_LOCK();
842             portMEMORY_BARRIER();
843             configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD );
844
845             portENABLE_INTERRUPTS();
846
847             /* Enabling interrupts should cause this core to immediately
848              * service the pending interrupt and yield. If the run state is still
849              * yielding here then that is a problem. */
850             configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD );
851
852             portDISABLE_INTERRUPTS();
853             portGET_TASK_LOCK();
854             portGET_ISR_LOCK();
855
856             portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting );
857
858             if( uxPrevCriticalNesting == 0U )
859             {
860                 portRELEASE_ISR_LOCK();
861             }
862         }
863     }
864 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
865
866 /*-----------------------------------------------------------*/
867
868 #if ( configNUMBER_OF_CORES > 1 )
869     static void prvYieldForTask( const TCB_t * pxTCB )
870     {
871         BaseType_t xLowestPriorityToPreempt;
872         BaseType_t xCurrentCoreTaskPriority;
873         BaseType_t xLowestPriorityCore = ( BaseType_t ) -1;
874         BaseType_t xCoreID;
875
876         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
877             BaseType_t xYieldCount = 0;
878         #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
879
880         /* This must be called from a critical section. */
881         configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
882
883         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
884
885             /* No task should yield for this one if it is a lower priority
886              * than priority level of currently ready tasks. */
887             if( pxTCB->uxPriority >= uxTopReadyPriority )
888         #else
889             /* Yield is not required for a task which is already running. */
890             if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
891         #endif
892         {
893             xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority;
894
895             /* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB
896              * is 0. This is ok as we will give system idle tasks a priority of -1 below. */
897             --xLowestPriorityToPreempt;
898
899             for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
900             {
901                 xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority;
902
903                 /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */
904                 if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
905                 {
906                     xCurrentCoreTaskPriority = xCurrentCoreTaskPriority - 1;
907                 }
908
909                 if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) )
910                 {
911                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
912                         if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
913                     #endif
914                     {
915                         if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt )
916                         {
917                             #if ( configUSE_CORE_AFFINITY == 1 )
918                                 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
919                             #endif
920                             {
921                                 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
922                                     if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
923                                 #endif
924                                 {
925                                     xLowestPriorityToPreempt = xCurrentCoreTaskPriority;
926                                     xLowestPriorityCore = xCoreID;
927                                 }
928                             }
929                         }
930                         else
931                         {
932                             mtCOVERAGE_TEST_MARKER();
933                         }
934                     }
935
936                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
937                     {
938                         /* Yield all currently running non-idle tasks with a priority lower than
939                          * the task that needs to run. */
940                         if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) &&
941                             ( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
942                         {
943                             prvYieldCore( xCoreID );
944                             xYieldCount++;
945                         }
946                         else
947                         {
948                             mtCOVERAGE_TEST_MARKER();
949                         }
950                     }
951                     #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
952                 }
953                 else
954                 {
955                     mtCOVERAGE_TEST_MARKER();
956                 }
957             }
958
959             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
960                 if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) )
961             #else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
962                 if( xLowestPriorityCore >= 0 )
963             #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
964             {
965                 prvYieldCore( xLowestPriorityCore );
966             }
967
968             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
969                 /* Verify that the calling core always yields to higher priority tasks. */
970                 if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) &&
971                     ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
972                 {
973                     configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) ||
974                                   ( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) );
975                 }
976             #endif
977         }
978     }
979 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
980 /*-----------------------------------------------------------*/
981
982 #if ( configNUMBER_OF_CORES > 1 )
983     static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
984     {
985         UBaseType_t uxCurrentPriority = uxTopReadyPriority;
986         BaseType_t xTaskScheduled = pdFALSE;
987         BaseType_t xDecrementTopPriority = pdTRUE;
988
989         #if ( configUSE_CORE_AFFINITY == 1 )
990             const TCB_t * pxPreviousTCB = NULL;
991         #endif
992         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
993             BaseType_t xPriorityDropped = pdFALSE;
994         #endif
995
996         /* This function should be called when scheduler is running. */
997         configASSERT( xSchedulerRunning == pdTRUE );
998
999         /* A new task is created and a running task with the same priority yields
1000          * itself to run the new task. When a running task yields itself, it is still
1001          * in the ready list. This running task will be selected before the new task
1002          * since the new task is always added to the end of the ready list.
1003          * The other problem is that the running task still in the same position of
1004          * the ready list when it yields itself. It is possible that it will be selected
1005          * earlier then other tasks which waits longer than this task.
1006          *
1007          * To fix these problems, the running task should be put to the end of the
1008          * ready list before searching for the ready task in the ready list. */
1009         if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1010                                      &pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE )
1011         {
1012             ( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1013             vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1014                             &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1015         }
1016
1017         while( xTaskScheduled == pdFALSE )
1018         {
1019             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1020             {
1021                 if( uxCurrentPriority < uxTopReadyPriority )
1022                 {
1023                     /* We can't schedule any tasks, other than idle, that have a
1024                      * priority lower than the priority of a task currently running
1025                      * on another core. */
1026                     uxCurrentPriority = tskIDLE_PRIORITY;
1027                 }
1028             }
1029             #endif
1030
1031             if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
1032             {
1033                 const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
1034                 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList );
1035                 ListItem_t * pxIterator;
1036
1037                 /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
1038                  * must not be decremented any further. */
1039                 xDecrementTopPriority = pdFALSE;
1040
1041                 for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
1042                 {
1043                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
1044                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1045                     /* coverity[misra_c_2012_rule_11_5_violation] */
1046                     TCB_t * pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator );
1047
1048                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1049                     {
1050                         /* When falling back to the idle priority because only one priority
1051                          * level is allowed to run at a time, we should ONLY schedule the true
1052                          * idle tasks, not user tasks at the idle priority. */
1053                         if( uxCurrentPriority < uxTopReadyPriority )
1054                         {
1055                             if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U )
1056                             {
1057                                 continue;
1058                             }
1059                         }
1060                     }
1061                     #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1062
1063                     if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
1064                     {
1065                         #if ( configUSE_CORE_AFFINITY == 1 )
1066                             if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1067                         #endif
1068                         {
1069                             /* If the task is not being executed by any core swap it in. */
1070                             pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
1071                             #if ( configUSE_CORE_AFFINITY == 1 )
1072                                 pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
1073                             #endif
1074                             pxTCB->xTaskRunState = xCoreID;
1075                             pxCurrentTCBs[ xCoreID ] = pxTCB;
1076                             xTaskScheduled = pdTRUE;
1077                         }
1078                     }
1079                     else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
1080                     {
1081                         configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) );
1082
1083                         #if ( configUSE_CORE_AFFINITY == 1 )
1084                             if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1085                         #endif
1086                         {
1087                             /* The task is already running on this core, mark it as scheduled. */
1088                             pxTCB->xTaskRunState = xCoreID;
1089                             xTaskScheduled = pdTRUE;
1090                         }
1091                     }
1092                     else
1093                     {
1094                         /* This task is running on the core other than xCoreID. */
1095                         mtCOVERAGE_TEST_MARKER();
1096                     }
1097
1098                     if( xTaskScheduled != pdFALSE )
1099                     {
1100                         /* A task has been selected to run on this core. */
1101                         break;
1102                     }
1103                 }
1104             }
1105             else
1106             {
1107                 if( xDecrementTopPriority != pdFALSE )
1108                 {
1109                     uxTopReadyPriority--;
1110                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1111                     {
1112                         xPriorityDropped = pdTRUE;
1113                     }
1114                     #endif
1115                 }
1116             }
1117
1118             /* There are configNUMBER_OF_CORES Idle tasks created when scheduler started.
1119              * The scheduler should be able to select a task to run when uxCurrentPriority
1120              * is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow
1121              * tskIDLE_PRIORITY. */
1122             if( uxCurrentPriority > tskIDLE_PRIORITY )
1123             {
1124                 uxCurrentPriority--;
1125             }
1126             else
1127             {
1128                 /* This function is called when idle task is not created. Break the
1129                  * loop to prevent uxCurrentPriority overrun. */
1130                 break;
1131             }
1132         }
1133
1134         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1135         {
1136             if( xTaskScheduled == pdTRUE )
1137             {
1138                 if( xPriorityDropped != pdFALSE )
1139                 {
1140                     /* There may be several ready tasks that were being prevented from running because there was
1141                      * a higher priority task running. Now that the last of the higher priority tasks is no longer
1142                      * running, make sure all the other idle tasks yield. */
1143                     BaseType_t x;
1144
1145                     for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ )
1146                     {
1147                         if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1148                         {
1149                             prvYieldCore( x );
1150                         }
1151                     }
1152                 }
1153             }
1154         }
1155         #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1156
1157         #if ( configUSE_CORE_AFFINITY == 1 )
1158         {
1159             if( xTaskScheduled == pdTRUE )
1160             {
1161                 if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
1162                 {
1163                     /* A ready task was just evicted from this core. See if it can be
1164                      * scheduled on any other core. */
1165                     UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
1166                     BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority;
1167                     BaseType_t xLowestPriorityCore = -1;
1168                     BaseType_t x;
1169
1170                     if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1171                     {
1172                         xLowestPriority = xLowestPriority - 1;
1173                     }
1174
1175                     if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1176                     {
1177                         /* pxPreviousTCB was removed from this core and this core is not excluded
1178                          * from it's core affinity mask.
1179                          *
1180                          * pxPreviousTCB is preempted by the new higher priority task
1181                          * pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB,
1182                          * we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ]
1183                          * is allowed to run. The reason is - when more than one cores are
1184                          * eligible for an incoming task, we preempt the core with the minimum
1185                          * priority task. Because this core (i.e. xCoreID) was preempted for
1186                          * pxCurrentTCBs[ xCoreID ], this means that all the others cores
1187                          * where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority
1188                          * no lower than pxPreviousTCB's priority. Therefore, the only cores where
1189                          * which can be preempted for pxPreviousTCB are the ones where
1190                          * pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously,
1191                          * pxPreviousTCB is allowed to run).
1192                          *
1193                          * This is an optimization which reduces the number of cores needed to be
1194                          * searched for pxPreviousTCB to run. */
1195                         uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
1196                     }
1197                     else
1198                     {
1199                         /* pxPreviousTCB's core affinity mask is changed and it is no longer
1200                          * allowed to run on this core. Searching all the cores in pxPreviousTCB's
1201                          * new core affinity mask to find a core on which it can run. */
1202                     }
1203
1204                     uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U );
1205
1206                     for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- )
1207                     {
1208                         UBaseType_t uxCore = ( UBaseType_t ) x;
1209                         BaseType_t xTaskPriority;
1210
1211                         if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U )
1212                         {
1213                             xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority;
1214
1215                             if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1216                             {
1217                                 xTaskPriority = xTaskPriority - ( BaseType_t ) 1;
1218                             }
1219
1220                             uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore );
1221
1222                             if( ( xTaskPriority < xLowestPriority ) &&
1223                                 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) &&
1224                                 ( xYieldPendings[ uxCore ] == pdFALSE ) )
1225                             {
1226                                 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
1227                                     if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
1228                                 #endif
1229                                 {
1230                                     xLowestPriority = xTaskPriority;
1231                                     xLowestPriorityCore = ( BaseType_t ) uxCore;
1232                                 }
1233                             }
1234                         }
1235                     }
1236
1237                     if( xLowestPriorityCore >= 0 )
1238                     {
1239                         prvYieldCore( xLowestPriorityCore );
1240                     }
1241                 }
1242             }
1243         }
1244         #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */
1245     }
1246
1247 #endif /* ( configNUMBER_OF_CORES > 1 ) */
1248
1249 /*-----------------------------------------------------------*/
1250
1251 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1252
1253     static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
1254                                         const char * const pcName,
1255                                         const configSTACK_DEPTH_TYPE uxStackDepth,
1256                                         void * const pvParameters,
1257                                         UBaseType_t uxPriority,
1258                                         StackType_t * const puxStackBuffer,
1259                                         StaticTask_t * const pxTaskBuffer,
1260                                         TaskHandle_t * const pxCreatedTask )
1261     {
1262         TCB_t * pxNewTCB;
1263
1264         configASSERT( puxStackBuffer != NULL );
1265         configASSERT( pxTaskBuffer != NULL );
1266
1267         #if ( configASSERT_DEFINED == 1 )
1268         {
1269             /* Sanity check that the size of the structure used to declare a
1270              * variable of type StaticTask_t equals the size of the real task
1271              * structure. */
1272             volatile size_t xSize = sizeof( StaticTask_t );
1273             configASSERT( xSize == sizeof( TCB_t ) );
1274             ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not used. */
1275         }
1276         #endif /* configASSERT_DEFINED */
1277
1278         if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
1279         {
1280             /* The memory used for the task's TCB and stack are passed into this
1281              * function - use them. */
1282             /* MISRA Ref 11.3.1 [Misaligned access] */
1283             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
1284             /* coverity[misra_c_2012_rule_11_3_violation] */
1285             pxNewTCB = ( TCB_t * ) pxTaskBuffer;
1286             ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1287             pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
1288
1289             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1290             {
1291                 /* Tasks can be created statically or dynamically, so note this
1292                  * task was created statically in case the task is later deleted. */
1293                 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1294             }
1295             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1296
1297             prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1298         }
1299         else
1300         {
1301             pxNewTCB = NULL;
1302         }
1303
1304         return pxNewTCB;
1305     }
1306 /*-----------------------------------------------------------*/
1307
1308     TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
1309                                     const char * const pcName,
1310                                     const configSTACK_DEPTH_TYPE uxStackDepth,
1311                                     void * const pvParameters,
1312                                     UBaseType_t uxPriority,
1313                                     StackType_t * const puxStackBuffer,
1314                                     StaticTask_t * const pxTaskBuffer )
1315     {
1316         TaskHandle_t xReturn = NULL;
1317         TCB_t * pxNewTCB;
1318
1319         traceENTER_xTaskCreateStatic( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
1320
1321         pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1322
1323         if( pxNewTCB != NULL )
1324         {
1325             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1326             {
1327                 /* Set the task's affinity before scheduling it. */
1328                 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1329             }
1330             #endif
1331
1332             prvAddNewTaskToReadyList( pxNewTCB );
1333         }
1334         else
1335         {
1336             mtCOVERAGE_TEST_MARKER();
1337         }
1338
1339         traceRETURN_xTaskCreateStatic( xReturn );
1340
1341         return xReturn;
1342     }
1343 /*-----------------------------------------------------------*/
1344
1345     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1346         TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
1347                                                    const char * const pcName,
1348                                                    const configSTACK_DEPTH_TYPE uxStackDepth,
1349                                                    void * const pvParameters,
1350                                                    UBaseType_t uxPriority,
1351                                                    StackType_t * const puxStackBuffer,
1352                                                    StaticTask_t * const pxTaskBuffer,
1353                                                    UBaseType_t uxCoreAffinityMask )
1354         {
1355             TaskHandle_t xReturn = NULL;
1356             TCB_t * pxNewTCB;
1357
1358             traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask );
1359
1360             pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1361
1362             if( pxNewTCB != NULL )
1363             {
1364                 /* Set the task's affinity before scheduling it. */
1365                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1366
1367                 prvAddNewTaskToReadyList( pxNewTCB );
1368             }
1369             else
1370             {
1371                 mtCOVERAGE_TEST_MARKER();
1372             }
1373
1374             traceRETURN_xTaskCreateStaticAffinitySet( xReturn );
1375
1376             return xReturn;
1377         }
1378     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1379
1380 #endif /* SUPPORT_STATIC_ALLOCATION */
1381 /*-----------------------------------------------------------*/
1382
1383 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
1384     static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
1385                                                   TaskHandle_t * const pxCreatedTask )
1386     {
1387         TCB_t * pxNewTCB;
1388
1389         configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
1390         configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
1391
1392         if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
1393         {
1394             /* Allocate space for the TCB.  Where the memory comes from depends
1395              * on the implementation of the port malloc function and whether or
1396              * not static allocation is being used. */
1397             pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
1398             ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1399
1400             /* Store the stack location in the TCB. */
1401             pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1402
1403             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1404             {
1405                 /* Tasks can be created statically or dynamically, so note this
1406                  * task was created statically in case the task is later deleted. */
1407                 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1408             }
1409             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1410
1411             prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1412                                   pxTaskDefinition->pcName,
1413                                   pxTaskDefinition->usStackDepth,
1414                                   pxTaskDefinition->pvParameters,
1415                                   pxTaskDefinition->uxPriority,
1416                                   pxCreatedTask, pxNewTCB,
1417                                   pxTaskDefinition->xRegions );
1418         }
1419         else
1420         {
1421             pxNewTCB = NULL;
1422         }
1423
1424         return pxNewTCB;
1425     }
1426 /*-----------------------------------------------------------*/
1427
1428     BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
1429                                             TaskHandle_t * pxCreatedTask )
1430     {
1431         TCB_t * pxNewTCB;
1432         BaseType_t xReturn;
1433
1434         traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask );
1435
1436         configASSERT( pxTaskDefinition != NULL );
1437
1438         pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1439
1440         if( pxNewTCB != NULL )
1441         {
1442             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1443             {
1444                 /* Set the task's affinity before scheduling it. */
1445                 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1446             }
1447             #endif
1448
1449             prvAddNewTaskToReadyList( pxNewTCB );
1450             xReturn = pdPASS;
1451         }
1452         else
1453         {
1454             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1455         }
1456
1457         traceRETURN_xTaskCreateRestrictedStatic( xReturn );
1458
1459         return xReturn;
1460     }
1461 /*-----------------------------------------------------------*/
1462
1463     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1464         BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1465                                                            UBaseType_t uxCoreAffinityMask,
1466                                                            TaskHandle_t * pxCreatedTask )
1467         {
1468             TCB_t * pxNewTCB;
1469             BaseType_t xReturn;
1470
1471             traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1472
1473             configASSERT( pxTaskDefinition != NULL );
1474
1475             pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1476
1477             if( pxNewTCB != NULL )
1478             {
1479                 /* Set the task's affinity before scheduling it. */
1480                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1481
1482                 prvAddNewTaskToReadyList( pxNewTCB );
1483                 xReturn = pdPASS;
1484             }
1485             else
1486             {
1487                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1488             }
1489
1490             traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn );
1491
1492             return xReturn;
1493         }
1494     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1495
1496 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
1497 /*-----------------------------------------------------------*/
1498
1499 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
1500     static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
1501                                             TaskHandle_t * const pxCreatedTask )
1502     {
1503         TCB_t * pxNewTCB;
1504
1505         configASSERT( pxTaskDefinition->puxStackBuffer );
1506
1507         if( pxTaskDefinition->puxStackBuffer != NULL )
1508         {
1509             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1510             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1511             /* coverity[misra_c_2012_rule_11_5_violation] */
1512             pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1513
1514             if( pxNewTCB != NULL )
1515             {
1516                 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1517
1518                 /* Store the stack location in the TCB. */
1519                 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1520
1521                 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1522                 {
1523                     /* Tasks can be created statically or dynamically, so note
1524                      * this task had a statically allocated stack in case it is
1525                      * later deleted.  The TCB was allocated dynamically. */
1526                     pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
1527                 }
1528                 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1529
1530                 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1531                                       pxTaskDefinition->pcName,
1532                                       pxTaskDefinition->usStackDepth,
1533                                       pxTaskDefinition->pvParameters,
1534                                       pxTaskDefinition->uxPriority,
1535                                       pxCreatedTask, pxNewTCB,
1536                                       pxTaskDefinition->xRegions );
1537             }
1538         }
1539         else
1540         {
1541             pxNewTCB = NULL;
1542         }
1543
1544         return pxNewTCB;
1545     }
1546 /*-----------------------------------------------------------*/
1547
1548     BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
1549                                       TaskHandle_t * pxCreatedTask )
1550     {
1551         TCB_t * pxNewTCB;
1552         BaseType_t xReturn;
1553
1554         traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask );
1555
1556         pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1557
1558         if( pxNewTCB != NULL )
1559         {
1560             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1561             {
1562                 /* Set the task's affinity before scheduling it. */
1563                 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1564             }
1565             #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1566
1567             prvAddNewTaskToReadyList( pxNewTCB );
1568
1569             xReturn = pdPASS;
1570         }
1571         else
1572         {
1573             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1574         }
1575
1576         traceRETURN_xTaskCreateRestricted( xReturn );
1577
1578         return xReturn;
1579     }
1580 /*-----------------------------------------------------------*/
1581
1582     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1583         BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1584                                                      UBaseType_t uxCoreAffinityMask,
1585                                                      TaskHandle_t * pxCreatedTask )
1586         {
1587             TCB_t * pxNewTCB;
1588             BaseType_t xReturn;
1589
1590             traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1591
1592             pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1593
1594             if( pxNewTCB != NULL )
1595             {
1596                 /* Set the task's affinity before scheduling it. */
1597                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1598
1599                 prvAddNewTaskToReadyList( pxNewTCB );
1600
1601                 xReturn = pdPASS;
1602             }
1603             else
1604             {
1605                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1606             }
1607
1608             traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn );
1609
1610             return xReturn;
1611         }
1612     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1613
1614
1615 #endif /* portUSING_MPU_WRAPPERS */
1616 /*-----------------------------------------------------------*/
1617
1618 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
1619     static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
1620                                   const char * const pcName,
1621                                   const configSTACK_DEPTH_TYPE uxStackDepth,
1622                                   void * const pvParameters,
1623                                   UBaseType_t uxPriority,
1624                                   TaskHandle_t * const pxCreatedTask )
1625     {
1626         TCB_t * pxNewTCB;
1627
1628         /* If the stack grows down then allocate the stack then the TCB so the stack
1629          * does not grow into the TCB.  Likewise if the stack grows up then allocate
1630          * the TCB then the stack. */
1631         #if ( portSTACK_GROWTH > 0 )
1632         {
1633             /* Allocate space for the TCB.  Where the memory comes from depends on
1634              * the implementation of the port malloc function and whether or not static
1635              * allocation is being used. */
1636             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1637             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1638             /* coverity[misra_c_2012_rule_11_5_violation] */
1639             pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1640
1641             if( pxNewTCB != NULL )
1642             {
1643                 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1644
1645                 /* Allocate space for the stack used by the task being created.
1646                  * The base of the stack memory stored in the TCB so the task can
1647                  * be deleted later if required. */
1648                 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1649                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1650                 /* coverity[misra_c_2012_rule_11_5_violation] */
1651                 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
1652
1653                 if( pxNewTCB->pxStack == NULL )
1654                 {
1655                     /* Could not allocate the stack.  Delete the allocated TCB. */
1656                     vPortFree( pxNewTCB );
1657                     pxNewTCB = NULL;
1658                 }
1659             }
1660         }
1661         #else /* portSTACK_GROWTH */
1662         {
1663             StackType_t * pxStack;
1664
1665             /* Allocate space for the stack used by the task being created. */
1666             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1667             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1668             /* coverity[misra_c_2012_rule_11_5_violation] */
1669             pxStack = pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
1670
1671             if( pxStack != NULL )
1672             {
1673                 /* Allocate space for the TCB. */
1674                 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1675                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1676                 /* coverity[misra_c_2012_rule_11_5_violation] */
1677                 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1678
1679                 if( pxNewTCB != NULL )
1680                 {
1681                     ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1682
1683                     /* Store the stack location in the TCB. */
1684                     pxNewTCB->pxStack = pxStack;
1685                 }
1686                 else
1687                 {
1688                     /* The stack cannot be used as the TCB was not created.  Free
1689                      * it again. */
1690                     vPortFreeStack( pxStack );
1691                 }
1692             }
1693             else
1694             {
1695                 pxNewTCB = NULL;
1696             }
1697         }
1698         #endif /* portSTACK_GROWTH */
1699
1700         if( pxNewTCB != NULL )
1701         {
1702             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1703             {
1704                 /* Tasks can be created statically or dynamically, so note this
1705                  * task was created dynamically in case it is later deleted. */
1706                 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
1707             }
1708             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1709
1710             prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1711         }
1712
1713         return pxNewTCB;
1714     }
1715 /*-----------------------------------------------------------*/
1716
1717     BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
1718                             const char * const pcName,
1719                             const configSTACK_DEPTH_TYPE uxStackDepth,
1720                             void * const pvParameters,
1721                             UBaseType_t uxPriority,
1722                             TaskHandle_t * const pxCreatedTask )
1723     {
1724         TCB_t * pxNewTCB;
1725         BaseType_t xReturn;
1726
1727         traceENTER_xTaskCreate( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1728
1729         pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1730
1731         if( pxNewTCB != NULL )
1732         {
1733             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1734             {
1735                 /* Set the task's affinity before scheduling it. */
1736                 pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
1737             }
1738             #endif
1739
1740             prvAddNewTaskToReadyList( pxNewTCB );
1741             xReturn = pdPASS;
1742         }
1743         else
1744         {
1745             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1746         }
1747
1748         traceRETURN_xTaskCreate( xReturn );
1749
1750         return xReturn;
1751     }
1752 /*-----------------------------------------------------------*/
1753
1754     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1755         BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
1756                                            const char * const pcName,
1757                                            const configSTACK_DEPTH_TYPE uxStackDepth,
1758                                            void * const pvParameters,
1759                                            UBaseType_t uxPriority,
1760                                            UBaseType_t uxCoreAffinityMask,
1761                                            TaskHandle_t * const pxCreatedTask )
1762         {
1763             TCB_t * pxNewTCB;
1764             BaseType_t xReturn;
1765
1766             traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask );
1767
1768             pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1769
1770             if( pxNewTCB != NULL )
1771             {
1772                 /* Set the task's affinity before scheduling it. */
1773                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1774
1775                 prvAddNewTaskToReadyList( pxNewTCB );
1776                 xReturn = pdPASS;
1777             }
1778             else
1779             {
1780                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1781             }
1782
1783             traceRETURN_xTaskCreateAffinitySet( xReturn );
1784
1785             return xReturn;
1786         }
1787     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1788
1789 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
1790 /*-----------------------------------------------------------*/
1791
1792 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
1793                                   const char * const pcName,
1794                                   const configSTACK_DEPTH_TYPE uxStackDepth,
1795                                   void * const pvParameters,
1796                                   UBaseType_t uxPriority,
1797                                   TaskHandle_t * const pxCreatedTask,
1798                                   TCB_t * pxNewTCB,
1799                                   const MemoryRegion_t * const xRegions )
1800 {
1801     StackType_t * pxTopOfStack;
1802     UBaseType_t x;
1803
1804     #if ( portUSING_MPU_WRAPPERS == 1 )
1805         /* Should the task be created in privileged mode? */
1806         BaseType_t xRunPrivileged;
1807
1808         if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
1809         {
1810             xRunPrivileged = pdTRUE;
1811         }
1812         else
1813         {
1814             xRunPrivileged = pdFALSE;
1815         }
1816         uxPriority &= ~portPRIVILEGE_BIT;
1817     #endif /* portUSING_MPU_WRAPPERS == 1 */
1818
1819     /* Avoid dependency on memset() if it is not required. */
1820     #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
1821     {
1822         /* Fill the stack with a known value to assist debugging. */
1823         ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) uxStackDepth * sizeof( StackType_t ) );
1824     }
1825     #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
1826
1827     /* Calculate the top of stack address.  This depends on whether the stack
1828      * grows from high memory to low (as per the 80x86) or vice versa.
1829      * portSTACK_GROWTH is used to make the result positive or negative as required
1830      * by the port. */
1831     #if ( portSTACK_GROWTH < 0 )
1832     {
1833         pxTopOfStack = &( pxNewTCB->pxStack[ uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 ] );
1834         pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1835
1836         /* Check the alignment of the calculated top of stack is correct. */
1837         configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
1838
1839         #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
1840         {
1841             /* Also record the stack's high address, which may assist
1842              * debugging. */
1843             pxNewTCB->pxEndOfStack = pxTopOfStack;
1844         }
1845         #endif /* configRECORD_STACK_HIGH_ADDRESS */
1846     }
1847     #else /* portSTACK_GROWTH */
1848     {
1849         pxTopOfStack = pxNewTCB->pxStack;
1850         pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1851
1852         /* Check the alignment of the calculated top of stack is correct. */
1853         configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
1854
1855         /* The other extreme of the stack space is required if stack checking is
1856          * performed. */
1857         pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 );
1858     }
1859     #endif /* portSTACK_GROWTH */
1860
1861     /* Store the task name in the TCB. */
1862     if( pcName != NULL )
1863     {
1864         for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
1865         {
1866             pxNewTCB->pcTaskName[ x ] = pcName[ x ];
1867
1868             /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
1869              * configMAX_TASK_NAME_LEN characters just in case the memory after the
1870              * string is not accessible (extremely unlikely). */
1871             if( pcName[ x ] == ( char ) 0x00 )
1872             {
1873                 break;
1874             }
1875             else
1876             {
1877                 mtCOVERAGE_TEST_MARKER();
1878             }
1879         }
1880
1881         /* Ensure the name string is terminated in the case that the string length
1882          * was greater or equal to configMAX_TASK_NAME_LEN. */
1883         pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1U ] = '\0';
1884     }
1885     else
1886     {
1887         mtCOVERAGE_TEST_MARKER();
1888     }
1889
1890     /* This is used as an array index so must ensure it's not too large. */
1891     configASSERT( uxPriority < configMAX_PRIORITIES );
1892
1893     if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
1894     {
1895         uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
1896     }
1897     else
1898     {
1899         mtCOVERAGE_TEST_MARKER();
1900     }
1901
1902     pxNewTCB->uxPriority = uxPriority;
1903     #if ( configUSE_MUTEXES == 1 )
1904     {
1905         pxNewTCB->uxBasePriority = uxPriority;
1906     }
1907     #endif /* configUSE_MUTEXES */
1908
1909     vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
1910     vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
1911
1912     /* Set the pxNewTCB as a link back from the ListItem_t.  This is so we can get
1913      * back to  the containing TCB from a generic item in a list. */
1914     listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
1915
1916     /* Event lists are always in priority order. */
1917     listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority );
1918     listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
1919
1920     #if ( portUSING_MPU_WRAPPERS == 1 )
1921     {
1922         vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, uxStackDepth );
1923     }
1924     #else
1925     {
1926         /* Avoid compiler warning about unreferenced parameter. */
1927         ( void ) xRegions;
1928     }
1929     #endif
1930
1931     #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
1932     {
1933         /* Allocate and initialize memory for the task's TLS Block. */
1934         configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack );
1935     }
1936     #endif
1937
1938     /* Initialize the TCB stack to look as if the task was already running,
1939      * but had been interrupted by the scheduler.  The return address is set
1940      * to the start of the task function. Once the stack has been initialised
1941      * the top of stack variable is updated. */
1942     #if ( portUSING_MPU_WRAPPERS == 1 )
1943     {
1944         /* If the port has capability to detect stack overflow,
1945          * pass the stack end address to the stack initialization
1946          * function as well. */
1947         #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1948         {
1949             #if ( portSTACK_GROWTH < 0 )
1950             {
1951                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1952             }
1953             #else /* portSTACK_GROWTH */
1954             {
1955                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1956             }
1957             #endif /* portSTACK_GROWTH */
1958         }
1959         #else /* portHAS_STACK_OVERFLOW_CHECKING */
1960         {
1961             pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1962         }
1963         #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1964     }
1965     #else /* portUSING_MPU_WRAPPERS */
1966     {
1967         /* If the port has capability to detect stack overflow,
1968          * pass the stack end address to the stack initialization
1969          * function as well. */
1970         #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1971         {
1972             #if ( portSTACK_GROWTH < 0 )
1973             {
1974                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
1975             }
1976             #else /* portSTACK_GROWTH */
1977             {
1978                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
1979             }
1980             #endif /* portSTACK_GROWTH */
1981         }
1982         #else /* portHAS_STACK_OVERFLOW_CHECKING */
1983         {
1984             pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
1985         }
1986         #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1987     }
1988     #endif /* portUSING_MPU_WRAPPERS */
1989
1990     /* Initialize task state and task attributes. */
1991     #if ( configNUMBER_OF_CORES > 1 )
1992     {
1993         pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;
1994
1995         /* Is this an idle task? */
1996         if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) )
1997         {
1998             pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE;
1999         }
2000     }
2001     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2002
2003     if( pxCreatedTask != NULL )
2004     {
2005         /* Pass the handle out in an anonymous way.  The handle can be used to
2006          * change the created task's priority, delete the created task, etc.*/
2007         *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
2008     }
2009     else
2010     {
2011         mtCOVERAGE_TEST_MARKER();
2012     }
2013 }
2014 /*-----------------------------------------------------------*/
2015
2016 #if ( configNUMBER_OF_CORES == 1 )
2017
2018     static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2019     {
2020         /* Ensure interrupts don't access the task lists while the lists are being
2021          * updated. */
2022         taskENTER_CRITICAL();
2023         {
2024             uxCurrentNumberOfTasks += ( UBaseType_t ) 1U;
2025
2026             if( pxCurrentTCB == NULL )
2027             {
2028                 /* There are no other tasks, or all the other tasks are in
2029                  * the suspended state - make this the current task. */
2030                 pxCurrentTCB = pxNewTCB;
2031
2032                 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2033                 {
2034                     /* This is the first task to be created so do the preliminary
2035                      * initialisation required.  We will not recover if this call
2036                      * fails, but we will report the failure. */
2037                     prvInitialiseTaskLists();
2038                 }
2039                 else
2040                 {
2041                     mtCOVERAGE_TEST_MARKER();
2042                 }
2043             }
2044             else
2045             {
2046                 /* If the scheduler is not already running, make this task the
2047                  * current task if it is the highest priority task to be created
2048                  * so far. */
2049                 if( xSchedulerRunning == pdFALSE )
2050                 {
2051                     if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
2052                     {
2053                         pxCurrentTCB = pxNewTCB;
2054                     }
2055                     else
2056                     {
2057                         mtCOVERAGE_TEST_MARKER();
2058                     }
2059                 }
2060                 else
2061                 {
2062                     mtCOVERAGE_TEST_MARKER();
2063                 }
2064             }
2065
2066             uxTaskNumber++;
2067
2068             #if ( configUSE_TRACE_FACILITY == 1 )
2069             {
2070                 /* Add a counter into the TCB for tracing only. */
2071                 pxNewTCB->uxTCBNumber = uxTaskNumber;
2072             }
2073             #endif /* configUSE_TRACE_FACILITY */
2074             traceTASK_CREATE( pxNewTCB );
2075
2076             prvAddTaskToReadyList( pxNewTCB );
2077
2078             portSETUP_TCB( pxNewTCB );
2079         }
2080         taskEXIT_CRITICAL();
2081
2082         if( xSchedulerRunning != pdFALSE )
2083         {
2084             /* If the created task is of a higher priority than the current task
2085              * then it should run now. */
2086             taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2087         }
2088         else
2089         {
2090             mtCOVERAGE_TEST_MARKER();
2091         }
2092     }
2093
2094 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2095
2096     static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2097     {
2098         /* Ensure interrupts don't access the task lists while the lists are being
2099          * updated. */
2100         taskENTER_CRITICAL();
2101         {
2102             uxCurrentNumberOfTasks++;
2103
2104             if( xSchedulerRunning == pdFALSE )
2105             {
2106                 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2107                 {
2108                     /* This is the first task to be created so do the preliminary
2109                      * initialisation required.  We will not recover if this call
2110                      * fails, but we will report the failure. */
2111                     prvInitialiseTaskLists();
2112                 }
2113                 else
2114                 {
2115                     mtCOVERAGE_TEST_MARKER();
2116                 }
2117
2118                 /* All the cores start with idle tasks before the SMP scheduler
2119                  * is running. Idle tasks are assigned to cores when they are
2120                  * created in prvCreateIdleTasks(). */
2121             }
2122
2123             uxTaskNumber++;
2124
2125             #if ( configUSE_TRACE_FACILITY == 1 )
2126             {
2127                 /* Add a counter into the TCB for tracing only. */
2128                 pxNewTCB->uxTCBNumber = uxTaskNumber;
2129             }
2130             #endif /* configUSE_TRACE_FACILITY */
2131             traceTASK_CREATE( pxNewTCB );
2132
2133             prvAddTaskToReadyList( pxNewTCB );
2134
2135             portSETUP_TCB( pxNewTCB );
2136
2137             if( xSchedulerRunning != pdFALSE )
2138             {
2139                 /* If the created task is of a higher priority than another
2140                  * currently running task and preemption is on then it should
2141                  * run now. */
2142                 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2143             }
2144             else
2145             {
2146                 mtCOVERAGE_TEST_MARKER();
2147             }
2148         }
2149         taskEXIT_CRITICAL();
2150     }
2151
2152 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2153 /*-----------------------------------------------------------*/
2154
2155 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
2156
2157     static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
2158                                                         size_t n )
2159     {
2160         size_t uxCharsWritten;
2161
2162         if( iSnprintfReturnValue < 0 )
2163         {
2164             /* Encoding error - Return 0 to indicate that nothing
2165              * was written to the buffer. */
2166             uxCharsWritten = 0;
2167         }
2168         else if( iSnprintfReturnValue >= ( int ) n )
2169         {
2170             /* This is the case when the supplied buffer is not
2171              * large to hold the generated string. Return the
2172              * number of characters actually written without
2173              * counting the terminating NULL character. */
2174             uxCharsWritten = n - 1U;
2175         }
2176         else
2177         {
2178             /* Complete string was written to the buffer. */
2179             uxCharsWritten = ( size_t ) iSnprintfReturnValue;
2180         }
2181
2182         return uxCharsWritten;
2183     }
2184
2185 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
2186 /*-----------------------------------------------------------*/
2187
2188 #if ( INCLUDE_vTaskDelete == 1 )
2189
2190     void vTaskDelete( TaskHandle_t xTaskToDelete )
2191     {
2192         TCB_t * pxTCB;
2193         BaseType_t xDeleteTCBInIdleTask = pdFALSE;
2194         BaseType_t xTaskIsRunningOrYielding;
2195
2196         traceENTER_vTaskDelete( xTaskToDelete );
2197
2198         taskENTER_CRITICAL();
2199         {
2200             /* If null is passed in here then it is the calling task that is
2201              * being deleted. */
2202             pxTCB = prvGetTCBFromHandle( xTaskToDelete );
2203
2204             /* Remove task from the ready/delayed list. */
2205             if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2206             {
2207                 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
2208             }
2209             else
2210             {
2211                 mtCOVERAGE_TEST_MARKER();
2212             }
2213
2214             /* Is the task waiting on an event also? */
2215             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
2216             {
2217                 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
2218             }
2219             else
2220             {
2221                 mtCOVERAGE_TEST_MARKER();
2222             }
2223
2224             /* Increment the uxTaskNumber also so kernel aware debuggers can
2225              * detect that the task lists need re-generating.  This is done before
2226              * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
2227              * not return. */
2228             uxTaskNumber++;
2229
2230             /* Use temp variable as distinct sequence points for reading volatile
2231              * variables prior to a logical operator to ensure compliance with
2232              * MISRA C 2012 Rule 13.5. */
2233             xTaskIsRunningOrYielding = taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB );
2234
2235             /* If the task is running (or yielding), we must add it to the
2236              * termination list so that an idle task can delete it when it is
2237              * no longer running. */
2238             if( ( xSchedulerRunning != pdFALSE ) && ( xTaskIsRunningOrYielding != pdFALSE ) )
2239             {
2240                 /* A running task or a task which is scheduled to yield is being
2241                  * deleted. This cannot complete when the task is still running
2242                  * on a core, as a context switch to another task is required.
2243                  * Place the task in the termination list. The idle task will check
2244                  * the termination list and free up any memory allocated by the
2245                  * scheduler for the TCB and stack of the deleted task. */
2246                 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
2247
2248                 /* Increment the ucTasksDeleted variable so the idle task knows
2249                  * there is a task that has been deleted and that it should therefore
2250                  * check the xTasksWaitingTermination list. */
2251                 ++uxDeletedTasksWaitingCleanUp;
2252
2253                 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
2254                  * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
2255                 traceTASK_DELETE( pxTCB );
2256
2257                 /* Delete the task TCB in idle task. */
2258                 xDeleteTCBInIdleTask = pdTRUE;
2259
2260                 /* The pre-delete hook is primarily for the Windows simulator,
2261                  * in which Windows specific clean up operations are performed,
2262                  * after which it is not possible to yield away from this task -
2263                  * hence xYieldPending is used to latch that a context switch is
2264                  * required. */
2265                 #if ( configNUMBER_OF_CORES == 1 )
2266                     portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) );
2267                 #else
2268                     portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) );
2269                 #endif
2270
2271                 /* In the case of SMP, it is possible that the task being deleted
2272                  * is running on another core. We must evict the task before
2273                  * exiting the critical section to ensure that the task cannot
2274                  * take an action which puts it back on ready/state/event list,
2275                  * thereby nullifying the delete operation. Once evicted, the
2276                  * task won't be scheduled ever as it will no longer be on the
2277                  * ready list. */
2278                 #if ( configNUMBER_OF_CORES > 1 )
2279                 {
2280                     if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2281                     {
2282                         if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
2283                         {
2284                             configASSERT( uxSchedulerSuspended == 0 );
2285                             taskYIELD_WITHIN_API();
2286                         }
2287                         else
2288                         {
2289                             prvYieldCore( pxTCB->xTaskRunState );
2290                         }
2291                     }
2292                 }
2293                 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2294             }
2295             else
2296             {
2297                 --uxCurrentNumberOfTasks;
2298                 traceTASK_DELETE( pxTCB );
2299
2300                 /* Reset the next expected unblock time in case it referred to
2301                  * the task that has just been deleted. */
2302                 prvResetNextTaskUnblockTime();
2303             }
2304         }
2305         taskEXIT_CRITICAL();
2306
2307         /* If the task is not deleting itself, call prvDeleteTCB from outside of
2308          * critical section. If a task deletes itself, prvDeleteTCB is called
2309          * from prvCheckTasksWaitingTermination which is called from Idle task. */
2310         if( xDeleteTCBInIdleTask != pdTRUE )
2311         {
2312             prvDeleteTCB( pxTCB );
2313         }
2314
2315         /* Force a reschedule if it is the currently running task that has just
2316          * been deleted. */
2317         #if ( configNUMBER_OF_CORES == 1 )
2318         {
2319             if( xSchedulerRunning != pdFALSE )
2320             {
2321                 if( pxTCB == pxCurrentTCB )
2322                 {
2323                     configASSERT( uxSchedulerSuspended == 0 );
2324                     taskYIELD_WITHIN_API();
2325                 }
2326                 else
2327                 {
2328                     mtCOVERAGE_TEST_MARKER();
2329                 }
2330             }
2331         }
2332         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2333
2334         traceRETURN_vTaskDelete();
2335     }
2336
2337 #endif /* INCLUDE_vTaskDelete */
2338 /*-----------------------------------------------------------*/
2339
2340 #if ( INCLUDE_xTaskDelayUntil == 1 )
2341
2342     BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
2343                                 const TickType_t xTimeIncrement )
2344     {
2345         TickType_t xTimeToWake;
2346         BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
2347
2348         traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
2349
2350         configASSERT( pxPreviousWakeTime );
2351         configASSERT( ( xTimeIncrement > 0U ) );
2352
2353         vTaskSuspendAll();
2354         {
2355             /* Minor optimisation.  The tick count cannot change in this
2356              * block. */
2357             const TickType_t xConstTickCount = xTickCount;
2358
2359             configASSERT( uxSchedulerSuspended == 1U );
2360
2361             /* Generate the tick time at which the task wants to wake. */
2362             xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
2363
2364             if( xConstTickCount < *pxPreviousWakeTime )
2365             {
2366                 /* The tick count has overflowed since this function was
2367                  * lasted called.  In this case the only time we should ever
2368                  * actually delay is if the wake time has also  overflowed,
2369                  * and the wake time is greater than the tick time.  When this
2370                  * is the case it is as if neither time had overflowed. */
2371                 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
2372                 {
2373                     xShouldDelay = pdTRUE;
2374                 }
2375                 else
2376                 {
2377                     mtCOVERAGE_TEST_MARKER();
2378                 }
2379             }
2380             else
2381             {
2382                 /* The tick time has not overflowed.  In this case we will
2383                  * delay if either the wake time has overflowed, and/or the
2384                  * tick time is less than the wake time. */
2385                 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
2386                 {
2387                     xShouldDelay = pdTRUE;
2388                 }
2389                 else
2390                 {
2391                     mtCOVERAGE_TEST_MARKER();
2392                 }
2393             }
2394
2395             /* Update the wake time ready for the next call. */
2396             *pxPreviousWakeTime = xTimeToWake;
2397
2398             if( xShouldDelay != pdFALSE )
2399             {
2400                 traceTASK_DELAY_UNTIL( xTimeToWake );
2401
2402                 /* prvAddCurrentTaskToDelayedList() needs the block time, not
2403                  * the time to wake, so subtract the current tick count. */
2404                 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
2405             }
2406             else
2407             {
2408                 mtCOVERAGE_TEST_MARKER();
2409             }
2410         }
2411         xAlreadyYielded = xTaskResumeAll();
2412
2413         /* Force a reschedule if xTaskResumeAll has not already done so, we may
2414          * have put ourselves to sleep. */
2415         if( xAlreadyYielded == pdFALSE )
2416         {
2417             taskYIELD_WITHIN_API();
2418         }
2419         else
2420         {
2421             mtCOVERAGE_TEST_MARKER();
2422         }
2423
2424         traceRETURN_xTaskDelayUntil( xShouldDelay );
2425
2426         return xShouldDelay;
2427     }
2428
2429 #endif /* INCLUDE_xTaskDelayUntil */
2430 /*-----------------------------------------------------------*/
2431
2432 #if ( INCLUDE_vTaskDelay == 1 )
2433
2434     void vTaskDelay( const TickType_t xTicksToDelay )
2435     {
2436         BaseType_t xAlreadyYielded = pdFALSE;
2437
2438         traceENTER_vTaskDelay( xTicksToDelay );
2439
2440         /* A delay time of zero just forces a reschedule. */
2441         if( xTicksToDelay > ( TickType_t ) 0U )
2442         {
2443             vTaskSuspendAll();
2444             {
2445                 configASSERT( uxSchedulerSuspended == 1U );
2446
2447                 traceTASK_DELAY();
2448
2449                 /* A task that is removed from the event list while the
2450                  * scheduler is suspended will not get placed in the ready
2451                  * list or removed from the blocked list until the scheduler
2452                  * is resumed.
2453                  *
2454                  * This task cannot be in an event list as it is the currently
2455                  * executing task. */
2456                 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
2457             }
2458             xAlreadyYielded = xTaskResumeAll();
2459         }
2460         else
2461         {
2462             mtCOVERAGE_TEST_MARKER();
2463         }
2464
2465         /* Force a reschedule if xTaskResumeAll has not already done so, we may
2466          * have put ourselves to sleep. */
2467         if( xAlreadyYielded == pdFALSE )
2468         {
2469             taskYIELD_WITHIN_API();
2470         }
2471         else
2472         {
2473             mtCOVERAGE_TEST_MARKER();
2474         }
2475
2476         traceRETURN_vTaskDelay();
2477     }
2478
2479 #endif /* INCLUDE_vTaskDelay */
2480 /*-----------------------------------------------------------*/
2481
2482 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
2483
2484     eTaskState eTaskGetState( TaskHandle_t xTask )
2485     {
2486         eTaskState eReturn;
2487         List_t const * pxStateList;
2488         List_t const * pxEventList;
2489         List_t const * pxDelayedList;
2490         List_t const * pxOverflowedDelayedList;
2491         const TCB_t * const pxTCB = xTask;
2492
2493         traceENTER_eTaskGetState( xTask );
2494
2495         configASSERT( pxTCB );
2496
2497         #if ( configNUMBER_OF_CORES == 1 )
2498             if( pxTCB == pxCurrentTCB )
2499             {
2500                 /* The task calling this function is querying its own state. */
2501                 eReturn = eRunning;
2502             }
2503             else
2504         #endif
2505         {
2506             taskENTER_CRITICAL();
2507             {
2508                 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
2509                 pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) );
2510                 pxDelayedList = pxDelayedTaskList;
2511                 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
2512             }
2513             taskEXIT_CRITICAL();
2514
2515             if( pxEventList == &xPendingReadyList )
2516             {
2517                 /* The task has been placed on the pending ready list, so its
2518                  * state is eReady regardless of what list the task's state list
2519                  * item is currently placed on. */
2520                 eReturn = eReady;
2521             }
2522             else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
2523             {
2524                 /* The task being queried is referenced from one of the Blocked
2525                  * lists. */
2526                 eReturn = eBlocked;
2527             }
2528
2529             #if ( INCLUDE_vTaskSuspend == 1 )
2530                 else if( pxStateList == &xSuspendedTaskList )
2531                 {
2532                     /* The task being queried is referenced from the suspended
2533                      * list.  Is it genuinely suspended or is it blocked
2534                      * indefinitely? */
2535                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
2536                     {
2537                         #if ( configUSE_TASK_NOTIFICATIONS == 1 )
2538                         {
2539                             BaseType_t x;
2540
2541                             /* The task does not appear on the event list item of
2542                              * and of the RTOS objects, but could still be in the
2543                              * blocked state if it is waiting on its notification
2544                              * rather than waiting on an object.  If not, is
2545                              * suspended. */
2546                             eReturn = eSuspended;
2547
2548                             for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
2549                             {
2550                                 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
2551                                 {
2552                                     eReturn = eBlocked;
2553                                     break;
2554                                 }
2555                             }
2556                         }
2557                         #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2558                         {
2559                             eReturn = eSuspended;
2560                         }
2561                         #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2562                     }
2563                     else
2564                     {
2565                         eReturn = eBlocked;
2566                     }
2567                 }
2568             #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
2569
2570             #if ( INCLUDE_vTaskDelete == 1 )
2571                 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
2572                 {
2573                     /* The task being queried is referenced from the deleted
2574                      * tasks list, or it is not referenced from any lists at
2575                      * all. */
2576                     eReturn = eDeleted;
2577                 }
2578             #endif
2579
2580             else
2581             {
2582                 #if ( configNUMBER_OF_CORES == 1 )
2583                 {
2584                     /* If the task is not in any other state, it must be in the
2585                      * Ready (including pending ready) state. */
2586                     eReturn = eReady;
2587                 }
2588                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2589                 {
2590                     if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2591                     {
2592                         /* Is it actively running on a core? */
2593                         eReturn = eRunning;
2594                     }
2595                     else
2596                     {
2597                         /* If the task is not in any other state, it must be in the
2598                          * Ready (including pending ready) state. */
2599                         eReturn = eReady;
2600                     }
2601                 }
2602                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2603             }
2604         }
2605
2606         traceRETURN_eTaskGetState( eReturn );
2607
2608         return eReturn;
2609     }
2610
2611 #endif /* INCLUDE_eTaskGetState */
2612 /*-----------------------------------------------------------*/
2613
2614 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2615
2616     UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
2617     {
2618         TCB_t const * pxTCB;
2619         UBaseType_t uxReturn;
2620
2621         traceENTER_uxTaskPriorityGet( xTask );
2622
2623         taskENTER_CRITICAL();
2624         {
2625             /* If null is passed in here then it is the priority of the task
2626              * that called uxTaskPriorityGet() that is being queried. */
2627             pxTCB = prvGetTCBFromHandle( xTask );
2628             uxReturn = pxTCB->uxPriority;
2629         }
2630         taskEXIT_CRITICAL();
2631
2632         traceRETURN_uxTaskPriorityGet( uxReturn );
2633
2634         return uxReturn;
2635     }
2636
2637 #endif /* INCLUDE_uxTaskPriorityGet */
2638 /*-----------------------------------------------------------*/
2639
2640 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2641
2642     UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
2643     {
2644         TCB_t const * pxTCB;
2645         UBaseType_t uxReturn;
2646         UBaseType_t uxSavedInterruptStatus;
2647
2648         traceENTER_uxTaskPriorityGetFromISR( xTask );
2649
2650         /* RTOS ports that support interrupt nesting have the concept of a
2651          * maximum  system call (or maximum API call) interrupt priority.
2652          * Interrupts that are  above the maximum system call priority are keep
2653          * permanently enabled, even when the RTOS kernel is in a critical section,
2654          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
2655          * is defined in FreeRTOSConfig.h then
2656          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2657          * failure if a FreeRTOS API function is called from an interrupt that has
2658          * been assigned a priority above the configured maximum system call
2659          * priority.  Only FreeRTOS functions that end in FromISR can be called
2660          * from interrupts  that have been assigned a priority at or (logically)
2661          * below the maximum system call interrupt priority.  FreeRTOS maintains a
2662          * separate interrupt safe API to ensure interrupt entry is as fast and as
2663          * simple as possible.  More information (albeit Cortex-M specific) is
2664          * provided on the following link:
2665          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2666         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2667
2668         uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2669         {
2670             /* If null is passed in here then it is the priority of the calling
2671              * task that is being queried. */
2672             pxTCB = prvGetTCBFromHandle( xTask );
2673             uxReturn = pxTCB->uxPriority;
2674         }
2675         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2676
2677         traceRETURN_uxTaskPriorityGetFromISR( uxReturn );
2678
2679         return uxReturn;
2680     }
2681
2682 #endif /* INCLUDE_uxTaskPriorityGet */
2683 /*-----------------------------------------------------------*/
2684
2685 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2686
2687     UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask )
2688     {
2689         TCB_t const * pxTCB;
2690         UBaseType_t uxReturn;
2691
2692         traceENTER_uxTaskBasePriorityGet( xTask );
2693
2694         taskENTER_CRITICAL();
2695         {
2696             /* If null is passed in here then it is the base priority of the task
2697              * that called uxTaskBasePriorityGet() that is being queried. */
2698             pxTCB = prvGetTCBFromHandle( xTask );
2699             uxReturn = pxTCB->uxBasePriority;
2700         }
2701         taskEXIT_CRITICAL();
2702
2703         traceRETURN_uxTaskBasePriorityGet( uxReturn );
2704
2705         return uxReturn;
2706     }
2707
2708 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2709 /*-----------------------------------------------------------*/
2710
2711 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2712
2713     UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask )
2714     {
2715         TCB_t const * pxTCB;
2716         UBaseType_t uxReturn;
2717         UBaseType_t uxSavedInterruptStatus;
2718
2719         traceENTER_uxTaskBasePriorityGetFromISR( xTask );
2720
2721         /* RTOS ports that support interrupt nesting have the concept of a
2722          * maximum  system call (or maximum API call) interrupt priority.
2723          * Interrupts that are  above the maximum system call priority are keep
2724          * permanently enabled, even when the RTOS kernel is in a critical section,
2725          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
2726          * is defined in FreeRTOSConfig.h then
2727          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2728          * failure if a FreeRTOS API function is called from an interrupt that has
2729          * been assigned a priority above the configured maximum system call
2730          * priority.  Only FreeRTOS functions that end in FromISR can be called
2731          * from interrupts  that have been assigned a priority at or (logically)
2732          * below the maximum system call interrupt priority.  FreeRTOS maintains a
2733          * separate interrupt safe API to ensure interrupt entry is as fast and as
2734          * simple as possible.  More information (albeit Cortex-M specific) is
2735          * provided on the following link:
2736          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2737         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2738
2739         uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2740         {
2741             /* If null is passed in here then it is the base priority of the calling
2742              * task that is being queried. */
2743             pxTCB = prvGetTCBFromHandle( xTask );
2744             uxReturn = pxTCB->uxBasePriority;
2745         }
2746         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2747
2748         traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn );
2749
2750         return uxReturn;
2751     }
2752
2753 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2754 /*-----------------------------------------------------------*/
2755
2756 #if ( INCLUDE_vTaskPrioritySet == 1 )
2757
2758     void vTaskPrioritySet( TaskHandle_t xTask,
2759                            UBaseType_t uxNewPriority )
2760     {
2761         TCB_t * pxTCB;
2762         UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
2763         BaseType_t xYieldRequired = pdFALSE;
2764
2765         #if ( configNUMBER_OF_CORES > 1 )
2766             BaseType_t xYieldForTask = pdFALSE;
2767         #endif
2768
2769         traceENTER_vTaskPrioritySet( xTask, uxNewPriority );
2770
2771         configASSERT( uxNewPriority < configMAX_PRIORITIES );
2772
2773         /* Ensure the new priority is valid. */
2774         if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
2775         {
2776             uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
2777         }
2778         else
2779         {
2780             mtCOVERAGE_TEST_MARKER();
2781         }
2782
2783         taskENTER_CRITICAL();
2784         {
2785             /* If null is passed in here then it is the priority of the calling
2786              * task that is being changed. */
2787             pxTCB = prvGetTCBFromHandle( xTask );
2788
2789             traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
2790
2791             #if ( configUSE_MUTEXES == 1 )
2792             {
2793                 uxCurrentBasePriority = pxTCB->uxBasePriority;
2794             }
2795             #else
2796             {
2797                 uxCurrentBasePriority = pxTCB->uxPriority;
2798             }
2799             #endif
2800
2801             if( uxCurrentBasePriority != uxNewPriority )
2802             {
2803                 /* The priority change may have readied a task of higher
2804                  * priority than a running task. */
2805                 if( uxNewPriority > uxCurrentBasePriority )
2806                 {
2807                     #if ( configNUMBER_OF_CORES == 1 )
2808                     {
2809                         if( pxTCB != pxCurrentTCB )
2810                         {
2811                             /* The priority of a task other than the currently
2812                              * running task is being raised.  Is the priority being
2813                              * raised above that of the running task? */
2814                             if( uxNewPriority > pxCurrentTCB->uxPriority )
2815                             {
2816                                 xYieldRequired = pdTRUE;
2817                             }
2818                             else
2819                             {
2820                                 mtCOVERAGE_TEST_MARKER();
2821                             }
2822                         }
2823                         else
2824                         {
2825                             /* The priority of the running task is being raised,
2826                              * but the running task must already be the highest
2827                              * priority task able to run so no yield is required. */
2828                         }
2829                     }
2830                     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2831                     {
2832                         /* The priority of a task is being raised so
2833                          * perform a yield for this task later. */
2834                         xYieldForTask = pdTRUE;
2835                     }
2836                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2837                 }
2838                 else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2839                 {
2840                     /* Setting the priority of a running task down means
2841                      * there may now be another task of higher priority that
2842                      * is ready to execute. */
2843                     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
2844                         if( pxTCB->xPreemptionDisable == pdFALSE )
2845                     #endif
2846                     {
2847                         xYieldRequired = pdTRUE;
2848                     }
2849                 }
2850                 else
2851                 {
2852                     /* Setting the priority of any other task down does not
2853                      * require a yield as the running task must be above the
2854                      * new priority of the task being modified. */
2855                 }
2856
2857                 /* Remember the ready list the task might be referenced from
2858                  * before its uxPriority member is changed so the
2859                  * taskRESET_READY_PRIORITY() macro can function correctly. */
2860                 uxPriorityUsedOnEntry = pxTCB->uxPriority;
2861
2862                 #if ( configUSE_MUTEXES == 1 )
2863                 {
2864                     /* Only change the priority being used if the task is not
2865                      * currently using an inherited priority or the new priority
2866                      * is bigger than the inherited priority. */
2867                     if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) )
2868                     {
2869                         pxTCB->uxPriority = uxNewPriority;
2870                     }
2871                     else
2872                     {
2873                         mtCOVERAGE_TEST_MARKER();
2874                     }
2875
2876                     /* The base priority gets set whatever. */
2877                     pxTCB->uxBasePriority = uxNewPriority;
2878                 }
2879                 #else /* if ( configUSE_MUTEXES == 1 ) */
2880                 {
2881                     pxTCB->uxPriority = uxNewPriority;
2882                 }
2883                 #endif /* if ( configUSE_MUTEXES == 1 ) */
2884
2885                 /* Only reset the event list item value if the value is not
2886                  * being used for anything else. */
2887                 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
2888                 {
2889                     listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) );
2890                 }
2891                 else
2892                 {
2893                     mtCOVERAGE_TEST_MARKER();
2894                 }
2895
2896                 /* If the task is in the blocked or suspended list we need do
2897                  * nothing more than change its priority variable. However, if
2898                  * the task is in a ready list it needs to be removed and placed
2899                  * in the list appropriate to its new priority. */
2900                 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
2901                 {
2902                     /* The task is currently in its ready list - remove before
2903                      * adding it to its new ready list.  As we are in a critical
2904                      * section we can do this even if the scheduler is suspended. */
2905                     if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2906                     {
2907                         /* It is known that the task is in its ready list so
2908                          * there is no need to check again and the port level
2909                          * reset macro can be called directly. */
2910                         portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
2911                     }
2912                     else
2913                     {
2914                         mtCOVERAGE_TEST_MARKER();
2915                     }
2916
2917                     prvAddTaskToReadyList( pxTCB );
2918                 }
2919                 else
2920                 {
2921                     #if ( configNUMBER_OF_CORES == 1 )
2922                     {
2923                         mtCOVERAGE_TEST_MARKER();
2924                     }
2925                     #else
2926                     {
2927                         /* It's possible that xYieldForTask was already set to pdTRUE because
2928                          * its priority is being raised. However, since it is not in a ready list
2929                          * we don't actually need to yield for it. */
2930                         xYieldForTask = pdFALSE;
2931                     }
2932                     #endif
2933                 }
2934
2935                 if( xYieldRequired != pdFALSE )
2936                 {
2937                     /* The running task priority is set down. Request the task to yield. */
2938                     taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
2939                 }
2940                 else
2941                 {
2942                     #if ( configNUMBER_OF_CORES > 1 )
2943                         if( xYieldForTask != pdFALSE )
2944                         {
2945                             /* The priority of the task is being raised. If a running
2946                              * task has priority lower than this task, it should yield
2947                              * for this task. */
2948                             taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
2949                         }
2950                         else
2951                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
2952                     {
2953                         mtCOVERAGE_TEST_MARKER();
2954                     }
2955                 }
2956
2957                 /* Remove compiler warning about unused variables when the port
2958                  * optimised task selection is not being used. */
2959                 ( void ) uxPriorityUsedOnEntry;
2960             }
2961         }
2962         taskEXIT_CRITICAL();
2963
2964         traceRETURN_vTaskPrioritySet();
2965     }
2966
2967 #endif /* INCLUDE_vTaskPrioritySet */
2968 /*-----------------------------------------------------------*/
2969
2970 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
2971     void vTaskCoreAffinitySet( const TaskHandle_t xTask,
2972                                UBaseType_t uxCoreAffinityMask )
2973     {
2974         TCB_t * pxTCB;
2975         BaseType_t xCoreID;
2976         UBaseType_t uxPrevCoreAffinityMask;
2977
2978         #if ( configUSE_PREEMPTION == 1 )
2979             UBaseType_t uxPrevNotAllowedCores;
2980         #endif
2981
2982         traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask );
2983
2984         taskENTER_CRITICAL();
2985         {
2986             pxTCB = prvGetTCBFromHandle( xTask );
2987
2988             uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask;
2989             pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;
2990
2991             if( xSchedulerRunning != pdFALSE )
2992             {
2993                 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2994                 {
2995                     xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
2996
2997                     /* If the task can no longer run on the core it was running,
2998                      * request the core to yield. */
2999                     if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U )
3000                     {
3001                         prvYieldCore( xCoreID );
3002                     }
3003                 }
3004                 else
3005                 {
3006                     #if ( configUSE_PREEMPTION == 1 )
3007                     {
3008                         /* Calculate the cores on which this task was not allowed to
3009                          * run previously. */
3010                         uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U );
3011
3012                         /* Does the new core mask enables this task to run on any of the
3013                          * previously not allowed cores? If yes, check if this task can be
3014                          * scheduled on any of those cores. */
3015                         if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U )
3016                         {
3017                             prvYieldForTask( pxTCB );
3018                         }
3019                     }
3020                     #else /* #if( configUSE_PREEMPTION == 1 ) */
3021                     {
3022                         mtCOVERAGE_TEST_MARKER();
3023                     }
3024                     #endif /* #if( configUSE_PREEMPTION == 1 ) */
3025                 }
3026             }
3027         }
3028         taskEXIT_CRITICAL();
3029
3030         traceRETURN_vTaskCoreAffinitySet();
3031     }
3032 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3033 /*-----------------------------------------------------------*/
3034
3035 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
3036     UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask )
3037     {
3038         const TCB_t * pxTCB;
3039         UBaseType_t uxCoreAffinityMask;
3040
3041         traceENTER_vTaskCoreAffinityGet( xTask );
3042
3043         taskENTER_CRITICAL();
3044         {
3045             pxTCB = prvGetTCBFromHandle( xTask );
3046             uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
3047         }
3048         taskEXIT_CRITICAL();
3049
3050         traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask );
3051
3052         return uxCoreAffinityMask;
3053     }
3054 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3055
3056 /*-----------------------------------------------------------*/
3057
3058 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3059
3060     void vTaskPreemptionDisable( const TaskHandle_t xTask )
3061     {
3062         TCB_t * pxTCB;
3063
3064         traceENTER_vTaskPreemptionDisable( xTask );
3065
3066         taskENTER_CRITICAL();
3067         {
3068             pxTCB = prvGetTCBFromHandle( xTask );
3069
3070             pxTCB->xPreemptionDisable = pdTRUE;
3071         }
3072         taskEXIT_CRITICAL();
3073
3074         traceRETURN_vTaskPreemptionDisable();
3075     }
3076
3077 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3078 /*-----------------------------------------------------------*/
3079
3080 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3081
3082     void vTaskPreemptionEnable( const TaskHandle_t xTask )
3083     {
3084         TCB_t * pxTCB;
3085         BaseType_t xCoreID;
3086
3087         traceENTER_vTaskPreemptionEnable( xTask );
3088
3089         taskENTER_CRITICAL();
3090         {
3091             pxTCB = prvGetTCBFromHandle( xTask );
3092
3093             pxTCB->xPreemptionDisable = pdFALSE;
3094
3095             if( xSchedulerRunning != pdFALSE )
3096             {
3097                 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3098                 {
3099                     xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
3100                     prvYieldCore( xCoreID );
3101                 }
3102             }
3103         }
3104         taskEXIT_CRITICAL();
3105
3106         traceRETURN_vTaskPreemptionEnable();
3107     }
3108
3109 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3110 /*-----------------------------------------------------------*/
3111
3112 #if ( INCLUDE_vTaskSuspend == 1 )
3113
3114     void vTaskSuspend( TaskHandle_t xTaskToSuspend )
3115     {
3116         TCB_t * pxTCB;
3117
3118         traceENTER_vTaskSuspend( xTaskToSuspend );
3119
3120         taskENTER_CRITICAL();
3121         {
3122             /* If null is passed in here then it is the running task that is
3123              * being suspended. */
3124             pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
3125
3126             traceTASK_SUSPEND( pxTCB );
3127
3128             /* Remove task from the ready/delayed list and place in the
3129              * suspended list. */
3130             if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
3131             {
3132                 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
3133             }
3134             else
3135             {
3136                 mtCOVERAGE_TEST_MARKER();
3137             }
3138
3139             /* Is the task waiting on an event also? */
3140             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
3141             {
3142                 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
3143             }
3144             else
3145             {
3146                 mtCOVERAGE_TEST_MARKER();
3147             }
3148
3149             vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
3150
3151             #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3152             {
3153                 BaseType_t x;
3154
3155                 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3156                 {
3157                     if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3158                     {
3159                         /* The task was blocked to wait for a notification, but is
3160                          * now suspended, so no notification was received. */
3161                         pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
3162                     }
3163                 }
3164             }
3165             #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3166
3167             /* In the case of SMP, it is possible that the task being suspended
3168              * is running on another core. We must evict the task before
3169              * exiting the critical section to ensure that the task cannot
3170              * take an action which puts it back on ready/state/event list,
3171              * thereby nullifying the suspend operation. Once evicted, the
3172              * task won't be scheduled before it is resumed as it will no longer
3173              * be on the ready list. */
3174             #if ( configNUMBER_OF_CORES > 1 )
3175             {
3176                 if( xSchedulerRunning != pdFALSE )
3177                 {
3178                     /* Reset the next expected unblock time in case it referred to the
3179                      * task that is now in the Suspended state. */
3180                     prvResetNextTaskUnblockTime();
3181
3182                     if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3183                     {
3184                         if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
3185                         {
3186                             /* The current task has just been suspended. */
3187                             configASSERT( uxSchedulerSuspended == 0 );
3188                             vTaskYieldWithinAPI();
3189                         }
3190                         else
3191                         {
3192                             prvYieldCore( pxTCB->xTaskRunState );
3193                         }
3194                     }
3195                     else
3196                     {
3197                         mtCOVERAGE_TEST_MARKER();
3198                     }
3199                 }
3200                 else
3201                 {
3202                     mtCOVERAGE_TEST_MARKER();
3203                 }
3204             }
3205             #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
3206         }
3207         taskEXIT_CRITICAL();
3208
3209         #if ( configNUMBER_OF_CORES == 1 )
3210         {
3211             UBaseType_t uxCurrentListLength;
3212
3213             if( xSchedulerRunning != pdFALSE )
3214             {
3215                 /* Reset the next expected unblock time in case it referred to the
3216                  * task that is now in the Suspended state. */
3217                 taskENTER_CRITICAL();
3218                 {
3219                     prvResetNextTaskUnblockTime();
3220                 }
3221                 taskEXIT_CRITICAL();
3222             }
3223             else
3224             {
3225                 mtCOVERAGE_TEST_MARKER();
3226             }
3227
3228             if( pxTCB == pxCurrentTCB )
3229             {
3230                 if( xSchedulerRunning != pdFALSE )
3231                 {
3232                     /* The current task has just been suspended. */
3233                     configASSERT( uxSchedulerSuspended == 0 );
3234                     portYIELD_WITHIN_API();
3235                 }
3236                 else
3237                 {
3238                     /* The scheduler is not running, but the task that was pointed
3239                      * to by pxCurrentTCB has just been suspended and pxCurrentTCB
3240                      * must be adjusted to point to a different task. */
3241
3242                     /* Use a temp variable as a distinct sequence point for reading
3243                      * volatile variables prior to a comparison to ensure compliance
3244                      * with MISRA C 2012 Rule 13.2. */
3245                     uxCurrentListLength = listCURRENT_LIST_LENGTH( &xSuspendedTaskList );
3246
3247                     if( uxCurrentListLength == uxCurrentNumberOfTasks )
3248                     {
3249                         /* No other tasks are ready, so set pxCurrentTCB back to
3250                          * NULL so when the next task is created pxCurrentTCB will
3251                          * be set to point to it no matter what its relative priority
3252                          * is. */
3253                         pxCurrentTCB = NULL;
3254                     }
3255                     else
3256                     {
3257                         vTaskSwitchContext();
3258                     }
3259                 }
3260             }
3261             else
3262             {
3263                 mtCOVERAGE_TEST_MARKER();
3264             }
3265         }
3266         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3267
3268         traceRETURN_vTaskSuspend();
3269     }
3270
3271 #endif /* INCLUDE_vTaskSuspend */
3272 /*-----------------------------------------------------------*/
3273
3274 #if ( INCLUDE_vTaskSuspend == 1 )
3275
3276     static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
3277     {
3278         BaseType_t xReturn = pdFALSE;
3279         const TCB_t * const pxTCB = xTask;
3280
3281         /* Accesses xPendingReadyList so must be called from a critical
3282          * section. */
3283
3284         /* It does not make sense to check if the calling task is suspended. */
3285         configASSERT( xTask );
3286
3287         /* Is the task being resumed actually in the suspended list? */
3288         if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
3289         {
3290             /* Has the task already been resumed from within an ISR? */
3291             if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
3292             {
3293                 /* Is it in the suspended list because it is in the Suspended
3294                  * state, or because it is blocked with no timeout? */
3295                 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
3296                 {
3297                     #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3298                     {
3299                         BaseType_t x;
3300
3301                         /* The task does not appear on the event list item of
3302                          * and of the RTOS objects, but could still be in the
3303                          * blocked state if it is waiting on its notification
3304                          * rather than waiting on an object.  If not, is
3305                          * suspended. */
3306                         xReturn = pdTRUE;
3307
3308                         for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3309                         {
3310                             if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3311                             {
3312                                 xReturn = pdFALSE;
3313                                 break;
3314                             }
3315                         }
3316                     }
3317                     #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3318                     {
3319                         xReturn = pdTRUE;
3320                     }
3321                     #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3322                 }
3323                 else
3324                 {
3325                     mtCOVERAGE_TEST_MARKER();
3326                 }
3327             }
3328             else
3329             {
3330                 mtCOVERAGE_TEST_MARKER();
3331             }
3332         }
3333         else
3334         {
3335             mtCOVERAGE_TEST_MARKER();
3336         }
3337
3338         return xReturn;
3339     }
3340
3341 #endif /* INCLUDE_vTaskSuspend */
3342 /*-----------------------------------------------------------*/
3343
3344 #if ( INCLUDE_vTaskSuspend == 1 )
3345
3346     void vTaskResume( TaskHandle_t xTaskToResume )
3347     {
3348         TCB_t * const pxTCB = xTaskToResume;
3349
3350         traceENTER_vTaskResume( xTaskToResume );
3351
3352         /* It does not make sense to resume the calling task. */
3353         configASSERT( xTaskToResume );
3354
3355         #if ( configNUMBER_OF_CORES == 1 )
3356
3357             /* The parameter cannot be NULL as it is impossible to resume the
3358              * currently executing task. */
3359             if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
3360         #else
3361
3362             /* The parameter cannot be NULL as it is impossible to resume the
3363              * currently executing task. It is also impossible to resume a task
3364              * that is actively running on another core but it is not safe
3365              * to check their run state here. Therefore, we get into a critical
3366              * section and check if the task is actually suspended or not. */
3367             if( pxTCB != NULL )
3368         #endif
3369         {
3370             taskENTER_CRITICAL();
3371             {
3372                 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3373                 {
3374                     traceTASK_RESUME( pxTCB );
3375
3376                     /* The ready list can be accessed even if the scheduler is
3377                      * suspended because this is inside a critical section. */
3378                     ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3379                     prvAddTaskToReadyList( pxTCB );
3380
3381                     /* This yield may not cause the task just resumed to run,
3382                      * but will leave the lists in the correct state for the
3383                      * next yield. */
3384                     taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
3385                 }
3386                 else
3387                 {
3388                     mtCOVERAGE_TEST_MARKER();
3389                 }
3390             }
3391             taskEXIT_CRITICAL();
3392         }
3393         else
3394         {
3395             mtCOVERAGE_TEST_MARKER();
3396         }
3397
3398         traceRETURN_vTaskResume();
3399     }
3400
3401 #endif /* INCLUDE_vTaskSuspend */
3402
3403 /*-----------------------------------------------------------*/
3404
3405 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
3406
3407     BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
3408     {
3409         BaseType_t xYieldRequired = pdFALSE;
3410         TCB_t * const pxTCB = xTaskToResume;
3411         UBaseType_t uxSavedInterruptStatus;
3412
3413         traceENTER_xTaskResumeFromISR( xTaskToResume );
3414
3415         configASSERT( xTaskToResume );
3416
3417         /* RTOS ports that support interrupt nesting have the concept of a
3418          * maximum  system call (or maximum API call) interrupt priority.
3419          * Interrupts that are  above the maximum system call priority are keep
3420          * permanently enabled, even when the RTOS kernel is in a critical section,
3421          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
3422          * is defined in FreeRTOSConfig.h then
3423          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
3424          * failure if a FreeRTOS API function is called from an interrupt that has
3425          * been assigned a priority above the configured maximum system call
3426          * priority.  Only FreeRTOS functions that end in FromISR can be called
3427          * from interrupts  that have been assigned a priority at or (logically)
3428          * below the maximum system call interrupt priority.  FreeRTOS maintains a
3429          * separate interrupt safe API to ensure interrupt entry is as fast and as
3430          * simple as possible.  More information (albeit Cortex-M specific) is
3431          * provided on the following link:
3432          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
3433         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
3434
3435         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
3436         {
3437             if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3438             {
3439                 traceTASK_RESUME_FROM_ISR( pxTCB );
3440
3441                 /* Check the ready lists can be accessed. */
3442                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3443                 {
3444                     #if ( configNUMBER_OF_CORES == 1 )
3445                     {
3446                         /* Ready lists can be accessed so move the task from the
3447                          * suspended list to the ready list directly. */
3448                         if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3449                         {
3450                             xYieldRequired = pdTRUE;
3451
3452                             /* Mark that a yield is pending in case the user is not
3453                              * using the return value to initiate a context switch
3454                              * from the ISR using the port specific portYIELD_FROM_ISR(). */
3455                             xYieldPendings[ 0 ] = pdTRUE;
3456                         }
3457                         else
3458                         {
3459                             mtCOVERAGE_TEST_MARKER();
3460                         }
3461                     }
3462                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3463
3464                     ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3465                     prvAddTaskToReadyList( pxTCB );
3466                 }
3467                 else
3468                 {
3469                     /* The delayed or ready lists cannot be accessed so the task
3470                      * is held in the pending ready list until the scheduler is
3471                      * unsuspended. */
3472                     vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
3473                 }
3474
3475                 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) )
3476                 {
3477                     prvYieldForTask( pxTCB );
3478
3479                     if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
3480                     {
3481                         xYieldRequired = pdTRUE;
3482                     }
3483                 }
3484                 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */
3485             }
3486             else
3487             {
3488                 mtCOVERAGE_TEST_MARKER();
3489             }
3490         }
3491         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
3492
3493         traceRETURN_xTaskResumeFromISR( xYieldRequired );
3494
3495         return xYieldRequired;
3496     }
3497
3498 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
3499 /*-----------------------------------------------------------*/
3500
3501 static BaseType_t prvCreateIdleTasks( void )
3502 {
3503     BaseType_t xReturn = pdPASS;
3504     BaseType_t xCoreID;
3505     char cIdleName[ configMAX_TASK_NAME_LEN ];
3506     TaskFunction_t pxIdleTaskFunction = NULL;
3507     BaseType_t xIdleTaskNameIndex;
3508
3509     for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ )
3510     {
3511         cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ];
3512
3513         /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
3514          * configMAX_TASK_NAME_LEN characters just in case the memory after the
3515          * string is not accessible (extremely unlikely). */
3516         if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 )
3517         {
3518             break;
3519         }
3520         else
3521         {
3522             mtCOVERAGE_TEST_MARKER();
3523         }
3524     }
3525
3526     /* Add each idle task at the lowest priority. */
3527     for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3528     {
3529         #if ( configNUMBER_OF_CORES == 1 )
3530         {
3531             pxIdleTaskFunction = prvIdleTask;
3532         }
3533         #else /* #if (  configNUMBER_OF_CORES == 1 ) */
3534         {
3535             /* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks
3536              * are also created to ensure that each core has an idle task to
3537              * run when no other task is available to run. */
3538             if( xCoreID == 0 )
3539             {
3540                 pxIdleTaskFunction = prvIdleTask;
3541             }
3542             else
3543             {
3544                 pxIdleTaskFunction = prvPassiveIdleTask;
3545             }
3546         }
3547         #endif /* #if (  configNUMBER_OF_CORES == 1 ) */
3548
3549         /* Update the idle task name with suffix to differentiate the idle tasks.
3550          * This function is not required in single core FreeRTOS since there is
3551          * only one idle task. */
3552         #if ( configNUMBER_OF_CORES > 1 )
3553         {
3554             /* Append the idle task number to the end of the name if there is space. */
3555             if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3556             {
3557                 cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' );
3558
3559                 /* And append a null character if there is space. */
3560                 if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3561                 {
3562                     cIdleName[ xIdleTaskNameIndex + 1 ] = '\0';
3563                 }
3564                 else
3565                 {
3566                     mtCOVERAGE_TEST_MARKER();
3567                 }
3568             }
3569             else
3570             {
3571                 mtCOVERAGE_TEST_MARKER();
3572             }
3573         }
3574         #endif /* if ( configNUMBER_OF_CORES > 1 ) */
3575
3576         #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
3577         {
3578             StaticTask_t * pxIdleTaskTCBBuffer = NULL;
3579             StackType_t * pxIdleTaskStackBuffer = NULL;
3580             configSTACK_DEPTH_TYPE uxIdleTaskStackSize;
3581
3582             /* The Idle task is created using user provided RAM - obtain the
3583              * address of the RAM then create the idle task. */
3584             #if ( configNUMBER_OF_CORES == 1 )
3585             {
3586                 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
3587             }
3588             #else
3589             {
3590                 if( xCoreID == 0 )
3591                 {
3592                     vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
3593                 }
3594                 else
3595                 {
3596                     vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize, xCoreID - 1 );
3597                 }
3598             }
3599             #endif /* if ( configNUMBER_OF_CORES == 1 ) */
3600             xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction,
3601                                                              cIdleName,
3602                                                              uxIdleTaskStackSize,
3603                                                              ( void * ) NULL,
3604                                                              portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3605                                                              pxIdleTaskStackBuffer,
3606                                                              pxIdleTaskTCBBuffer );
3607
3608             if( xIdleTaskHandles[ xCoreID ] != NULL )
3609             {
3610                 xReturn = pdPASS;
3611             }
3612             else
3613             {
3614                 xReturn = pdFAIL;
3615             }
3616         }
3617         #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
3618         {
3619             /* The Idle task is being created using dynamically allocated RAM. */
3620             xReturn = xTaskCreate( pxIdleTaskFunction,
3621                                    cIdleName,
3622                                    configMINIMAL_STACK_SIZE,
3623                                    ( void * ) NULL,
3624                                    portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3625                                    &xIdleTaskHandles[ xCoreID ] );
3626         }
3627         #endif /* configSUPPORT_STATIC_ALLOCATION */
3628
3629         /* Break the loop if any of the idle task is failed to be created. */
3630         if( xReturn == pdFAIL )
3631         {
3632             break;
3633         }
3634         else
3635         {
3636             #if ( configNUMBER_OF_CORES == 1 )
3637             {
3638                 mtCOVERAGE_TEST_MARKER();
3639             }
3640             #else
3641             {
3642                 /* Assign idle task to each core before SMP scheduler is running. */
3643                 xIdleTaskHandles[ xCoreID ]->xTaskRunState = xCoreID;
3644                 pxCurrentTCBs[ xCoreID ] = xIdleTaskHandles[ xCoreID ];
3645             }
3646             #endif
3647         }
3648     }
3649
3650     return xReturn;
3651 }
3652
3653 /*-----------------------------------------------------------*/
3654
3655 void vTaskStartScheduler( void )
3656 {
3657     BaseType_t xReturn;
3658
3659     traceENTER_vTaskStartScheduler();
3660
3661     #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
3662     {
3663         /* Sanity check that the UBaseType_t must have greater than or equal to
3664          * the number of bits as confNUMBER_OF_CORES. */
3665         configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES );
3666     }
3667     #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
3668
3669     xReturn = prvCreateIdleTasks();
3670
3671     #if ( configUSE_TIMERS == 1 )
3672     {
3673         if( xReturn == pdPASS )
3674         {
3675             xReturn = xTimerCreateTimerTask();
3676         }
3677         else
3678         {
3679             mtCOVERAGE_TEST_MARKER();
3680         }
3681     }
3682     #endif /* configUSE_TIMERS */
3683
3684     if( xReturn == pdPASS )
3685     {
3686         /* freertos_tasks_c_additions_init() should only be called if the user
3687          * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
3688          * the only macro called by the function. */
3689         #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
3690         {
3691             freertos_tasks_c_additions_init();
3692         }
3693         #endif
3694
3695         /* Interrupts are turned off here, to ensure a tick does not occur
3696          * before or during the call to xPortStartScheduler().  The stacks of
3697          * the created tasks contain a status word with interrupts switched on
3698          * so interrupts will automatically get re-enabled when the first task
3699          * starts to run. */
3700         portDISABLE_INTERRUPTS();
3701
3702         #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
3703         {
3704             /* Switch C-Runtime's TLS Block to point to the TLS
3705              * block specific to the task that will run first. */
3706             configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
3707         }
3708         #endif
3709
3710         xNextTaskUnblockTime = portMAX_DELAY;
3711         xSchedulerRunning = pdTRUE;
3712         xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
3713
3714         /* If configGENERATE_RUN_TIME_STATS is defined then the following
3715          * macro must be defined to configure the timer/counter used to generate
3716          * the run time counter time base.   NOTE:  If configGENERATE_RUN_TIME_STATS
3717          * is set to 0 and the following line fails to build then ensure you do not
3718          * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
3719          * FreeRTOSConfig.h file. */
3720         portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
3721
3722         traceTASK_SWITCHED_IN();
3723
3724         /* Setting up the timer tick is hardware specific and thus in the
3725          * portable interface. */
3726
3727         /* The return value for xPortStartScheduler is not required
3728          * hence using a void datatype. */
3729         ( void ) xPortStartScheduler();
3730
3731         /* In most cases, xPortStartScheduler() will not return. If it
3732          * returns pdTRUE then there was not enough heap memory available
3733          * to create either the Idle or the Timer task. If it returned
3734          * pdFALSE, then the application called xTaskEndScheduler().
3735          * Most ports don't implement xTaskEndScheduler() as there is
3736          * nothing to return to. */
3737     }
3738     else
3739     {
3740         /* This line will only be reached if the kernel could not be started,
3741          * because there was not enough FreeRTOS heap to create the idle task
3742          * or the timer task. */
3743         configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
3744     }
3745
3746     /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
3747      * meaning xIdleTaskHandles are not used anywhere else. */
3748     ( void ) xIdleTaskHandles;
3749
3750     /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
3751      * from getting optimized out as it is no longer used by the kernel. */
3752     ( void ) uxTopUsedPriority;
3753
3754     traceRETURN_vTaskStartScheduler();
3755 }
3756 /*-----------------------------------------------------------*/
3757
3758 void vTaskEndScheduler( void )
3759 {
3760     traceENTER_vTaskEndScheduler();
3761
3762     #if ( INCLUDE_vTaskDelete == 1 )
3763     {
3764         BaseType_t xCoreID;
3765
3766         #if ( configUSE_TIMERS == 1 )
3767         {
3768             /* Delete the timer task created by the kernel. */
3769             vTaskDelete( xTimerGetTimerDaemonTaskHandle() );
3770         }
3771         #endif /* #if ( configUSE_TIMERS == 1 ) */
3772
3773         /* Delete Idle tasks created by the kernel.*/
3774         for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3775         {
3776             vTaskDelete( xIdleTaskHandles[ xCoreID ] );
3777         }
3778
3779         /* Idle task is responsible for reclaiming the resources of the tasks in
3780          * xTasksWaitingTermination list. Since the idle task is now deleted and
3781          * no longer going to run, we need to reclaim resources of all the tasks
3782          * in the xTasksWaitingTermination list. */
3783         prvCheckTasksWaitingTermination();
3784     }
3785     #endif /* #if ( INCLUDE_vTaskDelete == 1 ) */
3786
3787     /* Stop the scheduler interrupts and call the portable scheduler end
3788      * routine so the original ISRs can be restored if necessary.  The port
3789      * layer must ensure interrupts enable  bit is left in the correct state. */
3790     portDISABLE_INTERRUPTS();
3791     xSchedulerRunning = pdFALSE;
3792
3793     /* This function must be called from a task and the application is
3794      * responsible for deleting that task after the scheduler is stopped. */
3795     vPortEndScheduler();
3796
3797     traceRETURN_vTaskEndScheduler();
3798 }
3799 /*----------------------------------------------------------*/
3800
3801 void vTaskSuspendAll( void )
3802 {
3803     traceENTER_vTaskSuspendAll();
3804
3805     #if ( configNUMBER_OF_CORES == 1 )
3806     {
3807         /* A critical section is not required as the variable is of type
3808          * BaseType_t.  Please read Richard Barry's reply in the following link to a
3809          * post in the FreeRTOS support forum before reporting this as a bug! -
3810          * https://goo.gl/wu4acr */
3811
3812         /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
3813          * do not otherwise exhibit real time behaviour. */
3814         portSOFTWARE_BARRIER();
3815
3816         /* The scheduler is suspended if uxSchedulerSuspended is non-zero.  An increment
3817          * is used to allow calls to vTaskSuspendAll() to nest. */
3818         uxSchedulerSuspended += ( UBaseType_t ) 1U;
3819
3820         /* Enforces ordering for ports and optimised compilers that may otherwise place
3821          * the above increment elsewhere. */
3822         portMEMORY_BARRIER();
3823     }
3824     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3825     {
3826         UBaseType_t ulState;
3827
3828         /* This must only be called from within a task. */
3829         portASSERT_IF_IN_ISR();
3830
3831         if( xSchedulerRunning != pdFALSE )
3832         {
3833             /* This must never be called from inside a critical section. */
3834             configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
3835
3836             /* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks.
3837              * We must disable interrupts before we grab the locks in the event that this task is
3838              * interrupted and switches context before incrementing uxSchedulerSuspended.
3839              * It is safe to re-enable interrupts after releasing the ISR lock and incrementing
3840              * uxSchedulerSuspended since that will prevent context switches. */
3841             ulState = portSET_INTERRUPT_MASK();
3842
3843             /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
3844              * do not otherwise exhibit real time behaviour. */
3845             portSOFTWARE_BARRIER();
3846
3847             portGET_TASK_LOCK();
3848
3849             /* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The
3850              * purpose is to prevent altering the variable when fromISR APIs are readying
3851              * it. */
3852             if( uxSchedulerSuspended == 0U )
3853             {
3854                 prvCheckForRunStateChange();
3855             }
3856             else
3857             {
3858                 mtCOVERAGE_TEST_MARKER();
3859             }
3860
3861             portGET_ISR_LOCK();
3862
3863             /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3864              * is used to allow calls to vTaskSuspendAll() to nest. */
3865             ++uxSchedulerSuspended;
3866             portRELEASE_ISR_LOCK();
3867
3868             portCLEAR_INTERRUPT_MASK( ulState );
3869         }
3870         else
3871         {
3872             mtCOVERAGE_TEST_MARKER();
3873         }
3874     }
3875     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3876
3877     traceRETURN_vTaskSuspendAll();
3878 }
3879
3880 /*----------------------------------------------------------*/
3881
3882 #if ( configUSE_TICKLESS_IDLE != 0 )
3883
3884     static TickType_t prvGetExpectedIdleTime( void )
3885     {
3886         TickType_t xReturn;
3887         UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
3888
3889         /* uxHigherPriorityReadyTasks takes care of the case where
3890          * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
3891          * task that are in the Ready state, even though the idle task is
3892          * running. */
3893         #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
3894         {
3895             if( uxTopReadyPriority > tskIDLE_PRIORITY )
3896             {
3897                 uxHigherPriorityReadyTasks = pdTRUE;
3898             }
3899         }
3900         #else
3901         {
3902             const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
3903
3904             /* When port optimised task selection is used the uxTopReadyPriority
3905              * variable is used as a bit map.  If bits other than the least
3906              * significant bit are set then there are tasks that have a priority
3907              * above the idle priority that are in the Ready state.  This takes
3908              * care of the case where the co-operative scheduler is in use. */
3909             if( uxTopReadyPriority > uxLeastSignificantBit )
3910             {
3911                 uxHigherPriorityReadyTasks = pdTRUE;
3912             }
3913         }
3914         #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
3915
3916         if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
3917         {
3918             xReturn = 0;
3919         }
3920         else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1U )
3921         {
3922             /* There are other idle priority tasks in the ready state.  If
3923              * time slicing is used then the very next tick interrupt must be
3924              * processed. */
3925             xReturn = 0;
3926         }
3927         else if( uxHigherPriorityReadyTasks != pdFALSE )
3928         {
3929             /* There are tasks in the Ready state that have a priority above the
3930              * idle priority.  This path can only be reached if
3931              * configUSE_PREEMPTION is 0. */
3932             xReturn = 0;
3933         }
3934         else
3935         {
3936             xReturn = xNextTaskUnblockTime;
3937             xReturn -= xTickCount;
3938         }
3939
3940         return xReturn;
3941     }
3942
3943 #endif /* configUSE_TICKLESS_IDLE */
3944 /*----------------------------------------------------------*/
3945
3946 BaseType_t xTaskResumeAll( void )
3947 {
3948     TCB_t * pxTCB = NULL;
3949     BaseType_t xAlreadyYielded = pdFALSE;
3950
3951     traceENTER_xTaskResumeAll();
3952
3953     #if ( configNUMBER_OF_CORES > 1 )
3954         if( xSchedulerRunning != pdFALSE )
3955     #endif
3956     {
3957         /* It is possible that an ISR caused a task to be removed from an event
3958          * list while the scheduler was suspended.  If this was the case then the
3959          * removed task will have been added to the xPendingReadyList.  Once the
3960          * scheduler has been resumed it is safe to move all the pending ready
3961          * tasks from this list into their appropriate ready list. */
3962         taskENTER_CRITICAL();
3963         {
3964             BaseType_t xCoreID;
3965             xCoreID = ( BaseType_t ) portGET_CORE_ID();
3966
3967             /* If uxSchedulerSuspended is zero then this function does not match a
3968              * previous call to vTaskSuspendAll(). */
3969             configASSERT( uxSchedulerSuspended != 0U );
3970
3971             uxSchedulerSuspended -= ( UBaseType_t ) 1U;
3972             portRELEASE_TASK_LOCK();
3973
3974             if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3975             {
3976                 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
3977                 {
3978                     /* Move any readied tasks from the pending list into the
3979                      * appropriate ready list. */
3980                     while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
3981                     {
3982                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
3983                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
3984                         /* coverity[misra_c_2012_rule_11_5_violation] */
3985                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
3986                         listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
3987                         portMEMORY_BARRIER();
3988                         listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
3989                         prvAddTaskToReadyList( pxTCB );
3990
3991                         #if ( configNUMBER_OF_CORES == 1 )
3992                         {
3993                             /* If the moved task has a priority higher than the current
3994                              * task then a yield must be performed. */
3995                             if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3996                             {
3997                                 xYieldPendings[ xCoreID ] = pdTRUE;
3998                             }
3999                             else
4000                             {
4001                                 mtCOVERAGE_TEST_MARKER();
4002                             }
4003                         }
4004                         #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4005                         {
4006                             /* All appropriate tasks yield at the moment a task is added to xPendingReadyList.
4007                              * If the current core yielded then vTaskSwitchContext() has already been called
4008                              * which sets xYieldPendings for the current core to pdTRUE. */
4009                         }
4010                         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4011                     }
4012
4013                     if( pxTCB != NULL )
4014                     {
4015                         /* A task was unblocked while the scheduler was suspended,
4016                          * which may have prevented the next unblock time from being
4017                          * re-calculated, in which case re-calculate it now.  Mainly
4018                          * important for low power tickless implementations, where
4019                          * this can prevent an unnecessary exit from low power
4020                          * state. */
4021                         prvResetNextTaskUnblockTime();
4022                     }
4023
4024                     /* If any ticks occurred while the scheduler was suspended then
4025                      * they should be processed now.  This ensures the tick count does
4026                      * not  slip, and that any delayed tasks are resumed at the correct
4027                      * time.
4028                      *
4029                      * It should be safe to call xTaskIncrementTick here from any core
4030                      * since we are in a critical section and xTaskIncrementTick itself
4031                      * protects itself within a critical section. Suspending the scheduler
4032                      * from any core causes xTaskIncrementTick to increment uxPendedCounts. */
4033                     {
4034                         TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
4035
4036                         if( xPendedCounts > ( TickType_t ) 0U )
4037                         {
4038                             do
4039                             {
4040                                 if( xTaskIncrementTick() != pdFALSE )
4041                                 {
4042                                     /* Other cores are interrupted from
4043                                      * within xTaskIncrementTick(). */
4044                                     xYieldPendings[ xCoreID ] = pdTRUE;
4045                                 }
4046                                 else
4047                                 {
4048                                     mtCOVERAGE_TEST_MARKER();
4049                                 }
4050
4051                                 --xPendedCounts;
4052                             } while( xPendedCounts > ( TickType_t ) 0U );
4053
4054                             xPendedTicks = 0;
4055                         }
4056                         else
4057                         {
4058                             mtCOVERAGE_TEST_MARKER();
4059                         }
4060                     }
4061
4062                     if( xYieldPendings[ xCoreID ] != pdFALSE )
4063                     {
4064                         #if ( configUSE_PREEMPTION != 0 )
4065                         {
4066                             xAlreadyYielded = pdTRUE;
4067                         }
4068                         #endif /* #if ( configUSE_PREEMPTION != 0 ) */
4069
4070                         #if ( configNUMBER_OF_CORES == 1 )
4071                         {
4072                             taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB );
4073                         }
4074                         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4075                     }
4076                     else
4077                     {
4078                         mtCOVERAGE_TEST_MARKER();
4079                     }
4080                 }
4081             }
4082             else
4083             {
4084                 mtCOVERAGE_TEST_MARKER();
4085             }
4086         }
4087         taskEXIT_CRITICAL();
4088     }
4089
4090     traceRETURN_xTaskResumeAll( xAlreadyYielded );
4091
4092     return xAlreadyYielded;
4093 }
4094 /*-----------------------------------------------------------*/
4095
4096 TickType_t xTaskGetTickCount( void )
4097 {
4098     TickType_t xTicks;
4099
4100     traceENTER_xTaskGetTickCount();
4101
4102     /* Critical section required if running on a 16 bit processor. */
4103     portTICK_TYPE_ENTER_CRITICAL();
4104     {
4105         xTicks = xTickCount;
4106     }
4107     portTICK_TYPE_EXIT_CRITICAL();
4108
4109     traceRETURN_xTaskGetTickCount( xTicks );
4110
4111     return xTicks;
4112 }
4113 /*-----------------------------------------------------------*/
4114
4115 TickType_t xTaskGetTickCountFromISR( void )
4116 {
4117     TickType_t xReturn;
4118     UBaseType_t uxSavedInterruptStatus;
4119
4120     traceENTER_xTaskGetTickCountFromISR();
4121
4122     /* RTOS ports that support interrupt nesting have the concept of a maximum
4123      * system call (or maximum API call) interrupt priority.  Interrupts that are
4124      * above the maximum system call priority are kept permanently enabled, even
4125      * when the RTOS kernel is in a critical section, but cannot make any calls to
4126      * FreeRTOS API functions.  If configASSERT() is defined in FreeRTOSConfig.h
4127      * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
4128      * failure if a FreeRTOS API function is called from an interrupt that has been
4129      * assigned a priority above the configured maximum system call priority.
4130      * Only FreeRTOS functions that end in FromISR can be called from interrupts
4131      * that have been assigned a priority at or (logically) below the maximum
4132      * system call  interrupt priority.  FreeRTOS maintains a separate interrupt
4133      * safe API to ensure interrupt entry is as fast and as simple as possible.
4134      * More information (albeit Cortex-M specific) is provided on the following
4135      * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
4136     portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
4137
4138     uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
4139     {
4140         xReturn = xTickCount;
4141     }
4142     portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
4143
4144     traceRETURN_xTaskGetTickCountFromISR( xReturn );
4145
4146     return xReturn;
4147 }
4148 /*-----------------------------------------------------------*/
4149
4150 UBaseType_t uxTaskGetNumberOfTasks( void )
4151 {
4152     traceENTER_uxTaskGetNumberOfTasks();
4153
4154     /* A critical section is not required because the variables are of type
4155      * BaseType_t. */
4156     traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks );
4157
4158     return uxCurrentNumberOfTasks;
4159 }
4160 /*-----------------------------------------------------------*/
4161
4162 char * pcTaskGetName( TaskHandle_t xTaskToQuery )
4163 {
4164     TCB_t * pxTCB;
4165
4166     traceENTER_pcTaskGetName( xTaskToQuery );
4167
4168     /* If null is passed in here then the name of the calling task is being
4169      * queried. */
4170     pxTCB = prvGetTCBFromHandle( xTaskToQuery );
4171     configASSERT( pxTCB );
4172
4173     traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) );
4174
4175     return &( pxTCB->pcTaskName[ 0 ] );
4176 }
4177 /*-----------------------------------------------------------*/
4178
4179 #if ( INCLUDE_xTaskGetHandle == 1 )
4180
4181     #if ( configNUMBER_OF_CORES == 1 )
4182         static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4183                                                          const char pcNameToQuery[] )
4184         {
4185             TCB_t * pxNextTCB;
4186             TCB_t * pxFirstTCB;
4187             TCB_t * pxReturn = NULL;
4188             UBaseType_t x;
4189             char cNextChar;
4190             BaseType_t xBreakLoop;
4191
4192             /* This function is called with the scheduler suspended. */
4193
4194             if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4195             {
4196                 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4197                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4198                 /* coverity[misra_c_2012_rule_11_5_violation] */
4199                 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
4200
4201                 do
4202                 {
4203                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
4204                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4205                     /* coverity[misra_c_2012_rule_11_5_violation] */
4206                     listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
4207
4208                     /* Check each character in the name looking for a match or
4209                      * mismatch. */
4210                     xBreakLoop = pdFALSE;
4211
4212                     for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4213                     {
4214                         cNextChar = pxNextTCB->pcTaskName[ x ];
4215
4216                         if( cNextChar != pcNameToQuery[ x ] )
4217                         {
4218                             /* Characters didn't match. */
4219                             xBreakLoop = pdTRUE;
4220                         }
4221                         else if( cNextChar == ( char ) 0x00 )
4222                         {
4223                             /* Both strings terminated, a match must have been
4224                              * found. */
4225                             pxReturn = pxNextTCB;
4226                             xBreakLoop = pdTRUE;
4227                         }
4228                         else
4229                         {
4230                             mtCOVERAGE_TEST_MARKER();
4231                         }
4232
4233                         if( xBreakLoop != pdFALSE )
4234                         {
4235                             break;
4236                         }
4237                     }
4238
4239                     if( pxReturn != NULL )
4240                     {
4241                         /* The handle has been found. */
4242                         break;
4243                     }
4244                 } while( pxNextTCB != pxFirstTCB );
4245             }
4246             else
4247             {
4248                 mtCOVERAGE_TEST_MARKER();
4249             }
4250
4251             return pxReturn;
4252         }
4253     #else /* if ( configNUMBER_OF_CORES == 1 ) */
4254         static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4255                                                          const char pcNameToQuery[] )
4256         {
4257             TCB_t * pxReturn = NULL;
4258             UBaseType_t x;
4259             char cNextChar;
4260             BaseType_t xBreakLoop;
4261             const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
4262             ListItem_t * pxIterator;
4263
4264             /* This function is called with the scheduler suspended. */
4265
4266             if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4267             {
4268                 for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
4269                 {
4270                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
4271                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4272                     /* coverity[misra_c_2012_rule_11_5_violation] */
4273                     TCB_t * pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
4274
4275                     /* Check each character in the name looking for a match or
4276                      * mismatch. */
4277                     xBreakLoop = pdFALSE;
4278
4279                     for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4280                     {
4281                         cNextChar = pxTCB->pcTaskName[ x ];
4282
4283                         if( cNextChar != pcNameToQuery[ x ] )
4284                         {
4285                             /* Characters didn't match. */
4286                             xBreakLoop = pdTRUE;
4287                         }
4288                         else if( cNextChar == ( char ) 0x00 )
4289                         {
4290                             /* Both strings terminated, a match must have been
4291                              * found. */
4292                             pxReturn = pxTCB;
4293                             xBreakLoop = pdTRUE;
4294                         }
4295                         else
4296                         {
4297                             mtCOVERAGE_TEST_MARKER();
4298                         }
4299
4300                         if( xBreakLoop != pdFALSE )
4301                         {
4302                             break;
4303                         }
4304                     }
4305
4306                     if( pxReturn != NULL )
4307                     {
4308                         /* The handle has been found. */
4309                         break;
4310                     }
4311                 }
4312             }
4313             else
4314             {
4315                 mtCOVERAGE_TEST_MARKER();
4316             }
4317
4318             return pxReturn;
4319         }
4320     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4321
4322 #endif /* INCLUDE_xTaskGetHandle */
4323 /*-----------------------------------------------------------*/
4324
4325 #if ( INCLUDE_xTaskGetHandle == 1 )
4326
4327     TaskHandle_t xTaskGetHandle( const char * pcNameToQuery )
4328     {
4329         UBaseType_t uxQueue = configMAX_PRIORITIES;
4330         TCB_t * pxTCB;
4331
4332         traceENTER_xTaskGetHandle( pcNameToQuery );
4333
4334         /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
4335         configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
4336
4337         vTaskSuspendAll();
4338         {
4339             /* Search the ready lists. */
4340             do
4341             {
4342                 uxQueue--;
4343                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
4344
4345                 if( pxTCB != NULL )
4346                 {
4347                     /* Found the handle. */
4348                     break;
4349                 }
4350             } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4351
4352             /* Search the delayed lists. */
4353             if( pxTCB == NULL )
4354             {
4355                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
4356             }
4357
4358             if( pxTCB == NULL )
4359             {
4360                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
4361             }
4362
4363             #if ( INCLUDE_vTaskSuspend == 1 )
4364             {
4365                 if( pxTCB == NULL )
4366                 {
4367                     /* Search the suspended list. */
4368                     pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
4369                 }
4370             }
4371             #endif
4372
4373             #if ( INCLUDE_vTaskDelete == 1 )
4374             {
4375                 if( pxTCB == NULL )
4376                 {
4377                     /* Search the deleted list. */
4378                     pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
4379                 }
4380             }
4381             #endif
4382         }
4383         ( void ) xTaskResumeAll();
4384
4385         traceRETURN_xTaskGetHandle( pxTCB );
4386
4387         return pxTCB;
4388     }
4389
4390 #endif /* INCLUDE_xTaskGetHandle */
4391 /*-----------------------------------------------------------*/
4392
4393 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
4394
4395     BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
4396                                       StackType_t ** ppuxStackBuffer,
4397                                       StaticTask_t ** ppxTaskBuffer )
4398     {
4399         BaseType_t xReturn;
4400         TCB_t * pxTCB;
4401
4402         traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer );
4403
4404         configASSERT( ppuxStackBuffer != NULL );
4405         configASSERT( ppxTaskBuffer != NULL );
4406
4407         pxTCB = prvGetTCBFromHandle( xTask );
4408
4409         #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
4410         {
4411             if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
4412             {
4413                 *ppuxStackBuffer = pxTCB->pxStack;
4414                 /* MISRA Ref 11.3.1 [Misaligned access] */
4415                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
4416                 /* coverity[misra_c_2012_rule_11_3_violation] */
4417                 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4418                 xReturn = pdTRUE;
4419             }
4420             else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
4421             {
4422                 *ppuxStackBuffer = pxTCB->pxStack;
4423                 *ppxTaskBuffer = NULL;
4424                 xReturn = pdTRUE;
4425             }
4426             else
4427             {
4428                 xReturn = pdFALSE;
4429             }
4430         }
4431         #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4432         {
4433             *ppuxStackBuffer = pxTCB->pxStack;
4434             *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4435             xReturn = pdTRUE;
4436         }
4437         #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4438
4439         traceRETURN_xTaskGetStaticBuffers( xReturn );
4440
4441         return xReturn;
4442     }
4443
4444 #endif /* configSUPPORT_STATIC_ALLOCATION */
4445 /*-----------------------------------------------------------*/
4446
4447 #if ( configUSE_TRACE_FACILITY == 1 )
4448
4449     UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
4450                                       const UBaseType_t uxArraySize,
4451                                       configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
4452     {
4453         UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
4454
4455         traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime );
4456
4457         vTaskSuspendAll();
4458         {
4459             /* Is there a space in the array for each task in the system? */
4460             if( uxArraySize >= uxCurrentNumberOfTasks )
4461             {
4462                 /* Fill in an TaskStatus_t structure with information on each
4463                  * task in the Ready state. */
4464                 do
4465                 {
4466                     uxQueue--;
4467                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) );
4468                 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4469
4470                 /* Fill in an TaskStatus_t structure with information on each
4471                  * task in the Blocked state. */
4472                 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) );
4473                 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) );
4474
4475                 #if ( INCLUDE_vTaskDelete == 1 )
4476                 {
4477                     /* Fill in an TaskStatus_t structure with information on
4478                      * each task that has been deleted but not yet cleaned up. */
4479                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) );
4480                 }
4481                 #endif
4482
4483                 #if ( INCLUDE_vTaskSuspend == 1 )
4484                 {
4485                     /* Fill in an TaskStatus_t structure with information on
4486                      * each task in the Suspended state. */
4487                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) );
4488                 }
4489                 #endif
4490
4491                 #if ( configGENERATE_RUN_TIME_STATS == 1 )
4492                 {
4493                     if( pulTotalRunTime != NULL )
4494                     {
4495                         #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
4496                             portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
4497                         #else
4498                             *pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
4499                         #endif
4500                     }
4501                 }
4502                 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4503                 {
4504                     if( pulTotalRunTime != NULL )
4505                     {
4506                         *pulTotalRunTime = 0;
4507                     }
4508                 }
4509                 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4510             }
4511             else
4512             {
4513                 mtCOVERAGE_TEST_MARKER();
4514             }
4515         }
4516         ( void ) xTaskResumeAll();
4517
4518         traceRETURN_uxTaskGetSystemState( uxTask );
4519
4520         return uxTask;
4521     }
4522
4523 #endif /* configUSE_TRACE_FACILITY */
4524 /*----------------------------------------------------------*/
4525
4526 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
4527
4528     #if ( configNUMBER_OF_CORES == 1 )
4529         TaskHandle_t xTaskGetIdleTaskHandle( void )
4530         {
4531             traceENTER_xTaskGetIdleTaskHandle();
4532
4533             /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4534              * started, then xIdleTaskHandles will be NULL. */
4535             configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) );
4536
4537             traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] );
4538
4539             return xIdleTaskHandles[ 0 ];
4540         }
4541     #endif /* if ( configNUMBER_OF_CORES == 1 ) */
4542
4543     TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID )
4544     {
4545         traceENTER_xTaskGetIdleTaskHandleForCore( xCoreID );
4546
4547         /* Ensure the core ID is valid. */
4548         configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
4549
4550         /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4551          * started, then xIdleTaskHandles will be NULL. */
4552         configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) );
4553
4554         traceRETURN_xTaskGetIdleTaskHandleForCore( xIdleTaskHandles[ xCoreID ] );
4555
4556         return xIdleTaskHandles[ xCoreID ];
4557     }
4558
4559 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
4560 /*----------------------------------------------------------*/
4561
4562 /* This conditional compilation should use inequality to 0, not equality to 1.
4563  * This is to ensure vTaskStepTick() is available when user defined low power mode
4564  * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
4565  * 1. */
4566 #if ( configUSE_TICKLESS_IDLE != 0 )
4567
4568     void vTaskStepTick( TickType_t xTicksToJump )
4569     {
4570         TickType_t xUpdatedTickCount;
4571
4572         traceENTER_vTaskStepTick( xTicksToJump );
4573
4574         /* Correct the tick count value after a period during which the tick
4575          * was suppressed.  Note this does *not* call the tick hook function for
4576          * each stepped tick. */
4577         xUpdatedTickCount = xTickCount + xTicksToJump;
4578         configASSERT( xUpdatedTickCount <= xNextTaskUnblockTime );
4579
4580         if( xUpdatedTickCount == xNextTaskUnblockTime )
4581         {
4582             /* Arrange for xTickCount to reach xNextTaskUnblockTime in
4583              * xTaskIncrementTick() when the scheduler resumes.  This ensures
4584              * that any delayed tasks are resumed at the correct time. */
4585             configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
4586             configASSERT( xTicksToJump != ( TickType_t ) 0 );
4587
4588             /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4589             taskENTER_CRITICAL();
4590             {
4591                 xPendedTicks++;
4592             }
4593             taskEXIT_CRITICAL();
4594             xTicksToJump--;
4595         }
4596         else
4597         {
4598             mtCOVERAGE_TEST_MARKER();
4599         }
4600
4601         xTickCount += xTicksToJump;
4602
4603         traceINCREASE_TICK_COUNT( xTicksToJump );
4604         traceRETURN_vTaskStepTick();
4605     }
4606
4607 #endif /* configUSE_TICKLESS_IDLE */
4608 /*----------------------------------------------------------*/
4609
4610 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
4611 {
4612     BaseType_t xYieldOccurred;
4613
4614     traceENTER_xTaskCatchUpTicks( xTicksToCatchUp );
4615
4616     /* Must not be called with the scheduler suspended as the implementation
4617      * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
4618     configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U );
4619
4620     /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
4621      * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
4622     vTaskSuspendAll();
4623
4624     /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4625     taskENTER_CRITICAL();
4626     {
4627         xPendedTicks += xTicksToCatchUp;
4628     }
4629     taskEXIT_CRITICAL();
4630     xYieldOccurred = xTaskResumeAll();
4631
4632     traceRETURN_xTaskCatchUpTicks( xYieldOccurred );
4633
4634     return xYieldOccurred;
4635 }
4636 /*----------------------------------------------------------*/
4637
4638 #if ( INCLUDE_xTaskAbortDelay == 1 )
4639
4640     BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
4641     {
4642         TCB_t * pxTCB = xTask;
4643         BaseType_t xReturn;
4644
4645         traceENTER_xTaskAbortDelay( xTask );
4646
4647         configASSERT( pxTCB );
4648
4649         vTaskSuspendAll();
4650         {
4651             /* A task can only be prematurely removed from the Blocked state if
4652              * it is actually in the Blocked state. */
4653             if( eTaskGetState( xTask ) == eBlocked )
4654             {
4655                 xReturn = pdPASS;
4656
4657                 /* Remove the reference to the task from the blocked list.  An
4658                  * interrupt won't touch the xStateListItem because the
4659                  * scheduler is suspended. */
4660                 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
4661
4662                 /* Is the task waiting on an event also?  If so remove it from
4663                  * the event list too.  Interrupts can touch the event list item,
4664                  * even though the scheduler is suspended, so a critical section
4665                  * is used. */
4666                 taskENTER_CRITICAL();
4667                 {
4668                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4669                     {
4670                         ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
4671
4672                         /* This lets the task know it was forcibly removed from the
4673                          * blocked state so it should not re-evaluate its block time and
4674                          * then block again. */
4675                         pxTCB->ucDelayAborted = ( uint8_t ) pdTRUE;
4676                     }
4677                     else
4678                     {
4679                         mtCOVERAGE_TEST_MARKER();
4680                     }
4681                 }
4682                 taskEXIT_CRITICAL();
4683
4684                 /* Place the unblocked task into the appropriate ready list. */
4685                 prvAddTaskToReadyList( pxTCB );
4686
4687                 /* A task being unblocked cannot cause an immediate context
4688                  * switch if preemption is turned off. */
4689                 #if ( configUSE_PREEMPTION == 1 )
4690                 {
4691                     #if ( configNUMBER_OF_CORES == 1 )
4692                     {
4693                         /* Preemption is on, but a context switch should only be
4694                          * performed if the unblocked task has a priority that is
4695                          * higher than the currently executing task. */
4696                         if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4697                         {
4698                             /* Pend the yield to be performed when the scheduler
4699                              * is unsuspended. */
4700                             xYieldPendings[ 0 ] = pdTRUE;
4701                         }
4702                         else
4703                         {
4704                             mtCOVERAGE_TEST_MARKER();
4705                         }
4706                     }
4707                     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4708                     {
4709                         taskENTER_CRITICAL();
4710                         {
4711                             prvYieldForTask( pxTCB );
4712                         }
4713                         taskEXIT_CRITICAL();
4714                     }
4715                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4716                 }
4717                 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4718             }
4719             else
4720             {
4721                 xReturn = pdFAIL;
4722             }
4723         }
4724         ( void ) xTaskResumeAll();
4725
4726         traceRETURN_xTaskAbortDelay( xReturn );
4727
4728         return xReturn;
4729     }
4730
4731 #endif /* INCLUDE_xTaskAbortDelay */
4732 /*----------------------------------------------------------*/
4733
4734 BaseType_t xTaskIncrementTick( void )
4735 {
4736     TCB_t * pxTCB;
4737     TickType_t xItemValue;
4738     BaseType_t xSwitchRequired = pdFALSE;
4739
4740     #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 )
4741     BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE };
4742     #endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
4743
4744     traceENTER_xTaskIncrementTick();
4745
4746     /* Called by the portable layer each time a tick interrupt occurs.
4747      * Increments the tick then checks to see if the new tick value will cause any
4748      * tasks to be unblocked. */
4749     traceTASK_INCREMENT_TICK( xTickCount );
4750
4751     /* Tick increment should occur on every kernel timer event. Core 0 has the
4752      * responsibility to increment the tick, or increment the pended ticks if the
4753      * scheduler is suspended.  If pended ticks is greater than zero, the core that
4754      * calls xTaskResumeAll has the responsibility to increment the tick. */
4755     if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
4756     {
4757         /* Minor optimisation.  The tick count cannot change in this
4758          * block. */
4759         const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
4760
4761         /* Increment the RTOS tick, switching the delayed and overflowed
4762          * delayed lists if it wraps to 0. */
4763         xTickCount = xConstTickCount;
4764
4765         if( xConstTickCount == ( TickType_t ) 0U )
4766         {
4767             taskSWITCH_DELAYED_LISTS();
4768         }
4769         else
4770         {
4771             mtCOVERAGE_TEST_MARKER();
4772         }
4773
4774         /* See if this tick has made a timeout expire.  Tasks are stored in
4775          * the  queue in the order of their wake time - meaning once one task
4776          * has been found whose block time has not expired there is no need to
4777          * look any further down the list. */
4778         if( xConstTickCount >= xNextTaskUnblockTime )
4779         {
4780             for( ; ; )
4781             {
4782                 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
4783                 {
4784                     /* The delayed list is empty.  Set xNextTaskUnblockTime
4785                      * to the maximum possible value so it is extremely
4786                      * unlikely that the
4787                      * if( xTickCount >= xNextTaskUnblockTime ) test will pass
4788                      * next time through. */
4789                     xNextTaskUnblockTime = portMAX_DELAY;
4790                     break;
4791                 }
4792                 else
4793                 {
4794                     /* The delayed list is not empty, get the value of the
4795                      * item at the head of the delayed list.  This is the time
4796                      * at which the task at the head of the delayed list must
4797                      * be removed from the Blocked state. */
4798                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
4799                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4800                     /* coverity[misra_c_2012_rule_11_5_violation] */
4801                     pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
4802                     xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
4803
4804                     if( xConstTickCount < xItemValue )
4805                     {
4806                         /* It is not time to unblock this item yet, but the
4807                          * item value is the time at which the task at the head
4808                          * of the blocked list must be removed from the Blocked
4809                          * state -  so record the item value in
4810                          * xNextTaskUnblockTime. */
4811                         xNextTaskUnblockTime = xItemValue;
4812                         break;
4813                     }
4814                     else
4815                     {
4816                         mtCOVERAGE_TEST_MARKER();
4817                     }
4818
4819                     /* It is time to remove the item from the Blocked state. */
4820                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
4821
4822                     /* Is the task waiting on an event also?  If so remove
4823                      * it from the event list. */
4824                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4825                     {
4826                         listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
4827                     }
4828                     else
4829                     {
4830                         mtCOVERAGE_TEST_MARKER();
4831                     }
4832
4833                     /* Place the unblocked task into the appropriate ready
4834                      * list. */
4835                     prvAddTaskToReadyList( pxTCB );
4836
4837                     /* A task being unblocked cannot cause an immediate
4838                      * context switch if preemption is turned off. */
4839                     #if ( configUSE_PREEMPTION == 1 )
4840                     {
4841                         #if ( configNUMBER_OF_CORES == 1 )
4842                         {
4843                             /* Preemption is on, but a context switch should
4844                              * only be performed if the unblocked task's
4845                              * priority is higher than the currently executing
4846                              * task.
4847                              * The case of equal priority tasks sharing
4848                              * processing time (which happens when both
4849                              * preemption and time slicing are on) is
4850                              * handled below.*/
4851                             if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4852                             {
4853                                 xSwitchRequired = pdTRUE;
4854                             }
4855                             else
4856                             {
4857                                 mtCOVERAGE_TEST_MARKER();
4858                             }
4859                         }
4860                         #else /* #if( configNUMBER_OF_CORES == 1 ) */
4861                         {
4862                             prvYieldForTask( pxTCB );
4863                         }
4864                         #endif /* #if( configNUMBER_OF_CORES == 1 ) */
4865                     }
4866                     #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4867                 }
4868             }
4869         }
4870
4871         /* Tasks of equal priority to the currently running task will share
4872          * processing time (time slice) if preemption is on, and the application
4873          * writer has not explicitly turned time slicing off. */
4874         #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
4875         {
4876             #if ( configNUMBER_OF_CORES == 1 )
4877             {
4878                 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > 1U )
4879                 {
4880                     xSwitchRequired = pdTRUE;
4881                 }
4882                 else
4883                 {
4884                     mtCOVERAGE_TEST_MARKER();
4885                 }
4886             }
4887             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4888             {
4889                 BaseType_t xCoreID;
4890
4891                 for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ )
4892                 {
4893                     if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1U )
4894                     {
4895                         xYieldRequiredForCore[ xCoreID ] = pdTRUE;
4896                     }
4897                     else
4898                     {
4899                         mtCOVERAGE_TEST_MARKER();
4900                     }
4901                 }
4902             }
4903             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4904         }
4905         #endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
4906
4907         #if ( configUSE_TICK_HOOK == 1 )
4908         {
4909             /* Guard against the tick hook being called when the pended tick
4910              * count is being unwound (when the scheduler is being unlocked). */
4911             if( xPendedTicks == ( TickType_t ) 0 )
4912             {
4913                 vApplicationTickHook();
4914             }
4915             else
4916             {
4917                 mtCOVERAGE_TEST_MARKER();
4918             }
4919         }
4920         #endif /* configUSE_TICK_HOOK */
4921
4922         #if ( configUSE_PREEMPTION == 1 )
4923         {
4924             #if ( configNUMBER_OF_CORES == 1 )
4925             {
4926                 /* For single core the core ID is always 0. */
4927                 if( xYieldPendings[ 0 ] != pdFALSE )
4928                 {
4929                     xSwitchRequired = pdTRUE;
4930                 }
4931                 else
4932                 {
4933                     mtCOVERAGE_TEST_MARKER();
4934                 }
4935             }
4936             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4937             {
4938                 BaseType_t xCoreID, xCurrentCoreID;
4939                 xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID();
4940
4941                 for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
4942                 {
4943                     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
4944                         if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
4945                     #endif
4946                     {
4947                         if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) )
4948                         {
4949                             if( xCoreID == xCurrentCoreID )
4950                             {
4951                                 xSwitchRequired = pdTRUE;
4952                             }
4953                             else
4954                             {
4955                                 prvYieldCore( xCoreID );
4956                             }
4957                         }
4958                         else
4959                         {
4960                             mtCOVERAGE_TEST_MARKER();
4961                         }
4962                     }
4963                 }
4964             }
4965             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4966         }
4967         #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4968     }
4969     else
4970     {
4971         xPendedTicks += 1U;
4972
4973         /* The tick hook gets called at regular intervals, even if the
4974          * scheduler is locked. */
4975         #if ( configUSE_TICK_HOOK == 1 )
4976         {
4977             vApplicationTickHook();
4978         }
4979         #endif
4980     }
4981
4982     traceRETURN_xTaskIncrementTick( xSwitchRequired );
4983
4984     return xSwitchRequired;
4985 }
4986 /*-----------------------------------------------------------*/
4987
4988 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4989
4990     void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
4991                                      TaskHookFunction_t pxHookFunction )
4992     {
4993         TCB_t * xTCB;
4994
4995         traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction );
4996
4997         /* If xTask is NULL then it is the task hook of the calling task that is
4998          * getting set. */
4999         if( xTask == NULL )
5000         {
5001             xTCB = ( TCB_t * ) pxCurrentTCB;
5002         }
5003         else
5004         {
5005             xTCB = xTask;
5006         }
5007
5008         /* Save the hook function in the TCB.  A critical section is required as
5009          * the value can be accessed from an interrupt. */
5010         taskENTER_CRITICAL();
5011         {
5012             xTCB->pxTaskTag = pxHookFunction;
5013         }
5014         taskEXIT_CRITICAL();
5015
5016         traceRETURN_vTaskSetApplicationTaskTag();
5017     }
5018
5019 #endif /* configUSE_APPLICATION_TASK_TAG */
5020 /*-----------------------------------------------------------*/
5021
5022 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5023
5024     TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
5025     {
5026         TCB_t * pxTCB;
5027         TaskHookFunction_t xReturn;
5028
5029         traceENTER_xTaskGetApplicationTaskTag( xTask );
5030
5031         /* If xTask is NULL then set the calling task's hook. */
5032         pxTCB = prvGetTCBFromHandle( xTask );
5033
5034         /* Save the hook function in the TCB.  A critical section is required as
5035          * the value can be accessed from an interrupt. */
5036         taskENTER_CRITICAL();
5037         {
5038             xReturn = pxTCB->pxTaskTag;
5039         }
5040         taskEXIT_CRITICAL();
5041
5042         traceRETURN_xTaskGetApplicationTaskTag( xReturn );
5043
5044         return xReturn;
5045     }
5046
5047 #endif /* configUSE_APPLICATION_TASK_TAG */
5048 /*-----------------------------------------------------------*/
5049
5050 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5051
5052     TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
5053     {
5054         TCB_t * pxTCB;
5055         TaskHookFunction_t xReturn;
5056         UBaseType_t uxSavedInterruptStatus;
5057
5058         traceENTER_xTaskGetApplicationTaskTagFromISR( xTask );
5059
5060         /* If xTask is NULL then set the calling task's hook. */
5061         pxTCB = prvGetTCBFromHandle( xTask );
5062
5063         /* Save the hook function in the TCB.  A critical section is required as
5064          * the value can be accessed from an interrupt. */
5065         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
5066         {
5067             xReturn = pxTCB->pxTaskTag;
5068         }
5069         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
5070
5071         traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn );
5072
5073         return xReturn;
5074     }
5075
5076 #endif /* configUSE_APPLICATION_TASK_TAG */
5077 /*-----------------------------------------------------------*/
5078
5079 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5080
5081     BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
5082                                              void * pvParameter )
5083     {
5084         TCB_t * xTCB;
5085         BaseType_t xReturn;
5086
5087         traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter );
5088
5089         /* If xTask is NULL then we are calling our own task hook. */
5090         if( xTask == NULL )
5091         {
5092             xTCB = pxCurrentTCB;
5093         }
5094         else
5095         {
5096             xTCB = xTask;
5097         }
5098
5099         if( xTCB->pxTaskTag != NULL )
5100         {
5101             xReturn = xTCB->pxTaskTag( pvParameter );
5102         }
5103         else
5104         {
5105             xReturn = pdFAIL;
5106         }
5107
5108         traceRETURN_xTaskCallApplicationTaskHook( xReturn );
5109
5110         return xReturn;
5111     }
5112
5113 #endif /* configUSE_APPLICATION_TASK_TAG */
5114 /*-----------------------------------------------------------*/
5115
5116 #if ( configNUMBER_OF_CORES == 1 )
5117     void vTaskSwitchContext( void )
5118     {
5119         traceENTER_vTaskSwitchContext();
5120
5121         if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5122         {
5123             /* The scheduler is currently suspended - do not allow a context
5124              * switch. */
5125             xYieldPendings[ 0 ] = pdTRUE;
5126         }
5127         else
5128         {
5129             xYieldPendings[ 0 ] = pdFALSE;
5130             traceTASK_SWITCHED_OUT();
5131
5132             #if ( configGENERATE_RUN_TIME_STATS == 1 )
5133             {
5134                 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5135                     portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] );
5136                 #else
5137                     ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE();
5138                 #endif
5139
5140                 /* Add the amount of time the task has been running to the
5141                  * accumulated time so far.  The time the task started running was
5142                  * stored in ulTaskSwitchedInTime.  Note that there is no overflow
5143                  * protection here so count values are only valid until the timer
5144                  * overflows.  The guard against negative values is to protect
5145                  * against suspect run time stat counter implementations - which
5146                  * are provided by the application, not the kernel. */
5147                 if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] )
5148                 {
5149                     pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] );
5150                 }
5151                 else
5152                 {
5153                     mtCOVERAGE_TEST_MARKER();
5154                 }
5155
5156                 ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ];
5157             }
5158             #endif /* configGENERATE_RUN_TIME_STATS */
5159
5160             /* Check for stack overflow, if configured. */
5161             taskCHECK_FOR_STACK_OVERFLOW();
5162
5163             /* Before the currently running task is switched out, save its errno. */
5164             #if ( configUSE_POSIX_ERRNO == 1 )
5165             {
5166                 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
5167             }
5168             #endif
5169
5170             /* Select a new task to run using either the generic C or port
5171              * optimised asm code. */
5172             /* MISRA Ref 11.5.3 [Void pointer assignment] */
5173             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5174             /* coverity[misra_c_2012_rule_11_5_violation] */
5175             taskSELECT_HIGHEST_PRIORITY_TASK();
5176             traceTASK_SWITCHED_IN();
5177
5178             /* Macro to inject port specific behaviour immediately after
5179              * switching tasks, such as setting an end of stack watchpoint
5180              * or reconfiguring the MPU. */
5181             portTASK_SWITCH_HOOK( pxCurrentTCB );
5182
5183             /* After the new task is switched in, update the global errno. */
5184             #if ( configUSE_POSIX_ERRNO == 1 )
5185             {
5186                 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
5187             }
5188             #endif
5189
5190             #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5191             {
5192                 /* Switch C-Runtime's TLS Block to point to the TLS
5193                  * Block specific to this task. */
5194                 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
5195             }
5196             #endif
5197         }
5198
5199         traceRETURN_vTaskSwitchContext();
5200     }
5201 #else /* if ( configNUMBER_OF_CORES == 1 ) */
5202     void vTaskSwitchContext( BaseType_t xCoreID )
5203     {
5204         traceENTER_vTaskSwitchContext();
5205
5206         /* Acquire both locks:
5207          * - The ISR lock protects the ready list from simultaneous access by
5208          *   both other ISRs and tasks.
5209          * - We also take the task lock to pause here in case another core has
5210          *   suspended the scheduler. We don't want to simply set xYieldPending
5211          *   and move on if another core suspended the scheduler. We should only
5212          *   do that if the current core has suspended the scheduler. */
5213
5214         portGET_TASK_LOCK(); /* Must always acquire the task lock first. */
5215         portGET_ISR_LOCK();
5216         {
5217             /* vTaskSwitchContext() must never be called from within a critical section.
5218              * This is not necessarily true for single core FreeRTOS, but it is for this
5219              * SMP port. */
5220             configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
5221
5222             if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5223             {
5224                 /* The scheduler is currently suspended - do not allow a context
5225                  * switch. */
5226                 xYieldPendings[ xCoreID ] = pdTRUE;
5227             }
5228             else
5229             {
5230                 xYieldPendings[ xCoreID ] = pdFALSE;
5231                 traceTASK_SWITCHED_OUT();
5232
5233                 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5234                 {
5235                     #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5236                         portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] );
5237                     #else
5238                         ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE();
5239                     #endif
5240
5241                     /* Add the amount of time the task has been running to the
5242                      * accumulated time so far.  The time the task started running was
5243                      * stored in ulTaskSwitchedInTime.  Note that there is no overflow
5244                      * protection here so count values are only valid until the timer
5245                      * overflows.  The guard against negative values is to protect
5246                      * against suspect run time stat counter implementations - which
5247                      * are provided by the application, not the kernel. */
5248                     if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] )
5249                     {
5250                         pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] );
5251                     }
5252                     else
5253                     {
5254                         mtCOVERAGE_TEST_MARKER();
5255                     }
5256
5257                     ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ];
5258                 }
5259                 #endif /* configGENERATE_RUN_TIME_STATS */
5260
5261                 /* Check for stack overflow, if configured. */
5262                 taskCHECK_FOR_STACK_OVERFLOW();
5263
5264                 /* Before the currently running task is switched out, save its errno. */
5265                 #if ( configUSE_POSIX_ERRNO == 1 )
5266                 {
5267                     pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno;
5268                 }
5269                 #endif
5270
5271                 /* Select a new task to run. */
5272                 taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID );
5273                 traceTASK_SWITCHED_IN();
5274
5275                 /* Macro to inject port specific behaviour immediately after
5276                  * switching tasks, such as setting an end of stack watchpoint
5277                  * or reconfiguring the MPU. */
5278                 portTASK_SWITCH_HOOK( pxCurrentTCBs[ portGET_CORE_ID() ] );
5279
5280                 /* After the new task is switched in, update the global errno. */
5281                 #if ( configUSE_POSIX_ERRNO == 1 )
5282                 {
5283                     FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno;
5284                 }
5285                 #endif
5286
5287                 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5288                 {
5289                     /* Switch C-Runtime's TLS Block to point to the TLS
5290                      * Block specific to this task. */
5291                     configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock );
5292                 }
5293                 #endif
5294             }
5295         }
5296         portRELEASE_ISR_LOCK();
5297         portRELEASE_TASK_LOCK();
5298
5299         traceRETURN_vTaskSwitchContext();
5300     }
5301 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
5302 /*-----------------------------------------------------------*/
5303
5304 void vTaskPlaceOnEventList( List_t * const pxEventList,
5305                             const TickType_t xTicksToWait )
5306 {
5307     traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait );
5308
5309     configASSERT( pxEventList );
5310
5311     /* THIS FUNCTION MUST BE CALLED WITH THE
5312      * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
5313
5314     /* Place the event list item of the TCB in the appropriate event list.
5315      * This is placed in the list in priority order so the highest priority task
5316      * is the first to be woken by the event.
5317      *
5318      * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
5319      * Normally, the xItemValue of a TCB's ListItem_t members is:
5320      *      xItemValue = ( configMAX_PRIORITIES - uxPriority )
5321      * Therefore, the event list is sorted in descending priority order.
5322      *
5323      * The queue that contains the event list is locked, preventing
5324      * simultaneous access from interrupts. */
5325     vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5326
5327     prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5328
5329     traceRETURN_vTaskPlaceOnEventList();
5330 }
5331 /*-----------------------------------------------------------*/
5332
5333 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
5334                                      const TickType_t xItemValue,
5335                                      const TickType_t xTicksToWait )
5336 {
5337     traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait );
5338
5339     configASSERT( pxEventList );
5340
5341     /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
5342      * the event groups implementation. */
5343     configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5344
5345     /* Store the item value in the event list item.  It is safe to access the
5346      * event list item here as interrupts won't access the event list item of a
5347      * task that is not in the Blocked state. */
5348     listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5349
5350     /* Place the event list item of the TCB at the end of the appropriate event
5351      * list.  It is safe to access the event list here because it is part of an
5352      * event group implementation - and interrupts don't access event groups
5353      * directly (instead they access them indirectly by pending function calls to
5354      * the task level). */
5355     listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5356
5357     prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5358
5359     traceRETURN_vTaskPlaceOnUnorderedEventList();
5360 }
5361 /*-----------------------------------------------------------*/
5362
5363 #if ( configUSE_TIMERS == 1 )
5364
5365     void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
5366                                           TickType_t xTicksToWait,
5367                                           const BaseType_t xWaitIndefinitely )
5368     {
5369         traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely );
5370
5371         configASSERT( pxEventList );
5372
5373         /* This function should not be called by application code hence the
5374          * 'Restricted' in its name.  It is not part of the public API.  It is
5375          * designed for use by kernel code, and has special calling requirements -
5376          * it should be called with the scheduler suspended. */
5377
5378
5379         /* Place the event list item of the TCB in the appropriate event list.
5380          * In this case it is assume that this is the only task that is going to
5381          * be waiting on this event list, so the faster vListInsertEnd() function
5382          * can be used in place of vListInsert. */
5383         listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5384
5385         /* If the task should block indefinitely then set the block time to a
5386          * value that will be recognised as an indefinite delay inside the
5387          * prvAddCurrentTaskToDelayedList() function. */
5388         if( xWaitIndefinitely != pdFALSE )
5389         {
5390             xTicksToWait = portMAX_DELAY;
5391         }
5392
5393         traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
5394         prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
5395
5396         traceRETURN_vTaskPlaceOnEventListRestricted();
5397     }
5398
5399 #endif /* configUSE_TIMERS */
5400 /*-----------------------------------------------------------*/
5401
5402 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
5403 {
5404     TCB_t * pxUnblockedTCB;
5405     BaseType_t xReturn;
5406
5407     traceENTER_xTaskRemoveFromEventList( pxEventList );
5408
5409     /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION.  It can also be
5410      * called from a critical section within an ISR. */
5411
5412     /* The event list is sorted in priority order, so the first in the list can
5413      * be removed as it is known to be the highest priority.  Remove the TCB from
5414      * the delayed list, and add it to the ready list.
5415      *
5416      * If an event is for a queue that is locked then this function will never
5417      * get called - the lock count on the queue will get modified instead.  This
5418      * means exclusive access to the event list is guaranteed here.
5419      *
5420      * This function assumes that a check has already been made to ensure that
5421      * pxEventList is not empty. */
5422     /* MISRA Ref 11.5.3 [Void pointer assignment] */
5423     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5424     /* coverity[misra_c_2012_rule_11_5_violation] */
5425     pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
5426     configASSERT( pxUnblockedTCB );
5427     listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
5428
5429     if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
5430     {
5431         listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5432         prvAddTaskToReadyList( pxUnblockedTCB );
5433
5434         #if ( configUSE_TICKLESS_IDLE != 0 )
5435         {
5436             /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5437              * might be set to the blocked task's time out time.  If the task is
5438              * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5439              * normally left unchanged, because it is automatically reset to a new
5440              * value when the tick count equals xNextTaskUnblockTime.  However if
5441              * tickless idling is used it might be more important to enter sleep mode
5442              * at the earliest possible time - so reset xNextTaskUnblockTime here to
5443              * ensure it is updated at the earliest possible time. */
5444             prvResetNextTaskUnblockTime();
5445         }
5446         #endif
5447     }
5448     else
5449     {
5450         /* The delayed and ready lists cannot be accessed, so hold this task
5451          * pending until the scheduler is resumed. */
5452         listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
5453     }
5454
5455     #if ( configNUMBER_OF_CORES == 1 )
5456     {
5457         if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5458         {
5459             /* Return true if the task removed from the event list has a higher
5460              * priority than the calling task.  This allows the calling task to know if
5461              * it should force a context switch now. */
5462             xReturn = pdTRUE;
5463
5464             /* Mark that a yield is pending in case the user is not using the
5465              * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
5466             xYieldPendings[ 0 ] = pdTRUE;
5467         }
5468         else
5469         {
5470             xReturn = pdFALSE;
5471         }
5472     }
5473     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5474     {
5475         xReturn = pdFALSE;
5476
5477         #if ( configUSE_PREEMPTION == 1 )
5478         {
5479             prvYieldForTask( pxUnblockedTCB );
5480
5481             if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5482             {
5483                 xReturn = pdTRUE;
5484             }
5485         }
5486         #endif /* #if ( configUSE_PREEMPTION == 1 ) */
5487     }
5488     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5489
5490     traceRETURN_xTaskRemoveFromEventList( xReturn );
5491     return xReturn;
5492 }
5493 /*-----------------------------------------------------------*/
5494
5495 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
5496                                         const TickType_t xItemValue )
5497 {
5498     TCB_t * pxUnblockedTCB;
5499
5500     traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue );
5501
5502     /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
5503      * the event flags implementation. */
5504     configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5505
5506     /* Store the new item value in the event list. */
5507     listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5508
5509     /* Remove the event list form the event flag.  Interrupts do not access
5510      * event flags. */
5511     /* MISRA Ref 11.5.3 [Void pointer assignment] */
5512     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5513     /* coverity[misra_c_2012_rule_11_5_violation] */
5514     pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem );
5515     configASSERT( pxUnblockedTCB );
5516     listREMOVE_ITEM( pxEventListItem );
5517
5518     #if ( configUSE_TICKLESS_IDLE != 0 )
5519     {
5520         /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5521          * might be set to the blocked task's time out time.  If the task is
5522          * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5523          * normally left unchanged, because it is automatically reset to a new
5524          * value when the tick count equals xNextTaskUnblockTime.  However if
5525          * tickless idling is used it might be more important to enter sleep mode
5526          * at the earliest possible time - so reset xNextTaskUnblockTime here to
5527          * ensure it is updated at the earliest possible time. */
5528         prvResetNextTaskUnblockTime();
5529     }
5530     #endif
5531
5532     /* Remove the task from the delayed list and add it to the ready list.  The
5533      * scheduler is suspended so interrupts will not be accessing the ready
5534      * lists. */
5535     listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5536     prvAddTaskToReadyList( pxUnblockedTCB );
5537
5538     #if ( configNUMBER_OF_CORES == 1 )
5539     {
5540         if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5541         {
5542             /* The unblocked task has a priority above that of the calling task, so
5543              * a context switch is required.  This function is called with the
5544              * scheduler suspended so xYieldPending is set so the context switch
5545              * occurs immediately that the scheduler is resumed (unsuspended). */
5546             xYieldPendings[ 0 ] = pdTRUE;
5547         }
5548     }
5549     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5550     {
5551         #if ( configUSE_PREEMPTION == 1 )
5552         {
5553             taskENTER_CRITICAL();
5554             {
5555                 prvYieldForTask( pxUnblockedTCB );
5556             }
5557             taskEXIT_CRITICAL();
5558         }
5559         #endif
5560     }
5561     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5562
5563     traceRETURN_vTaskRemoveFromUnorderedEventList();
5564 }
5565 /*-----------------------------------------------------------*/
5566
5567 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
5568 {
5569     traceENTER_vTaskSetTimeOutState( pxTimeOut );
5570
5571     configASSERT( pxTimeOut );
5572     taskENTER_CRITICAL();
5573     {
5574         pxTimeOut->xOverflowCount = xNumOfOverflows;
5575         pxTimeOut->xTimeOnEntering = xTickCount;
5576     }
5577     taskEXIT_CRITICAL();
5578
5579     traceRETURN_vTaskSetTimeOutState();
5580 }
5581 /*-----------------------------------------------------------*/
5582
5583 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
5584 {
5585     traceENTER_vTaskInternalSetTimeOutState( pxTimeOut );
5586
5587     /* For internal use only as it does not use a critical section. */
5588     pxTimeOut->xOverflowCount = xNumOfOverflows;
5589     pxTimeOut->xTimeOnEntering = xTickCount;
5590
5591     traceRETURN_vTaskInternalSetTimeOutState();
5592 }
5593 /*-----------------------------------------------------------*/
5594
5595 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
5596                                  TickType_t * const pxTicksToWait )
5597 {
5598     BaseType_t xReturn;
5599
5600     traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait );
5601
5602     configASSERT( pxTimeOut );
5603     configASSERT( pxTicksToWait );
5604
5605     taskENTER_CRITICAL();
5606     {
5607         /* Minor optimisation.  The tick count cannot change in this block. */
5608         const TickType_t xConstTickCount = xTickCount;
5609         const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
5610
5611         #if ( INCLUDE_xTaskAbortDelay == 1 )
5612             if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
5613             {
5614                 /* The delay was aborted, which is not the same as a time out,
5615                  * but has the same result. */
5616                 pxCurrentTCB->ucDelayAborted = ( uint8_t ) pdFALSE;
5617                 xReturn = pdTRUE;
5618             }
5619             else
5620         #endif
5621
5622         #if ( INCLUDE_vTaskSuspend == 1 )
5623             if( *pxTicksToWait == portMAX_DELAY )
5624             {
5625                 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
5626                  * specified is the maximum block time then the task should block
5627                  * indefinitely, and therefore never time out. */
5628                 xReturn = pdFALSE;
5629             }
5630             else
5631         #endif
5632
5633         if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) )
5634         {
5635             /* The tick count is greater than the time at which
5636              * vTaskSetTimeout() was called, but has also overflowed since
5637              * vTaskSetTimeOut() was called.  It must have wrapped all the way
5638              * around and gone past again. This passed since vTaskSetTimeout()
5639              * was called. */
5640             xReturn = pdTRUE;
5641             *pxTicksToWait = ( TickType_t ) 0;
5642         }
5643         else if( xElapsedTime < *pxTicksToWait )
5644         {
5645             /* Not a genuine timeout. Adjust parameters for time remaining. */
5646             *pxTicksToWait -= xElapsedTime;
5647             vTaskInternalSetTimeOutState( pxTimeOut );
5648             xReturn = pdFALSE;
5649         }
5650         else
5651         {
5652             *pxTicksToWait = ( TickType_t ) 0;
5653             xReturn = pdTRUE;
5654         }
5655     }
5656     taskEXIT_CRITICAL();
5657
5658     traceRETURN_xTaskCheckForTimeOut( xReturn );
5659
5660     return xReturn;
5661 }
5662 /*-----------------------------------------------------------*/
5663
5664 void vTaskMissedYield( void )
5665 {
5666     traceENTER_vTaskMissedYield();
5667
5668     /* Must be called from within a critical section. */
5669     xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
5670
5671     traceRETURN_vTaskMissedYield();
5672 }
5673 /*-----------------------------------------------------------*/
5674
5675 #if ( configUSE_TRACE_FACILITY == 1 )
5676
5677     UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
5678     {
5679         UBaseType_t uxReturn;
5680         TCB_t const * pxTCB;
5681
5682         traceENTER_uxTaskGetTaskNumber( xTask );
5683
5684         if( xTask != NULL )
5685         {
5686             pxTCB = xTask;
5687             uxReturn = pxTCB->uxTaskNumber;
5688         }
5689         else
5690         {
5691             uxReturn = 0U;
5692         }
5693
5694         traceRETURN_uxTaskGetTaskNumber( uxReturn );
5695
5696         return uxReturn;
5697     }
5698
5699 #endif /* configUSE_TRACE_FACILITY */
5700 /*-----------------------------------------------------------*/
5701
5702 #if ( configUSE_TRACE_FACILITY == 1 )
5703
5704     void vTaskSetTaskNumber( TaskHandle_t xTask,
5705                              const UBaseType_t uxHandle )
5706     {
5707         TCB_t * pxTCB;
5708
5709         traceENTER_vTaskSetTaskNumber( xTask, uxHandle );
5710
5711         if( xTask != NULL )
5712         {
5713             pxTCB = xTask;
5714             pxTCB->uxTaskNumber = uxHandle;
5715         }
5716
5717         traceRETURN_vTaskSetTaskNumber();
5718     }
5719
5720 #endif /* configUSE_TRACE_FACILITY */
5721 /*-----------------------------------------------------------*/
5722
5723 /*
5724  * -----------------------------------------------------------
5725  * The passive idle task.
5726  * ----------------------------------------------------------
5727  *
5728  * The passive idle task is used for all the additional cores in a SMP
5729  * system. There must be only 1 active idle task and the rest are passive
5730  * idle tasks.
5731  *
5732  * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5733  * language extensions.  The equivalent prototype for this function is:
5734  *
5735  * void prvPassiveIdleTask( void *pvParameters );
5736  */
5737
5738 #if ( configNUMBER_OF_CORES > 1 )
5739     static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters )
5740     {
5741         ( void ) pvParameters;
5742
5743         taskYIELD();
5744
5745         for( ; configCONTROL_INFINITE_LOOP(); )
5746         {
5747             #if ( configUSE_PREEMPTION == 0 )
5748             {
5749                 /* If we are not using preemption we keep forcing a task switch to
5750                  * see if any other task has become available.  If we are using
5751                  * preemption we don't need to do this as any task becoming available
5752                  * will automatically get the processor anyway. */
5753                 taskYIELD();
5754             }
5755             #endif /* configUSE_PREEMPTION */
5756
5757             #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5758             {
5759                 /* When using preemption tasks of equal priority will be
5760                  * timesliced.  If a task that is sharing the idle priority is ready
5761                  * to run then the idle task should yield before the end of the
5762                  * timeslice.
5763                  *
5764                  * A critical region is not required here as we are just reading from
5765                  * the list, and an occasional incorrect value will not matter.  If
5766                  * the ready list at the idle priority contains one more task than the
5767                  * number of idle tasks, which is equal to the configured numbers of cores
5768                  * then a task other than the idle task is ready to execute. */
5769                 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5770                 {
5771                     taskYIELD();
5772                 }
5773                 else
5774                 {
5775                     mtCOVERAGE_TEST_MARKER();
5776                 }
5777             }
5778             #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5779
5780             #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
5781             {
5782                 /* Call the user defined function from within the idle task.  This
5783                  * allows the application designer to add background functionality
5784                  * without the overhead of a separate task.
5785                  *
5786                  * This hook is intended to manage core activity such as disabling cores that go idle.
5787                  *
5788                  * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5789                  * CALL A FUNCTION THAT MIGHT BLOCK. */
5790                 vApplicationPassiveIdleHook();
5791             }
5792             #endif /* configUSE_PASSIVE_IDLE_HOOK */
5793         }
5794     }
5795 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5796
5797 /*
5798  * -----------------------------------------------------------
5799  * The idle task.
5800  * ----------------------------------------------------------
5801  *
5802  * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5803  * language extensions.  The equivalent prototype for this function is:
5804  *
5805  * void prvIdleTask( void *pvParameters );
5806  *
5807  */
5808
5809 static portTASK_FUNCTION( prvIdleTask, pvParameters )
5810 {
5811     /* Stop warnings. */
5812     ( void ) pvParameters;
5813
5814     /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
5815      * SCHEDULER IS STARTED. **/
5816
5817     /* In case a task that has a secure context deletes itself, in which case
5818      * the idle task is responsible for deleting the task's secure context, if
5819      * any. */
5820     portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
5821
5822     #if ( configNUMBER_OF_CORES > 1 )
5823     {
5824         /* SMP all cores start up in the idle task. This initial yield gets the application
5825          * tasks started. */
5826         taskYIELD();
5827     }
5828     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5829
5830     for( ; configCONTROL_INFINITE_LOOP(); )
5831     {
5832         /* See if any tasks have deleted themselves - if so then the idle task
5833          * is responsible for freeing the deleted task's TCB and stack. */
5834         prvCheckTasksWaitingTermination();
5835
5836         #if ( configUSE_PREEMPTION == 0 )
5837         {
5838             /* If we are not using preemption we keep forcing a task switch to
5839              * see if any other task has become available.  If we are using
5840              * preemption we don't need to do this as any task becoming available
5841              * will automatically get the processor anyway. */
5842             taskYIELD();
5843         }
5844         #endif /* configUSE_PREEMPTION */
5845
5846         #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5847         {
5848             /* When using preemption tasks of equal priority will be
5849              * timesliced.  If a task that is sharing the idle priority is ready
5850              * to run then the idle task should yield before the end of the
5851              * timeslice.
5852              *
5853              * A critical region is not required here as we are just reading from
5854              * the list, and an occasional incorrect value will not matter.  If
5855              * the ready list at the idle priority contains one more task than the
5856              * number of idle tasks, which is equal to the configured numbers of cores
5857              * then a task other than the idle task is ready to execute. */
5858             if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5859             {
5860                 taskYIELD();
5861             }
5862             else
5863             {
5864                 mtCOVERAGE_TEST_MARKER();
5865             }
5866         }
5867         #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5868
5869         #if ( configUSE_IDLE_HOOK == 1 )
5870         {
5871             /* Call the user defined function from within the idle task. */
5872             vApplicationIdleHook();
5873         }
5874         #endif /* configUSE_IDLE_HOOK */
5875
5876         /* This conditional compilation should use inequality to 0, not equality
5877          * to 1.  This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
5878          * user defined low power mode  implementations require
5879          * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
5880         #if ( configUSE_TICKLESS_IDLE != 0 )
5881         {
5882             TickType_t xExpectedIdleTime;
5883
5884             /* It is not desirable to suspend then resume the scheduler on
5885              * each iteration of the idle task.  Therefore, a preliminary
5886              * test of the expected idle time is performed without the
5887              * scheduler suspended.  The result here is not necessarily
5888              * valid. */
5889             xExpectedIdleTime = prvGetExpectedIdleTime();
5890
5891             if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5892             {
5893                 vTaskSuspendAll();
5894                 {
5895                     /* Now the scheduler is suspended, the expected idle
5896                      * time can be sampled again, and this time its value can
5897                      * be used. */
5898                     configASSERT( xNextTaskUnblockTime >= xTickCount );
5899                     xExpectedIdleTime = prvGetExpectedIdleTime();
5900
5901                     /* Define the following macro to set xExpectedIdleTime to 0
5902                      * if the application does not want
5903                      * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
5904                     configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
5905
5906                     if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5907                     {
5908                         traceLOW_POWER_IDLE_BEGIN();
5909                         portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
5910                         traceLOW_POWER_IDLE_END();
5911                     }
5912                     else
5913                     {
5914                         mtCOVERAGE_TEST_MARKER();
5915                     }
5916                 }
5917                 ( void ) xTaskResumeAll();
5918             }
5919             else
5920             {
5921                 mtCOVERAGE_TEST_MARKER();
5922             }
5923         }
5924         #endif /* configUSE_TICKLESS_IDLE */
5925
5926         #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) )
5927         {
5928             /* Call the user defined function from within the idle task.  This
5929              * allows the application designer to add background functionality
5930              * without the overhead of a separate task.
5931              *
5932              * This hook is intended to manage core activity such as disabling cores that go idle.
5933              *
5934              * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5935              * CALL A FUNCTION THAT MIGHT BLOCK. */
5936             vApplicationPassiveIdleHook();
5937         }
5938         #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */
5939     }
5940 }
5941 /*-----------------------------------------------------------*/
5942
5943 #if ( configUSE_TICKLESS_IDLE != 0 )
5944
5945     eSleepModeStatus eTaskConfirmSleepModeStatus( void )
5946     {
5947         #if ( INCLUDE_vTaskSuspend == 1 )
5948             /* The idle task exists in addition to the application tasks. */
5949             const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES;
5950         #endif /* INCLUDE_vTaskSuspend */
5951
5952         eSleepModeStatus eReturn = eStandardSleep;
5953
5954         traceENTER_eTaskConfirmSleepModeStatus();
5955
5956         /* This function must be called from a critical section. */
5957
5958         if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0U )
5959         {
5960             /* A task was made ready while the scheduler was suspended. */
5961             eReturn = eAbortSleep;
5962         }
5963         else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5964         {
5965             /* A yield was pended while the scheduler was suspended. */
5966             eReturn = eAbortSleep;
5967         }
5968         else if( xPendedTicks != 0U )
5969         {
5970             /* A tick interrupt has already occurred but was held pending
5971              * because the scheduler is suspended. */
5972             eReturn = eAbortSleep;
5973         }
5974
5975         #if ( INCLUDE_vTaskSuspend == 1 )
5976             else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
5977             {
5978                 /* If all the tasks are in the suspended list (which might mean they
5979                  * have an infinite block time rather than actually being suspended)
5980                  * then it is safe to turn all clocks off and just wait for external
5981                  * interrupts. */
5982                 eReturn = eNoTasksWaitingTimeout;
5983             }
5984         #endif /* INCLUDE_vTaskSuspend */
5985         else
5986         {
5987             mtCOVERAGE_TEST_MARKER();
5988         }
5989
5990         traceRETURN_eTaskConfirmSleepModeStatus( eReturn );
5991
5992         return eReturn;
5993     }
5994
5995 #endif /* configUSE_TICKLESS_IDLE */
5996 /*-----------------------------------------------------------*/
5997
5998 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5999
6000     void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
6001                                             BaseType_t xIndex,
6002                                             void * pvValue )
6003     {
6004         TCB_t * pxTCB;
6005
6006         traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue );
6007
6008         if( ( xIndex >= 0 ) &&
6009             ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
6010         {
6011             pxTCB = prvGetTCBFromHandle( xTaskToSet );
6012             configASSERT( pxTCB != NULL );
6013             pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
6014         }
6015
6016         traceRETURN_vTaskSetThreadLocalStoragePointer();
6017     }
6018
6019 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
6020 /*-----------------------------------------------------------*/
6021
6022 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
6023
6024     void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
6025                                                BaseType_t xIndex )
6026     {
6027         void * pvReturn = NULL;
6028         TCB_t * pxTCB;
6029
6030         traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex );
6031
6032         if( ( xIndex >= 0 ) &&
6033             ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
6034         {
6035             pxTCB = prvGetTCBFromHandle( xTaskToQuery );
6036             pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
6037         }
6038         else
6039         {
6040             pvReturn = NULL;
6041         }
6042
6043         traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn );
6044
6045         return pvReturn;
6046     }
6047
6048 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
6049 /*-----------------------------------------------------------*/
6050
6051 #if ( portUSING_MPU_WRAPPERS == 1 )
6052
6053     void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
6054                                   const MemoryRegion_t * const pxRegions )
6055     {
6056         TCB_t * pxTCB;
6057
6058         traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions );
6059
6060         /* If null is passed in here then we are modifying the MPU settings of
6061          * the calling task. */
6062         pxTCB = prvGetTCBFromHandle( xTaskToModify );
6063
6064         vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 );
6065
6066         traceRETURN_vTaskAllocateMPURegions();
6067     }
6068
6069 #endif /* portUSING_MPU_WRAPPERS */
6070 /*-----------------------------------------------------------*/
6071
6072 static void prvInitialiseTaskLists( void )
6073 {
6074     UBaseType_t uxPriority;
6075
6076     for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
6077     {
6078         vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
6079     }
6080
6081     vListInitialise( &xDelayedTaskList1 );
6082     vListInitialise( &xDelayedTaskList2 );
6083     vListInitialise( &xPendingReadyList );
6084
6085     #if ( INCLUDE_vTaskDelete == 1 )
6086     {
6087         vListInitialise( &xTasksWaitingTermination );
6088     }
6089     #endif /* INCLUDE_vTaskDelete */
6090
6091     #if ( INCLUDE_vTaskSuspend == 1 )
6092     {
6093         vListInitialise( &xSuspendedTaskList );
6094     }
6095     #endif /* INCLUDE_vTaskSuspend */
6096
6097     /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
6098      * using list2. */
6099     pxDelayedTaskList = &xDelayedTaskList1;
6100     pxOverflowDelayedTaskList = &xDelayedTaskList2;
6101 }
6102 /*-----------------------------------------------------------*/
6103
6104 static void prvCheckTasksWaitingTermination( void )
6105 {
6106     /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
6107
6108     #if ( INCLUDE_vTaskDelete == 1 )
6109     {
6110         TCB_t * pxTCB;
6111
6112         /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
6113          * being called too often in the idle task. */
6114         while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6115         {
6116             #if ( configNUMBER_OF_CORES == 1 )
6117             {
6118                 taskENTER_CRITICAL();
6119                 {
6120                     {
6121                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
6122                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6123                         /* coverity[misra_c_2012_rule_11_5_violation] */
6124                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6125                         ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6126                         --uxCurrentNumberOfTasks;
6127                         --uxDeletedTasksWaitingCleanUp;
6128                     }
6129                 }
6130                 taskEXIT_CRITICAL();
6131
6132                 prvDeleteTCB( pxTCB );
6133             }
6134             #else /* #if( configNUMBER_OF_CORES == 1 ) */
6135             {
6136                 pxTCB = NULL;
6137
6138                 taskENTER_CRITICAL();
6139                 {
6140                     /* For SMP, multiple idles can be running simultaneously
6141                      * and we need to check that other idles did not cleanup while we were
6142                      * waiting to enter the critical section. */
6143                     if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6144                     {
6145                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
6146                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6147                         /* coverity[misra_c_2012_rule_11_5_violation] */
6148                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6149
6150                         if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
6151                         {
6152                             ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6153                             --uxCurrentNumberOfTasks;
6154                             --uxDeletedTasksWaitingCleanUp;
6155                         }
6156                         else
6157                         {
6158                             /* The TCB to be deleted still has not yet been switched out
6159                              * by the scheduler, so we will just exit this loop early and
6160                              * try again next time. */
6161                             taskEXIT_CRITICAL();
6162                             break;
6163                         }
6164                     }
6165                 }
6166                 taskEXIT_CRITICAL();
6167
6168                 if( pxTCB != NULL )
6169                 {
6170                     prvDeleteTCB( pxTCB );
6171                 }
6172             }
6173             #endif /* #if( configNUMBER_OF_CORES == 1 ) */
6174         }
6175     }
6176     #endif /* INCLUDE_vTaskDelete */
6177 }
6178 /*-----------------------------------------------------------*/
6179
6180 #if ( configUSE_TRACE_FACILITY == 1 )
6181
6182     void vTaskGetInfo( TaskHandle_t xTask,
6183                        TaskStatus_t * pxTaskStatus,
6184                        BaseType_t xGetFreeStackSpace,
6185                        eTaskState eState )
6186     {
6187         TCB_t * pxTCB;
6188
6189         traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState );
6190
6191         /* xTask is NULL then get the state of the calling task. */
6192         pxTCB = prvGetTCBFromHandle( xTask );
6193
6194         pxTaskStatus->xHandle = pxTCB;
6195         pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
6196         pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
6197         pxTaskStatus->pxStackBase = pxTCB->pxStack;
6198         #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
6199             pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack;
6200             pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
6201         #endif
6202         pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
6203
6204         #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
6205         {
6206             pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
6207         }
6208         #endif
6209
6210         #if ( configUSE_MUTEXES == 1 )
6211         {
6212             pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
6213         }
6214         #else
6215         {
6216             pxTaskStatus->uxBasePriority = 0;
6217         }
6218         #endif
6219
6220         #if ( configGENERATE_RUN_TIME_STATS == 1 )
6221         {
6222             pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
6223         }
6224         #else
6225         {
6226             pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
6227         }
6228         #endif
6229
6230         /* Obtaining the task state is a little fiddly, so is only done if the
6231          * value of eState passed into this function is eInvalid - otherwise the
6232          * state is just set to whatever is passed in. */
6233         if( eState != eInvalid )
6234         {
6235             if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6236             {
6237                 pxTaskStatus->eCurrentState = eRunning;
6238             }
6239             else
6240             {
6241                 pxTaskStatus->eCurrentState = eState;
6242
6243                 #if ( INCLUDE_vTaskSuspend == 1 )
6244                 {
6245                     /* If the task is in the suspended list then there is a
6246                      *  chance it is actually just blocked indefinitely - so really
6247                      *  it should be reported as being in the Blocked state. */
6248                     if( eState == eSuspended )
6249                     {
6250                         vTaskSuspendAll();
6251                         {
6252                             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
6253                             {
6254                                 pxTaskStatus->eCurrentState = eBlocked;
6255                             }
6256                             else
6257                             {
6258                                 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
6259                                 {
6260                                     BaseType_t x;
6261
6262                                     /* The task does not appear on the event list item of
6263                                      * and of the RTOS objects, but could still be in the
6264                                      * blocked state if it is waiting on its notification
6265                                      * rather than waiting on an object.  If not, is
6266                                      * suspended. */
6267                                     for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
6268                                     {
6269                                         if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
6270                                         {
6271                                             pxTaskStatus->eCurrentState = eBlocked;
6272                                             break;
6273                                         }
6274                                     }
6275                                 }
6276                                 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
6277                             }
6278                         }
6279                         ( void ) xTaskResumeAll();
6280                     }
6281                 }
6282                 #endif /* INCLUDE_vTaskSuspend */
6283
6284                 /* Tasks can be in pending ready list and other state list at the
6285                  * same time. These tasks are in ready state no matter what state
6286                  * list the task is in. */
6287                 taskENTER_CRITICAL();
6288                 {
6289                     if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE )
6290                     {
6291                         pxTaskStatus->eCurrentState = eReady;
6292                     }
6293                 }
6294                 taskEXIT_CRITICAL();
6295             }
6296         }
6297         else
6298         {
6299             pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
6300         }
6301
6302         /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
6303          * parameter is provided to allow it to be skipped. */
6304         if( xGetFreeStackSpace != pdFALSE )
6305         {
6306             #if ( portSTACK_GROWTH > 0 )
6307             {
6308                 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
6309             }
6310             #else
6311             {
6312                 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
6313             }
6314             #endif
6315         }
6316         else
6317         {
6318             pxTaskStatus->usStackHighWaterMark = 0;
6319         }
6320
6321         traceRETURN_vTaskGetInfo();
6322     }
6323
6324 #endif /* configUSE_TRACE_FACILITY */
6325 /*-----------------------------------------------------------*/
6326
6327 #if ( configUSE_TRACE_FACILITY == 1 )
6328
6329     static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
6330                                                      List_t * pxList,
6331                                                      eTaskState eState )
6332     {
6333         configLIST_VOLATILE TCB_t * pxNextTCB;
6334         configLIST_VOLATILE TCB_t * pxFirstTCB;
6335         UBaseType_t uxTask = 0;
6336
6337         if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
6338         {
6339             /* MISRA Ref 11.5.3 [Void pointer assignment] */
6340             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6341             /* coverity[misra_c_2012_rule_11_5_violation] */
6342             listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
6343
6344             /* Populate an TaskStatus_t structure within the
6345              * pxTaskStatusArray array for each task that is referenced from
6346              * pxList.  See the definition of TaskStatus_t in task.h for the
6347              * meaning of each TaskStatus_t structure member. */
6348             do
6349             {
6350                 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6351                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6352                 /* coverity[misra_c_2012_rule_11_5_violation] */
6353                 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
6354                 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
6355                 uxTask++;
6356             } while( pxNextTCB != pxFirstTCB );
6357         }
6358         else
6359         {
6360             mtCOVERAGE_TEST_MARKER();
6361         }
6362
6363         return uxTask;
6364     }
6365
6366 #endif /* configUSE_TRACE_FACILITY */
6367 /*-----------------------------------------------------------*/
6368
6369 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
6370
6371     static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
6372     {
6373         configSTACK_DEPTH_TYPE uxCount = 0U;
6374
6375         while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
6376         {
6377             pucStackByte -= portSTACK_GROWTH;
6378             uxCount++;
6379         }
6380
6381         uxCount /= ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t );
6382
6383         return uxCount;
6384     }
6385
6386 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
6387 /*-----------------------------------------------------------*/
6388
6389 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
6390
6391 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
6392  * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
6393  * user to determine the return type.  It gets around the problem of the value
6394  * overflowing on 8-bit types without breaking backward compatibility for
6395  * applications that expect an 8-bit return type. */
6396     configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
6397     {
6398         TCB_t * pxTCB;
6399         uint8_t * pucEndOfStack;
6400         configSTACK_DEPTH_TYPE uxReturn;
6401
6402         traceENTER_uxTaskGetStackHighWaterMark2( xTask );
6403
6404         /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
6405          * the same except for their return type.  Using configSTACK_DEPTH_TYPE
6406          * allows the user to determine the return type.  It gets around the
6407          * problem of the value overflowing on 8-bit types without breaking
6408          * backward compatibility for applications that expect an 8-bit return
6409          * type. */
6410
6411         pxTCB = prvGetTCBFromHandle( xTask );
6412
6413         #if portSTACK_GROWTH < 0
6414         {
6415             pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6416         }
6417         #else
6418         {
6419             pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6420         }
6421         #endif
6422
6423         uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
6424
6425         traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn );
6426
6427         return uxReturn;
6428     }
6429
6430 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
6431 /*-----------------------------------------------------------*/
6432
6433 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
6434
6435     UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
6436     {
6437         TCB_t * pxTCB;
6438         uint8_t * pucEndOfStack;
6439         UBaseType_t uxReturn;
6440
6441         traceENTER_uxTaskGetStackHighWaterMark( xTask );
6442
6443         pxTCB = prvGetTCBFromHandle( xTask );
6444
6445         #if portSTACK_GROWTH < 0
6446         {
6447             pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6448         }
6449         #else
6450         {
6451             pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6452         }
6453         #endif
6454
6455         uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
6456
6457         traceRETURN_uxTaskGetStackHighWaterMark( uxReturn );
6458
6459         return uxReturn;
6460     }
6461
6462 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
6463 /*-----------------------------------------------------------*/
6464
6465 #if ( INCLUDE_vTaskDelete == 1 )
6466
6467     static void prvDeleteTCB( TCB_t * pxTCB )
6468     {
6469         /* This call is required specifically for the TriCore port.  It must be
6470          * above the vPortFree() calls.  The call is also used by ports/demos that
6471          * want to allocate and clean RAM statically. */
6472         portCLEAN_UP_TCB( pxTCB );
6473
6474         #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
6475         {
6476             /* Free up the memory allocated for the task's TLS Block. */
6477             configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock );
6478         }
6479         #endif
6480
6481         #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
6482         {
6483             /* The task can only have been allocated dynamically - free both
6484              * the stack and TCB. */
6485             vPortFreeStack( pxTCB->pxStack );
6486             vPortFree( pxTCB );
6487         }
6488         #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
6489         {
6490             /* The task could have been allocated statically or dynamically, so
6491              * check what was statically allocated before trying to free the
6492              * memory. */
6493             if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
6494             {
6495                 /* Both the stack and TCB were allocated dynamically, so both
6496                  * must be freed. */
6497                 vPortFreeStack( pxTCB->pxStack );
6498                 vPortFree( pxTCB );
6499             }
6500             else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
6501             {
6502                 /* Only the stack was statically allocated, so the TCB is the
6503                  * only memory that must be freed. */
6504                 vPortFree( pxTCB );
6505             }
6506             else
6507             {
6508                 /* Neither the stack nor the TCB were allocated dynamically, so
6509                  * nothing needs to be freed. */
6510                 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
6511                 mtCOVERAGE_TEST_MARKER();
6512             }
6513         }
6514         #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
6515     }
6516
6517 #endif /* INCLUDE_vTaskDelete */
6518 /*-----------------------------------------------------------*/
6519
6520 static void prvResetNextTaskUnblockTime( void )
6521 {
6522     if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
6523     {
6524         /* The new current delayed list is empty.  Set xNextTaskUnblockTime to
6525          * the maximum possible value so it is  extremely unlikely that the
6526          * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
6527          * there is an item in the delayed list. */
6528         xNextTaskUnblockTime = portMAX_DELAY;
6529     }
6530     else
6531     {
6532         /* The new current delayed list is not empty, get the value of
6533          * the item at the head of the delayed list.  This is the time at
6534          * which the task at the head of the delayed list should be removed
6535          * from the Blocked state. */
6536         xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
6537     }
6538 }
6539 /*-----------------------------------------------------------*/
6540
6541 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 )
6542
6543     #if ( configNUMBER_OF_CORES == 1 )
6544         TaskHandle_t xTaskGetCurrentTaskHandle( void )
6545         {
6546             TaskHandle_t xReturn;
6547
6548             traceENTER_xTaskGetCurrentTaskHandle();
6549
6550             /* A critical section is not required as this is not called from
6551              * an interrupt and the current TCB will always be the same for any
6552              * individual execution thread. */
6553             xReturn = pxCurrentTCB;
6554
6555             traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6556
6557             return xReturn;
6558         }
6559     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
6560         TaskHandle_t xTaskGetCurrentTaskHandle( void )
6561         {
6562             TaskHandle_t xReturn;
6563             UBaseType_t uxSavedInterruptStatus;
6564
6565             traceENTER_xTaskGetCurrentTaskHandle();
6566
6567             uxSavedInterruptStatus = portSET_INTERRUPT_MASK();
6568             {
6569                 xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
6570             }
6571             portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus );
6572
6573             traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6574
6575             return xReturn;
6576         }
6577     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6578
6579     TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID )
6580     {
6581         TaskHandle_t xReturn = NULL;
6582
6583         traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID );
6584
6585         if( taskVALID_CORE_ID( xCoreID ) != pdFALSE )
6586         {
6587             #if ( configNUMBER_OF_CORES == 1 )
6588                 xReturn = pxCurrentTCB;
6589             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
6590                 xReturn = pxCurrentTCBs[ xCoreID ];
6591             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6592         }
6593
6594         traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn );
6595
6596         return xReturn;
6597     }
6598
6599 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
6600 /*-----------------------------------------------------------*/
6601
6602 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
6603
6604     BaseType_t xTaskGetSchedulerState( void )
6605     {
6606         BaseType_t xReturn;
6607
6608         traceENTER_xTaskGetSchedulerState();
6609
6610         if( xSchedulerRunning == pdFALSE )
6611         {
6612             xReturn = taskSCHEDULER_NOT_STARTED;
6613         }
6614         else
6615         {
6616             #if ( configNUMBER_OF_CORES > 1 )
6617                 taskENTER_CRITICAL();
6618             #endif
6619             {
6620                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
6621                 {
6622                     xReturn = taskSCHEDULER_RUNNING;
6623                 }
6624                 else
6625                 {
6626                     xReturn = taskSCHEDULER_SUSPENDED;
6627                 }
6628             }
6629             #if ( configNUMBER_OF_CORES > 1 )
6630                 taskEXIT_CRITICAL();
6631             #endif
6632         }
6633
6634         traceRETURN_xTaskGetSchedulerState( xReturn );
6635
6636         return xReturn;
6637     }
6638
6639 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
6640 /*-----------------------------------------------------------*/
6641
6642 #if ( configUSE_MUTEXES == 1 )
6643
6644     BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
6645     {
6646         TCB_t * const pxMutexHolderTCB = pxMutexHolder;
6647         BaseType_t xReturn = pdFALSE;
6648
6649         traceENTER_xTaskPriorityInherit( pxMutexHolder );
6650
6651         /* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority
6652          * inheritance is not applied in this scenario. */
6653         if( pxMutexHolder != NULL )
6654         {
6655             /* If the holder of the mutex has a priority below the priority of
6656              * the task attempting to obtain the mutex then it will temporarily
6657              * inherit the priority of the task attempting to obtain the mutex. */
6658             if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
6659             {
6660                 /* Adjust the mutex holder state to account for its new
6661                  * priority.  Only reset the event list item value if the value is
6662                  * not being used for anything else. */
6663                 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
6664                 {
6665                     listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority );
6666                 }
6667                 else
6668                 {
6669                     mtCOVERAGE_TEST_MARKER();
6670                 }
6671
6672                 /* If the task being modified is in the ready state it will need
6673                  * to be moved into a new list. */
6674                 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
6675                 {
6676                     if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6677                     {
6678                         /* It is known that the task is in its ready list so
6679                          * there is no need to check again and the port level
6680                          * reset macro can be called directly. */
6681                         portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
6682                     }
6683                     else
6684                     {
6685                         mtCOVERAGE_TEST_MARKER();
6686                     }
6687
6688                     /* Inherit the priority before being moved into the new list. */
6689                     pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6690                     prvAddTaskToReadyList( pxMutexHolderTCB );
6691                     #if ( configNUMBER_OF_CORES > 1 )
6692                     {
6693                         /* The priority of the task is raised. Yield for this task
6694                          * if it is not running. */
6695                         if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE )
6696                         {
6697                             prvYieldForTask( pxMutexHolderTCB );
6698                         }
6699                     }
6700                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6701                 }
6702                 else
6703                 {
6704                     /* Just inherit the priority. */
6705                     pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6706                 }
6707
6708                 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
6709
6710                 /* Inheritance occurred. */
6711                 xReturn = pdTRUE;
6712             }
6713             else
6714             {
6715                 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
6716                 {
6717                     /* The base priority of the mutex holder is lower than the
6718                      * priority of the task attempting to take the mutex, but the
6719                      * current priority of the mutex holder is not lower than the
6720                      * priority of the task attempting to take the mutex.
6721                      * Therefore the mutex holder must have already inherited a
6722                      * priority, but inheritance would have occurred if that had
6723                      * not been the case. */
6724                     xReturn = pdTRUE;
6725                 }
6726                 else
6727                 {
6728                     mtCOVERAGE_TEST_MARKER();
6729                 }
6730             }
6731         }
6732         else
6733         {
6734             mtCOVERAGE_TEST_MARKER();
6735         }
6736
6737         traceRETURN_xTaskPriorityInherit( xReturn );
6738
6739         return xReturn;
6740     }
6741
6742 #endif /* configUSE_MUTEXES */
6743 /*-----------------------------------------------------------*/
6744
6745 #if ( configUSE_MUTEXES == 1 )
6746
6747     BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
6748     {
6749         TCB_t * const pxTCB = pxMutexHolder;
6750         BaseType_t xReturn = pdFALSE;
6751
6752         traceENTER_xTaskPriorityDisinherit( pxMutexHolder );
6753
6754         if( pxMutexHolder != NULL )
6755         {
6756             /* A task can only have an inherited priority if it holds the mutex.
6757              * If the mutex is held by a task then it cannot be given from an
6758              * interrupt, and if a mutex is given by the holding task then it must
6759              * be the running state task. */
6760             configASSERT( pxTCB == pxCurrentTCB );
6761             configASSERT( pxTCB->uxMutexesHeld );
6762             ( pxTCB->uxMutexesHeld )--;
6763
6764             /* Has the holder of the mutex inherited the priority of another
6765              * task? */
6766             if( pxTCB->uxPriority != pxTCB->uxBasePriority )
6767             {
6768                 /* Only disinherit if no other mutexes are held. */
6769                 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
6770                 {
6771                     /* A task can only have an inherited priority if it holds
6772                      * the mutex.  If the mutex is held by a task then it cannot be
6773                      * given from an interrupt, and if a mutex is given by the
6774                      * holding task then it must be the running state task.  Remove
6775                      * the holding task from the ready list. */
6776                     if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6777                     {
6778                         portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6779                     }
6780                     else
6781                     {
6782                         mtCOVERAGE_TEST_MARKER();
6783                     }
6784
6785                     /* Disinherit the priority before adding the task into the
6786                      * new  ready list. */
6787                     traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
6788                     pxTCB->uxPriority = pxTCB->uxBasePriority;
6789
6790                     /* Reset the event list item value.  It cannot be in use for
6791                      * any other purpose if this task is running, and it must be
6792                      * running to give back the mutex. */
6793                     listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority );
6794                     prvAddTaskToReadyList( pxTCB );
6795                     #if ( configNUMBER_OF_CORES > 1 )
6796                     {
6797                         /* The priority of the task is dropped. Yield the core on
6798                          * which the task is running. */
6799                         if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6800                         {
6801                             prvYieldCore( pxTCB->xTaskRunState );
6802                         }
6803                     }
6804                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6805
6806                     /* Return true to indicate that a context switch is required.
6807                      * This is only actually required in the corner case whereby
6808                      * multiple mutexes were held and the mutexes were given back
6809                      * in an order different to that in which they were taken.
6810                      * If a context switch did not occur when the first mutex was
6811                      * returned, even if a task was waiting on it, then a context
6812                      * switch should occur when the last mutex is returned whether
6813                      * a task is waiting on it or not. */
6814                     xReturn = pdTRUE;
6815                 }
6816                 else
6817                 {
6818                     mtCOVERAGE_TEST_MARKER();
6819                 }
6820             }
6821             else
6822             {
6823                 mtCOVERAGE_TEST_MARKER();
6824             }
6825         }
6826         else
6827         {
6828             mtCOVERAGE_TEST_MARKER();
6829         }
6830
6831         traceRETURN_xTaskPriorityDisinherit( xReturn );
6832
6833         return xReturn;
6834     }
6835
6836 #endif /* configUSE_MUTEXES */
6837 /*-----------------------------------------------------------*/
6838
6839 #if ( configUSE_MUTEXES == 1 )
6840
6841     void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
6842                                               UBaseType_t uxHighestPriorityWaitingTask )
6843     {
6844         TCB_t * const pxTCB = pxMutexHolder;
6845         UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
6846         const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
6847
6848         traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask );
6849
6850         if( pxMutexHolder != NULL )
6851         {
6852             /* If pxMutexHolder is not NULL then the holder must hold at least
6853              * one mutex. */
6854             configASSERT( pxTCB->uxMutexesHeld );
6855
6856             /* Determine the priority to which the priority of the task that
6857              * holds the mutex should be set.  This will be the greater of the
6858              * holding task's base priority and the priority of the highest
6859              * priority task that is waiting to obtain the mutex. */
6860             if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
6861             {
6862                 uxPriorityToUse = uxHighestPriorityWaitingTask;
6863             }
6864             else
6865             {
6866                 uxPriorityToUse = pxTCB->uxBasePriority;
6867             }
6868
6869             /* Does the priority need to change? */
6870             if( pxTCB->uxPriority != uxPriorityToUse )
6871             {
6872                 /* Only disinherit if no other mutexes are held.  This is a
6873                  * simplification in the priority inheritance implementation.  If
6874                  * the task that holds the mutex is also holding other mutexes then
6875                  * the other mutexes may have caused the priority inheritance. */
6876                 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
6877                 {
6878                     /* If a task has timed out because it already holds the
6879                      * mutex it was trying to obtain then it cannot of inherited
6880                      * its own priority. */
6881                     configASSERT( pxTCB != pxCurrentTCB );
6882
6883                     /* Disinherit the priority, remembering the previous
6884                      * priority to facilitate determining the subject task's
6885                      * state. */
6886                     traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
6887                     uxPriorityUsedOnEntry = pxTCB->uxPriority;
6888                     pxTCB->uxPriority = uxPriorityToUse;
6889
6890                     /* Only reset the event list item value if the value is not
6891                      * being used for anything else. */
6892                     if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
6893                     {
6894                         listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse );
6895                     }
6896                     else
6897                     {
6898                         mtCOVERAGE_TEST_MARKER();
6899                     }
6900
6901                     /* If the running task is not the task that holds the mutex
6902                      * then the task that holds the mutex could be in either the
6903                      * Ready, Blocked or Suspended states.  Only remove the task
6904                      * from its current state list if it is in the Ready state as
6905                      * the task's priority is going to change and there is one
6906                      * Ready list per priority. */
6907                     if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
6908                     {
6909                         if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6910                         {
6911                             /* It is known that the task is in its ready list so
6912                              * there is no need to check again and the port level
6913                              * reset macro can be called directly. */
6914                             portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6915                         }
6916                         else
6917                         {
6918                             mtCOVERAGE_TEST_MARKER();
6919                         }
6920
6921                         prvAddTaskToReadyList( pxTCB );
6922                         #if ( configNUMBER_OF_CORES > 1 )
6923                         {
6924                             /* The priority of the task is dropped. Yield the core on
6925                              * which the task is running. */
6926                             if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6927                             {
6928                                 prvYieldCore( pxTCB->xTaskRunState );
6929                             }
6930                         }
6931                         #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6932                     }
6933                     else
6934                     {
6935                         mtCOVERAGE_TEST_MARKER();
6936                     }
6937                 }
6938                 else
6939                 {
6940                     mtCOVERAGE_TEST_MARKER();
6941                 }
6942             }
6943             else
6944             {
6945                 mtCOVERAGE_TEST_MARKER();
6946             }
6947         }
6948         else
6949         {
6950             mtCOVERAGE_TEST_MARKER();
6951         }
6952
6953         traceRETURN_vTaskPriorityDisinheritAfterTimeout();
6954     }
6955
6956 #endif /* configUSE_MUTEXES */
6957 /*-----------------------------------------------------------*/
6958
6959 #if ( configNUMBER_OF_CORES > 1 )
6960
6961 /* If not in a critical section then yield immediately.
6962  * Otherwise set xYieldPendings to true to wait to
6963  * yield until exiting the critical section.
6964  */
6965     void vTaskYieldWithinAPI( void )
6966     {
6967         traceENTER_vTaskYieldWithinAPI();
6968
6969         if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6970         {
6971             portYIELD();
6972         }
6973         else
6974         {
6975             xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
6976         }
6977
6978         traceRETURN_vTaskYieldWithinAPI();
6979     }
6980 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
6981
6982 /*-----------------------------------------------------------*/
6983
6984 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
6985
6986     void vTaskEnterCritical( void )
6987     {
6988         traceENTER_vTaskEnterCritical();
6989
6990         portDISABLE_INTERRUPTS();
6991
6992         if( xSchedulerRunning != pdFALSE )
6993         {
6994             ( pxCurrentTCB->uxCriticalNesting )++;
6995
6996             /* This is not the interrupt safe version of the enter critical
6997              * function so  assert() if it is being called from an interrupt
6998              * context.  Only API functions that end in "FromISR" can be used in an
6999              * interrupt.  Only assert if the critical nesting count is 1 to
7000              * protect against recursive calls if the assert function also uses a
7001              * critical section. */
7002             if( pxCurrentTCB->uxCriticalNesting == 1U )
7003             {
7004                 portASSERT_IF_IN_ISR();
7005             }
7006         }
7007         else
7008         {
7009             mtCOVERAGE_TEST_MARKER();
7010         }
7011
7012         traceRETURN_vTaskEnterCritical();
7013     }
7014
7015 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
7016 /*-----------------------------------------------------------*/
7017
7018 #if ( configNUMBER_OF_CORES > 1 )
7019
7020     void vTaskEnterCritical( void )
7021     {
7022         traceENTER_vTaskEnterCritical();
7023
7024         portDISABLE_INTERRUPTS();
7025
7026         if( xSchedulerRunning != pdFALSE )
7027         {
7028             if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7029             {
7030                 portGET_TASK_LOCK();
7031                 portGET_ISR_LOCK();
7032             }
7033
7034             portINCREMENT_CRITICAL_NESTING_COUNT();
7035
7036             /* This is not the interrupt safe version of the enter critical
7037              * function so  assert() if it is being called from an interrupt
7038              * context.  Only API functions that end in "FromISR" can be used in an
7039              * interrupt.  Only assert if the critical nesting count is 1 to
7040              * protect against recursive calls if the assert function also uses a
7041              * critical section. */
7042             if( portGET_CRITICAL_NESTING_COUNT() == 1U )
7043             {
7044                 portASSERT_IF_IN_ISR();
7045
7046                 if( uxSchedulerSuspended == 0U )
7047                 {
7048                     /* The only time there would be a problem is if this is called
7049                      * before a context switch and vTaskExitCritical() is called
7050                      * after pxCurrentTCB changes. Therefore this should not be
7051                      * used within vTaskSwitchContext(). */
7052                     prvCheckForRunStateChange();
7053                 }
7054             }
7055         }
7056         else
7057         {
7058             mtCOVERAGE_TEST_MARKER();
7059         }
7060
7061         traceRETURN_vTaskEnterCritical();
7062     }
7063
7064 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7065
7066 /*-----------------------------------------------------------*/
7067
7068 #if ( configNUMBER_OF_CORES > 1 )
7069
7070     UBaseType_t vTaskEnterCriticalFromISR( void )
7071     {
7072         UBaseType_t uxSavedInterruptStatus = 0;
7073
7074         traceENTER_vTaskEnterCriticalFromISR();
7075
7076         if( xSchedulerRunning != pdFALSE )
7077         {
7078             uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
7079
7080             if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7081             {
7082                 portGET_ISR_LOCK();
7083             }
7084
7085             portINCREMENT_CRITICAL_NESTING_COUNT();
7086         }
7087         else
7088         {
7089             mtCOVERAGE_TEST_MARKER();
7090         }
7091
7092         traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus );
7093
7094         return uxSavedInterruptStatus;
7095     }
7096
7097 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7098 /*-----------------------------------------------------------*/
7099
7100 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
7101
7102     void vTaskExitCritical( void )
7103     {
7104         traceENTER_vTaskExitCritical();
7105
7106         if( xSchedulerRunning != pdFALSE )
7107         {
7108             /* If pxCurrentTCB->uxCriticalNesting is zero then this function
7109              * does not match a previous call to vTaskEnterCritical(). */
7110             configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );
7111
7112             /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7113              * to exit critical section from ISR. */
7114             portASSERT_IF_IN_ISR();
7115
7116             if( pxCurrentTCB->uxCriticalNesting > 0U )
7117             {
7118                 ( pxCurrentTCB->uxCriticalNesting )--;
7119
7120                 if( pxCurrentTCB->uxCriticalNesting == 0U )
7121                 {
7122                     portENABLE_INTERRUPTS();
7123                 }
7124                 else
7125                 {
7126                     mtCOVERAGE_TEST_MARKER();
7127                 }
7128             }
7129             else
7130             {
7131                 mtCOVERAGE_TEST_MARKER();
7132             }
7133         }
7134         else
7135         {
7136             mtCOVERAGE_TEST_MARKER();
7137         }
7138
7139         traceRETURN_vTaskExitCritical();
7140     }
7141
7142 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
7143 /*-----------------------------------------------------------*/
7144
7145 #if ( configNUMBER_OF_CORES > 1 )
7146
7147     void vTaskExitCritical( void )
7148     {
7149         traceENTER_vTaskExitCritical();
7150
7151         if( xSchedulerRunning != pdFALSE )
7152         {
7153             /* If critical nesting count is zero then this function
7154              * does not match a previous call to vTaskEnterCritical(). */
7155             configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7156
7157             /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7158              * to exit critical section from ISR. */
7159             portASSERT_IF_IN_ISR();
7160
7161             if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7162             {
7163                 portDECREMENT_CRITICAL_NESTING_COUNT();
7164
7165                 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7166                 {
7167                     BaseType_t xYieldCurrentTask;
7168
7169                     /* Get the xYieldPending stats inside the critical section. */
7170                     xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ];
7171
7172                     portRELEASE_ISR_LOCK();
7173                     portRELEASE_TASK_LOCK();
7174                     portENABLE_INTERRUPTS();
7175
7176                     /* When a task yields in a critical section it just sets
7177                      * xYieldPending to true. So now that we have exited the
7178                      * critical section check if xYieldPending is true, and
7179                      * if so yield. */
7180                     if( xYieldCurrentTask != pdFALSE )
7181                     {
7182                         portYIELD();
7183                     }
7184                 }
7185                 else
7186                 {
7187                     mtCOVERAGE_TEST_MARKER();
7188                 }
7189             }
7190             else
7191             {
7192                 mtCOVERAGE_TEST_MARKER();
7193             }
7194         }
7195         else
7196         {
7197             mtCOVERAGE_TEST_MARKER();
7198         }
7199
7200         traceRETURN_vTaskExitCritical();
7201     }
7202
7203 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7204 /*-----------------------------------------------------------*/
7205
7206 #if ( configNUMBER_OF_CORES > 1 )
7207
7208     void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus )
7209     {
7210         traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus );
7211
7212         if( xSchedulerRunning != pdFALSE )
7213         {
7214             /* If critical nesting count is zero then this function
7215              * does not match a previous call to vTaskEnterCritical(). */
7216             configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7217
7218             if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7219             {
7220                 portDECREMENT_CRITICAL_NESTING_COUNT();
7221
7222                 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7223                 {
7224                     portRELEASE_ISR_LOCK();
7225                     portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
7226                 }
7227                 else
7228                 {
7229                     mtCOVERAGE_TEST_MARKER();
7230                 }
7231             }
7232             else
7233             {
7234                 mtCOVERAGE_TEST_MARKER();
7235             }
7236         }
7237         else
7238         {
7239             mtCOVERAGE_TEST_MARKER();
7240         }
7241
7242         traceRETURN_vTaskExitCriticalFromISR();
7243     }
7244
7245 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7246 /*-----------------------------------------------------------*/
7247
7248 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
7249
7250     static char * prvWriteNameToBuffer( char * pcBuffer,
7251                                         const char * pcTaskName )
7252     {
7253         size_t x;
7254
7255         /* Start by copying the entire string. */
7256         ( void ) strcpy( pcBuffer, pcTaskName );
7257
7258         /* Pad the end of the string with spaces to ensure columns line up when
7259          * printed out. */
7260         for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ )
7261         {
7262             pcBuffer[ x ] = ' ';
7263         }
7264
7265         /* Terminate. */
7266         pcBuffer[ x ] = ( char ) 0x00;
7267
7268         /* Return the new end of string. */
7269         return &( pcBuffer[ x ] );
7270     }
7271
7272 #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
7273 /*-----------------------------------------------------------*/
7274
7275 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
7276
7277     void vTaskListTasks( char * pcWriteBuffer,
7278                          size_t uxBufferLength )
7279     {
7280         TaskStatus_t * pxTaskStatusArray;
7281         size_t uxConsumedBufferLength = 0;
7282         size_t uxCharsWrittenBySnprintf;
7283         int iSnprintfReturnValue;
7284         BaseType_t xOutputBufferFull = pdFALSE;
7285         UBaseType_t uxArraySize, x;
7286         char cStatus;
7287
7288         traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength );
7289
7290         /*
7291          * PLEASE NOTE:
7292          *
7293          * This function is provided for convenience only, and is used by many
7294          * of the demo applications.  Do not consider it to be part of the
7295          * scheduler.
7296          *
7297          * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the
7298          * uxTaskGetSystemState() output into a human readable table that
7299          * displays task: names, states, priority, stack usage and task number.
7300          * Stack usage specified as the number of unused StackType_t words stack can hold
7301          * on top of stack - not the number of bytes.
7302          *
7303          * vTaskListTasks() has a dependency on the snprintf() C library function that
7304          * might bloat the code size, use a lot of stack, and provide different
7305          * results on different platforms.  An alternative, tiny, third party,
7306          * and limited functionality implementation of snprintf() is provided in
7307          * many of the FreeRTOS/Demo sub-directories in a file called
7308          * printf-stdarg.c (note printf-stdarg.c does not provide a full
7309          * snprintf() implementation!).
7310          *
7311          * It is recommended that production systems call uxTaskGetSystemState()
7312          * directly to get access to raw stats data, rather than indirectly
7313          * through a call to vTaskListTasks().
7314          */
7315
7316
7317         /* Make sure the write buffer does not contain a string. */
7318         *pcWriteBuffer = ( char ) 0x00;
7319
7320         /* Take a snapshot of the number of tasks in case it changes while this
7321          * function is executing. */
7322         uxArraySize = uxCurrentNumberOfTasks;
7323
7324         /* Allocate an array index for each task.  NOTE!  if
7325          * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7326          * equate to NULL. */
7327         /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7328         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7329         /* coverity[misra_c_2012_rule_11_5_violation] */
7330         pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7331
7332         if( pxTaskStatusArray != NULL )
7333         {
7334             /* Generate the (binary) data. */
7335             uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
7336
7337             /* Create a human readable table from the binary data. */
7338             for( x = 0; x < uxArraySize; x++ )
7339             {
7340                 switch( pxTaskStatusArray[ x ].eCurrentState )
7341                 {
7342                     case eRunning:
7343                         cStatus = tskRUNNING_CHAR;
7344                         break;
7345
7346                     case eReady:
7347                         cStatus = tskREADY_CHAR;
7348                         break;
7349
7350                     case eBlocked:
7351                         cStatus = tskBLOCKED_CHAR;
7352                         break;
7353
7354                     case eSuspended:
7355                         cStatus = tskSUSPENDED_CHAR;
7356                         break;
7357
7358                     case eDeleted:
7359                         cStatus = tskDELETED_CHAR;
7360                         break;
7361
7362                     case eInvalid: /* Fall through. */
7363                     default:       /* Should not get here, but it is included
7364                                     * to prevent static checking errors. */
7365                         cStatus = ( char ) 0x00;
7366                         break;
7367                 }
7368
7369                 /* Is there enough space in the buffer to hold task name? */
7370                 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7371                 {
7372                     /* Write the task name to the string, padding with spaces so it
7373                      * can be printed in tabular form more easily. */
7374                     pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7375                     /* Do not count the terminating null character. */
7376                     uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7377
7378                     /* Is there space left in the buffer? -1 is done because snprintf
7379                      * writes a terminating null character. So we are essentially
7380                      * checking if the buffer has space to write at least one non-null
7381                      * character. */
7382                     if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7383                     {
7384                         /* Write the rest of the string. */
7385                         #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
7386                             /* MISRA Ref 21.6.1 [snprintf for utility] */
7387                             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7388                             /* coverity[misra_c_2012_rule_21_6_violation] */
7389                             iSnprintfReturnValue = snprintf( pcWriteBuffer,
7390                                                              uxBufferLength - uxConsumedBufferLength,
7391                                                              "\t%c\t%u\t%u\t%u\t0x%x\r\n",
7392                                                              cStatus,
7393                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7394                                                              ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7395                                                              ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber,
7396                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask );
7397                         #else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7398                             /* MISRA Ref 21.6.1 [snprintf for utility] */
7399                             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7400                             /* coverity[misra_c_2012_rule_21_6_violation] */
7401                             iSnprintfReturnValue = snprintf( pcWriteBuffer,
7402                                                              uxBufferLength - uxConsumedBufferLength,
7403                                                              "\t%c\t%u\t%u\t%u\r\n",
7404                                                              cStatus,
7405                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7406                                                              ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7407                                                              ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
7408                         #endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7409                         uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7410
7411                         uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7412                         pcWriteBuffer += uxCharsWrittenBySnprintf;
7413                     }
7414                     else
7415                     {
7416                         xOutputBufferFull = pdTRUE;
7417                     }
7418                 }
7419                 else
7420                 {
7421                     xOutputBufferFull = pdTRUE;
7422                 }
7423
7424                 if( xOutputBufferFull == pdTRUE )
7425                 {
7426                     break;
7427                 }
7428             }
7429
7430             /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
7431              * is 0 then vPortFree() will be #defined to nothing. */
7432             vPortFree( pxTaskStatusArray );
7433         }
7434         else
7435         {
7436             mtCOVERAGE_TEST_MARKER();
7437         }
7438
7439         traceRETURN_vTaskListTasks();
7440     }
7441
7442 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7443 /*----------------------------------------------------------*/
7444
7445 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
7446
7447     void vTaskGetRunTimeStatistics( char * pcWriteBuffer,
7448                                     size_t uxBufferLength )
7449     {
7450         TaskStatus_t * pxTaskStatusArray;
7451         size_t uxConsumedBufferLength = 0;
7452         size_t uxCharsWrittenBySnprintf;
7453         int iSnprintfReturnValue;
7454         BaseType_t xOutputBufferFull = pdFALSE;
7455         UBaseType_t uxArraySize, x;
7456         configRUN_TIME_COUNTER_TYPE ulTotalTime = 0;
7457         configRUN_TIME_COUNTER_TYPE ulStatsAsPercentage;
7458
7459         traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength );
7460
7461         /*
7462          * PLEASE NOTE:
7463          *
7464          * This function is provided for convenience only, and is used by many
7465          * of the demo applications.  Do not consider it to be part of the
7466          * scheduler.
7467          *
7468          * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part
7469          * of the uxTaskGetSystemState() output into a human readable table that
7470          * displays the amount of time each task has spent in the Running state
7471          * in both absolute and percentage terms.
7472          *
7473          * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library
7474          * function that might bloat the code size, use a lot of stack, and
7475          * provide different results on different platforms.  An alternative,
7476          * tiny, third party, and limited functionality implementation of
7477          * snprintf() is provided in many of the FreeRTOS/Demo sub-directories in
7478          * a file called printf-stdarg.c (note printf-stdarg.c does not provide
7479          * a full snprintf() implementation!).
7480          *
7481          * It is recommended that production systems call uxTaskGetSystemState()
7482          * directly to get access to raw stats data, rather than indirectly
7483          * through a call to vTaskGetRunTimeStatistics().
7484          */
7485
7486         /* Make sure the write buffer does not contain a string. */
7487         *pcWriteBuffer = ( char ) 0x00;
7488
7489         /* Take a snapshot of the number of tasks in case it changes while this
7490          * function is executing. */
7491         uxArraySize = uxCurrentNumberOfTasks;
7492
7493         /* Allocate an array index for each task.  NOTE!  If
7494          * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7495          * equate to NULL. */
7496         /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7497         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7498         /* coverity[misra_c_2012_rule_11_5_violation] */
7499         pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7500
7501         if( pxTaskStatusArray != NULL )
7502         {
7503             /* Generate the (binary) data. */
7504             uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
7505
7506             /* For percentage calculations. */
7507             ulTotalTime /= ( ( configRUN_TIME_COUNTER_TYPE ) 100UL );
7508
7509             /* Avoid divide by zero errors. */
7510             if( ulTotalTime > 0UL )
7511             {
7512                 /* Create a human readable table from the binary data. */
7513                 for( x = 0; x < uxArraySize; x++ )
7514                 {
7515                     /* What percentage of the total run time has the task used?
7516                      * This will always be rounded down to the nearest integer.
7517                      * ulTotalRunTime has already been divided by 100. */
7518                     ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
7519
7520                     /* Is there enough space in the buffer to hold task name? */
7521                     if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7522                     {
7523                         /* Write the task name to the string, padding with
7524                          * spaces so it can be printed in tabular form more
7525                          * easily. */
7526                         pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7527                         /* Do not count the terminating null character. */
7528                         uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7529
7530                         /* Is there space left in the buffer? -1 is done because snprintf
7531                          * writes a terminating null character. So we are essentially
7532                          * checking if the buffer has space to write at least one non-null
7533                          * character. */
7534                         if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7535                         {
7536                             if( ulStatsAsPercentage > 0UL )
7537                             {
7538                                 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7539                                 {
7540                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7541                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7542                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7543                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7544                                                                      uxBufferLength - uxConsumedBufferLength,
7545                                                                      "\t%lu\t\t%lu%%\r\n",
7546                                                                      pxTaskStatusArray[ x ].ulRunTimeCounter,
7547                                                                      ulStatsAsPercentage );
7548                                 }
7549                                 #else /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7550                                 {
7551                                     /* sizeof( int ) == sizeof( long ) so a smaller
7552                                      * printf() library can be used. */
7553                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7554                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7555                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7556                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7557                                                                      uxBufferLength - uxConsumedBufferLength,
7558                                                                      "\t%u\t\t%u%%\r\n",
7559                                                                      ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter,
7560                                                                      ( unsigned int ) ulStatsAsPercentage );
7561                                 }
7562                                 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7563                             }
7564                             else
7565                             {
7566                                 /* If the percentage is zero here then the task has
7567                                  * consumed less than 1% of the total run time. */
7568                                 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7569                                 {
7570                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7571                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7572                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7573                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7574                                                                      uxBufferLength - uxConsumedBufferLength,
7575                                                                      "\t%lu\t\t<1%%\r\n",
7576                                                                      pxTaskStatusArray[ x ].ulRunTimeCounter );
7577                                 }
7578                                 #else
7579                                 {
7580                                     /* sizeof( int ) == sizeof( long ) so a smaller
7581                                      * printf() library can be used. */
7582                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7583                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7584                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7585                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7586                                                                      uxBufferLength - uxConsumedBufferLength,
7587                                                                      "\t%u\t\t<1%%\r\n",
7588                                                                      ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
7589                                 }
7590                                 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7591                             }
7592
7593                             uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7594                             uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7595                             pcWriteBuffer += uxCharsWrittenBySnprintf;
7596                         }
7597                         else
7598                         {
7599                             xOutputBufferFull = pdTRUE;
7600                         }
7601                     }
7602                     else
7603                     {
7604                         xOutputBufferFull = pdTRUE;
7605                     }
7606
7607                     if( xOutputBufferFull == pdTRUE )
7608                     {
7609                         break;
7610                     }
7611                 }
7612             }
7613             else
7614             {
7615                 mtCOVERAGE_TEST_MARKER();
7616             }
7617
7618             /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
7619              * is 0 then vPortFree() will be #defined to nothing. */
7620             vPortFree( pxTaskStatusArray );
7621         }
7622         else
7623         {
7624             mtCOVERAGE_TEST_MARKER();
7625         }
7626
7627         traceRETURN_vTaskGetRunTimeStatistics();
7628     }
7629
7630 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7631 /*-----------------------------------------------------------*/
7632
7633 TickType_t uxTaskResetEventItemValue( void )
7634 {
7635     TickType_t uxReturn;
7636
7637     traceENTER_uxTaskResetEventItemValue();
7638
7639     uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
7640
7641     /* Reset the event list item to its normal value - so it can be used with
7642      * queues and semaphores. */
7643     listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) );
7644
7645     traceRETURN_uxTaskResetEventItemValue( uxReturn );
7646
7647     return uxReturn;
7648 }
7649 /*-----------------------------------------------------------*/
7650
7651 #if ( configUSE_MUTEXES == 1 )
7652
7653     TaskHandle_t pvTaskIncrementMutexHeldCount( void )
7654     {
7655         TCB_t * pxTCB;
7656
7657         traceENTER_pvTaskIncrementMutexHeldCount();
7658
7659         pxTCB = pxCurrentTCB;
7660
7661         /* If xSemaphoreCreateMutex() is called before any tasks have been created
7662          * then pxCurrentTCB will be NULL. */
7663         if( pxTCB != NULL )
7664         {
7665             ( pxTCB->uxMutexesHeld )++;
7666         }
7667
7668         traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB );
7669
7670         return pxTCB;
7671     }
7672
7673 #endif /* configUSE_MUTEXES */
7674 /*-----------------------------------------------------------*/
7675
7676 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7677
7678     uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn,
7679                                       BaseType_t xClearCountOnExit,
7680                                       TickType_t xTicksToWait )
7681     {
7682         uint32_t ulReturn;
7683         BaseType_t xAlreadyYielded, xShouldBlock = pdFALSE;
7684
7685         traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait );
7686
7687         configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7688
7689         /* We suspend the scheduler here as prvAddCurrentTaskToDelayedList is a
7690          * non-deterministic operation. */
7691         vTaskSuspendAll();
7692         {
7693             /* We MUST enter a critical section to atomically check if a notification
7694              * has occurred and set the flag to indicate that we are waiting for
7695              * a notification. If we do not do so, a notification sent from an ISR
7696              * will get lost. */
7697             taskENTER_CRITICAL();
7698             {
7699                 /* Only block if the notification count is not already non-zero. */
7700                 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0UL )
7701                 {
7702                     /* Mark this task as waiting for a notification. */
7703                     pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7704
7705                     if( xTicksToWait > ( TickType_t ) 0 )
7706                     {
7707                         xShouldBlock = pdTRUE;
7708                     }
7709                     else
7710                     {
7711                         mtCOVERAGE_TEST_MARKER();
7712                     }
7713                 }
7714                 else
7715                 {
7716                     mtCOVERAGE_TEST_MARKER();
7717                 }
7718             }
7719             taskEXIT_CRITICAL();
7720
7721             /* We are now out of the critical section but the scheduler is still
7722              * suspended, so we are safe to do non-deterministic operations such
7723              * as prvAddCurrentTaskToDelayedList. */
7724             if( xShouldBlock == pdTRUE )
7725             {
7726                 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn );
7727                 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7728             }
7729             else
7730             {
7731                 mtCOVERAGE_TEST_MARKER();
7732             }
7733         }
7734         xAlreadyYielded = xTaskResumeAll();
7735
7736         /* Force a reschedule if xTaskResumeAll has not already done so. */
7737         if( ( xShouldBlock == pdTRUE ) && ( xAlreadyYielded == pdFALSE ) )
7738         {
7739             taskYIELD_WITHIN_API();
7740         }
7741         else
7742         {
7743             mtCOVERAGE_TEST_MARKER();
7744         }
7745
7746         taskENTER_CRITICAL();
7747         {
7748             traceTASK_NOTIFY_TAKE( uxIndexToWaitOn );
7749             ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7750
7751             if( ulReturn != 0UL )
7752             {
7753                 if( xClearCountOnExit != pdFALSE )
7754                 {
7755                     pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ( uint32_t ) 0UL;
7756                 }
7757                 else
7758                 {
7759                     pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1;
7760                 }
7761             }
7762             else
7763             {
7764                 mtCOVERAGE_TEST_MARKER();
7765             }
7766
7767             pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7768         }
7769         taskEXIT_CRITICAL();
7770
7771         traceRETURN_ulTaskGenericNotifyTake( ulReturn );
7772
7773         return ulReturn;
7774     }
7775
7776 #endif /* configUSE_TASK_NOTIFICATIONS */
7777 /*-----------------------------------------------------------*/
7778
7779 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7780
7781     BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn,
7782                                        uint32_t ulBitsToClearOnEntry,
7783                                        uint32_t ulBitsToClearOnExit,
7784                                        uint32_t * pulNotificationValue,
7785                                        TickType_t xTicksToWait )
7786     {
7787         BaseType_t xReturn, xAlreadyYielded, xShouldBlock = pdFALSE;
7788
7789         traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait );
7790
7791         configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7792
7793         /* We suspend the scheduler here as prvAddCurrentTaskToDelayedList is a
7794          * non-deterministic operation. */
7795         vTaskSuspendAll();
7796         {
7797             /* We MUST enter a critical section to atomically check and update the
7798              * task notification value. If we do not do so, a notification from
7799              * an ISR will get lost. */
7800             taskENTER_CRITICAL();
7801             {
7802                 /* Only block if a notification is not already pending. */
7803                 if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7804                 {
7805                     /* Clear bits in the task's notification value as bits may get
7806                      * set by the notifying task or interrupt. This can be used
7807                      * to clear the value to zero. */
7808                     pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry;
7809
7810                     /* Mark this task as waiting for a notification. */
7811                     pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7812
7813                     if( xTicksToWait > ( TickType_t ) 0 )
7814                     {
7815                         xShouldBlock = pdTRUE;
7816                     }
7817                     else
7818                     {
7819                         mtCOVERAGE_TEST_MARKER();
7820                     }
7821                 }
7822                 else
7823                 {
7824                     mtCOVERAGE_TEST_MARKER();
7825                 }
7826             }
7827             taskEXIT_CRITICAL();
7828
7829             /* We are now out of the critical section but the scheduler is still
7830              * suspended, so we are safe to do non-deterministic operations such
7831              * as prvAddCurrentTaskToDelayedList. */
7832             if( xShouldBlock == pdTRUE )
7833             {
7834                 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn );
7835                 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7836             }
7837             else
7838             {
7839                 mtCOVERAGE_TEST_MARKER();
7840             }
7841         }
7842         xAlreadyYielded = xTaskResumeAll();
7843
7844         /* Force a reschedule if xTaskResumeAll has not already done so. */
7845         if( ( xShouldBlock == pdTRUE ) && ( xAlreadyYielded == pdFALSE ) )
7846         {
7847             taskYIELD_WITHIN_API();
7848         }
7849         else
7850         {
7851             mtCOVERAGE_TEST_MARKER();
7852         }
7853
7854         taskENTER_CRITICAL();
7855         {
7856             traceTASK_NOTIFY_WAIT( uxIndexToWaitOn );
7857
7858             if( pulNotificationValue != NULL )
7859             {
7860                 /* Output the current notification value, which may or may not
7861                  * have changed. */
7862                 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7863             }
7864
7865             /* If ucNotifyValue is set then either the task never entered the
7866              * blocked state (because a notification was already pending) or the
7867              * task unblocked because of a notification.  Otherwise the task
7868              * unblocked because of a timeout. */
7869             if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7870             {
7871                 /* A notification was not received. */
7872                 xReturn = pdFALSE;
7873             }
7874             else
7875             {
7876                 /* A notification was already pending or a notification was
7877                  * received while the task was waiting. */
7878                 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit;
7879                 xReturn = pdTRUE;
7880             }
7881
7882             pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7883         }
7884         taskEXIT_CRITICAL();
7885
7886         traceRETURN_xTaskGenericNotifyWait( xReturn );
7887
7888         return xReturn;
7889     }
7890
7891 #endif /* configUSE_TASK_NOTIFICATIONS */
7892 /*-----------------------------------------------------------*/
7893
7894 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7895
7896     BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
7897                                    UBaseType_t uxIndexToNotify,
7898                                    uint32_t ulValue,
7899                                    eNotifyAction eAction,
7900                                    uint32_t * pulPreviousNotificationValue )
7901     {
7902         TCB_t * pxTCB;
7903         BaseType_t xReturn = pdPASS;
7904         uint8_t ucOriginalNotifyState;
7905
7906         traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue );
7907
7908         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7909         configASSERT( xTaskToNotify );
7910         pxTCB = xTaskToNotify;
7911
7912         taskENTER_CRITICAL();
7913         {
7914             if( pulPreviousNotificationValue != NULL )
7915             {
7916                 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
7917             }
7918
7919             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
7920
7921             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
7922
7923             switch( eAction )
7924             {
7925                 case eSetBits:
7926                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
7927                     break;
7928
7929                 case eIncrement:
7930                     ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
7931                     break;
7932
7933                 case eSetValueWithOverwrite:
7934                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7935                     break;
7936
7937                 case eSetValueWithoutOverwrite:
7938
7939                     if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
7940                     {
7941                         pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7942                     }
7943                     else
7944                     {
7945                         /* The value could not be written to the task. */
7946                         xReturn = pdFAIL;
7947                     }
7948
7949                     break;
7950
7951                 case eNoAction:
7952
7953                     /* The task is being notified without its notify value being
7954                      * updated. */
7955                     break;
7956
7957                 default:
7958
7959                     /* Should not get here if all enums are handled.
7960                      * Artificially force an assert by testing a value the
7961                      * compiler can't assume is const. */
7962                     configASSERT( xTickCount == ( TickType_t ) 0 );
7963
7964                     break;
7965             }
7966
7967             traceTASK_NOTIFY( uxIndexToNotify );
7968
7969             /* If the task is in the blocked state specifically to wait for a
7970              * notification then unblock it now. */
7971             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
7972             {
7973                 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
7974                 prvAddTaskToReadyList( pxTCB );
7975
7976                 /* The task should not have been on an event list. */
7977                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
7978
7979                 #if ( configUSE_TICKLESS_IDLE != 0 )
7980                 {
7981                     /* If a task is blocked waiting for a notification then
7982                      * xNextTaskUnblockTime might be set to the blocked task's time
7983                      * out time.  If the task is unblocked for a reason other than
7984                      * a timeout xNextTaskUnblockTime is normally left unchanged,
7985                      * because it will automatically get reset to a new value when
7986                      * the tick count equals xNextTaskUnblockTime.  However if
7987                      * tickless idling is used it might be more important to enter
7988                      * sleep mode at the earliest possible time - so reset
7989                      * xNextTaskUnblockTime here to ensure it is updated at the
7990                      * earliest possible time. */
7991                     prvResetNextTaskUnblockTime();
7992                 }
7993                 #endif
7994
7995                 /* Check if the notified task has a priority above the currently
7996                  * executing task. */
7997                 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
7998             }
7999             else
8000             {
8001                 mtCOVERAGE_TEST_MARKER();
8002             }
8003         }
8004         taskEXIT_CRITICAL();
8005
8006         traceRETURN_xTaskGenericNotify( xReturn );
8007
8008         return xReturn;
8009     }
8010
8011 #endif /* configUSE_TASK_NOTIFICATIONS */
8012 /*-----------------------------------------------------------*/
8013
8014 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8015
8016     BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
8017                                           UBaseType_t uxIndexToNotify,
8018                                           uint32_t ulValue,
8019                                           eNotifyAction eAction,
8020                                           uint32_t * pulPreviousNotificationValue,
8021                                           BaseType_t * pxHigherPriorityTaskWoken )
8022     {
8023         TCB_t * pxTCB;
8024         uint8_t ucOriginalNotifyState;
8025         BaseType_t xReturn = pdPASS;
8026         UBaseType_t uxSavedInterruptStatus;
8027
8028         traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken );
8029
8030         configASSERT( xTaskToNotify );
8031         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8032
8033         /* RTOS ports that support interrupt nesting have the concept of a
8034          * maximum  system call (or maximum API call) interrupt priority.
8035          * Interrupts that are  above the maximum system call priority are keep
8036          * permanently enabled, even when the RTOS kernel is in a critical section,
8037          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
8038          * is defined in FreeRTOSConfig.h then
8039          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8040          * failure if a FreeRTOS API function is called from an interrupt that has
8041          * been assigned a priority above the configured maximum system call
8042          * priority.  Only FreeRTOS functions that end in FromISR can be called
8043          * from interrupts  that have been assigned a priority at or (logically)
8044          * below the maximum system call interrupt priority.  FreeRTOS maintains a
8045          * separate interrupt safe API to ensure interrupt entry is as fast and as
8046          * simple as possible.  More information (albeit Cortex-M specific) is
8047          * provided on the following link:
8048          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8049         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8050
8051         pxTCB = xTaskToNotify;
8052
8053         uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
8054         {
8055             if( pulPreviousNotificationValue != NULL )
8056             {
8057                 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
8058             }
8059
8060             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8061             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8062
8063             switch( eAction )
8064             {
8065                 case eSetBits:
8066                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
8067                     break;
8068
8069                 case eIncrement:
8070                     ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8071                     break;
8072
8073                 case eSetValueWithOverwrite:
8074                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8075                     break;
8076
8077                 case eSetValueWithoutOverwrite:
8078
8079                     if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
8080                     {
8081                         pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8082                     }
8083                     else
8084                     {
8085                         /* The value could not be written to the task. */
8086                         xReturn = pdFAIL;
8087                     }
8088
8089                     break;
8090
8091                 case eNoAction:
8092
8093                     /* The task is being notified without its notify value being
8094                      * updated. */
8095                     break;
8096
8097                 default:
8098
8099                     /* Should not get here if all enums are handled.
8100                      * Artificially force an assert by testing a value the
8101                      * compiler can't assume is const. */
8102                     configASSERT( xTickCount == ( TickType_t ) 0 );
8103                     break;
8104             }
8105
8106             traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
8107
8108             /* If the task is in the blocked state specifically to wait for a
8109              * notification then unblock it now. */
8110             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8111             {
8112                 /* The task should not have been on an event list. */
8113                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8114
8115                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8116                 {
8117                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8118                     prvAddTaskToReadyList( pxTCB );
8119                 }
8120                 else
8121                 {
8122                     /* The delayed and ready lists cannot be accessed, so hold
8123                      * this task pending until the scheduler is resumed. */
8124                     listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8125                 }
8126
8127                 #if ( configNUMBER_OF_CORES == 1 )
8128                 {
8129                     if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8130                     {
8131                         /* The notified task has a priority above the currently
8132                          * executing task so a yield is required. */
8133                         if( pxHigherPriorityTaskWoken != NULL )
8134                         {
8135                             *pxHigherPriorityTaskWoken = pdTRUE;
8136                         }
8137
8138                         /* Mark that a yield is pending in case the user is not
8139                          * using the "xHigherPriorityTaskWoken" parameter to an ISR
8140                          * safe FreeRTOS function. */
8141                         xYieldPendings[ 0 ] = pdTRUE;
8142                     }
8143                     else
8144                     {
8145                         mtCOVERAGE_TEST_MARKER();
8146                     }
8147                 }
8148                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8149                 {
8150                     #if ( configUSE_PREEMPTION == 1 )
8151                     {
8152                         prvYieldForTask( pxTCB );
8153
8154                         if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8155                         {
8156                             if( pxHigherPriorityTaskWoken != NULL )
8157                             {
8158                                 *pxHigherPriorityTaskWoken = pdTRUE;
8159                             }
8160                         }
8161                     }
8162                     #endif /* if ( configUSE_PREEMPTION == 1 ) */
8163                 }
8164                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8165             }
8166         }
8167         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8168
8169         traceRETURN_xTaskGenericNotifyFromISR( xReturn );
8170
8171         return xReturn;
8172     }
8173
8174 #endif /* configUSE_TASK_NOTIFICATIONS */
8175 /*-----------------------------------------------------------*/
8176
8177 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8178
8179     void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
8180                                         UBaseType_t uxIndexToNotify,
8181                                         BaseType_t * pxHigherPriorityTaskWoken )
8182     {
8183         TCB_t * pxTCB;
8184         uint8_t ucOriginalNotifyState;
8185         UBaseType_t uxSavedInterruptStatus;
8186
8187         traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken );
8188
8189         configASSERT( xTaskToNotify );
8190         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8191
8192         /* RTOS ports that support interrupt nesting have the concept of a
8193          * maximum  system call (or maximum API call) interrupt priority.
8194          * Interrupts that are  above the maximum system call priority are keep
8195          * permanently enabled, even when the RTOS kernel is in a critical section,
8196          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
8197          * is defined in FreeRTOSConfig.h then
8198          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8199          * failure if a FreeRTOS API function is called from an interrupt that has
8200          * been assigned a priority above the configured maximum system call
8201          * priority.  Only FreeRTOS functions that end in FromISR can be called
8202          * from interrupts  that have been assigned a priority at or (logically)
8203          * below the maximum system call interrupt priority.  FreeRTOS maintains a
8204          * separate interrupt safe API to ensure interrupt entry is as fast and as
8205          * simple as possible.  More information (albeit Cortex-M specific) is
8206          * provided on the following link:
8207          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8208         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8209
8210         pxTCB = xTaskToNotify;
8211
8212         uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
8213         {
8214             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8215             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8216
8217             /* 'Giving' is equivalent to incrementing a count in a counting
8218              * semaphore. */
8219             ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8220
8221             traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
8222
8223             /* If the task is in the blocked state specifically to wait for a
8224              * notification then unblock it now. */
8225             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8226             {
8227                 /* The task should not have been on an event list. */
8228                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8229
8230                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8231                 {
8232                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8233                     prvAddTaskToReadyList( pxTCB );
8234                 }
8235                 else
8236                 {
8237                     /* The delayed and ready lists cannot be accessed, so hold
8238                      * this task pending until the scheduler is resumed. */
8239                     listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8240                 }
8241
8242                 #if ( configNUMBER_OF_CORES == 1 )
8243                 {
8244                     if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8245                     {
8246                         /* The notified task has a priority above the currently
8247                          * executing task so a yield is required. */
8248                         if( pxHigherPriorityTaskWoken != NULL )
8249                         {
8250                             *pxHigherPriorityTaskWoken = pdTRUE;
8251                         }
8252
8253                         /* Mark that a yield is pending in case the user is not
8254                          * using the "xHigherPriorityTaskWoken" parameter in an ISR
8255                          * safe FreeRTOS function. */
8256                         xYieldPendings[ 0 ] = pdTRUE;
8257                     }
8258                     else
8259                     {
8260                         mtCOVERAGE_TEST_MARKER();
8261                     }
8262                 }
8263                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8264                 {
8265                     #if ( configUSE_PREEMPTION == 1 )
8266                     {
8267                         prvYieldForTask( pxTCB );
8268
8269                         if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8270                         {
8271                             if( pxHigherPriorityTaskWoken != NULL )
8272                             {
8273                                 *pxHigherPriorityTaskWoken = pdTRUE;
8274                             }
8275                         }
8276                     }
8277                     #endif /* #if ( configUSE_PREEMPTION == 1 ) */
8278                 }
8279                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8280             }
8281         }
8282         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8283
8284         traceRETURN_vTaskGenericNotifyGiveFromISR();
8285     }
8286
8287 #endif /* configUSE_TASK_NOTIFICATIONS */
8288 /*-----------------------------------------------------------*/
8289
8290 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8291
8292     BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
8293                                              UBaseType_t uxIndexToClear )
8294     {
8295         TCB_t * pxTCB;
8296         BaseType_t xReturn;
8297
8298         traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear );
8299
8300         configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8301
8302         /* If null is passed in here then it is the calling task that is having
8303          * its notification state cleared. */
8304         pxTCB = prvGetTCBFromHandle( xTask );
8305
8306         taskENTER_CRITICAL();
8307         {
8308             if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
8309             {
8310                 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
8311                 xReturn = pdPASS;
8312             }
8313             else
8314             {
8315                 xReturn = pdFAIL;
8316             }
8317         }
8318         taskEXIT_CRITICAL();
8319
8320         traceRETURN_xTaskGenericNotifyStateClear( xReturn );
8321
8322         return xReturn;
8323     }
8324
8325 #endif /* configUSE_TASK_NOTIFICATIONS */
8326 /*-----------------------------------------------------------*/
8327
8328 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8329
8330     uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
8331                                             UBaseType_t uxIndexToClear,
8332                                             uint32_t ulBitsToClear )
8333     {
8334         TCB_t * pxTCB;
8335         uint32_t ulReturn;
8336
8337         traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear );
8338
8339         configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8340
8341         /* If null is passed in here then it is the calling task that is having
8342          * its notification state cleared. */
8343         pxTCB = prvGetTCBFromHandle( xTask );
8344
8345         taskENTER_CRITICAL();
8346         {
8347             /* Return the notification as it was before the bits were cleared,
8348              * then clear the bit mask. */
8349             ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
8350             pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
8351         }
8352         taskEXIT_CRITICAL();
8353
8354         traceRETURN_ulTaskGenericNotifyValueClear( ulReturn );
8355
8356         return ulReturn;
8357     }
8358
8359 #endif /* configUSE_TASK_NOTIFICATIONS */
8360 /*-----------------------------------------------------------*/
8361
8362 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8363
8364     configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask )
8365     {
8366         TCB_t * pxTCB;
8367
8368         traceENTER_ulTaskGetRunTimeCounter( xTask );
8369
8370         pxTCB = prvGetTCBFromHandle( xTask );
8371
8372         traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter );
8373
8374         return pxTCB->ulRunTimeCounter;
8375     }
8376
8377 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8378 /*-----------------------------------------------------------*/
8379
8380 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8381
8382     configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask )
8383     {
8384         TCB_t * pxTCB;
8385         configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8386
8387         traceENTER_ulTaskGetRunTimePercent( xTask );
8388
8389         ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
8390
8391         /* For percentage calculations. */
8392         ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8393
8394         /* Avoid divide by zero errors. */
8395         if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8396         {
8397             pxTCB = prvGetTCBFromHandle( xTask );
8398             ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime;
8399         }
8400         else
8401         {
8402             ulReturn = 0;
8403         }
8404
8405         traceRETURN_ulTaskGetRunTimePercent( ulReturn );
8406
8407         return ulReturn;
8408     }
8409
8410 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8411 /*-----------------------------------------------------------*/
8412
8413 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8414
8415     configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
8416     {
8417         configRUN_TIME_COUNTER_TYPE ulReturn = 0;
8418         BaseType_t i;
8419
8420         traceENTER_ulTaskGetIdleRunTimeCounter();
8421
8422         for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8423         {
8424             ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8425         }
8426
8427         traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn );
8428
8429         return ulReturn;
8430     }
8431
8432 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8433 /*-----------------------------------------------------------*/
8434
8435 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8436
8437     configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
8438     {
8439         configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8440         configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0;
8441         BaseType_t i;
8442
8443         traceENTER_ulTaskGetIdleRunTimePercent();
8444
8445         ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES;
8446
8447         /* For percentage calculations. */
8448         ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8449
8450         /* Avoid divide by zero errors. */
8451         if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8452         {
8453             for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8454             {
8455                 ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8456             }
8457
8458             ulReturn = ulRunTimeCounter / ulTotalTime;
8459         }
8460         else
8461         {
8462             ulReturn = 0;
8463         }
8464
8465         traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn );
8466
8467         return ulReturn;
8468     }
8469
8470 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8471 /*-----------------------------------------------------------*/
8472
8473 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
8474                                             const BaseType_t xCanBlockIndefinitely )
8475 {
8476     TickType_t xTimeToWake;
8477     const TickType_t xConstTickCount = xTickCount;
8478     List_t * const pxDelayedList = pxDelayedTaskList;
8479     List_t * const pxOverflowDelayedList = pxOverflowDelayedTaskList;
8480
8481     #if ( INCLUDE_xTaskAbortDelay == 1 )
8482     {
8483         /* About to enter a delayed list, so ensure the ucDelayAborted flag is
8484          * reset to pdFALSE so it can be detected as having been set to pdTRUE
8485          * when the task leaves the Blocked state. */
8486         pxCurrentTCB->ucDelayAborted = ( uint8_t ) pdFALSE;
8487     }
8488     #endif
8489
8490     /* Remove the task from the ready list before adding it to the blocked list
8491      * as the same list item is used for both lists. */
8492     if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
8493     {
8494         /* The current task must be in a ready list, so there is no need to
8495          * check, and the port reset macro can be called directly. */
8496         portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
8497     }
8498     else
8499     {
8500         mtCOVERAGE_TEST_MARKER();
8501     }
8502
8503     #if ( INCLUDE_vTaskSuspend == 1 )
8504     {
8505         if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
8506         {
8507             /* Add the task to the suspended task list instead of a delayed task
8508              * list to ensure it is not woken by a timing event.  It will block
8509              * indefinitely. */
8510             listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
8511         }
8512         else
8513         {
8514             /* Calculate the time at which the task should be woken if the event
8515              * does not occur.  This may overflow but this doesn't matter, the
8516              * kernel will manage it correctly. */
8517             xTimeToWake = xConstTickCount + xTicksToWait;
8518
8519             /* The list item will be inserted in wake time order. */
8520             listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8521
8522             if( xTimeToWake < xConstTickCount )
8523             {
8524                 /* Wake time has overflowed.  Place this item in the overflow
8525                  * list. */
8526                 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8527                 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8528             }
8529             else
8530             {
8531                 /* The wake time has not overflowed, so the current block list
8532                  * is used. */
8533                 traceMOVED_TASK_TO_DELAYED_LIST();
8534                 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8535
8536                 /* If the task entering the blocked state was placed at the
8537                  * head of the list of blocked tasks then xNextTaskUnblockTime
8538                  * needs to be updated too. */
8539                 if( xTimeToWake < xNextTaskUnblockTime )
8540                 {
8541                     xNextTaskUnblockTime = xTimeToWake;
8542                 }
8543                 else
8544                 {
8545                     mtCOVERAGE_TEST_MARKER();
8546                 }
8547             }
8548         }
8549     }
8550     #else /* INCLUDE_vTaskSuspend */
8551     {
8552         /* Calculate the time at which the task should be woken if the event
8553          * does not occur.  This may overflow but this doesn't matter, the kernel
8554          * will manage it correctly. */
8555         xTimeToWake = xConstTickCount + xTicksToWait;
8556
8557         /* The list item will be inserted in wake time order. */
8558         listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8559
8560         if( xTimeToWake < xConstTickCount )
8561         {
8562             traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8563             /* Wake time has overflowed.  Place this item in the overflow list. */
8564             vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8565         }
8566         else
8567         {
8568             traceMOVED_TASK_TO_DELAYED_LIST();
8569             /* The wake time has not overflowed, so the current block list is used. */
8570             vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8571
8572             /* If the task entering the blocked state was placed at the head of the
8573              * list of blocked tasks then xNextTaskUnblockTime needs to be updated
8574              * too. */
8575             if( xTimeToWake < xNextTaskUnblockTime )
8576             {
8577                 xNextTaskUnblockTime = xTimeToWake;
8578             }
8579             else
8580             {
8581                 mtCOVERAGE_TEST_MARKER();
8582             }
8583         }
8584
8585         /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
8586         ( void ) xCanBlockIndefinitely;
8587     }
8588     #endif /* INCLUDE_vTaskSuspend */
8589 }
8590 /*-----------------------------------------------------------*/
8591
8592 #if ( portUSING_MPU_WRAPPERS == 1 )
8593
8594     xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask )
8595     {
8596         TCB_t * pxTCB;
8597
8598         traceENTER_xTaskGetMPUSettings( xTask );
8599
8600         pxTCB = prvGetTCBFromHandle( xTask );
8601
8602         traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) );
8603
8604         return &( pxTCB->xMPUSettings );
8605     }
8606
8607 #endif /* portUSING_MPU_WRAPPERS */
8608 /*-----------------------------------------------------------*/
8609
8610 /* Code below here allows additional code to be inserted into this source file,
8611  * especially where access to file scope functions and data is needed (for example
8612  * when performing module tests). */
8613
8614 #ifdef FREERTOS_MODULE_TEST
8615     #include "tasks_test_access_functions.h"
8616 #endif
8617
8618
8619 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
8620
8621     #include "freertos_tasks_c_additions.h"
8622
8623     #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
8624         static void freertos_tasks_c_additions_init( void )
8625         {
8626             FREERTOS_TASKS_C_ADDITIONS_INIT();
8627         }
8628     #endif
8629
8630 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
8631 /*-----------------------------------------------------------*/
8632
8633 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8634
8635 /*
8636  * This is the kernel provided implementation of vApplicationGetIdleTaskMemory()
8637  * to provide the memory that is used by the Idle task. It is used when
8638  * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8639  * it's own implementation of vApplicationGetIdleTaskMemory by setting
8640  * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8641  */
8642     void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8643                                         StackType_t ** ppxIdleTaskStackBuffer,
8644                                         configSTACK_DEPTH_TYPE * puxIdleTaskStackSize )
8645     {
8646         static StaticTask_t xIdleTaskTCB;
8647         static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
8648
8649         *ppxIdleTaskTCBBuffer = &( xIdleTaskTCB );
8650         *ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] );
8651         *puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8652     }
8653
8654     #if ( configNUMBER_OF_CORES > 1 )
8655
8656         void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8657                                                    StackType_t ** ppxIdleTaskStackBuffer,
8658                                                    configSTACK_DEPTH_TYPE * puxIdleTaskStackSize,
8659                                                    BaseType_t xPassiveIdleTaskIndex )
8660         {
8661             static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ];
8662             static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ];
8663
8664             *ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] );
8665             *ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] );
8666             *puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8667         }
8668
8669     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
8670
8671 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8672 /*-----------------------------------------------------------*/
8673
8674 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8675
8676 /*
8677  * This is the kernel provided implementation of vApplicationGetTimerTaskMemory()
8678  * to provide the memory that is used by the Timer service task. It is used when
8679  * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8680  * it's own implementation of vApplicationGetTimerTaskMemory by setting
8681  * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8682  */
8683     void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
8684                                          StackType_t ** ppxTimerTaskStackBuffer,
8685                                          configSTACK_DEPTH_TYPE * puxTimerTaskStackSize )
8686     {
8687         static StaticTask_t xTimerTaskTCB;
8688         static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
8689
8690         *ppxTimerTaskTCBBuffer = &( xTimerTaskTCB );
8691         *ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] );
8692         *puxTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
8693     }
8694
8695 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8696 /*-----------------------------------------------------------*/
8697
8698 /*
8699  * Reset the state in this file. This state is normally initialized at start up.
8700  * This function must be called by the application before restarting the
8701  * scheduler.
8702  */
8703 void vTaskResetState( void )
8704 {
8705     BaseType_t xCoreID;
8706
8707     /* Task control block. */
8708     #if ( configNUMBER_OF_CORES == 1 )
8709     {
8710         pxCurrentTCB = NULL;
8711     }
8712     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8713
8714     #if ( INCLUDE_vTaskDelete == 1 )
8715     {
8716         uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
8717     }
8718     #endif /* #if ( INCLUDE_vTaskDelete == 1 ) */
8719
8720     #if ( configUSE_POSIX_ERRNO == 1 )
8721     {
8722         FreeRTOS_errno = 0;
8723     }
8724     #endif /* #if ( configUSE_POSIX_ERRNO == 1 ) */
8725
8726     /* Other file private variables. */
8727     uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
8728     xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
8729     uxTopReadyPriority = tskIDLE_PRIORITY;
8730     xSchedulerRunning = pdFALSE;
8731     xPendedTicks = ( TickType_t ) 0U;
8732
8733     for( xCoreID = 0; xCoreID < configNUMBER_OF_CORES; xCoreID++ )
8734     {
8735         xYieldPendings[ xCoreID ] = pdFALSE;
8736     }
8737
8738     xNumOfOverflows = ( BaseType_t ) 0;
8739     uxTaskNumber = ( UBaseType_t ) 0U;
8740     xNextTaskUnblockTime = ( TickType_t ) 0U;
8741
8742     uxSchedulerSuspended = ( UBaseType_t ) 0U;
8743
8744     #if ( configGENERATE_RUN_TIME_STATS == 1 )
8745     {
8746         for( xCoreID = 0; xCoreID < configNUMBER_OF_CORES; xCoreID++ )
8747         {
8748             ulTaskSwitchedInTime[ xCoreID ] = 0U;
8749             ulTotalRunTime[ xCoreID ] = 0U;
8750         }
8751     }
8752     #endif /* #if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8753 }
8754 /*-----------------------------------------------------------*/