2 * FreeRTOS Kernel V10.4.4
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * SPDX-License-Identifier: MIT
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
8 * this software and associated documentation files (the "Software"), to deal in
\r
9 * the Software without restriction, including without limitation the rights to
\r
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
11 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
12 * subject to the following conditions:
\r
14 * The above copyright notice and this permission notice shall be included in all
\r
15 * copies or substantial portions of the Software.
\r
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
24 * https://www.FreeRTOS.org
\r
25 * https://github.com/FreeRTOS
\r
30 * This is the list implementation used by the scheduler. While it is tailored
\r
31 * heavily for the schedulers needs, it is also available for use by
\r
34 * list_ts can only store pointers to list_item_ts. Each ListItem_t contains a
\r
35 * numeric value (xItemValue). Most of the time the lists are sorted in
\r
36 * ascending item value order.
\r
38 * Lists are created already containing one list item. The value of this
\r
39 * item is the maximum possible that can be stored, it is therefore always at
\r
40 * the end of the list and acts as a marker. The list member pxHead always
\r
41 * points to this marker - even though it is at the tail of the list. This
\r
42 * is because the tail contains a wrap back pointer to the true head of
\r
45 * In addition to it's value, each list item contains a pointer to the next
\r
46 * item in the list (pxNext), a pointer to the list it is in (pxContainer)
\r
47 * and a pointer to back to the object that contains it. These later two
\r
48 * pointers are included for efficiency of list manipulation. There is
\r
49 * effectively a two way link between the object containing the list item and
\r
50 * the list item itself.
\r
53 * \page ListIntroduction List Implementation
\r
54 * \ingroup FreeRTOSIntro
\r
61 #ifndef INC_FREERTOS_H
\r
62 #error "FreeRTOS.h must be included before list.h"
\r
66 * The list structure members are modified from within interrupts, and therefore
\r
67 * by rights should be declared volatile. However, they are only modified in a
\r
68 * functionally atomic way (within critical sections of with the scheduler
\r
69 * suspended) and are either passed by reference into a function or indexed via
\r
70 * a volatile variable. Therefore, in all use cases tested so far, the volatile
\r
71 * qualifier can be omitted in order to provide a moderate performance
\r
72 * improvement without adversely affecting functional behaviour. The assembly
\r
73 * instructions generated by the IAR, ARM and GCC compilers when the respective
\r
74 * compiler's options were set for maximum optimisation has been inspected and
\r
75 * deemed to be as intended. That said, as compiler technology advances, and
\r
76 * especially if aggressive cross module optimisation is used (a use case that
\r
77 * has not been exercised to any great extend) then it is feasible that the
\r
78 * volatile qualifier will be needed for correct optimisation. It is expected
\r
79 * that a compiler removing essential code because, without the volatile
\r
80 * qualifier on the list structure members and with aggressive cross module
\r
81 * optimisation, the compiler deemed the code unnecessary will result in
\r
82 * complete and obvious failure of the scheduler. If this is ever experienced
\r
83 * then the volatile qualifier can be inserted in the relevant places within the
\r
84 * list structures by simply defining configLIST_VOLATILE to volatile in
\r
85 * FreeRTOSConfig.h (as per the example at the bottom of this comment block).
\r
86 * If configLIST_VOLATILE is not defined then the preprocessor directives below
\r
87 * will simply #define configLIST_VOLATILE away completely.
\r
89 * To use volatile list structure members then add the following line to
\r
90 * FreeRTOSConfig.h (without the quotes):
\r
91 * "#define configLIST_VOLATILE volatile"
\r
93 #ifndef configLIST_VOLATILE
\r
94 #define configLIST_VOLATILE
\r
95 #endif /* configSUPPORT_CROSS_MODULE_OPTIMISATION */
\r
103 /* Macros that can be used to place known values within the list structures,
\r
104 * then check that the known values do not get corrupted during the execution of
\r
105 * the application. These may catch the list data structures being overwritten in
\r
106 * memory. They will not catch data errors caused by incorrect configuration or
\r
107 * use of FreeRTOS.*/
\r
108 #if ( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 0 )
\r
109 /* Define the macros to do nothing. */
\r
110 #define listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE
\r
111 #define listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE
\r
112 #define listFIRST_LIST_INTEGRITY_CHECK_VALUE
\r
113 #define listSECOND_LIST_INTEGRITY_CHECK_VALUE
\r
114 #define listSET_FIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem )
\r
115 #define listSET_SECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem )
\r
116 #define listSET_LIST_INTEGRITY_CHECK_1_VALUE( pxList )
\r
117 #define listSET_LIST_INTEGRITY_CHECK_2_VALUE( pxList )
\r
118 #define listTEST_LIST_ITEM_INTEGRITY( pxItem )
\r
119 #define listTEST_LIST_INTEGRITY( pxList )
\r
120 #else /* if ( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 0 ) */
\r
121 /* Define macros that add new members into the list structures. */
\r
122 #define listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE TickType_t xListItemIntegrityValue1;
\r
123 #define listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE TickType_t xListItemIntegrityValue2;
\r
124 #define listFIRST_LIST_INTEGRITY_CHECK_VALUE TickType_t xListIntegrityValue1;
\r
125 #define listSECOND_LIST_INTEGRITY_CHECK_VALUE TickType_t xListIntegrityValue2;
\r
127 /* Define macros that set the new structure members to known values. */
\r
128 #define listSET_FIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem ) ( pxItem )->xListItemIntegrityValue1 = pdINTEGRITY_CHECK_VALUE
\r
129 #define listSET_SECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem ) ( pxItem )->xListItemIntegrityValue2 = pdINTEGRITY_CHECK_VALUE
\r
130 #define listSET_LIST_INTEGRITY_CHECK_1_VALUE( pxList ) ( pxList )->xListIntegrityValue1 = pdINTEGRITY_CHECK_VALUE
\r
131 #define listSET_LIST_INTEGRITY_CHECK_2_VALUE( pxList ) ( pxList )->xListIntegrityValue2 = pdINTEGRITY_CHECK_VALUE
\r
133 /* Define macros that will assert if one of the structure members does not
\r
134 * contain its expected value. */
\r
135 #define listTEST_LIST_ITEM_INTEGRITY( pxItem ) configASSERT( ( ( pxItem )->xListItemIntegrityValue1 == pdINTEGRITY_CHECK_VALUE ) && ( ( pxItem )->xListItemIntegrityValue2 == pdINTEGRITY_CHECK_VALUE ) )
\r
136 #define listTEST_LIST_INTEGRITY( pxList ) configASSERT( ( ( pxList )->xListIntegrityValue1 == pdINTEGRITY_CHECK_VALUE ) && ( ( pxList )->xListIntegrityValue2 == pdINTEGRITY_CHECK_VALUE ) )
\r
137 #endif /* configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES */
\r
141 * Definition of the only type of object that a list can contain.
\r
146 listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
\r
147 configLIST_VOLATILE TickType_t xItemValue; /*< The value being listed. In most cases this is used to sort the list in ascending order. */
\r
148 struct xLIST_ITEM * configLIST_VOLATILE pxNext; /*< Pointer to the next ListItem_t in the list. */
\r
149 struct xLIST_ITEM * configLIST_VOLATILE pxPrevious; /*< Pointer to the previous ListItem_t in the list. */
\r
150 void * pvOwner; /*< Pointer to the object (normally a TCB) that contains the list item. There is therefore a two way link between the object containing the list item and the list item itself. */
\r
151 struct xLIST * configLIST_VOLATILE pxContainer; /*< Pointer to the list in which this list item is placed (if any). */
\r
152 listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
\r
154 typedef struct xLIST_ITEM ListItem_t; /* For some reason lint wants this as two separate definitions. */
\r
156 struct xMINI_LIST_ITEM
\r
158 listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
\r
159 configLIST_VOLATILE TickType_t xItemValue;
\r
160 struct xLIST_ITEM * configLIST_VOLATILE pxNext;
\r
161 struct xLIST_ITEM * configLIST_VOLATILE pxPrevious;
\r
163 typedef struct xMINI_LIST_ITEM MiniListItem_t;
\r
166 * Definition of the type of queue used by the scheduler.
\r
168 typedef struct xLIST
\r
170 listFIRST_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
\r
171 volatile UBaseType_t uxNumberOfItems;
\r
172 ListItem_t * configLIST_VOLATILE pxIndex; /*< Used to walk through the list. Points to the last item returned by a call to listGET_OWNER_OF_NEXT_ENTRY (). */
\r
173 MiniListItem_t xListEnd; /*< List item that contains the maximum possible item value meaning it is always at the end of the list and is therefore used as a marker. */
\r
174 listSECOND_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
\r
178 * Access macro to set the owner of a list item. The owner of a list item
\r
179 * is the object (usually a TCB) that contains the list item.
\r
181 * \page listSET_LIST_ITEM_OWNER listSET_LIST_ITEM_OWNER
\r
182 * \ingroup LinkedList
\r
184 #define listSET_LIST_ITEM_OWNER( pxListItem, pxOwner ) ( ( pxListItem )->pvOwner = ( void * ) ( pxOwner ) )
\r
187 * Access macro to get the owner of a list item. The owner of a list item
\r
188 * is the object (usually a TCB) that contains the list item.
\r
190 * \page listGET_LIST_ITEM_OWNER listSET_LIST_ITEM_OWNER
\r
191 * \ingroup LinkedList
\r
193 #define listGET_LIST_ITEM_OWNER( pxListItem ) ( ( pxListItem )->pvOwner )
\r
196 * Access macro to set the value of the list item. In most cases the value is
\r
197 * used to sort the list in ascending order.
\r
199 * \page listSET_LIST_ITEM_VALUE listSET_LIST_ITEM_VALUE
\r
200 * \ingroup LinkedList
\r
202 #define listSET_LIST_ITEM_VALUE( pxListItem, xValue ) ( ( pxListItem )->xItemValue = ( xValue ) )
\r
205 * Access macro to retrieve the value of the list item. The value can
\r
206 * represent anything - for example the priority of a task, or the time at
\r
207 * which a task should be unblocked.
\r
209 * \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
\r
210 * \ingroup LinkedList
\r
212 #define listGET_LIST_ITEM_VALUE( pxListItem ) ( ( pxListItem )->xItemValue )
\r
215 * Access macro to retrieve the value of the list item at the head of a given
\r
218 * \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
\r
219 * \ingroup LinkedList
\r
221 #define listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext->xItemValue )
\r
224 * Return the list item at the head of the list.
\r
226 * \page listGET_HEAD_ENTRY listGET_HEAD_ENTRY
\r
227 * \ingroup LinkedList
\r
229 #define listGET_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext )
\r
232 * Return the next list item.
\r
234 * \page listGET_NEXT listGET_NEXT
\r
235 * \ingroup LinkedList
\r
237 #define listGET_NEXT( pxListItem ) ( ( pxListItem )->pxNext )
\r
240 * Return the list item that marks the end of the list
\r
242 * \page listGET_END_MARKER listGET_END_MARKER
\r
243 * \ingroup LinkedList
\r
245 #define listGET_END_MARKER( pxList ) ( ( ListItem_t const * ) ( &( ( pxList )->xListEnd ) ) )
\r
248 * Access macro to determine if a list contains any items. The macro will
\r
249 * only have the value true if the list is empty.
\r
251 * \page listLIST_IS_EMPTY listLIST_IS_EMPTY
\r
252 * \ingroup LinkedList
\r
254 #define listLIST_IS_EMPTY( pxList ) ( ( ( pxList )->uxNumberOfItems == ( UBaseType_t ) 0 ) ? pdTRUE : pdFALSE )
\r
257 * Access macro to return the number of items in the list.
\r
259 #define listCURRENT_LIST_LENGTH( pxList ) ( ( pxList )->uxNumberOfItems )
\r
262 * Access function to obtain the owner of the next entry in a list.
\r
264 * The list member pxIndex is used to walk through a list. Calling
\r
265 * listGET_OWNER_OF_NEXT_ENTRY increments pxIndex to the next item in the list
\r
266 * and returns that entry's pxOwner parameter. Using multiple calls to this
\r
267 * function it is therefore possible to move through every item contained in
\r
270 * The pxOwner parameter of a list item is a pointer to the object that owns
\r
271 * the list item. In the scheduler this is normally a task control block.
\r
272 * The pxOwner parameter effectively creates a two way link between the list
\r
273 * item and its owner.
\r
275 * @param pxTCB pxTCB is set to the address of the owner of the next list item.
\r
276 * @param pxList The list from which the next item owner is to be returned.
\r
278 * \page listGET_OWNER_OF_NEXT_ENTRY listGET_OWNER_OF_NEXT_ENTRY
\r
279 * \ingroup LinkedList
\r
281 #define listGET_OWNER_OF_NEXT_ENTRY( pxTCB, pxList ) \
\r
283 List_t * const pxConstList = ( pxList ); \
\r
284 /* Increment the index to the next item and return the item, ensuring */ \
\r
285 /* we don't return the marker used at the end of the list. */ \
\r
286 ( pxConstList )->pxIndex = ( pxConstList )->pxIndex->pxNext; \
\r
287 if( ( void * ) ( pxConstList )->pxIndex == ( void * ) &( ( pxConstList )->xListEnd ) ) \
\r
289 ( pxConstList )->pxIndex = ( pxConstList )->pxIndex->pxNext; \
\r
291 ( pxTCB ) = ( pxConstList )->pxIndex->pvOwner; \
\r
295 * Version of uxListRemove() that does not return a value. Provided as a slight
\r
296 * optimisation for xTaskIncrementTick() by being inline.
\r
298 * Remove an item from a list. The list item has a pointer to the list that
\r
299 * it is in, so only the list item need be passed into the function.
\r
301 * @param uxListRemove The item to be removed. The item will remove itself from
\r
302 * the list pointed to by it's pxContainer parameter.
\r
304 * @return The number of items that remain in the list after the list item has
\r
307 * \page listREMOVE_ITEM listREMOVE_ITEM
\r
308 * \ingroup LinkedList
\r
310 #define listREMOVE_ITEM( pxItemToRemove ) \
\r
312 /* The list item knows which list it is in. Obtain the list from the list \
\r
314 List_t * const pxList = ( pxItemToRemove )->pxContainer; \
\r
316 ( pxItemToRemove )->pxNext->pxPrevious = ( pxItemToRemove )->pxPrevious; \
\r
317 ( pxItemToRemove )->pxPrevious->pxNext = ( pxItemToRemove )->pxNext; \
\r
318 /* Make sure the index is left pointing to a valid item. */ \
\r
319 if( pxList->pxIndex == ( pxItemToRemove ) ) \
\r
321 pxList->pxIndex = ( pxItemToRemove )->pxPrevious; \
\r
324 ( pxItemToRemove )->pxContainer = NULL; \
\r
325 ( pxList->uxNumberOfItems )--; \
\r
329 * Inline version of vListInsertEnd() to provide slight optimisation for
\r
330 * xTaskIncrementTick().
\r
332 * Insert a list item into a list. The item will be inserted in a position
\r
333 * such that it will be the last item within the list returned by multiple
\r
334 * calls to listGET_OWNER_OF_NEXT_ENTRY.
\r
336 * The list member pxIndex is used to walk through a list. Calling
\r
337 * listGET_OWNER_OF_NEXT_ENTRY increments pxIndex to the next item in the list.
\r
338 * Placing an item in a list using vListInsertEnd effectively places the item
\r
339 * in the list position pointed to by pxIndex. This means that every other
\r
340 * item within the list will be returned by listGET_OWNER_OF_NEXT_ENTRY before
\r
341 * the pxIndex parameter again points to the item being inserted.
\r
343 * @param pxList The list into which the item is to be inserted.
\r
345 * @param pxNewListItem The list item to be inserted into the list.
\r
347 * \page listINSERT_END listINSERT_END
\r
348 * \ingroup LinkedList
\r
350 #define listINSERT_END( pxList, pxNewListItem ) \
\r
352 ListItem_t * const pxIndex = ( pxList )->pxIndex; \
\r
354 /* Only effective when configASSERT() is also defined, these tests may catch \
\r
355 * the list data structures being overwritten in memory. They will not catch \
\r
356 * data errors caused by incorrect configuration or use of FreeRTOS. */ \
\r
357 listTEST_LIST_INTEGRITY( ( pxList ) ); \
\r
358 listTEST_LIST_ITEM_INTEGRITY( ( pxNewListItem ) ); \
\r
360 /* Insert a new list item into ( pxList ), but rather than sort the list, \
\r
361 * makes the new list item the last item to be removed by a call to \
\r
362 * listGET_OWNER_OF_NEXT_ENTRY(). */ \
\r
363 ( pxNewListItem )->pxNext = pxIndex; \
\r
364 ( pxNewListItem )->pxPrevious = pxIndex->pxPrevious; \
\r
366 pxIndex->pxPrevious->pxNext = ( pxNewListItem ); \
\r
367 pxIndex->pxPrevious = ( pxNewListItem ); \
\r
369 /* Remember which list the item is in. */ \
\r
370 ( pxNewListItem )->pxContainer = ( pxList ); \
\r
372 ( ( pxList )->uxNumberOfItems )++; \
\r
376 * Access function to obtain the owner of the first entry in a list. Lists
\r
377 * are normally sorted in ascending item value order.
\r
379 * This function returns the pxOwner member of the first item in the list.
\r
380 * The pxOwner parameter of a list item is a pointer to the object that owns
\r
381 * the list item. In the scheduler this is normally a task control block.
\r
382 * The pxOwner parameter effectively creates a two way link between the list
\r
383 * item and its owner.
\r
385 * @param pxList The list from which the owner of the head item is to be
\r
388 * \page listGET_OWNER_OF_HEAD_ENTRY listGET_OWNER_OF_HEAD_ENTRY
\r
389 * \ingroup LinkedList
\r
391 #define listGET_OWNER_OF_HEAD_ENTRY( pxList ) ( ( &( ( pxList )->xListEnd ) )->pxNext->pvOwner )
\r
394 * Check to see if a list item is within a list. The list item maintains a
\r
395 * "container" pointer that points to the list it is in. All this macro does
\r
396 * is check to see if the container and the list match.
\r
398 * @param pxList The list we want to know if the list item is within.
\r
399 * @param pxListItem The list item we want to know if is in the list.
\r
400 * @return pdTRUE if the list item is in the list, otherwise pdFALSE.
\r
402 #define listIS_CONTAINED_WITHIN( pxList, pxListItem ) ( ( ( pxListItem )->pxContainer == ( pxList ) ) ? ( pdTRUE ) : ( pdFALSE ) )
\r
405 * Return the list a list item is contained within (referenced from).
\r
407 * @param pxListItem The list item being queried.
\r
408 * @return A pointer to the List_t object that references the pxListItem
\r
410 #define listLIST_ITEM_CONTAINER( pxListItem ) ( ( pxListItem )->pxContainer )
\r
413 * This provides a crude means of knowing if a list has been initialised, as
\r
414 * pxList->xListEnd.xItemValue is set to portMAX_DELAY by the vListInitialise()
\r
417 #define listLIST_IS_INITIALISED( pxList ) ( ( pxList )->xListEnd.xItemValue == portMAX_DELAY )
\r
420 * Must be called before a list is used! This initialises all the members
\r
421 * of the list structure and inserts the xListEnd item into the list as a
\r
422 * marker to the back of the list.
\r
424 * @param pxList Pointer to the list being initialised.
\r
426 * \page vListInitialise vListInitialise
\r
427 * \ingroup LinkedList
\r
429 void vListInitialise( List_t * const pxList ) PRIVILEGED_FUNCTION;
\r
432 * Must be called before a list item is used. This sets the list container to
\r
433 * null so the item does not think that it is already contained in a list.
\r
435 * @param pxItem Pointer to the list item being initialised.
\r
437 * \page vListInitialiseItem vListInitialiseItem
\r
438 * \ingroup LinkedList
\r
440 void vListInitialiseItem( ListItem_t * const pxItem ) PRIVILEGED_FUNCTION;
\r
443 * Insert a list item into a list. The item will be inserted into the list in
\r
444 * a position determined by its item value (ascending item value order).
\r
446 * @param pxList The list into which the item is to be inserted.
\r
448 * @param pxNewListItem The item that is to be placed in the list.
\r
450 * \page vListInsert vListInsert
\r
451 * \ingroup LinkedList
\r
453 void vListInsert( List_t * const pxList,
\r
454 ListItem_t * const pxNewListItem ) PRIVILEGED_FUNCTION;
\r
457 * Insert a list item into a list. The item will be inserted in a position
\r
458 * such that it will be the last item within the list returned by multiple
\r
459 * calls to listGET_OWNER_OF_NEXT_ENTRY.
\r
461 * The list member pxIndex is used to walk through a list. Calling
\r
462 * listGET_OWNER_OF_NEXT_ENTRY increments pxIndex to the next item in the list.
\r
463 * Placing an item in a list using vListInsertEnd effectively places the item
\r
464 * in the list position pointed to by pxIndex. This means that every other
\r
465 * item within the list will be returned by listGET_OWNER_OF_NEXT_ENTRY before
\r
466 * the pxIndex parameter again points to the item being inserted.
\r
468 * @param pxList The list into which the item is to be inserted.
\r
470 * @param pxNewListItem The list item to be inserted into the list.
\r
472 * \page vListInsertEnd vListInsertEnd
\r
473 * \ingroup LinkedList
\r
475 void vListInsertEnd( List_t * const pxList,
\r
476 ListItem_t * const pxNewListItem ) PRIVILEGED_FUNCTION;
\r
479 * Remove an item from a list. The list item has a pointer to the list that
\r
480 * it is in, so only the list item need be passed into the function.
\r
482 * @param uxListRemove The item to be removed. The item will remove itself from
\r
483 * the list pointed to by it's pxContainer parameter.
\r
485 * @return The number of items that remain in the list after the list item has
\r
488 * \page uxListRemove uxListRemove
\r
489 * \ingroup LinkedList
\r
491 UBaseType_t uxListRemove( ListItem_t * const pxItemToRemove ) PRIVILEGED_FUNCTION;
\r
499 #endif /* ifndef LIST_H */
\r