2 * FreeRTOS Kernel V10.4.3
\r
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * https://www.FreeRTOS.org
\r
23 * https://github.com/FreeRTOS
\r
30 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
31 * all the API functions to use the MPU wrappers. That should only be done when
\r
32 * task.h is included from an application file. */
\r
33 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
35 #include "FreeRTOS.h"
\r
39 #if ( configUSE_CO_ROUTINES == 1 )
\r
40 #include "croutine.h"
\r
43 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
44 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
45 * for the header files above, but not in this file, in order to generate the
\r
46 * correct privileged Vs unprivileged linkage and placement. */
\r
47 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Constants used with the cRxLock and cTxLock structure members. */
\r
51 #define queueUNLOCKED ( ( int8_t ) -1 )
\r
52 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
\r
53 #define queueINT8_MAX ( ( int8_t ) 127 )
\r
55 /* When the Queue_t structure is used to represent a base queue its pcHead and
\r
56 * pcTail members are used as pointers into the queue storage area. When the
\r
57 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
\r
58 * not necessary, and the pcHead pointer is set to NULL to indicate that the
\r
59 * structure instead holds a pointer to the mutex holder (if any). Map alternative
\r
60 * names to the pcHead and structure member to ensure the readability of the code
\r
61 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
\r
62 * a union as their usage is mutually exclusive dependent on what the queue is
\r
63 * being used for. */
\r
64 #define uxQueueType pcHead
\r
65 #define queueQUEUE_IS_MUTEX NULL
\r
67 typedef struct QueuePointers
\r
69 int8_t * pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
\r
70 int8_t * pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
\r
73 typedef struct SemaphoreData
\r
75 TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex. */
\r
76 UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
\r
79 /* Semaphores do not actually store or copy data, so have an item size of
\r
81 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
\r
82 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
\r
84 #if ( configUSE_PREEMPTION == 0 )
\r
86 /* If the cooperative scheduler is being used then a yield should not be
\r
87 * performed just because a higher priority task has been woken. */
\r
88 #define queueYIELD_IF_USING_PREEMPTION()
\r
90 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
94 * Definition of the queue used by the scheduler.
\r
95 * Items are queued by copy, not reference. See the following link for the
\r
96 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
\r
98 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
100 int8_t * pcHead; /*< Points to the beginning of the queue storage area. */
\r
101 int8_t * pcWriteTo; /*< Points to the free next place in the storage area. */
\r
105 QueuePointers_t xQueue; /*< Data required exclusively when this structure is used as a queue. */
\r
106 SemaphoreData_t xSemaphore; /*< Data required exclusively when this structure is used as a semaphore. */
\r
109 List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
\r
110 List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
\r
112 volatile UBaseType_t uxMessagesWaiting; /*< The number of items currently in the queue. */
\r
113 UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
\r
114 UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
\r
116 volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
117 volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
119 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
120 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
\r
123 #if ( configUSE_QUEUE_SETS == 1 )
\r
124 struct QueueDefinition * pxQueueSetContainer;
\r
127 #if ( configUSE_TRACE_FACILITY == 1 )
\r
128 UBaseType_t uxQueueNumber;
\r
129 uint8_t ucQueueType;
\r
133 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
\r
134 * name below to enable the use of older kernel aware debuggers. */
\r
135 typedef xQUEUE Queue_t;
\r
137 /*-----------------------------------------------------------*/
\r
140 * The queue registry is just a means for kernel aware debuggers to locate
\r
141 * queue structures. It has no other purpose so is an optional component.
\r
143 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
145 /* The type stored within the queue registry array. This allows a name
\r
146 * to be assigned to each queue making kernel aware debugging a little
\r
147 * more user friendly. */
\r
148 typedef struct QUEUE_REGISTRY_ITEM
\r
150 const char * pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
151 QueueHandle_t xHandle;
\r
152 } xQueueRegistryItem;
\r
154 /* The old xQueueRegistryItem name is maintained above then typedefed to the
\r
155 * new xQueueRegistryItem name below to enable the use of older kernel aware
\r
157 typedef xQueueRegistryItem QueueRegistryItem_t;
\r
159 /* The queue registry is simply an array of QueueRegistryItem_t structures.
\r
160 * The pcQueueName member of a structure being NULL is indicative of the
\r
161 * array position being vacant. */
\r
162 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
\r
164 #endif /* configQUEUE_REGISTRY_SIZE */
\r
167 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
\r
168 * prevent an ISR from adding or removing items to the queue, but does prevent
\r
169 * an ISR from removing tasks from the queue event lists. If an ISR finds a
\r
170 * queue is locked it will instead increment the appropriate queue lock count
\r
171 * to indicate that a task may require unblocking. When the queue in unlocked
\r
172 * these lock counts are inspected, and the appropriate action taken.
\r
174 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
177 * Uses a critical section to determine if there is any data in a queue.
\r
179 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
\r
181 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
184 * Uses a critical section to determine if there is any space in a queue.
\r
186 * @return pdTRUE if there is no space, otherwise pdFALSE;
\r
188 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
191 * Copies an item into the queue, either at the front of the queue or the
\r
192 * back of the queue.
\r
194 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
195 const void * pvItemToQueue,
\r
196 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
\r
199 * Copies an item out of a queue.
\r
201 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
202 void * const pvBuffer ) PRIVILEGED_FUNCTION;
\r
204 #if ( configUSE_QUEUE_SETS == 1 )
\r
207 * Checks to see if a queue is a member of a queue set, and if so, notifies
\r
208 * the queue set that the queue contains data.
\r
210 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
214 * Called after a Queue_t structure has been allocated either statically or
\r
215 * dynamically to fill in the structure's members.
\r
217 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
218 const UBaseType_t uxItemSize,
\r
219 uint8_t * pucQueueStorage,
\r
220 const uint8_t ucQueueType,
\r
221 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
224 * Mutexes are a special type of queue. When a mutex is created, first the
\r
225 * queue is created, then prvInitialiseMutex() is called to configure the queue
\r
228 #if ( configUSE_MUTEXES == 1 )
\r
229 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
232 #if ( configUSE_MUTEXES == 1 )
\r
235 * If a task waiting for a mutex causes the mutex holder to inherit a
\r
236 * priority, but the waiting task times out, then the holder should
\r
237 * disinherit the priority - but only down to the highest priority of any
\r
238 * other tasks that are waiting for the same mutex. This function returns
\r
241 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
243 /*-----------------------------------------------------------*/
\r
246 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
\r
247 * accessing the queue event lists.
\r
249 #define prvLockQueue( pxQueue ) \
\r
250 taskENTER_CRITICAL(); \
\r
252 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
\r
254 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
\r
256 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
\r
258 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
\r
261 taskEXIT_CRITICAL()
\r
262 /*-----------------------------------------------------------*/
\r
264 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
\r
265 BaseType_t xNewQueue )
\r
267 BaseType_t xReturn = pdPASS;
\r
268 Queue_t * const pxQueue = xQueue;
\r
270 configASSERT( pxQueue );
\r
272 if( ( pxQueue != NULL ) &&
\r
273 ( pxQueue->uxLength >= 1U ) &&
\r
274 /* Check for multiplication overflow. */
\r
275 ( ( SIZE_MAX / pxQueue->uxLength ) >= pxQueue->uxItemSize ) )
\r
277 taskENTER_CRITICAL();
\r
279 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
280 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
\r
281 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
282 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
283 pxQueue->cRxLock = queueUNLOCKED;
\r
284 pxQueue->cTxLock = queueUNLOCKED;
\r
286 if( xNewQueue == pdFALSE )
\r
288 /* If there are tasks blocked waiting to read from the queue, then
\r
289 * the tasks will remain blocked as after this function exits the queue
\r
290 * will still be empty. If there are tasks blocked waiting to write to
\r
291 * the queue, then one should be unblocked as after this function exits
\r
292 * it will be possible to write to it. */
\r
293 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
295 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
297 queueYIELD_IF_USING_PREEMPTION();
\r
301 mtCOVERAGE_TEST_MARKER();
\r
306 mtCOVERAGE_TEST_MARKER();
\r
311 /* Ensure the event queues start in the correct state. */
\r
312 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
\r
313 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
\r
315 taskEXIT_CRITICAL();
\r
322 configASSERT( xReturn != pdFAIL );
\r
324 /* A value is returned for calling semantic consistency with previous
\r
328 /*-----------------------------------------------------------*/
\r
330 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
332 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
\r
333 const UBaseType_t uxItemSize,
\r
334 uint8_t * pucQueueStorage,
\r
335 StaticQueue_t * pxStaticQueue,
\r
336 const uint8_t ucQueueType )
\r
338 Queue_t * pxNewQueue = NULL;
\r
340 /* The StaticQueue_t structure and the queue storage area must be
\r
342 configASSERT( pxStaticQueue );
\r
344 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
\r
345 ( pxStaticQueue != NULL ) &&
\r
346 /* A queue storage area should be provided if the item size is not 0, and
\r
347 * should not be provided if the item size is 0. */
\r
348 ( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) ) &&
\r
349 ( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) ) )
\r
352 #if ( configASSERT_DEFINED == 1 )
\r
354 /* Sanity check that the size of the structure used to declare a
\r
355 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
\r
356 * the real queue and semaphore structures. */
\r
357 volatile size_t xSize = sizeof( StaticQueue_t );
\r
359 /* This assertion cannot be branch covered in unit tests */
\r
360 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
\r
361 ( void ) xSize; /* Keeps lint quiet when configASSERT() is not defined. */
\r
363 #endif /* configASSERT_DEFINED */
\r
365 /* The address of a statically allocated queue was passed in, use it.
\r
366 * The address of a statically allocated storage area was also passed in
\r
367 * but is already set. */
\r
368 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
370 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
372 /* Queues can be allocated wither statically or dynamically, so
\r
373 * note this queue was allocated statically in case the queue is
\r
374 * later deleted. */
\r
375 pxNewQueue->ucStaticallyAllocated = pdTRUE;
\r
377 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
379 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
383 configASSERT( pxNewQueue );
\r
384 mtCOVERAGE_TEST_MARKER();
\r
390 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
391 /*-----------------------------------------------------------*/
\r
393 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
395 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
\r
396 const UBaseType_t uxItemSize,
\r
397 const uint8_t ucQueueType )
\r
399 Queue_t * pxNewQueue = NULL;
\r
400 size_t xQueueSizeInBytes;
\r
401 uint8_t * pucQueueStorage;
\r
403 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
\r
404 /* Check for multiplication overflow. */
\r
405 ( ( SIZE_MAX / uxQueueLength ) >= uxItemSize ) &&
\r
406 /* Check for addition overflow. */
\r
407 ( ( SIZE_MAX - sizeof( Queue_t ) ) >= ( uxQueueLength * uxItemSize ) ) )
\r
409 /* Allocate enough space to hold the maximum number of items that
\r
410 * can be in the queue at any time. It is valid for uxItemSize to be
\r
411 * zero in the case the queue is used as a semaphore. */
\r
412 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
414 /* Allocate the queue and storage area. Justification for MISRA
\r
415 * deviation as follows: pvPortMalloc() always ensures returned memory
\r
416 * blocks are aligned per the requirements of the MCU stack. In this case
\r
417 * pvPortMalloc() must return a pointer that is guaranteed to meet the
\r
418 * alignment requirements of the Queue_t structure - which in this case
\r
419 * is an int8_t *. Therefore, whenever the stack alignment requirements
\r
420 * are greater than or equal to the pointer to char requirements the cast
\r
421 * is safe. In other cases alignment requirements are not strict (one or
\r
423 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); /*lint !e9087 !e9079 see comment above. */
\r
425 if( pxNewQueue != NULL )
\r
427 /* Jump past the queue structure to find the location of the queue
\r
429 pucQueueStorage = ( uint8_t * ) pxNewQueue;
\r
430 pucQueueStorage += sizeof( Queue_t ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
432 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
434 /* Queues can be created either statically or dynamically, so
\r
435 * note this task was created dynamically in case it is later
\r
437 pxNewQueue->ucStaticallyAllocated = pdFALSE;
\r
439 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
441 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
445 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
446 mtCOVERAGE_TEST_MARKER();
\r
451 configASSERT( pxNewQueue );
\r
452 mtCOVERAGE_TEST_MARKER();
\r
458 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
459 /*-----------------------------------------------------------*/
\r
461 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
462 const UBaseType_t uxItemSize,
\r
463 uint8_t * pucQueueStorage,
\r
464 const uint8_t ucQueueType,
\r
465 Queue_t * pxNewQueue )
\r
467 /* Remove compiler warnings about unused parameters should
\r
468 * configUSE_TRACE_FACILITY not be set to 1. */
\r
469 ( void ) ucQueueType;
\r
471 if( uxItemSize == ( UBaseType_t ) 0 )
\r
473 /* No RAM was allocated for the queue storage area, but PC head cannot
\r
474 * be set to NULL because NULL is used as a key to say the queue is used as
\r
475 * a mutex. Therefore just set pcHead to point to the queue as a benign
\r
476 * value that is known to be within the memory map. */
\r
477 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
\r
481 /* Set the head to the start of the queue storage area. */
\r
482 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
\r
485 /* Initialise the queue members as described where the queue type is
\r
487 pxNewQueue->uxLength = uxQueueLength;
\r
488 pxNewQueue->uxItemSize = uxItemSize;
\r
489 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
\r
491 #if ( configUSE_TRACE_FACILITY == 1 )
\r
493 pxNewQueue->ucQueueType = ucQueueType;
\r
495 #endif /* configUSE_TRACE_FACILITY */
\r
497 #if ( configUSE_QUEUE_SETS == 1 )
\r
499 pxNewQueue->pxQueueSetContainer = NULL;
\r
501 #endif /* configUSE_QUEUE_SETS */
\r
503 traceQUEUE_CREATE( pxNewQueue );
\r
505 /*-----------------------------------------------------------*/
\r
507 #if ( configUSE_MUTEXES == 1 )
\r
509 static void prvInitialiseMutex( Queue_t * pxNewQueue )
\r
511 if( pxNewQueue != NULL )
\r
513 /* The queue create function will set all the queue structure members
\r
514 * correctly for a generic queue, but this function is creating a
\r
515 * mutex. Overwrite those members that need to be set differently -
\r
516 * in particular the information required for priority inheritance. */
\r
517 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
\r
518 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
\r
520 /* In case this is a recursive mutex. */
\r
521 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
\r
523 traceCREATE_MUTEX( pxNewQueue );
\r
525 /* Start with the semaphore in the expected state. */
\r
526 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
\r
530 traceCREATE_MUTEX_FAILED();
\r
534 #endif /* configUSE_MUTEXES */
\r
535 /*-----------------------------------------------------------*/
\r
537 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
539 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
\r
541 QueueHandle_t xNewQueue;
\r
542 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
544 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
\r
545 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
550 #endif /* configUSE_MUTEXES */
\r
551 /*-----------------------------------------------------------*/
\r
553 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
555 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
\r
556 StaticQueue_t * pxStaticQueue )
\r
558 QueueHandle_t xNewQueue;
\r
559 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
561 /* Prevent compiler warnings about unused parameters if
\r
562 * configUSE_TRACE_FACILITY does not equal 1. */
\r
563 ( void ) ucQueueType;
\r
565 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
\r
566 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
571 #endif /* configUSE_MUTEXES */
\r
572 /*-----------------------------------------------------------*/
\r
574 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
576 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
\r
578 TaskHandle_t pxReturn;
\r
579 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
\r
581 configASSERT( xSemaphore );
\r
583 /* This function is called by xSemaphoreGetMutexHolder(), and should not
\r
584 * be called directly. Note: This is a good way of determining if the
\r
585 * calling task is the mutex holder, but not a good way of determining the
\r
586 * identity of the mutex holder, as the holder may change between the
\r
587 * following critical section exiting and the function returning. */
\r
588 taskENTER_CRITICAL();
\r
590 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
\r
592 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
\r
599 taskEXIT_CRITICAL();
\r
602 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
604 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
605 /*-----------------------------------------------------------*/
\r
607 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
609 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
\r
611 TaskHandle_t pxReturn;
\r
613 configASSERT( xSemaphore );
\r
615 /* Mutexes cannot be used in interrupt service routines, so the mutex
\r
616 * holder should not change in an ISR, and therefore a critical section is
\r
617 * not required here. */
\r
618 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
\r
620 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
\r
628 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
630 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
631 /*-----------------------------------------------------------*/
\r
633 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
635 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
\r
637 BaseType_t xReturn;
\r
638 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
640 configASSERT( pxMutex );
\r
642 /* If this is the task that holds the mutex then xMutexHolder will not
\r
643 * change outside of this task. If this task does not hold the mutex then
\r
644 * pxMutexHolder can never coincidentally equal the tasks handle, and as
\r
645 * this is the only condition we are interested in it does not matter if
\r
646 * pxMutexHolder is accessed simultaneously by another task. Therefore no
\r
647 * mutual exclusion is required to test the pxMutexHolder variable. */
\r
648 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
650 traceGIVE_MUTEX_RECURSIVE( pxMutex );
\r
652 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
\r
653 * the task handle, therefore no underflow check is required. Also,
\r
654 * uxRecursiveCallCount is only modified by the mutex holder, and as
\r
655 * there can only be one, no mutual exclusion is required to modify the
\r
656 * uxRecursiveCallCount member. */
\r
657 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
\r
659 /* Has the recursive call count unwound to 0? */
\r
660 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
\r
662 /* Return the mutex. This will automatically unblock any other
\r
663 * task that might be waiting to access the mutex. */
\r
664 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
\r
668 mtCOVERAGE_TEST_MARKER();
\r
675 /* The mutex cannot be given because the calling task is not the
\r
679 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
685 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
686 /*-----------------------------------------------------------*/
\r
688 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
690 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
\r
691 TickType_t xTicksToWait )
\r
693 BaseType_t xReturn;
\r
694 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
696 configASSERT( pxMutex );
\r
698 /* Comments regarding mutual exclusion as per those within
\r
699 * xQueueGiveMutexRecursive(). */
\r
701 traceTAKE_MUTEX_RECURSIVE( pxMutex );
\r
703 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
705 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
710 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
\r
712 /* pdPASS will only be returned if the mutex was successfully
\r
713 * obtained. The calling task may have entered the Blocked state
\r
714 * before reaching here. */
\r
715 if( xReturn != pdFAIL )
\r
717 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
721 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
728 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
729 /*-----------------------------------------------------------*/
\r
731 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
733 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
\r
734 const UBaseType_t uxInitialCount,
\r
735 StaticQueue_t * pxStaticQueue )
\r
737 QueueHandle_t xHandle = NULL;
\r
739 if( ( uxMaxCount != 0 ) &&
\r
740 ( uxInitialCount <= uxMaxCount ) )
\r
742 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
744 if( xHandle != NULL )
\r
746 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
748 traceCREATE_COUNTING_SEMAPHORE();
\r
752 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
757 configASSERT( xHandle );
\r
758 mtCOVERAGE_TEST_MARKER();
\r
764 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
765 /*-----------------------------------------------------------*/
\r
767 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
769 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
\r
770 const UBaseType_t uxInitialCount )
\r
772 QueueHandle_t xHandle = NULL;
\r
774 if( ( uxMaxCount != 0 ) &&
\r
775 ( uxInitialCount <= uxMaxCount ) )
\r
777 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
779 if( xHandle != NULL )
\r
781 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
783 traceCREATE_COUNTING_SEMAPHORE();
\r
787 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
792 configASSERT( xHandle );
\r
793 mtCOVERAGE_TEST_MARKER();
\r
799 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
800 /*-----------------------------------------------------------*/
\r
802 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
\r
803 const void * const pvItemToQueue,
\r
804 TickType_t xTicksToWait,
\r
805 const BaseType_t xCopyPosition )
\r
807 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
\r
808 TimeOut_t xTimeOut;
\r
809 Queue_t * const pxQueue = xQueue;
\r
811 configASSERT( pxQueue );
\r
812 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
813 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
814 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
816 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
820 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
821 * allow return statements within the function itself. This is done in the
\r
822 * interest of execution time efficiency. */
\r
825 taskENTER_CRITICAL();
\r
827 /* Is there room on the queue now? The running task must be the
\r
828 * highest priority task wanting to access the queue. If the head item
\r
829 * in the queue is to be overwritten then it does not matter if the
\r
830 * queue is full. */
\r
831 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
833 traceQUEUE_SEND( pxQueue );
\r
835 #if ( configUSE_QUEUE_SETS == 1 )
\r
837 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
839 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
841 if( pxQueue->pxQueueSetContainer != NULL )
\r
843 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
845 /* Do not notify the queue set as an existing item
\r
846 * was overwritten in the queue so the number of items
\r
847 * in the queue has not changed. */
\r
848 mtCOVERAGE_TEST_MARKER();
\r
850 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
852 /* The queue is a member of a queue set, and posting
\r
853 * to the queue set caused a higher priority task to
\r
854 * unblock. A context switch is required. */
\r
855 queueYIELD_IF_USING_PREEMPTION();
\r
859 mtCOVERAGE_TEST_MARKER();
\r
864 /* If there was a task waiting for data to arrive on the
\r
865 * queue then unblock it now. */
\r
866 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
868 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
870 /* The unblocked task has a priority higher than
\r
871 * our own so yield immediately. Yes it is ok to
\r
872 * do this from within the critical section - the
\r
873 * kernel takes care of that. */
\r
874 queueYIELD_IF_USING_PREEMPTION();
\r
878 mtCOVERAGE_TEST_MARKER();
\r
881 else if( xYieldRequired != pdFALSE )
\r
883 /* This path is a special case that will only get
\r
884 * executed if the task was holding multiple mutexes
\r
885 * and the mutexes were given back in an order that is
\r
886 * different to that in which they were taken. */
\r
887 queueYIELD_IF_USING_PREEMPTION();
\r
891 mtCOVERAGE_TEST_MARKER();
\r
895 #else /* configUSE_QUEUE_SETS */
\r
897 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
899 /* If there was a task waiting for data to arrive on the
\r
900 * queue then unblock it now. */
\r
901 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
903 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
905 /* The unblocked task has a priority higher than
\r
906 * our own so yield immediately. Yes it is ok to do
\r
907 * this from within the critical section - the kernel
\r
908 * takes care of that. */
\r
909 queueYIELD_IF_USING_PREEMPTION();
\r
913 mtCOVERAGE_TEST_MARKER();
\r
916 else if( xYieldRequired != pdFALSE )
\r
918 /* This path is a special case that will only get
\r
919 * executed if the task was holding multiple mutexes and
\r
920 * the mutexes were given back in an order that is
\r
921 * different to that in which they were taken. */
\r
922 queueYIELD_IF_USING_PREEMPTION();
\r
926 mtCOVERAGE_TEST_MARKER();
\r
929 #endif /* configUSE_QUEUE_SETS */
\r
931 taskEXIT_CRITICAL();
\r
936 if( xTicksToWait == ( TickType_t ) 0 )
\r
938 /* The queue was full and no block time is specified (or
\r
939 * the block time has expired) so leave now. */
\r
940 taskEXIT_CRITICAL();
\r
942 /* Return to the original privilege level before exiting
\r
944 traceQUEUE_SEND_FAILED( pxQueue );
\r
945 return errQUEUE_FULL;
\r
947 else if( xEntryTimeSet == pdFALSE )
\r
949 /* The queue was full and a block time was specified so
\r
950 * configure the timeout structure. */
\r
951 vTaskInternalSetTimeOutState( &xTimeOut );
\r
952 xEntryTimeSet = pdTRUE;
\r
956 /* Entry time was already set. */
\r
957 mtCOVERAGE_TEST_MARKER();
\r
961 taskEXIT_CRITICAL();
\r
963 /* Interrupts and other tasks can send to and receive from the queue
\r
964 * now the critical section has been exited. */
\r
967 prvLockQueue( pxQueue );
\r
969 /* Update the timeout state to see if it has expired yet. */
\r
970 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
972 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
974 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
\r
975 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
\r
977 /* Unlocking the queue means queue events can effect the
\r
978 * event list. It is possible that interrupts occurring now
\r
979 * remove this task from the event list again - but as the
\r
980 * scheduler is suspended the task will go onto the pending
\r
981 * ready list instead of the actual ready list. */
\r
982 prvUnlockQueue( pxQueue );
\r
984 /* Resuming the scheduler will move tasks from the pending
\r
985 * ready list into the ready list - so it is feasible that this
\r
986 * task is already in the ready list before it yields - in which
\r
987 * case the yield will not cause a context switch unless there
\r
988 * is also a higher priority task in the pending ready list. */
\r
989 if( xTaskResumeAll() == pdFALSE )
\r
991 portYIELD_WITHIN_API();
\r
997 prvUnlockQueue( pxQueue );
\r
998 ( void ) xTaskResumeAll();
\r
1003 /* The timeout has expired. */
\r
1004 prvUnlockQueue( pxQueue );
\r
1005 ( void ) xTaskResumeAll();
\r
1007 traceQUEUE_SEND_FAILED( pxQueue );
\r
1008 return errQUEUE_FULL;
\r
1010 } /*lint -restore */
\r
1012 /*-----------------------------------------------------------*/
\r
1014 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
\r
1015 const void * const pvItemToQueue,
\r
1016 BaseType_t * const pxHigherPriorityTaskWoken,
\r
1017 const BaseType_t xCopyPosition )
\r
1019 BaseType_t xReturn;
\r
1020 UBaseType_t uxSavedInterruptStatus;
\r
1021 Queue_t * const pxQueue = xQueue;
\r
1023 configASSERT( pxQueue );
\r
1024 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1025 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
1027 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1028 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1029 * above the maximum system call priority are kept permanently enabled, even
\r
1030 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1031 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1032 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1033 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1034 * assigned a priority above the configured maximum system call priority.
\r
1035 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1036 * that have been assigned a priority at or (logically) below the maximum
\r
1037 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1038 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1039 * More information (albeit Cortex-M specific) is provided on the following
\r
1040 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1041 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1043 /* Similar to xQueueGenericSend, except without blocking if there is no room
\r
1044 * in the queue. Also don't directly wake a task that was blocked on a queue
\r
1045 * read, instead return a flag to say whether a context switch is required or
\r
1046 * not (i.e. has a task with a higher priority than us been woken by this
\r
1048 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1050 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
1052 const int8_t cTxLock = pxQueue->cTxLock;
\r
1053 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1055 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1057 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
\r
1058 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
\r
1059 * in a task disinheriting a priority and prvCopyDataToQueue() can be
\r
1060 * called here even though the disinherit function does not check if
\r
1061 * the scheduler is suspended before accessing the ready lists. */
\r
1062 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
1064 /* The event list is not altered if the queue is locked. This will
\r
1065 * be done when the queue is unlocked later. */
\r
1066 if( cTxLock == queueUNLOCKED )
\r
1068 #if ( configUSE_QUEUE_SETS == 1 )
\r
1070 if( pxQueue->pxQueueSetContainer != NULL )
\r
1072 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
1074 /* Do not notify the queue set as an existing item
\r
1075 * was overwritten in the queue so the number of items
\r
1076 * in the queue has not changed. */
\r
1077 mtCOVERAGE_TEST_MARKER();
\r
1079 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1081 /* The queue is a member of a queue set, and posting
\r
1082 * to the queue set caused a higher priority task to
\r
1083 * unblock. A context switch is required. */
\r
1084 if( pxHigherPriorityTaskWoken != NULL )
\r
1086 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1090 mtCOVERAGE_TEST_MARKER();
\r
1095 mtCOVERAGE_TEST_MARKER();
\r
1100 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1102 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1104 /* The task waiting has a higher priority so
\r
1105 * record that a context switch is required. */
\r
1106 if( pxHigherPriorityTaskWoken != NULL )
\r
1108 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1112 mtCOVERAGE_TEST_MARKER();
\r
1117 mtCOVERAGE_TEST_MARKER();
\r
1122 mtCOVERAGE_TEST_MARKER();
\r
1126 #else /* configUSE_QUEUE_SETS */
\r
1128 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1130 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1132 /* The task waiting has a higher priority so record that a
\r
1133 * context switch is required. */
\r
1134 if( pxHigherPriorityTaskWoken != NULL )
\r
1136 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1140 mtCOVERAGE_TEST_MARKER();
\r
1145 mtCOVERAGE_TEST_MARKER();
\r
1150 mtCOVERAGE_TEST_MARKER();
\r
1153 /* Not used in this path. */
\r
1154 ( void ) uxPreviousMessagesWaiting;
\r
1156 #endif /* configUSE_QUEUE_SETS */
\r
1160 /* Increment the lock count so the task that unlocks the queue
\r
1161 * knows that data was posted while it was locked. */
\r
1162 configASSERT( cTxLock != queueINT8_MAX );
\r
1164 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1171 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1172 xReturn = errQUEUE_FULL;
\r
1175 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1179 /*-----------------------------------------------------------*/
\r
1181 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
\r
1182 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1184 BaseType_t xReturn;
\r
1185 UBaseType_t uxSavedInterruptStatus;
\r
1186 Queue_t * const pxQueue = xQueue;
\r
1188 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
\r
1189 * item size is 0. Don't directly wake a task that was blocked on a queue
\r
1190 * read, instead return a flag to say whether a context switch is required or
\r
1191 * not (i.e. has a task with a higher priority than us been woken by this
\r
1194 configASSERT( pxQueue );
\r
1196 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
\r
1197 * if the item size is not 0. */
\r
1198 configASSERT( pxQueue->uxItemSize == 0 );
\r
1200 /* Normally a mutex would not be given from an interrupt, especially if
\r
1201 * there is a mutex holder, as priority inheritance makes no sense for an
\r
1202 * interrupts, only tasks. */
\r
1203 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
\r
1205 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1206 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1207 * above the maximum system call priority are kept permanently enabled, even
\r
1208 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1209 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1210 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1211 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1212 * assigned a priority above the configured maximum system call priority.
\r
1213 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1214 * that have been assigned a priority at or (logically) below the maximum
\r
1215 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1216 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1217 * More information (albeit Cortex-M specific) is provided on the following
\r
1218 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1219 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1221 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1223 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1225 /* When the queue is used to implement a semaphore no data is ever
\r
1226 * moved through the queue but it is still valid to see if the queue 'has
\r
1228 if( uxMessagesWaiting < pxQueue->uxLength )
\r
1230 const int8_t cTxLock = pxQueue->cTxLock;
\r
1232 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1234 /* A task can only have an inherited priority if it is a mutex
\r
1235 * holder - and if there is a mutex holder then the mutex cannot be
\r
1236 * given from an ISR. As this is the ISR version of the function it
\r
1237 * can be assumed there is no mutex holder and no need to determine if
\r
1238 * priority disinheritance is needed. Simply increase the count of
\r
1239 * messages (semaphores) available. */
\r
1240 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
1242 /* The event list is not altered if the queue is locked. This will
\r
1243 * be done when the queue is unlocked later. */
\r
1244 if( cTxLock == queueUNLOCKED )
\r
1246 #if ( configUSE_QUEUE_SETS == 1 )
\r
1248 if( pxQueue->pxQueueSetContainer != NULL )
\r
1250 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1252 /* The semaphore is a member of a queue set, and
\r
1253 * posting to the queue set caused a higher priority
\r
1254 * task to unblock. A context switch is required. */
\r
1255 if( pxHigherPriorityTaskWoken != NULL )
\r
1257 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1261 mtCOVERAGE_TEST_MARKER();
\r
1266 mtCOVERAGE_TEST_MARKER();
\r
1271 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1273 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1275 /* The task waiting has a higher priority so
\r
1276 * record that a context switch is required. */
\r
1277 if( pxHigherPriorityTaskWoken != NULL )
\r
1279 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1283 mtCOVERAGE_TEST_MARKER();
\r
1288 mtCOVERAGE_TEST_MARKER();
\r
1293 mtCOVERAGE_TEST_MARKER();
\r
1297 #else /* configUSE_QUEUE_SETS */
\r
1299 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1301 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1303 /* The task waiting has a higher priority so record that a
\r
1304 * context switch is required. */
\r
1305 if( pxHigherPriorityTaskWoken != NULL )
\r
1307 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1311 mtCOVERAGE_TEST_MARKER();
\r
1316 mtCOVERAGE_TEST_MARKER();
\r
1321 mtCOVERAGE_TEST_MARKER();
\r
1324 #endif /* configUSE_QUEUE_SETS */
\r
1328 /* Increment the lock count so the task that unlocks the queue
\r
1329 * knows that data was posted while it was locked. */
\r
1330 configASSERT( cTxLock != queueINT8_MAX );
\r
1332 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1339 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1340 xReturn = errQUEUE_FULL;
\r
1343 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1347 /*-----------------------------------------------------------*/
\r
1349 BaseType_t xQueueReceive( QueueHandle_t xQueue,
\r
1350 void * const pvBuffer,
\r
1351 TickType_t xTicksToWait )
\r
1353 BaseType_t xEntryTimeSet = pdFALSE;
\r
1354 TimeOut_t xTimeOut;
\r
1355 Queue_t * const pxQueue = xQueue;
\r
1357 /* Check the pointer is not NULL. */
\r
1358 configASSERT( ( pxQueue ) );
\r
1360 /* The buffer into which data is received can only be NULL if the data size
\r
1361 * is zero (so no data is copied into the buffer). */
\r
1362 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1364 /* Cannot block if the scheduler is suspended. */
\r
1365 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1367 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1371 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1372 * allow return statements within the function itself. This is done in the
\r
1373 * interest of execution time efficiency. */
\r
1376 taskENTER_CRITICAL();
\r
1378 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1380 /* Is there data in the queue now? To be running the calling task
\r
1381 * must be the highest priority task wanting to access the queue. */
\r
1382 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1384 /* Data available, remove one item. */
\r
1385 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1386 traceQUEUE_RECEIVE( pxQueue );
\r
1387 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1389 /* There is now space in the queue, were any tasks waiting to
\r
1390 * post to the queue? If so, unblock the highest priority waiting
\r
1392 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1394 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1396 queueYIELD_IF_USING_PREEMPTION();
\r
1400 mtCOVERAGE_TEST_MARKER();
\r
1405 mtCOVERAGE_TEST_MARKER();
\r
1408 taskEXIT_CRITICAL();
\r
1413 if( xTicksToWait == ( TickType_t ) 0 )
\r
1415 /* The queue was empty and no block time is specified (or
\r
1416 * the block time has expired) so leave now. */
\r
1417 taskEXIT_CRITICAL();
\r
1418 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1419 return errQUEUE_EMPTY;
\r
1421 else if( xEntryTimeSet == pdFALSE )
\r
1423 /* The queue was empty and a block time was specified so
\r
1424 * configure the timeout structure. */
\r
1425 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1426 xEntryTimeSet = pdTRUE;
\r
1430 /* Entry time was already set. */
\r
1431 mtCOVERAGE_TEST_MARKER();
\r
1435 taskEXIT_CRITICAL();
\r
1437 /* Interrupts and other tasks can send to and receive from the queue
\r
1438 * now the critical section has been exited. */
\r
1440 vTaskSuspendAll();
\r
1441 prvLockQueue( pxQueue );
\r
1443 /* Update the timeout state to see if it has expired yet. */
\r
1444 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1446 /* The timeout has not expired. If the queue is still empty place
\r
1447 * the task on the list of tasks waiting to receive from the queue. */
\r
1448 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1450 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1451 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1452 prvUnlockQueue( pxQueue );
\r
1454 if( xTaskResumeAll() == pdFALSE )
\r
1456 portYIELD_WITHIN_API();
\r
1460 mtCOVERAGE_TEST_MARKER();
\r
1465 /* The queue contains data again. Loop back to try and read the
\r
1467 prvUnlockQueue( pxQueue );
\r
1468 ( void ) xTaskResumeAll();
\r
1473 /* Timed out. If there is no data in the queue exit, otherwise loop
\r
1474 * back and attempt to read the data. */
\r
1475 prvUnlockQueue( pxQueue );
\r
1476 ( void ) xTaskResumeAll();
\r
1478 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1480 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1481 return errQUEUE_EMPTY;
\r
1485 mtCOVERAGE_TEST_MARKER();
\r
1488 } /*lint -restore */
\r
1490 /*-----------------------------------------------------------*/
\r
1492 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
\r
1493 TickType_t xTicksToWait )
\r
1495 BaseType_t xEntryTimeSet = pdFALSE;
\r
1496 TimeOut_t xTimeOut;
\r
1497 Queue_t * const pxQueue = xQueue;
\r
1499 #if ( configUSE_MUTEXES == 1 )
\r
1500 BaseType_t xInheritanceOccurred = pdFALSE;
\r
1503 /* Check the queue pointer is not NULL. */
\r
1504 configASSERT( ( pxQueue ) );
\r
1506 /* Check this really is a semaphore, in which case the item size will be
\r
1508 configASSERT( pxQueue->uxItemSize == 0 );
\r
1510 /* Cannot block if the scheduler is suspended. */
\r
1511 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1513 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1517 /*lint -save -e904 This function relaxes the coding standard somewhat to allow return
\r
1518 * statements within the function itself. This is done in the interest
\r
1519 * of execution time efficiency. */
\r
1522 taskENTER_CRITICAL();
\r
1524 /* Semaphores are queues with an item size of 0, and where the
\r
1525 * number of messages in the queue is the semaphore's count value. */
\r
1526 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
\r
1528 /* Is there data in the queue now? To be running the calling task
\r
1529 * must be the highest priority task wanting to access the queue. */
\r
1530 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
\r
1532 traceQUEUE_RECEIVE( pxQueue );
\r
1534 /* Semaphores are queues with a data size of zero and where the
\r
1535 * messages waiting is the semaphore's count. Reduce the count. */
\r
1536 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
\r
1538 #if ( configUSE_MUTEXES == 1 )
\r
1540 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1542 /* Record the information required to implement
\r
1543 * priority inheritance should it become necessary. */
\r
1544 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
\r
1548 mtCOVERAGE_TEST_MARKER();
\r
1551 #endif /* configUSE_MUTEXES */
\r
1553 /* Check to see if other tasks are blocked waiting to give the
\r
1554 * semaphore, and if so, unblock the highest priority such task. */
\r
1555 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1557 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1559 queueYIELD_IF_USING_PREEMPTION();
\r
1563 mtCOVERAGE_TEST_MARKER();
\r
1568 mtCOVERAGE_TEST_MARKER();
\r
1571 taskEXIT_CRITICAL();
\r
1576 if( xTicksToWait == ( TickType_t ) 0 )
\r
1578 /* For inheritance to have occurred there must have been an
\r
1579 * initial timeout, and an adjusted timeout cannot become 0, as
\r
1580 * if it were 0 the function would have exited. */
\r
1581 #if ( configUSE_MUTEXES == 1 )
\r
1583 configASSERT( xInheritanceOccurred == pdFALSE );
\r
1585 #endif /* configUSE_MUTEXES */
\r
1587 /* The semaphore count was 0 and no block time is specified
\r
1588 * (or the block time has expired) so exit now. */
\r
1589 taskEXIT_CRITICAL();
\r
1590 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1591 return errQUEUE_EMPTY;
\r
1593 else if( xEntryTimeSet == pdFALSE )
\r
1595 /* The semaphore count was 0 and a block time was specified
\r
1596 * so configure the timeout structure ready to block. */
\r
1597 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1598 xEntryTimeSet = pdTRUE;
\r
1602 /* Entry time was already set. */
\r
1603 mtCOVERAGE_TEST_MARKER();
\r
1607 taskEXIT_CRITICAL();
\r
1609 /* Interrupts and other tasks can give to and take from the semaphore
\r
1610 * now the critical section has been exited. */
\r
1612 vTaskSuspendAll();
\r
1613 prvLockQueue( pxQueue );
\r
1615 /* Update the timeout state to see if it has expired yet. */
\r
1616 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1618 /* A block time is specified and not expired. If the semaphore
\r
1619 * count is 0 then enter the Blocked state to wait for a semaphore to
\r
1620 * become available. As semaphores are implemented with queues the
\r
1621 * queue being empty is equivalent to the semaphore count being 0. */
\r
1622 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1624 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1626 #if ( configUSE_MUTEXES == 1 )
\r
1628 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1630 taskENTER_CRITICAL();
\r
1632 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
1634 taskEXIT_CRITICAL();
\r
1638 mtCOVERAGE_TEST_MARKER();
\r
1641 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1643 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1644 prvUnlockQueue( pxQueue );
\r
1646 if( xTaskResumeAll() == pdFALSE )
\r
1648 portYIELD_WITHIN_API();
\r
1652 mtCOVERAGE_TEST_MARKER();
\r
1657 /* There was no timeout and the semaphore count was not 0, so
\r
1658 * attempt to take the semaphore again. */
\r
1659 prvUnlockQueue( pxQueue );
\r
1660 ( void ) xTaskResumeAll();
\r
1666 prvUnlockQueue( pxQueue );
\r
1667 ( void ) xTaskResumeAll();
\r
1669 /* If the semaphore count is 0 exit now as the timeout has
\r
1670 * expired. Otherwise return to attempt to take the semaphore that is
\r
1671 * known to be available. As semaphores are implemented by queues the
\r
1672 * queue being empty is equivalent to the semaphore count being 0. */
\r
1673 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1675 #if ( configUSE_MUTEXES == 1 )
\r
1677 /* xInheritanceOccurred could only have be set if
\r
1678 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
\r
1679 * test the mutex type again to check it is actually a mutex. */
\r
1680 if( xInheritanceOccurred != pdFALSE )
\r
1682 taskENTER_CRITICAL();
\r
1684 UBaseType_t uxHighestWaitingPriority;
\r
1686 /* This task blocking on the mutex caused another
\r
1687 * task to inherit this task's priority. Now this task
\r
1688 * has timed out the priority should be disinherited
\r
1689 * again, but only as low as the next highest priority
\r
1690 * task that is waiting for the same mutex. */
\r
1691 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
\r
1692 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
\r
1694 taskEXIT_CRITICAL();
\r
1697 #endif /* configUSE_MUTEXES */
\r
1699 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1700 return errQUEUE_EMPTY;
\r
1704 mtCOVERAGE_TEST_MARKER();
\r
1707 } /*lint -restore */
\r
1709 /*-----------------------------------------------------------*/
\r
1711 BaseType_t xQueuePeek( QueueHandle_t xQueue,
\r
1712 void * const pvBuffer,
\r
1713 TickType_t xTicksToWait )
\r
1715 BaseType_t xEntryTimeSet = pdFALSE;
\r
1716 TimeOut_t xTimeOut;
\r
1717 int8_t * pcOriginalReadPosition;
\r
1718 Queue_t * const pxQueue = xQueue;
\r
1720 /* Check the pointer is not NULL. */
\r
1721 configASSERT( ( pxQueue ) );
\r
1723 /* The buffer into which data is received can only be NULL if the data size
\r
1724 * is zero (so no data is copied into the buffer. */
\r
1725 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1727 /* Cannot block if the scheduler is suspended. */
\r
1728 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1730 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1734 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1735 * allow return statements within the function itself. This is done in the
\r
1736 * interest of execution time efficiency. */
\r
1739 taskENTER_CRITICAL();
\r
1741 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1743 /* Is there data in the queue now? To be running the calling task
\r
1744 * must be the highest priority task wanting to access the queue. */
\r
1745 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1747 /* Remember the read position so it can be reset after the data
\r
1748 * is read from the queue as this function is only peeking the
\r
1749 * data, not removing it. */
\r
1750 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1752 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1753 traceQUEUE_PEEK( pxQueue );
\r
1755 /* The data is not being removed, so reset the read pointer. */
\r
1756 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1758 /* The data is being left in the queue, so see if there are
\r
1759 * any other tasks waiting for the data. */
\r
1760 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1762 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1764 /* The task waiting has a higher priority than this task. */
\r
1765 queueYIELD_IF_USING_PREEMPTION();
\r
1769 mtCOVERAGE_TEST_MARKER();
\r
1774 mtCOVERAGE_TEST_MARKER();
\r
1777 taskEXIT_CRITICAL();
\r
1782 if( xTicksToWait == ( TickType_t ) 0 )
\r
1784 /* The queue was empty and no block time is specified (or
\r
1785 * the block time has expired) so leave now. */
\r
1786 taskEXIT_CRITICAL();
\r
1787 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1788 return errQUEUE_EMPTY;
\r
1790 else if( xEntryTimeSet == pdFALSE )
\r
1792 /* The queue was empty and a block time was specified so
\r
1793 * configure the timeout structure ready to enter the blocked
\r
1795 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1796 xEntryTimeSet = pdTRUE;
\r
1800 /* Entry time was already set. */
\r
1801 mtCOVERAGE_TEST_MARKER();
\r
1805 taskEXIT_CRITICAL();
\r
1807 /* Interrupts and other tasks can send to and receive from the queue
\r
1808 * now that the critical section has been exited. */
\r
1810 vTaskSuspendAll();
\r
1811 prvLockQueue( pxQueue );
\r
1813 /* Update the timeout state to see if it has expired yet. */
\r
1814 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1816 /* Timeout has not expired yet, check to see if there is data in the
\r
1817 * queue now, and if not enter the Blocked state to wait for data. */
\r
1818 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1820 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
\r
1821 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1822 prvUnlockQueue( pxQueue );
\r
1824 if( xTaskResumeAll() == pdFALSE )
\r
1826 portYIELD_WITHIN_API();
\r
1830 mtCOVERAGE_TEST_MARKER();
\r
1835 /* There is data in the queue now, so don't enter the blocked
\r
1836 * state, instead return to try and obtain the data. */
\r
1837 prvUnlockQueue( pxQueue );
\r
1838 ( void ) xTaskResumeAll();
\r
1843 /* The timeout has expired. If there is still no data in the queue
\r
1844 * exit, otherwise go back and try to read the data again. */
\r
1845 prvUnlockQueue( pxQueue );
\r
1846 ( void ) xTaskResumeAll();
\r
1848 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1850 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1851 return errQUEUE_EMPTY;
\r
1855 mtCOVERAGE_TEST_MARKER();
\r
1858 } /*lint -restore */
\r
1860 /*-----------------------------------------------------------*/
\r
1862 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
\r
1863 void * const pvBuffer,
\r
1864 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1866 BaseType_t xReturn;
\r
1867 UBaseType_t uxSavedInterruptStatus;
\r
1868 Queue_t * const pxQueue = xQueue;
\r
1870 configASSERT( pxQueue );
\r
1871 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1873 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1874 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1875 * above the maximum system call priority are kept permanently enabled, even
\r
1876 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1877 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1878 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1879 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1880 * assigned a priority above the configured maximum system call priority.
\r
1881 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1882 * that have been assigned a priority at or (logically) below the maximum
\r
1883 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1884 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1885 * More information (albeit Cortex-M specific) is provided on the following
\r
1886 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1887 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1889 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1891 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1893 /* Cannot block in an ISR, so check there is data available. */
\r
1894 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1896 const int8_t cRxLock = pxQueue->cRxLock;
\r
1898 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
\r
1900 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1901 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1903 /* If the queue is locked the event list will not be modified.
\r
1904 * Instead update the lock count so the task that unlocks the queue
\r
1905 * will know that an ISR has removed data while the queue was
\r
1907 if( cRxLock == queueUNLOCKED )
\r
1909 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1911 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1913 /* The task waiting has a higher priority than us so
\r
1914 * force a context switch. */
\r
1915 if( pxHigherPriorityTaskWoken != NULL )
\r
1917 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1921 mtCOVERAGE_TEST_MARKER();
\r
1926 mtCOVERAGE_TEST_MARKER();
\r
1931 mtCOVERAGE_TEST_MARKER();
\r
1936 /* Increment the lock count so the task that unlocks the queue
\r
1937 * knows that data was removed while it was locked. */
\r
1938 configASSERT( cRxLock != queueINT8_MAX );
\r
1940 pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
\r
1948 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
\r
1951 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1955 /*-----------------------------------------------------------*/
\r
1957 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
\r
1958 void * const pvBuffer )
\r
1960 BaseType_t xReturn;
\r
1961 UBaseType_t uxSavedInterruptStatus;
\r
1962 int8_t * pcOriginalReadPosition;
\r
1963 Queue_t * const pxQueue = xQueue;
\r
1965 configASSERT( pxQueue );
\r
1966 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1967 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
\r
1969 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1970 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1971 * above the maximum system call priority are kept permanently enabled, even
\r
1972 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1973 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1974 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1975 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1976 * assigned a priority above the configured maximum system call priority.
\r
1977 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1978 * that have been assigned a priority at or (logically) below the maximum
\r
1979 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1980 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1981 * More information (albeit Cortex-M specific) is provided on the following
\r
1982 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1983 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1985 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1987 /* Cannot block in an ISR, so check there is data available. */
\r
1988 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1990 traceQUEUE_PEEK_FROM_ISR( pxQueue );
\r
1992 /* Remember the read position so it can be reset as nothing is
\r
1993 * actually being removed from the queue. */
\r
1994 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1995 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1996 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
2003 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
\r
2006 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2010 /*-----------------------------------------------------------*/
\r
2012 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
\r
2014 UBaseType_t uxReturn;
\r
2016 configASSERT( xQueue );
\r
2018 taskENTER_CRITICAL();
\r
2020 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
\r
2022 taskEXIT_CRITICAL();
\r
2025 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2026 /*-----------------------------------------------------------*/
\r
2028 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
\r
2030 UBaseType_t uxReturn;
\r
2031 Queue_t * const pxQueue = xQueue;
\r
2033 configASSERT( pxQueue );
\r
2035 taskENTER_CRITICAL();
\r
2037 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
\r
2039 taskEXIT_CRITICAL();
\r
2042 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2043 /*-----------------------------------------------------------*/
\r
2045 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
\r
2047 UBaseType_t uxReturn;
\r
2048 Queue_t * const pxQueue = xQueue;
\r
2050 configASSERT( pxQueue );
\r
2051 uxReturn = pxQueue->uxMessagesWaiting;
\r
2054 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2055 /*-----------------------------------------------------------*/
\r
2057 void vQueueDelete( QueueHandle_t xQueue )
\r
2059 Queue_t * const pxQueue = xQueue;
\r
2061 configASSERT( pxQueue );
\r
2062 traceQUEUE_DELETE( pxQueue );
\r
2064 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2066 vQueueUnregisterQueue( pxQueue );
\r
2070 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
\r
2072 /* The queue can only have been allocated dynamically - free it
\r
2074 vPortFree( pxQueue );
\r
2076 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
2078 /* The queue could have been allocated statically or dynamically, so
\r
2079 * check before attempting to free the memory. */
\r
2080 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
\r
2082 vPortFree( pxQueue );
\r
2086 mtCOVERAGE_TEST_MARKER();
\r
2089 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
\r
2091 /* The queue must have been statically allocated, so is not going to be
\r
2092 * deleted. Avoid compiler warnings about the unused parameter. */
\r
2095 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
2097 /*-----------------------------------------------------------*/
\r
2099 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2101 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
\r
2103 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
\r
2106 #endif /* configUSE_TRACE_FACILITY */
\r
2107 /*-----------------------------------------------------------*/
\r
2109 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2111 void vQueueSetQueueNumber( QueueHandle_t xQueue,
\r
2112 UBaseType_t uxQueueNumber )
\r
2114 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
\r
2117 #endif /* configUSE_TRACE_FACILITY */
\r
2118 /*-----------------------------------------------------------*/
\r
2120 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2122 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
\r
2124 return ( ( Queue_t * ) xQueue )->ucQueueType;
\r
2127 #endif /* configUSE_TRACE_FACILITY */
\r
2128 /*-----------------------------------------------------------*/
\r
2130 #if ( configUSE_MUTEXES == 1 )
\r
2132 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
\r
2134 UBaseType_t uxHighestPriorityOfWaitingTasks;
\r
2136 /* If a task waiting for a mutex causes the mutex holder to inherit a
\r
2137 * priority, but the waiting task times out, then the holder should
\r
2138 * disinherit the priority - but only down to the highest priority of any
\r
2139 * other tasks that are waiting for the same mutex. For this purpose,
\r
2140 * return the priority of the highest priority task that is waiting for the
\r
2142 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
\r
2144 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) );
\r
2148 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
\r
2151 return uxHighestPriorityOfWaitingTasks;
\r
2154 #endif /* configUSE_MUTEXES */
\r
2155 /*-----------------------------------------------------------*/
\r
2157 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
2158 const void * pvItemToQueue,
\r
2159 const BaseType_t xPosition )
\r
2161 BaseType_t xReturn = pdFALSE;
\r
2162 UBaseType_t uxMessagesWaiting;
\r
2164 /* This function is called from a critical section. */
\r
2166 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
2168 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
\r
2170 #if ( configUSE_MUTEXES == 1 )
\r
2172 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
2174 /* The mutex is no longer being held. */
\r
2175 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
2176 pxQueue->u.xSemaphore.xMutexHolder = NULL;
\r
2180 mtCOVERAGE_TEST_MARKER();
\r
2183 #endif /* configUSE_MUTEXES */
\r
2185 else if( xPosition == queueSEND_TO_BACK )
\r
2187 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2188 pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2190 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2192 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
2196 mtCOVERAGE_TEST_MARKER();
\r
2201 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
\r
2202 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
\r
2204 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2206 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
\r
2210 mtCOVERAGE_TEST_MARKER();
\r
2213 if( xPosition == queueOVERWRITE )
\r
2215 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2217 /* An item is not being added but overwritten, so subtract
\r
2218 * one from the recorded number of items in the queue so when
\r
2219 * one is added again below the number of recorded items remains
\r
2221 --uxMessagesWaiting;
\r
2225 mtCOVERAGE_TEST_MARKER();
\r
2230 mtCOVERAGE_TEST_MARKER();
\r
2234 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
2238 /*-----------------------------------------------------------*/
\r
2240 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
2241 void * const pvBuffer )
\r
2243 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
\r
2245 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2247 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
\r
2249 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2253 mtCOVERAGE_TEST_MARKER();
\r
2256 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2259 /*-----------------------------------------------------------*/
\r
2261 static void prvUnlockQueue( Queue_t * const pxQueue )
\r
2263 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
\r
2265 /* The lock counts contains the number of extra data items placed or
\r
2266 * removed from the queue while the queue was locked. When a queue is
\r
2267 * locked items can be added or removed, but the event lists cannot be
\r
2269 taskENTER_CRITICAL();
\r
2271 int8_t cTxLock = pxQueue->cTxLock;
\r
2273 /* See if data was added to the queue while it was locked. */
\r
2274 while( cTxLock > queueLOCKED_UNMODIFIED )
\r
2276 /* Data was posted while the queue was locked. Are any tasks
\r
2277 * blocked waiting for data to become available? */
\r
2278 #if ( configUSE_QUEUE_SETS == 1 )
\r
2280 if( pxQueue->pxQueueSetContainer != NULL )
\r
2282 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
2284 /* The queue is a member of a queue set, and posting to
\r
2285 * the queue set caused a higher priority task to unblock.
\r
2286 * A context switch is required. */
\r
2287 vTaskMissedYield();
\r
2291 mtCOVERAGE_TEST_MARKER();
\r
2296 /* Tasks that are removed from the event list will get
\r
2297 * added to the pending ready list as the scheduler is still
\r
2299 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2301 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2303 /* The task waiting has a higher priority so record that a
\r
2304 * context switch is required. */
\r
2305 vTaskMissedYield();
\r
2309 mtCOVERAGE_TEST_MARKER();
\r
2318 #else /* configUSE_QUEUE_SETS */
\r
2320 /* Tasks that are removed from the event list will get added to
\r
2321 * the pending ready list as the scheduler is still suspended. */
\r
2322 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2324 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2326 /* The task waiting has a higher priority so record that
\r
2327 * a context switch is required. */
\r
2328 vTaskMissedYield();
\r
2332 mtCOVERAGE_TEST_MARKER();
\r
2340 #endif /* configUSE_QUEUE_SETS */
\r
2345 pxQueue->cTxLock = queueUNLOCKED;
\r
2347 taskEXIT_CRITICAL();
\r
2349 /* Do the same for the Rx lock. */
\r
2350 taskENTER_CRITICAL();
\r
2352 int8_t cRxLock = pxQueue->cRxLock;
\r
2354 while( cRxLock > queueLOCKED_UNMODIFIED )
\r
2356 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2358 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2360 vTaskMissedYield();
\r
2364 mtCOVERAGE_TEST_MARKER();
\r
2375 pxQueue->cRxLock = queueUNLOCKED;
\r
2377 taskEXIT_CRITICAL();
\r
2379 /*-----------------------------------------------------------*/
\r
2381 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
\r
2383 BaseType_t xReturn;
\r
2385 taskENTER_CRITICAL();
\r
2387 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2393 xReturn = pdFALSE;
\r
2396 taskEXIT_CRITICAL();
\r
2400 /*-----------------------------------------------------------*/
\r
2402 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
\r
2404 BaseType_t xReturn;
\r
2405 Queue_t * const pxQueue = xQueue;
\r
2407 configASSERT( pxQueue );
\r
2409 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2415 xReturn = pdFALSE;
\r
2419 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2420 /*-----------------------------------------------------------*/
\r
2422 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
\r
2424 BaseType_t xReturn;
\r
2426 taskENTER_CRITICAL();
\r
2428 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2434 xReturn = pdFALSE;
\r
2437 taskEXIT_CRITICAL();
\r
2441 /*-----------------------------------------------------------*/
\r
2443 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
\r
2445 BaseType_t xReturn;
\r
2446 Queue_t * const pxQueue = xQueue;
\r
2448 configASSERT( pxQueue );
\r
2450 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2456 xReturn = pdFALSE;
\r
2460 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2461 /*-----------------------------------------------------------*/
\r
2463 #if ( configUSE_CO_ROUTINES == 1 )
\r
2465 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
\r
2466 const void * pvItemToQueue,
\r
2467 TickType_t xTicksToWait )
\r
2469 BaseType_t xReturn;
\r
2470 Queue_t * const pxQueue = xQueue;
\r
2472 /* If the queue is already full we may have to block. A critical section
\r
2473 * is required to prevent an interrupt removing something from the queue
\r
2474 * between the check to see if the queue is full and blocking on the queue. */
\r
2475 portDISABLE_INTERRUPTS();
\r
2477 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
2479 /* The queue is full - do we want to block or just leave without
\r
2481 if( xTicksToWait > ( TickType_t ) 0 )
\r
2483 /* As this is called from a coroutine we cannot block directly, but
\r
2484 * return indicating that we need to block. */
\r
2485 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
\r
2486 portENABLE_INTERRUPTS();
\r
2487 return errQUEUE_BLOCKED;
\r
2491 portENABLE_INTERRUPTS();
\r
2492 return errQUEUE_FULL;
\r
2496 portENABLE_INTERRUPTS();
\r
2498 portDISABLE_INTERRUPTS();
\r
2500 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2502 /* There is room in the queue, copy the data into the queue. */
\r
2503 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2506 /* Were any co-routines waiting for data to become available? */
\r
2507 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2509 /* In this instance the co-routine could be placed directly
\r
2510 * into the ready list as we are within a critical section.
\r
2511 * Instead the same pending ready list mechanism is used as if
\r
2512 * the event were caused from within an interrupt. */
\r
2513 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2515 /* The co-routine waiting has a higher priority so record
\r
2516 * that a yield might be appropriate. */
\r
2517 xReturn = errQUEUE_YIELD;
\r
2521 mtCOVERAGE_TEST_MARKER();
\r
2526 mtCOVERAGE_TEST_MARKER();
\r
2531 xReturn = errQUEUE_FULL;
\r
2534 portENABLE_INTERRUPTS();
\r
2539 #endif /* configUSE_CO_ROUTINES */
\r
2540 /*-----------------------------------------------------------*/
\r
2542 #if ( configUSE_CO_ROUTINES == 1 )
\r
2544 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
\r
2546 TickType_t xTicksToWait )
\r
2548 BaseType_t xReturn;
\r
2549 Queue_t * const pxQueue = xQueue;
\r
2551 /* If the queue is already empty we may have to block. A critical section
\r
2552 * is required to prevent an interrupt adding something to the queue
\r
2553 * between the check to see if the queue is empty and blocking on the queue. */
\r
2554 portDISABLE_INTERRUPTS();
\r
2556 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2558 /* There are no messages in the queue, do we want to block or just
\r
2559 * leave with nothing? */
\r
2560 if( xTicksToWait > ( TickType_t ) 0 )
\r
2562 /* As this is a co-routine we cannot block directly, but return
\r
2563 * indicating that we need to block. */
\r
2564 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
\r
2565 portENABLE_INTERRUPTS();
\r
2566 return errQUEUE_BLOCKED;
\r
2570 portENABLE_INTERRUPTS();
\r
2571 return errQUEUE_FULL;
\r
2576 mtCOVERAGE_TEST_MARKER();
\r
2579 portENABLE_INTERRUPTS();
\r
2581 portDISABLE_INTERRUPTS();
\r
2583 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2585 /* Data is available from the queue. */
\r
2586 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2588 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2590 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2594 mtCOVERAGE_TEST_MARKER();
\r
2597 --( pxQueue->uxMessagesWaiting );
\r
2598 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2602 /* Were any co-routines waiting for space to become available? */
\r
2603 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2605 /* In this instance the co-routine could be placed directly
\r
2606 * into the ready list as we are within a critical section.
\r
2607 * Instead the same pending ready list mechanism is used as if
\r
2608 * the event were caused from within an interrupt. */
\r
2609 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2611 xReturn = errQUEUE_YIELD;
\r
2615 mtCOVERAGE_TEST_MARKER();
\r
2620 mtCOVERAGE_TEST_MARKER();
\r
2628 portENABLE_INTERRUPTS();
\r
2633 #endif /* configUSE_CO_ROUTINES */
\r
2634 /*-----------------------------------------------------------*/
\r
2636 #if ( configUSE_CO_ROUTINES == 1 )
\r
2638 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
\r
2639 const void * pvItemToQueue,
\r
2640 BaseType_t xCoRoutinePreviouslyWoken )
\r
2642 Queue_t * const pxQueue = xQueue;
\r
2644 /* Cannot block within an ISR so if there is no space on the queue then
\r
2645 * exit without doing anything. */
\r
2646 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2648 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2650 /* We only want to wake one co-routine per ISR, so check that a
\r
2651 * co-routine has not already been woken. */
\r
2652 if( xCoRoutinePreviouslyWoken == pdFALSE )
\r
2654 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2656 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2662 mtCOVERAGE_TEST_MARKER();
\r
2667 mtCOVERAGE_TEST_MARKER();
\r
2672 mtCOVERAGE_TEST_MARKER();
\r
2677 mtCOVERAGE_TEST_MARKER();
\r
2680 return xCoRoutinePreviouslyWoken;
\r
2683 #endif /* configUSE_CO_ROUTINES */
\r
2684 /*-----------------------------------------------------------*/
\r
2686 #if ( configUSE_CO_ROUTINES == 1 )
\r
2688 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
\r
2690 BaseType_t * pxCoRoutineWoken )
\r
2692 BaseType_t xReturn;
\r
2693 Queue_t * const pxQueue = xQueue;
\r
2695 /* We cannot block from an ISR, so check there is data available. If
\r
2696 * not then just leave without doing anything. */
\r
2697 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2699 /* Copy the data from the queue. */
\r
2700 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2702 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2704 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2708 mtCOVERAGE_TEST_MARKER();
\r
2711 --( pxQueue->uxMessagesWaiting );
\r
2712 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2714 if( ( *pxCoRoutineWoken ) == pdFALSE )
\r
2716 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2718 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2720 *pxCoRoutineWoken = pdTRUE;
\r
2724 mtCOVERAGE_TEST_MARKER();
\r
2729 mtCOVERAGE_TEST_MARKER();
\r
2734 mtCOVERAGE_TEST_MARKER();
\r
2747 #endif /* configUSE_CO_ROUTINES */
\r
2748 /*-----------------------------------------------------------*/
\r
2750 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2752 void vQueueAddToRegistry( QueueHandle_t xQueue,
\r
2753 const char * pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2757 configASSERT( xQueue );
\r
2759 QueueRegistryItem_t * pxEntryToWrite = NULL;
\r
2761 if( pcQueueName != NULL )
\r
2763 /* See if there is an empty space in the registry. A NULL name denotes
\r
2765 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2767 /* Replace an existing entry if the queue is already in the registry. */
\r
2768 if( xQueue == xQueueRegistry[ ux ].xHandle )
\r
2770 pxEntryToWrite = &( xQueueRegistry[ ux ] );
\r
2773 /* Otherwise, store in the next empty location */
\r
2774 else if( ( pxEntryToWrite == NULL ) && ( xQueueRegistry[ ux ].pcQueueName == NULL ) )
\r
2776 pxEntryToWrite = &( xQueueRegistry[ ux ] );
\r
2780 mtCOVERAGE_TEST_MARKER();
\r
2785 if( pxEntryToWrite != NULL )
\r
2787 /* Store the information on this queue. */
\r
2788 pxEntryToWrite->pcQueueName = pcQueueName;
\r
2789 pxEntryToWrite->xHandle = xQueue;
\r
2791 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
\r
2795 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2796 /*-----------------------------------------------------------*/
\r
2798 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2800 const char * pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2803 const char * pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2805 configASSERT( xQueue );
\r
2807 /* Note there is nothing here to protect against another task adding or
\r
2808 * removing entries from the registry while it is being searched. */
\r
2810 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2812 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2814 pcReturn = xQueueRegistry[ ux ].pcQueueName;
\r
2819 mtCOVERAGE_TEST_MARKER();
\r
2824 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
\r
2826 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2827 /*-----------------------------------------------------------*/
\r
2829 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2831 void vQueueUnregisterQueue( QueueHandle_t xQueue )
\r
2835 configASSERT( xQueue );
\r
2837 /* See if the handle of the queue being unregistered in actually in the
\r
2839 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2841 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2843 /* Set the name to NULL to show that this slot if free again. */
\r
2844 xQueueRegistry[ ux ].pcQueueName = NULL;
\r
2846 /* Set the handle to NULL to ensure the same queue handle cannot
\r
2847 * appear in the registry twice if it is added, removed, then
\r
2849 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
\r
2854 mtCOVERAGE_TEST_MARKER();
\r
2857 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2859 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2860 /*-----------------------------------------------------------*/
\r
2862 #if ( configUSE_TIMERS == 1 )
\r
2864 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
\r
2865 TickType_t xTicksToWait,
\r
2866 const BaseType_t xWaitIndefinitely )
\r
2868 Queue_t * const pxQueue = xQueue;
\r
2870 /* This function should not be called by application code hence the
\r
2871 * 'Restricted' in its name. It is not part of the public API. It is
\r
2872 * designed for use by kernel code, and has special calling requirements.
\r
2873 * It can result in vListInsert() being called on a list that can only
\r
2874 * possibly ever have one item in it, so the list will be fast, but even
\r
2875 * so it should be called with the scheduler locked and not from a critical
\r
2878 /* Only do anything if there are no messages in the queue. This function
\r
2879 * will not actually cause the task to block, just place it on a blocked
\r
2880 * list. It will not block until the scheduler is unlocked - at which
\r
2881 * time a yield will be performed. If an item is added to the queue while
\r
2882 * the queue is locked, and the calling task blocks on the queue, then the
\r
2883 * calling task will be immediately unblocked when the queue is unlocked. */
\r
2884 prvLockQueue( pxQueue );
\r
2886 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
\r
2888 /* There is nothing in the queue, block for the specified period. */
\r
2889 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
\r
2893 mtCOVERAGE_TEST_MARKER();
\r
2896 prvUnlockQueue( pxQueue );
\r
2899 #endif /* configUSE_TIMERS */
\r
2900 /*-----------------------------------------------------------*/
\r
2902 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
2904 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
\r
2906 QueueSetHandle_t pxQueue;
\r
2908 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
\r
2913 #endif /* configUSE_QUEUE_SETS */
\r
2914 /*-----------------------------------------------------------*/
\r
2916 #if ( configUSE_QUEUE_SETS == 1 )
\r
2918 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2919 QueueSetHandle_t xQueueSet )
\r
2921 BaseType_t xReturn;
\r
2923 taskENTER_CRITICAL();
\r
2925 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
\r
2927 /* Cannot add a queue/semaphore to more than one queue set. */
\r
2930 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2932 /* Cannot add a queue/semaphore to a queue set if there are already
\r
2933 * items in the queue/semaphore. */
\r
2938 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
\r
2942 taskEXIT_CRITICAL();
\r
2947 #endif /* configUSE_QUEUE_SETS */
\r
2948 /*-----------------------------------------------------------*/
\r
2950 #if ( configUSE_QUEUE_SETS == 1 )
\r
2952 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2953 QueueSetHandle_t xQueueSet )
\r
2955 BaseType_t xReturn;
\r
2956 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
\r
2958 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
\r
2960 /* The queue was not a member of the set. */
\r
2963 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2965 /* It is dangerous to remove a queue from a set when the queue is
\r
2966 * not empty because the queue set will still hold pending events for
\r
2972 taskENTER_CRITICAL();
\r
2974 /* The queue is no longer contained in the set. */
\r
2975 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
\r
2977 taskEXIT_CRITICAL();
\r
2982 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
\r
2984 #endif /* configUSE_QUEUE_SETS */
\r
2985 /*-----------------------------------------------------------*/
\r
2987 #if ( configUSE_QUEUE_SETS == 1 )
\r
2989 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
\r
2990 TickType_t const xTicksToWait )
\r
2992 QueueSetMemberHandle_t xReturn = NULL;
\r
2994 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2998 #endif /* configUSE_QUEUE_SETS */
\r
2999 /*-----------------------------------------------------------*/
\r
3001 #if ( configUSE_QUEUE_SETS == 1 )
\r
3003 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
\r
3005 QueueSetMemberHandle_t xReturn = NULL;
\r
3007 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
3011 #endif /* configUSE_QUEUE_SETS */
\r
3012 /*-----------------------------------------------------------*/
\r
3014 #if ( configUSE_QUEUE_SETS == 1 )
\r
3016 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
\r
3018 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
\r
3019 BaseType_t xReturn = pdFALSE;
\r
3021 /* This function must be called form a critical section. */
\r
3023 /* The following line is not reachable in unit tests because every call
\r
3024 * to prvNotifyQueueSetContainer is preceded by a check that
\r
3025 * pxQueueSetContainer != NULL */
\r
3026 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
\r
3027 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
\r
3029 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
\r
3031 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
\r
3033 traceQUEUE_SET_SEND( pxQueueSetContainer );
\r
3035 /* The data copied is the handle of the queue that contains data. */
\r
3036 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
\r
3038 if( cTxLock == queueUNLOCKED )
\r
3040 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
\r
3042 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
\r
3044 /* The task waiting has a higher priority. */
\r
3049 mtCOVERAGE_TEST_MARKER();
\r
3054 mtCOVERAGE_TEST_MARKER();
\r
3059 configASSERT( cTxLock != queueINT8_MAX );
\r
3061 pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
3066 mtCOVERAGE_TEST_MARKER();
\r
3072 #endif /* configUSE_QUEUE_SETS */
\r