2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * SPDX-License-Identifier: MIT
\r
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
8 * this software and associated documentation files (the "Software"), to deal in
\r
9 * the Software without restriction, including without limitation the rights to
\r
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
11 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
12 * subject to the following conditions:
\r
14 * The above copyright notice and this permission notice shall be included in all
\r
15 * copies or substantial portions of the Software.
\r
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
24 * https://www.FreeRTOS.org
\r
25 * https://github.com/FreeRTOS
\r
32 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
33 * all the API functions to use the MPU wrappers. That should only be done when
\r
34 * task.h is included from an application file. */
\r
35 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
37 #include "FreeRTOS.h"
\r
41 #if ( configUSE_CO_ROUTINES == 1 )
\r
42 #include "croutine.h"
\r
45 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
46 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
47 * for the header files above, but not in this file, in order to generate the
\r
48 * correct privileged Vs unprivileged linkage and placement. */
\r
49 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
52 /* Constants used with the cRxLock and cTxLock structure members. */
\r
53 #define queueUNLOCKED ( ( int8_t ) -1 )
\r
54 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
\r
55 #define queueINT8_MAX ( ( int8_t ) 127 )
\r
57 /* When the Queue_t structure is used to represent a base queue its pcHead and
\r
58 * pcTail members are used as pointers into the queue storage area. When the
\r
59 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
\r
60 * not necessary, and the pcHead pointer is set to NULL to indicate that the
\r
61 * structure instead holds a pointer to the mutex holder (if any). Map alternative
\r
62 * names to the pcHead and structure member to ensure the readability of the code
\r
63 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
\r
64 * a union as their usage is mutually exclusive dependent on what the queue is
\r
65 * being used for. */
\r
66 #define uxQueueType pcHead
\r
67 #define queueQUEUE_IS_MUTEX NULL
\r
69 typedef struct QueuePointers
\r
71 int8_t * pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
\r
72 int8_t * pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
\r
75 typedef struct SemaphoreData
\r
77 TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex. */
\r
78 UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
\r
81 /* Semaphores do not actually store or copy data, so have an item size of
\r
83 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
\r
84 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
\r
86 #if ( configUSE_PREEMPTION == 0 )
\r
88 /* If the cooperative scheduler is being used then a yield should not be
\r
89 * performed just because a higher priority task has been woken. */
\r
90 #define queueYIELD_IF_USING_PREEMPTION()
\r
92 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
96 * Definition of the queue used by the scheduler.
\r
97 * Items are queued by copy, not reference. See the following link for the
\r
98 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
\r
100 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
102 int8_t * pcHead; /*< Points to the beginning of the queue storage area. */
\r
103 int8_t * pcWriteTo; /*< Points to the free next place in the storage area. */
\r
107 QueuePointers_t xQueue; /*< Data required exclusively when this structure is used as a queue. */
\r
108 SemaphoreData_t xSemaphore; /*< Data required exclusively when this structure is used as a semaphore. */
\r
111 List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
\r
112 List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
\r
114 volatile UBaseType_t uxMessagesWaiting; /*< The number of items currently in the queue. */
\r
115 UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
\r
116 UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
\r
118 volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
119 volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
121 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
122 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
\r
125 #if ( configUSE_QUEUE_SETS == 1 )
\r
126 struct QueueDefinition * pxQueueSetContainer;
\r
129 #if ( configUSE_TRACE_FACILITY == 1 )
\r
130 UBaseType_t uxQueueNumber;
\r
131 uint8_t ucQueueType;
\r
135 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
\r
136 * name below to enable the use of older kernel aware debuggers. */
\r
137 typedef xQUEUE Queue_t;
\r
139 /*-----------------------------------------------------------*/
\r
142 * The queue registry is just a means for kernel aware debuggers to locate
\r
143 * queue structures. It has no other purpose so is an optional component.
\r
145 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
147 /* The type stored within the queue registry array. This allows a name
\r
148 * to be assigned to each queue making kernel aware debugging a little
\r
149 * more user friendly. */
\r
150 typedef struct QUEUE_REGISTRY_ITEM
\r
152 const char * pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
153 QueueHandle_t xHandle;
\r
154 } xQueueRegistryItem;
\r
156 /* The old xQueueRegistryItem name is maintained above then typedefed to the
\r
157 * new xQueueRegistryItem name below to enable the use of older kernel aware
\r
159 typedef xQueueRegistryItem QueueRegistryItem_t;
\r
161 /* The queue registry is simply an array of QueueRegistryItem_t structures.
\r
162 * The pcQueueName member of a structure being NULL is indicative of the
\r
163 * array position being vacant. */
\r
164 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
\r
166 #endif /* configQUEUE_REGISTRY_SIZE */
\r
169 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
\r
170 * prevent an ISR from adding or removing items to the queue, but does prevent
\r
171 * an ISR from removing tasks from the queue event lists. If an ISR finds a
\r
172 * queue is locked it will instead increment the appropriate queue lock count
\r
173 * to indicate that a task may require unblocking. When the queue in unlocked
\r
174 * these lock counts are inspected, and the appropriate action taken.
\r
176 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
179 * Uses a critical section to determine if there is any data in a queue.
\r
181 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
\r
183 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
186 * Uses a critical section to determine if there is any space in a queue.
\r
188 * @return pdTRUE if there is no space, otherwise pdFALSE;
\r
190 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
193 * Copies an item into the queue, either at the front of the queue or the
\r
194 * back of the queue.
\r
196 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
197 const void * pvItemToQueue,
\r
198 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
\r
201 * Copies an item out of a queue.
\r
203 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
204 void * const pvBuffer ) PRIVILEGED_FUNCTION;
\r
206 #if ( configUSE_QUEUE_SETS == 1 )
\r
209 * Checks to see if a queue is a member of a queue set, and if so, notifies
\r
210 * the queue set that the queue contains data.
\r
212 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
216 * Called after a Queue_t structure has been allocated either statically or
\r
217 * dynamically to fill in the structure's members.
\r
219 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
220 const UBaseType_t uxItemSize,
\r
221 uint8_t * pucQueueStorage,
\r
222 const uint8_t ucQueueType,
\r
223 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
226 * Mutexes are a special type of queue. When a mutex is created, first the
\r
227 * queue is created, then prvInitialiseMutex() is called to configure the queue
\r
230 #if ( configUSE_MUTEXES == 1 )
\r
231 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
234 #if ( configUSE_MUTEXES == 1 )
\r
237 * If a task waiting for a mutex causes the mutex holder to inherit a
\r
238 * priority, but the waiting task times out, then the holder should
\r
239 * disinherit the priority - but only down to the highest priority of any
\r
240 * other tasks that are waiting for the same mutex. This function returns
\r
243 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
245 /*-----------------------------------------------------------*/
\r
248 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
\r
249 * accessing the queue event lists.
\r
251 #define prvLockQueue( pxQueue ) \
\r
252 taskENTER_CRITICAL(); \
\r
254 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
\r
256 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
\r
258 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
\r
260 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
\r
263 taskEXIT_CRITICAL()
\r
266 * Macro to increment cTxLock member of the queue data structure. It is
\r
267 * capped at the number of tasks in the system as we cannot unblock more
\r
268 * tasks than the number of tasks in the system.
\r
270 #define prvIncrementQueueTxLock( pxQueue, cTxLock ) \
\r
272 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
\r
273 if( ( UBaseType_t ) ( cTxLock ) < uxNumberOfTasks ) \
\r
275 configASSERT( ( cTxLock ) != queueINT8_MAX ); \
\r
276 ( pxQueue )->cTxLock = ( int8_t ) ( ( cTxLock ) + ( int8_t ) 1 ); \
\r
281 * Macro to increment cRxLock member of the queue data structure. It is
\r
282 * capped at the number of tasks in the system as we cannot unblock more
\r
283 * tasks than the number of tasks in the system.
\r
285 #define prvIncrementQueueRxLock( pxQueue, cRxLock ) \
\r
287 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
\r
288 if( ( UBaseType_t ) ( cRxLock ) < uxNumberOfTasks ) \
\r
290 configASSERT( ( cRxLock ) != queueINT8_MAX ); \
\r
291 ( pxQueue )->cRxLock = ( int8_t ) ( ( cRxLock ) + ( int8_t ) 1 ); \
\r
294 /*-----------------------------------------------------------*/
\r
296 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
\r
297 BaseType_t xNewQueue )
\r
299 BaseType_t xReturn = pdPASS;
\r
300 Queue_t * const pxQueue = xQueue;
\r
302 configASSERT( pxQueue );
\r
304 if( ( pxQueue != NULL ) &&
\r
305 ( pxQueue->uxLength >= 1U ) &&
\r
306 /* Check for multiplication overflow. */
\r
307 ( ( SIZE_MAX / pxQueue->uxLength ) >= pxQueue->uxItemSize ) )
\r
309 taskENTER_CRITICAL();
\r
311 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
312 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
\r
313 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
314 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
315 pxQueue->cRxLock = queueUNLOCKED;
\r
316 pxQueue->cTxLock = queueUNLOCKED;
\r
318 if( xNewQueue == pdFALSE )
\r
320 /* If there are tasks blocked waiting to read from the queue, then
\r
321 * the tasks will remain blocked as after this function exits the queue
\r
322 * will still be empty. If there are tasks blocked waiting to write to
\r
323 * the queue, then one should be unblocked as after this function exits
\r
324 * it will be possible to write to it. */
\r
325 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
327 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
329 queueYIELD_IF_USING_PREEMPTION();
\r
333 mtCOVERAGE_TEST_MARKER();
\r
338 mtCOVERAGE_TEST_MARKER();
\r
343 /* Ensure the event queues start in the correct state. */
\r
344 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
\r
345 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
\r
348 taskEXIT_CRITICAL();
\r
355 configASSERT( xReturn != pdFAIL );
\r
357 /* A value is returned for calling semantic consistency with previous
\r
361 /*-----------------------------------------------------------*/
\r
363 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
365 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
\r
366 const UBaseType_t uxItemSize,
\r
367 uint8_t * pucQueueStorage,
\r
368 StaticQueue_t * pxStaticQueue,
\r
369 const uint8_t ucQueueType )
\r
371 Queue_t * pxNewQueue = NULL;
\r
373 /* The StaticQueue_t structure and the queue storage area must be
\r
375 configASSERT( pxStaticQueue );
\r
377 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
\r
378 ( pxStaticQueue != NULL ) &&
\r
380 /* A queue storage area should be provided if the item size is not 0, and
\r
381 * should not be provided if the item size is 0. */
\r
382 ( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) ) &&
\r
383 ( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) ) )
\r
385 #if ( configASSERT_DEFINED == 1 )
\r
387 /* Sanity check that the size of the structure used to declare a
\r
388 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
\r
389 * the real queue and semaphore structures. */
\r
390 volatile size_t xSize = sizeof( StaticQueue_t );
\r
392 /* This assertion cannot be branch covered in unit tests */
\r
393 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
\r
394 ( void ) xSize; /* Keeps lint quiet when configASSERT() is not defined. */
\r
396 #endif /* configASSERT_DEFINED */
\r
398 /* The address of a statically allocated queue was passed in, use it.
\r
399 * The address of a statically allocated storage area was also passed in
\r
400 * but is already set. */
\r
401 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
403 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
405 /* Queues can be allocated wither statically or dynamically, so
\r
406 * note this queue was allocated statically in case the queue is
\r
407 * later deleted. */
\r
408 pxNewQueue->ucStaticallyAllocated = pdTRUE;
\r
410 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
412 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
416 configASSERT( pxNewQueue );
\r
417 mtCOVERAGE_TEST_MARKER();
\r
423 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
424 /*-----------------------------------------------------------*/
\r
426 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
428 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
\r
429 const UBaseType_t uxItemSize,
\r
430 const uint8_t ucQueueType )
\r
432 Queue_t * pxNewQueue = NULL;
\r
433 size_t xQueueSizeInBytes;
\r
434 uint8_t * pucQueueStorage;
\r
436 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
\r
437 /* Check for multiplication overflow. */
\r
438 ( ( SIZE_MAX / uxQueueLength ) >= uxItemSize ) &&
\r
439 /* Check for addition overflow. */
\r
440 ( ( SIZE_MAX - sizeof( Queue_t ) ) >= ( uxQueueLength * uxItemSize ) ) )
\r
442 /* Allocate enough space to hold the maximum number of items that
\r
443 * can be in the queue at any time. It is valid for uxItemSize to be
\r
444 * zero in the case the queue is used as a semaphore. */
\r
445 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
447 /* Allocate the queue and storage area. Justification for MISRA
\r
448 * deviation as follows: pvPortMalloc() always ensures returned memory
\r
449 * blocks are aligned per the requirements of the MCU stack. In this case
\r
450 * pvPortMalloc() must return a pointer that is guaranteed to meet the
\r
451 * alignment requirements of the Queue_t structure - which in this case
\r
452 * is an int8_t *. Therefore, whenever the stack alignment requirements
\r
453 * are greater than or equal to the pointer to char requirements the cast
\r
454 * is safe. In other cases alignment requirements are not strict (one or
\r
456 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); /*lint !e9087 !e9079 see comment above. */
\r
458 if( pxNewQueue != NULL )
\r
460 /* Jump past the queue structure to find the location of the queue
\r
462 pucQueueStorage = ( uint8_t * ) pxNewQueue;
\r
463 pucQueueStorage += sizeof( Queue_t ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
465 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
467 /* Queues can be created either statically or dynamically, so
\r
468 * note this task was created dynamically in case it is later
\r
470 pxNewQueue->ucStaticallyAllocated = pdFALSE;
\r
472 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
474 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
478 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
479 mtCOVERAGE_TEST_MARKER();
\r
484 configASSERT( pxNewQueue );
\r
485 mtCOVERAGE_TEST_MARKER();
\r
491 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
492 /*-----------------------------------------------------------*/
\r
494 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
495 const UBaseType_t uxItemSize,
\r
496 uint8_t * pucQueueStorage,
\r
497 const uint8_t ucQueueType,
\r
498 Queue_t * pxNewQueue )
\r
500 /* Remove compiler warnings about unused parameters should
\r
501 * configUSE_TRACE_FACILITY not be set to 1. */
\r
502 ( void ) ucQueueType;
\r
504 if( uxItemSize == ( UBaseType_t ) 0 )
\r
506 /* No RAM was allocated for the queue storage area, but PC head cannot
\r
507 * be set to NULL because NULL is used as a key to say the queue is used as
\r
508 * a mutex. Therefore just set pcHead to point to the queue as a benign
\r
509 * value that is known to be within the memory map. */
\r
510 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
\r
514 /* Set the head to the start of the queue storage area. */
\r
515 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
\r
518 /* Initialise the queue members as described where the queue type is
\r
520 pxNewQueue->uxLength = uxQueueLength;
\r
521 pxNewQueue->uxItemSize = uxItemSize;
\r
522 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
\r
524 #if ( configUSE_TRACE_FACILITY == 1 )
\r
526 pxNewQueue->ucQueueType = ucQueueType;
\r
528 #endif /* configUSE_TRACE_FACILITY */
\r
530 #if ( configUSE_QUEUE_SETS == 1 )
\r
532 pxNewQueue->pxQueueSetContainer = NULL;
\r
534 #endif /* configUSE_QUEUE_SETS */
\r
536 traceQUEUE_CREATE( pxNewQueue );
\r
538 /*-----------------------------------------------------------*/
\r
540 #if ( configUSE_MUTEXES == 1 )
\r
542 static void prvInitialiseMutex( Queue_t * pxNewQueue )
\r
544 if( pxNewQueue != NULL )
\r
546 /* The queue create function will set all the queue structure members
\r
547 * correctly for a generic queue, but this function is creating a
\r
548 * mutex. Overwrite those members that need to be set differently -
\r
549 * in particular the information required for priority inheritance. */
\r
550 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
\r
551 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
\r
553 /* In case this is a recursive mutex. */
\r
554 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
\r
556 traceCREATE_MUTEX( pxNewQueue );
\r
558 /* Start with the semaphore in the expected state. */
\r
559 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
\r
563 traceCREATE_MUTEX_FAILED();
\r
567 #endif /* configUSE_MUTEXES */
\r
568 /*-----------------------------------------------------------*/
\r
570 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
572 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
\r
574 QueueHandle_t xNewQueue;
\r
575 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
577 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
\r
578 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
583 #endif /* configUSE_MUTEXES */
\r
584 /*-----------------------------------------------------------*/
\r
586 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
588 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
\r
589 StaticQueue_t * pxStaticQueue )
\r
591 QueueHandle_t xNewQueue;
\r
592 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
594 /* Prevent compiler warnings about unused parameters if
\r
595 * configUSE_TRACE_FACILITY does not equal 1. */
\r
596 ( void ) ucQueueType;
\r
598 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
\r
599 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
604 #endif /* configUSE_MUTEXES */
\r
605 /*-----------------------------------------------------------*/
\r
607 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
609 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
\r
611 TaskHandle_t pxReturn;
\r
612 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
\r
614 configASSERT( xSemaphore );
\r
616 /* This function is called by xSemaphoreGetMutexHolder(), and should not
\r
617 * be called directly. Note: This is a good way of determining if the
\r
618 * calling task is the mutex holder, but not a good way of determining the
\r
619 * identity of the mutex holder, as the holder may change between the
\r
620 * following critical section exiting and the function returning. */
\r
621 taskENTER_CRITICAL();
\r
623 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
\r
625 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
\r
632 taskEXIT_CRITICAL();
\r
635 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
637 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
638 /*-----------------------------------------------------------*/
\r
640 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
642 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
\r
644 TaskHandle_t pxReturn;
\r
646 configASSERT( xSemaphore );
\r
648 /* Mutexes cannot be used in interrupt service routines, so the mutex
\r
649 * holder should not change in an ISR, and therefore a critical section is
\r
650 * not required here. */
\r
651 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
\r
653 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
\r
661 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
663 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
664 /*-----------------------------------------------------------*/
\r
666 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
668 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
\r
670 BaseType_t xReturn;
\r
671 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
673 configASSERT( pxMutex );
\r
675 /* If this is the task that holds the mutex then xMutexHolder will not
\r
676 * change outside of this task. If this task does not hold the mutex then
\r
677 * pxMutexHolder can never coincidentally equal the tasks handle, and as
\r
678 * this is the only condition we are interested in it does not matter if
\r
679 * pxMutexHolder is accessed simultaneously by another task. Therefore no
\r
680 * mutual exclusion is required to test the pxMutexHolder variable. */
\r
681 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
683 traceGIVE_MUTEX_RECURSIVE( pxMutex );
\r
685 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
\r
686 * the task handle, therefore no underflow check is required. Also,
\r
687 * uxRecursiveCallCount is only modified by the mutex holder, and as
\r
688 * there can only be one, no mutual exclusion is required to modify the
\r
689 * uxRecursiveCallCount member. */
\r
690 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
\r
692 /* Has the recursive call count unwound to 0? */
\r
693 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
\r
695 /* Return the mutex. This will automatically unblock any other
\r
696 * task that might be waiting to access the mutex. */
\r
697 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
\r
701 mtCOVERAGE_TEST_MARKER();
\r
708 /* The mutex cannot be given because the calling task is not the
\r
712 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
718 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
719 /*-----------------------------------------------------------*/
\r
721 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
723 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
\r
724 TickType_t xTicksToWait )
\r
726 BaseType_t xReturn;
\r
727 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
729 configASSERT( pxMutex );
\r
731 /* Comments regarding mutual exclusion as per those within
\r
732 * xQueueGiveMutexRecursive(). */
\r
734 traceTAKE_MUTEX_RECURSIVE( pxMutex );
\r
736 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
738 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
743 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
\r
745 /* pdPASS will only be returned if the mutex was successfully
\r
746 * obtained. The calling task may have entered the Blocked state
\r
747 * before reaching here. */
\r
748 if( xReturn != pdFAIL )
\r
750 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
754 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
761 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
762 /*-----------------------------------------------------------*/
\r
764 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
766 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
\r
767 const UBaseType_t uxInitialCount,
\r
768 StaticQueue_t * pxStaticQueue )
\r
770 QueueHandle_t xHandle = NULL;
\r
772 if( ( uxMaxCount != 0 ) &&
\r
773 ( uxInitialCount <= uxMaxCount ) )
\r
775 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
777 if( xHandle != NULL )
\r
779 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
781 traceCREATE_COUNTING_SEMAPHORE();
\r
785 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
790 configASSERT( xHandle );
\r
791 mtCOVERAGE_TEST_MARKER();
\r
797 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
798 /*-----------------------------------------------------------*/
\r
800 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
802 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
\r
803 const UBaseType_t uxInitialCount )
\r
805 QueueHandle_t xHandle = NULL;
\r
807 if( ( uxMaxCount != 0 ) &&
\r
808 ( uxInitialCount <= uxMaxCount ) )
\r
810 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
812 if( xHandle != NULL )
\r
814 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
816 traceCREATE_COUNTING_SEMAPHORE();
\r
820 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
825 configASSERT( xHandle );
\r
826 mtCOVERAGE_TEST_MARKER();
\r
832 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
833 /*-----------------------------------------------------------*/
\r
835 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
\r
836 const void * const pvItemToQueue,
\r
837 TickType_t xTicksToWait,
\r
838 const BaseType_t xCopyPosition )
\r
840 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
\r
841 TimeOut_t xTimeOut;
\r
842 Queue_t * const pxQueue = xQueue;
\r
844 configASSERT( pxQueue );
\r
845 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
846 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
847 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
849 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
853 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
854 * allow return statements within the function itself. This is done in the
\r
855 * interest of execution time efficiency. */
\r
858 taskENTER_CRITICAL();
\r
860 /* Is there room on the queue now? The running task must be the
\r
861 * highest priority task wanting to access the queue. If the head item
\r
862 * in the queue is to be overwritten then it does not matter if the
\r
863 * queue is full. */
\r
864 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
866 traceQUEUE_SEND( pxQueue );
\r
868 #if ( configUSE_QUEUE_SETS == 1 )
\r
870 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
872 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
874 if( pxQueue->pxQueueSetContainer != NULL )
\r
876 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
878 /* Do not notify the queue set as an existing item
\r
879 * was overwritten in the queue so the number of items
\r
880 * in the queue has not changed. */
\r
881 mtCOVERAGE_TEST_MARKER();
\r
883 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
885 /* The queue is a member of a queue set, and posting
\r
886 * to the queue set caused a higher priority task to
\r
887 * unblock. A context switch is required. */
\r
888 queueYIELD_IF_USING_PREEMPTION();
\r
892 mtCOVERAGE_TEST_MARKER();
\r
897 /* If there was a task waiting for data to arrive on the
\r
898 * queue then unblock it now. */
\r
899 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
901 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
903 /* The unblocked task has a priority higher than
\r
904 * our own so yield immediately. Yes it is ok to
\r
905 * do this from within the critical section - the
\r
906 * kernel takes care of that. */
\r
907 queueYIELD_IF_USING_PREEMPTION();
\r
911 mtCOVERAGE_TEST_MARKER();
\r
914 else if( xYieldRequired != pdFALSE )
\r
916 /* This path is a special case that will only get
\r
917 * executed if the task was holding multiple mutexes
\r
918 * and the mutexes were given back in an order that is
\r
919 * different to that in which they were taken. */
\r
920 queueYIELD_IF_USING_PREEMPTION();
\r
924 mtCOVERAGE_TEST_MARKER();
\r
928 #else /* configUSE_QUEUE_SETS */
\r
930 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
932 /* If there was a task waiting for data to arrive on the
\r
933 * queue then unblock it now. */
\r
934 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
936 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
938 /* The unblocked task has a priority higher than
\r
939 * our own so yield immediately. Yes it is ok to do
\r
940 * this from within the critical section - the kernel
\r
941 * takes care of that. */
\r
942 queueYIELD_IF_USING_PREEMPTION();
\r
946 mtCOVERAGE_TEST_MARKER();
\r
949 else if( xYieldRequired != pdFALSE )
\r
951 /* This path is a special case that will only get
\r
952 * executed if the task was holding multiple mutexes and
\r
953 * the mutexes were given back in an order that is
\r
954 * different to that in which they were taken. */
\r
955 queueYIELD_IF_USING_PREEMPTION();
\r
959 mtCOVERAGE_TEST_MARKER();
\r
962 #endif /* configUSE_QUEUE_SETS */
\r
964 taskEXIT_CRITICAL();
\r
969 if( xTicksToWait == ( TickType_t ) 0 )
\r
971 /* The queue was full and no block time is specified (or
\r
972 * the block time has expired) so leave now. */
\r
973 taskEXIT_CRITICAL();
\r
975 /* Return to the original privilege level before exiting
\r
977 traceQUEUE_SEND_FAILED( pxQueue );
\r
978 return errQUEUE_FULL;
\r
980 else if( xEntryTimeSet == pdFALSE )
\r
982 /* The queue was full and a block time was specified so
\r
983 * configure the timeout structure. */
\r
984 vTaskInternalSetTimeOutState( &xTimeOut );
\r
985 xEntryTimeSet = pdTRUE;
\r
989 /* Entry time was already set. */
\r
990 mtCOVERAGE_TEST_MARKER();
\r
994 taskEXIT_CRITICAL();
\r
996 /* Interrupts and other tasks can send to and receive from the queue
\r
997 * now the critical section has been exited. */
\r
1000 prvLockQueue( pxQueue );
\r
1002 /* Update the timeout state to see if it has expired yet. */
\r
1003 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1005 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
1007 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
\r
1008 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
\r
1010 /* Unlocking the queue means queue events can effect the
\r
1011 * event list. It is possible that interrupts occurring now
\r
1012 * remove this task from the event list again - but as the
\r
1013 * scheduler is suspended the task will go onto the pending
\r
1014 * ready list instead of the actual ready list. */
\r
1015 prvUnlockQueue( pxQueue );
\r
1017 /* Resuming the scheduler will move tasks from the pending
\r
1018 * ready list into the ready list - so it is feasible that this
\r
1019 * task is already in the ready list before it yields - in which
\r
1020 * case the yield will not cause a context switch unless there
\r
1021 * is also a higher priority task in the pending ready list. */
\r
1022 if( xTaskResumeAll() == pdFALSE )
\r
1024 portYIELD_WITHIN_API();
\r
1030 prvUnlockQueue( pxQueue );
\r
1031 ( void ) xTaskResumeAll();
\r
1036 /* The timeout has expired. */
\r
1037 prvUnlockQueue( pxQueue );
\r
1038 ( void ) xTaskResumeAll();
\r
1040 traceQUEUE_SEND_FAILED( pxQueue );
\r
1041 return errQUEUE_FULL;
\r
1043 } /*lint -restore */
\r
1045 /*-----------------------------------------------------------*/
\r
1047 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
\r
1048 const void * const pvItemToQueue,
\r
1049 BaseType_t * const pxHigherPriorityTaskWoken,
\r
1050 const BaseType_t xCopyPosition )
\r
1052 BaseType_t xReturn;
\r
1053 UBaseType_t uxSavedInterruptStatus;
\r
1054 Queue_t * const pxQueue = xQueue;
\r
1056 configASSERT( pxQueue );
\r
1057 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1058 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
1060 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1061 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1062 * above the maximum system call priority are kept permanently enabled, even
\r
1063 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1064 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1065 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1066 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1067 * assigned a priority above the configured maximum system call priority.
\r
1068 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1069 * that have been assigned a priority at or (logically) below the maximum
\r
1070 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1071 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1072 * More information (albeit Cortex-M specific) is provided on the following
\r
1073 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1074 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1076 /* Similar to xQueueGenericSend, except without blocking if there is no room
\r
1077 * in the queue. Also don't directly wake a task that was blocked on a queue
\r
1078 * read, instead return a flag to say whether a context switch is required or
\r
1079 * not (i.e. has a task with a higher priority than us been woken by this
\r
1081 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1083 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
1085 const int8_t cTxLock = pxQueue->cTxLock;
\r
1086 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1088 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1090 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
\r
1091 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
\r
1092 * in a task disinheriting a priority and prvCopyDataToQueue() can be
\r
1093 * called here even though the disinherit function does not check if
\r
1094 * the scheduler is suspended before accessing the ready lists. */
\r
1095 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
1097 /* The event list is not altered if the queue is locked. This will
\r
1098 * be done when the queue is unlocked later. */
\r
1099 if( cTxLock == queueUNLOCKED )
\r
1101 #if ( configUSE_QUEUE_SETS == 1 )
\r
1103 if( pxQueue->pxQueueSetContainer != NULL )
\r
1105 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
1107 /* Do not notify the queue set as an existing item
\r
1108 * was overwritten in the queue so the number of items
\r
1109 * in the queue has not changed. */
\r
1110 mtCOVERAGE_TEST_MARKER();
\r
1112 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1114 /* The queue is a member of a queue set, and posting
\r
1115 * to the queue set caused a higher priority task to
\r
1116 * unblock. A context switch is required. */
\r
1117 if( pxHigherPriorityTaskWoken != NULL )
\r
1119 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1123 mtCOVERAGE_TEST_MARKER();
\r
1128 mtCOVERAGE_TEST_MARKER();
\r
1133 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1135 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1137 /* The task waiting has a higher priority so
\r
1138 * record that a context switch is required. */
\r
1139 if( pxHigherPriorityTaskWoken != NULL )
\r
1141 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1145 mtCOVERAGE_TEST_MARKER();
\r
1150 mtCOVERAGE_TEST_MARKER();
\r
1155 mtCOVERAGE_TEST_MARKER();
\r
1159 #else /* configUSE_QUEUE_SETS */
\r
1161 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1163 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1165 /* The task waiting has a higher priority so record that a
\r
1166 * context switch is required. */
\r
1167 if( pxHigherPriorityTaskWoken != NULL )
\r
1169 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1173 mtCOVERAGE_TEST_MARKER();
\r
1178 mtCOVERAGE_TEST_MARKER();
\r
1183 mtCOVERAGE_TEST_MARKER();
\r
1186 /* Not used in this path. */
\r
1187 ( void ) uxPreviousMessagesWaiting;
\r
1189 #endif /* configUSE_QUEUE_SETS */
\r
1193 /* Increment the lock count so the task that unlocks the queue
\r
1194 * knows that data was posted while it was locked. */
\r
1195 prvIncrementQueueTxLock( pxQueue, cTxLock );
\r
1202 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1203 xReturn = errQUEUE_FULL;
\r
1206 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1210 /*-----------------------------------------------------------*/
\r
1212 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
\r
1213 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1215 BaseType_t xReturn;
\r
1216 UBaseType_t uxSavedInterruptStatus;
\r
1217 Queue_t * const pxQueue = xQueue;
\r
1219 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
\r
1220 * item size is 0. Don't directly wake a task that was blocked on a queue
\r
1221 * read, instead return a flag to say whether a context switch is required or
\r
1222 * not (i.e. has a task with a higher priority than us been woken by this
\r
1225 configASSERT( pxQueue );
\r
1227 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
\r
1228 * if the item size is not 0. */
\r
1229 configASSERT( pxQueue->uxItemSize == 0 );
\r
1231 /* Normally a mutex would not be given from an interrupt, especially if
\r
1232 * there is a mutex holder, as priority inheritance makes no sense for an
\r
1233 * interrupts, only tasks. */
\r
1234 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
\r
1236 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1237 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1238 * above the maximum system call priority are kept permanently enabled, even
\r
1239 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1240 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1241 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1242 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1243 * assigned a priority above the configured maximum system call priority.
\r
1244 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1245 * that have been assigned a priority at or (logically) below the maximum
\r
1246 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1247 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1248 * More information (albeit Cortex-M specific) is provided on the following
\r
1249 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1250 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1252 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1254 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1256 /* When the queue is used to implement a semaphore no data is ever
\r
1257 * moved through the queue but it is still valid to see if the queue 'has
\r
1259 if( uxMessagesWaiting < pxQueue->uxLength )
\r
1261 const int8_t cTxLock = pxQueue->cTxLock;
\r
1263 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1265 /* A task can only have an inherited priority if it is a mutex
\r
1266 * holder - and if there is a mutex holder then the mutex cannot be
\r
1267 * given from an ISR. As this is the ISR version of the function it
\r
1268 * can be assumed there is no mutex holder and no need to determine if
\r
1269 * priority disinheritance is needed. Simply increase the count of
\r
1270 * messages (semaphores) available. */
\r
1271 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
1273 /* The event list is not altered if the queue is locked. This will
\r
1274 * be done when the queue is unlocked later. */
\r
1275 if( cTxLock == queueUNLOCKED )
\r
1277 #if ( configUSE_QUEUE_SETS == 1 )
\r
1279 if( pxQueue->pxQueueSetContainer != NULL )
\r
1281 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1283 /* The semaphore is a member of a queue set, and
\r
1284 * posting to the queue set caused a higher priority
\r
1285 * task to unblock. A context switch is required. */
\r
1286 if( pxHigherPriorityTaskWoken != NULL )
\r
1288 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1292 mtCOVERAGE_TEST_MARKER();
\r
1297 mtCOVERAGE_TEST_MARKER();
\r
1302 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1304 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1306 /* The task waiting has a higher priority so
\r
1307 * record that a context switch is required. */
\r
1308 if( pxHigherPriorityTaskWoken != NULL )
\r
1310 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1314 mtCOVERAGE_TEST_MARKER();
\r
1319 mtCOVERAGE_TEST_MARKER();
\r
1324 mtCOVERAGE_TEST_MARKER();
\r
1328 #else /* configUSE_QUEUE_SETS */
\r
1330 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1332 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1334 /* The task waiting has a higher priority so record that a
\r
1335 * context switch is required. */
\r
1336 if( pxHigherPriorityTaskWoken != NULL )
\r
1338 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1342 mtCOVERAGE_TEST_MARKER();
\r
1347 mtCOVERAGE_TEST_MARKER();
\r
1352 mtCOVERAGE_TEST_MARKER();
\r
1355 #endif /* configUSE_QUEUE_SETS */
\r
1359 /* Increment the lock count so the task that unlocks the queue
\r
1360 * knows that data was posted while it was locked. */
\r
1361 prvIncrementQueueTxLock( pxQueue, cTxLock );
\r
1368 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1369 xReturn = errQUEUE_FULL;
\r
1372 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1376 /*-----------------------------------------------------------*/
\r
1378 BaseType_t xQueueReceive( QueueHandle_t xQueue,
\r
1379 void * const pvBuffer,
\r
1380 TickType_t xTicksToWait )
\r
1382 BaseType_t xEntryTimeSet = pdFALSE;
\r
1383 TimeOut_t xTimeOut;
\r
1384 Queue_t * const pxQueue = xQueue;
\r
1386 /* Check the pointer is not NULL. */
\r
1387 configASSERT( ( pxQueue ) );
\r
1389 /* The buffer into which data is received can only be NULL if the data size
\r
1390 * is zero (so no data is copied into the buffer). */
\r
1391 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1393 /* Cannot block if the scheduler is suspended. */
\r
1394 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1396 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1400 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1401 * allow return statements within the function itself. This is done in the
\r
1402 * interest of execution time efficiency. */
\r
1405 taskENTER_CRITICAL();
\r
1407 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1409 /* Is there data in the queue now? To be running the calling task
\r
1410 * must be the highest priority task wanting to access the queue. */
\r
1411 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1413 /* Data available, remove one item. */
\r
1414 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1415 traceQUEUE_RECEIVE( pxQueue );
\r
1416 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1418 /* There is now space in the queue, were any tasks waiting to
\r
1419 * post to the queue? If so, unblock the highest priority waiting
\r
1421 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1423 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1425 queueYIELD_IF_USING_PREEMPTION();
\r
1429 mtCOVERAGE_TEST_MARKER();
\r
1434 mtCOVERAGE_TEST_MARKER();
\r
1437 taskEXIT_CRITICAL();
\r
1442 if( xTicksToWait == ( TickType_t ) 0 )
\r
1444 /* The queue was empty and no block time is specified (or
\r
1445 * the block time has expired) so leave now. */
\r
1446 taskEXIT_CRITICAL();
\r
1447 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1448 return errQUEUE_EMPTY;
\r
1450 else if( xEntryTimeSet == pdFALSE )
\r
1452 /* The queue was empty and a block time was specified so
\r
1453 * configure the timeout structure. */
\r
1454 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1455 xEntryTimeSet = pdTRUE;
\r
1459 /* Entry time was already set. */
\r
1460 mtCOVERAGE_TEST_MARKER();
\r
1464 taskEXIT_CRITICAL();
\r
1466 /* Interrupts and other tasks can send to and receive from the queue
\r
1467 * now the critical section has been exited. */
\r
1469 vTaskSuspendAll();
\r
1470 prvLockQueue( pxQueue );
\r
1472 /* Update the timeout state to see if it has expired yet. */
\r
1473 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1475 /* The timeout has not expired. If the queue is still empty place
\r
1476 * the task on the list of tasks waiting to receive from the queue. */
\r
1477 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1479 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1480 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1481 prvUnlockQueue( pxQueue );
\r
1483 if( xTaskResumeAll() == pdFALSE )
\r
1485 portYIELD_WITHIN_API();
\r
1489 mtCOVERAGE_TEST_MARKER();
\r
1494 /* The queue contains data again. Loop back to try and read the
\r
1496 prvUnlockQueue( pxQueue );
\r
1497 ( void ) xTaskResumeAll();
\r
1502 /* Timed out. If there is no data in the queue exit, otherwise loop
\r
1503 * back and attempt to read the data. */
\r
1504 prvUnlockQueue( pxQueue );
\r
1505 ( void ) xTaskResumeAll();
\r
1507 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1509 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1510 return errQUEUE_EMPTY;
\r
1514 mtCOVERAGE_TEST_MARKER();
\r
1517 } /*lint -restore */
\r
1519 /*-----------------------------------------------------------*/
\r
1521 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
\r
1522 TickType_t xTicksToWait )
\r
1524 BaseType_t xEntryTimeSet = pdFALSE;
\r
1525 TimeOut_t xTimeOut;
\r
1526 Queue_t * const pxQueue = xQueue;
\r
1528 #if ( configUSE_MUTEXES == 1 )
\r
1529 BaseType_t xInheritanceOccurred = pdFALSE;
\r
1532 /* Check the queue pointer is not NULL. */
\r
1533 configASSERT( ( pxQueue ) );
\r
1535 /* Check this really is a semaphore, in which case the item size will be
\r
1537 configASSERT( pxQueue->uxItemSize == 0 );
\r
1539 /* Cannot block if the scheduler is suspended. */
\r
1540 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1542 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1546 /*lint -save -e904 This function relaxes the coding standard somewhat to allow return
\r
1547 * statements within the function itself. This is done in the interest
\r
1548 * of execution time efficiency. */
\r
1551 taskENTER_CRITICAL();
\r
1553 /* Semaphores are queues with an item size of 0, and where the
\r
1554 * number of messages in the queue is the semaphore's count value. */
\r
1555 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
\r
1557 /* Is there data in the queue now? To be running the calling task
\r
1558 * must be the highest priority task wanting to access the queue. */
\r
1559 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
\r
1561 traceQUEUE_RECEIVE( pxQueue );
\r
1563 /* Semaphores are queues with a data size of zero and where the
\r
1564 * messages waiting is the semaphore's count. Reduce the count. */
\r
1565 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
\r
1567 #if ( configUSE_MUTEXES == 1 )
\r
1569 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1571 /* Record the information required to implement
\r
1572 * priority inheritance should it become necessary. */
\r
1573 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
\r
1577 mtCOVERAGE_TEST_MARKER();
\r
1580 #endif /* configUSE_MUTEXES */
\r
1582 /* Check to see if other tasks are blocked waiting to give the
\r
1583 * semaphore, and if so, unblock the highest priority such task. */
\r
1584 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1586 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1588 queueYIELD_IF_USING_PREEMPTION();
\r
1592 mtCOVERAGE_TEST_MARKER();
\r
1597 mtCOVERAGE_TEST_MARKER();
\r
1600 taskEXIT_CRITICAL();
\r
1605 if( xTicksToWait == ( TickType_t ) 0 )
\r
1607 /* For inheritance to have occurred there must have been an
\r
1608 * initial timeout, and an adjusted timeout cannot become 0, as
\r
1609 * if it were 0 the function would have exited. */
\r
1610 #if ( configUSE_MUTEXES == 1 )
\r
1612 configASSERT( xInheritanceOccurred == pdFALSE );
\r
1614 #endif /* configUSE_MUTEXES */
\r
1616 /* The semaphore count was 0 and no block time is specified
\r
1617 * (or the block time has expired) so exit now. */
\r
1618 taskEXIT_CRITICAL();
\r
1619 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1620 return errQUEUE_EMPTY;
\r
1622 else if( xEntryTimeSet == pdFALSE )
\r
1624 /* The semaphore count was 0 and a block time was specified
\r
1625 * so configure the timeout structure ready to block. */
\r
1626 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1627 xEntryTimeSet = pdTRUE;
\r
1631 /* Entry time was already set. */
\r
1632 mtCOVERAGE_TEST_MARKER();
\r
1636 taskEXIT_CRITICAL();
\r
1638 /* Interrupts and other tasks can give to and take from the semaphore
\r
1639 * now the critical section has been exited. */
\r
1641 vTaskSuspendAll();
\r
1642 prvLockQueue( pxQueue );
\r
1644 /* Update the timeout state to see if it has expired yet. */
\r
1645 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1647 /* A block time is specified and not expired. If the semaphore
\r
1648 * count is 0 then enter the Blocked state to wait for a semaphore to
\r
1649 * become available. As semaphores are implemented with queues the
\r
1650 * queue being empty is equivalent to the semaphore count being 0. */
\r
1651 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1653 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1655 #if ( configUSE_MUTEXES == 1 )
\r
1657 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1659 taskENTER_CRITICAL();
\r
1661 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
1663 taskEXIT_CRITICAL();
\r
1667 mtCOVERAGE_TEST_MARKER();
\r
1670 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1672 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1673 prvUnlockQueue( pxQueue );
\r
1675 if( xTaskResumeAll() == pdFALSE )
\r
1677 portYIELD_WITHIN_API();
\r
1681 mtCOVERAGE_TEST_MARKER();
\r
1686 /* There was no timeout and the semaphore count was not 0, so
\r
1687 * attempt to take the semaphore again. */
\r
1688 prvUnlockQueue( pxQueue );
\r
1689 ( void ) xTaskResumeAll();
\r
1695 prvUnlockQueue( pxQueue );
\r
1696 ( void ) xTaskResumeAll();
\r
1698 /* If the semaphore count is 0 exit now as the timeout has
\r
1699 * expired. Otherwise return to attempt to take the semaphore that is
\r
1700 * known to be available. As semaphores are implemented by queues the
\r
1701 * queue being empty is equivalent to the semaphore count being 0. */
\r
1702 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1704 #if ( configUSE_MUTEXES == 1 )
\r
1706 /* xInheritanceOccurred could only have be set if
\r
1707 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
\r
1708 * test the mutex type again to check it is actually a mutex. */
\r
1709 if( xInheritanceOccurred != pdFALSE )
\r
1711 taskENTER_CRITICAL();
\r
1713 UBaseType_t uxHighestWaitingPriority;
\r
1715 /* This task blocking on the mutex caused another
\r
1716 * task to inherit this task's priority. Now this task
\r
1717 * has timed out the priority should be disinherited
\r
1718 * again, but only as low as the next highest priority
\r
1719 * task that is waiting for the same mutex. */
\r
1720 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
\r
1721 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
\r
1723 taskEXIT_CRITICAL();
\r
1726 #endif /* configUSE_MUTEXES */
\r
1728 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1729 return errQUEUE_EMPTY;
\r
1733 mtCOVERAGE_TEST_MARKER();
\r
1736 } /*lint -restore */
\r
1738 /*-----------------------------------------------------------*/
\r
1740 BaseType_t xQueuePeek( QueueHandle_t xQueue,
\r
1741 void * const pvBuffer,
\r
1742 TickType_t xTicksToWait )
\r
1744 BaseType_t xEntryTimeSet = pdFALSE;
\r
1745 TimeOut_t xTimeOut;
\r
1746 int8_t * pcOriginalReadPosition;
\r
1747 Queue_t * const pxQueue = xQueue;
\r
1749 /* Check the pointer is not NULL. */
\r
1750 configASSERT( ( pxQueue ) );
\r
1752 /* The buffer into which data is received can only be NULL if the data size
\r
1753 * is zero (so no data is copied into the buffer. */
\r
1754 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1756 /* Cannot block if the scheduler is suspended. */
\r
1757 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1759 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1763 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1764 * allow return statements within the function itself. This is done in the
\r
1765 * interest of execution time efficiency. */
\r
1768 taskENTER_CRITICAL();
\r
1770 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1772 /* Is there data in the queue now? To be running the calling task
\r
1773 * must be the highest priority task wanting to access the queue. */
\r
1774 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1776 /* Remember the read position so it can be reset after the data
\r
1777 * is read from the queue as this function is only peeking the
\r
1778 * data, not removing it. */
\r
1779 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1781 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1782 traceQUEUE_PEEK( pxQueue );
\r
1784 /* The data is not being removed, so reset the read pointer. */
\r
1785 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1787 /* The data is being left in the queue, so see if there are
\r
1788 * any other tasks waiting for the data. */
\r
1789 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1791 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1793 /* The task waiting has a higher priority than this task. */
\r
1794 queueYIELD_IF_USING_PREEMPTION();
\r
1798 mtCOVERAGE_TEST_MARKER();
\r
1803 mtCOVERAGE_TEST_MARKER();
\r
1806 taskEXIT_CRITICAL();
\r
1811 if( xTicksToWait == ( TickType_t ) 0 )
\r
1813 /* The queue was empty and no block time is specified (or
\r
1814 * the block time has expired) so leave now. */
\r
1815 taskEXIT_CRITICAL();
\r
1816 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1817 return errQUEUE_EMPTY;
\r
1819 else if( xEntryTimeSet == pdFALSE )
\r
1821 /* The queue was empty and a block time was specified so
\r
1822 * configure the timeout structure ready to enter the blocked
\r
1824 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1825 xEntryTimeSet = pdTRUE;
\r
1829 /* Entry time was already set. */
\r
1830 mtCOVERAGE_TEST_MARKER();
\r
1834 taskEXIT_CRITICAL();
\r
1836 /* Interrupts and other tasks can send to and receive from the queue
\r
1837 * now that the critical section has been exited. */
\r
1839 vTaskSuspendAll();
\r
1840 prvLockQueue( pxQueue );
\r
1842 /* Update the timeout state to see if it has expired yet. */
\r
1843 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1845 /* Timeout has not expired yet, check to see if there is data in the
\r
1846 * queue now, and if not enter the Blocked state to wait for data. */
\r
1847 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1849 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
\r
1850 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1851 prvUnlockQueue( pxQueue );
\r
1853 if( xTaskResumeAll() == pdFALSE )
\r
1855 portYIELD_WITHIN_API();
\r
1859 mtCOVERAGE_TEST_MARKER();
\r
1864 /* There is data in the queue now, so don't enter the blocked
\r
1865 * state, instead return to try and obtain the data. */
\r
1866 prvUnlockQueue( pxQueue );
\r
1867 ( void ) xTaskResumeAll();
\r
1872 /* The timeout has expired. If there is still no data in the queue
\r
1873 * exit, otherwise go back and try to read the data again. */
\r
1874 prvUnlockQueue( pxQueue );
\r
1875 ( void ) xTaskResumeAll();
\r
1877 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1879 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1880 return errQUEUE_EMPTY;
\r
1884 mtCOVERAGE_TEST_MARKER();
\r
1887 } /*lint -restore */
\r
1889 /*-----------------------------------------------------------*/
\r
1891 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
\r
1892 void * const pvBuffer,
\r
1893 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1895 BaseType_t xReturn;
\r
1896 UBaseType_t uxSavedInterruptStatus;
\r
1897 Queue_t * const pxQueue = xQueue;
\r
1899 configASSERT( pxQueue );
\r
1900 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1902 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1903 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1904 * above the maximum system call priority are kept permanently enabled, even
\r
1905 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1906 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1907 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1908 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1909 * assigned a priority above the configured maximum system call priority.
\r
1910 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1911 * that have been assigned a priority at or (logically) below the maximum
\r
1912 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1913 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1914 * More information (albeit Cortex-M specific) is provided on the following
\r
1915 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1916 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1918 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1920 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1922 /* Cannot block in an ISR, so check there is data available. */
\r
1923 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1925 const int8_t cRxLock = pxQueue->cRxLock;
\r
1927 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
\r
1929 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1930 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1932 /* If the queue is locked the event list will not be modified.
\r
1933 * Instead update the lock count so the task that unlocks the queue
\r
1934 * will know that an ISR has removed data while the queue was
\r
1936 if( cRxLock == queueUNLOCKED )
\r
1938 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1940 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1942 /* The task waiting has a higher priority than us so
\r
1943 * force a context switch. */
\r
1944 if( pxHigherPriorityTaskWoken != NULL )
\r
1946 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1950 mtCOVERAGE_TEST_MARKER();
\r
1955 mtCOVERAGE_TEST_MARKER();
\r
1960 mtCOVERAGE_TEST_MARKER();
\r
1965 /* Increment the lock count so the task that unlocks the queue
\r
1966 * knows that data was removed while it was locked. */
\r
1967 prvIncrementQueueRxLock( pxQueue, cRxLock );
\r
1975 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
\r
1978 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1982 /*-----------------------------------------------------------*/
\r
1984 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
\r
1985 void * const pvBuffer )
\r
1987 BaseType_t xReturn;
\r
1988 UBaseType_t uxSavedInterruptStatus;
\r
1989 int8_t * pcOriginalReadPosition;
\r
1990 Queue_t * const pxQueue = xQueue;
\r
1992 configASSERT( pxQueue );
\r
1993 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1994 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
\r
1996 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1997 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1998 * above the maximum system call priority are kept permanently enabled, even
\r
1999 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2000 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2001 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2002 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2003 * assigned a priority above the configured maximum system call priority.
\r
2004 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2005 * that have been assigned a priority at or (logically) below the maximum
\r
2006 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2007 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2008 * More information (albeit Cortex-M specific) is provided on the following
\r
2009 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
2010 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2012 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2014 /* Cannot block in an ISR, so check there is data available. */
\r
2015 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2017 traceQUEUE_PEEK_FROM_ISR( pxQueue );
\r
2019 /* Remember the read position so it can be reset as nothing is
\r
2020 * actually being removed from the queue. */
\r
2021 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
2022 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
2023 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
2030 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
\r
2033 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2037 /*-----------------------------------------------------------*/
\r
2039 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
\r
2041 UBaseType_t uxReturn;
\r
2043 configASSERT( xQueue );
\r
2045 taskENTER_CRITICAL();
\r
2047 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
\r
2049 taskEXIT_CRITICAL();
\r
2052 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2053 /*-----------------------------------------------------------*/
\r
2055 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
\r
2057 UBaseType_t uxReturn;
\r
2058 Queue_t * const pxQueue = xQueue;
\r
2060 configASSERT( pxQueue );
\r
2062 taskENTER_CRITICAL();
\r
2064 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
\r
2066 taskEXIT_CRITICAL();
\r
2069 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2070 /*-----------------------------------------------------------*/
\r
2072 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
\r
2074 UBaseType_t uxReturn;
\r
2075 Queue_t * const pxQueue = xQueue;
\r
2077 configASSERT( pxQueue );
\r
2078 uxReturn = pxQueue->uxMessagesWaiting;
\r
2081 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2082 /*-----------------------------------------------------------*/
\r
2084 void vQueueDelete( QueueHandle_t xQueue )
\r
2086 Queue_t * const pxQueue = xQueue;
\r
2088 configASSERT( pxQueue );
\r
2089 traceQUEUE_DELETE( pxQueue );
\r
2091 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2093 vQueueUnregisterQueue( pxQueue );
\r
2097 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
\r
2099 /* The queue can only have been allocated dynamically - free it
\r
2101 vPortFree( pxQueue );
\r
2103 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
2105 /* The queue could have been allocated statically or dynamically, so
\r
2106 * check before attempting to free the memory. */
\r
2107 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
\r
2109 vPortFree( pxQueue );
\r
2113 mtCOVERAGE_TEST_MARKER();
\r
2116 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
\r
2118 /* The queue must have been statically allocated, so is not going to be
\r
2119 * deleted. Avoid compiler warnings about the unused parameter. */
\r
2122 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
2124 /*-----------------------------------------------------------*/
\r
2126 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2128 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
\r
2130 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
\r
2133 #endif /* configUSE_TRACE_FACILITY */
\r
2134 /*-----------------------------------------------------------*/
\r
2136 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2138 void vQueueSetQueueNumber( QueueHandle_t xQueue,
\r
2139 UBaseType_t uxQueueNumber )
\r
2141 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
\r
2144 #endif /* configUSE_TRACE_FACILITY */
\r
2145 /*-----------------------------------------------------------*/
\r
2147 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2149 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
\r
2151 return ( ( Queue_t * ) xQueue )->ucQueueType;
\r
2154 #endif /* configUSE_TRACE_FACILITY */
\r
2155 /*-----------------------------------------------------------*/
\r
2157 #if ( configUSE_MUTEXES == 1 )
\r
2159 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
\r
2161 UBaseType_t uxHighestPriorityOfWaitingTasks;
\r
2163 /* If a task waiting for a mutex causes the mutex holder to inherit a
\r
2164 * priority, but the waiting task times out, then the holder should
\r
2165 * disinherit the priority - but only down to the highest priority of any
\r
2166 * other tasks that are waiting for the same mutex. For this purpose,
\r
2167 * return the priority of the highest priority task that is waiting for the
\r
2169 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
\r
2171 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) );
\r
2175 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
\r
2178 return uxHighestPriorityOfWaitingTasks;
\r
2181 #endif /* configUSE_MUTEXES */
\r
2182 /*-----------------------------------------------------------*/
\r
2184 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
2185 const void * pvItemToQueue,
\r
2186 const BaseType_t xPosition )
\r
2188 BaseType_t xReturn = pdFALSE;
\r
2189 UBaseType_t uxMessagesWaiting;
\r
2191 /* This function is called from a critical section. */
\r
2193 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
2195 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
\r
2197 #if ( configUSE_MUTEXES == 1 )
\r
2199 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
2201 /* The mutex is no longer being held. */
\r
2202 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
2203 pxQueue->u.xSemaphore.xMutexHolder = NULL;
\r
2207 mtCOVERAGE_TEST_MARKER();
\r
2210 #endif /* configUSE_MUTEXES */
\r
2212 else if( xPosition == queueSEND_TO_BACK )
\r
2214 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2215 pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2217 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2219 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
2223 mtCOVERAGE_TEST_MARKER();
\r
2228 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
\r
2229 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
\r
2231 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2233 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
\r
2237 mtCOVERAGE_TEST_MARKER();
\r
2240 if( xPosition == queueOVERWRITE )
\r
2242 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2244 /* An item is not being added but overwritten, so subtract
\r
2245 * one from the recorded number of items in the queue so when
\r
2246 * one is added again below the number of recorded items remains
\r
2248 --uxMessagesWaiting;
\r
2252 mtCOVERAGE_TEST_MARKER();
\r
2257 mtCOVERAGE_TEST_MARKER();
\r
2261 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
2265 /*-----------------------------------------------------------*/
\r
2267 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
2268 void * const pvBuffer )
\r
2270 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
\r
2272 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2274 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
\r
2276 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2280 mtCOVERAGE_TEST_MARKER();
\r
2283 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2286 /*-----------------------------------------------------------*/
\r
2288 static void prvUnlockQueue( Queue_t * const pxQueue )
\r
2290 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
\r
2292 /* The lock counts contains the number of extra data items placed or
\r
2293 * removed from the queue while the queue was locked. When a queue is
\r
2294 * locked items can be added or removed, but the event lists cannot be
\r
2296 taskENTER_CRITICAL();
\r
2298 int8_t cTxLock = pxQueue->cTxLock;
\r
2300 /* See if data was added to the queue while it was locked. */
\r
2301 while( cTxLock > queueLOCKED_UNMODIFIED )
\r
2303 /* Data was posted while the queue was locked. Are any tasks
\r
2304 * blocked waiting for data to become available? */
\r
2305 #if ( configUSE_QUEUE_SETS == 1 )
\r
2307 if( pxQueue->pxQueueSetContainer != NULL )
\r
2309 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
2311 /* The queue is a member of a queue set, and posting to
\r
2312 * the queue set caused a higher priority task to unblock.
\r
2313 * A context switch is required. */
\r
2314 vTaskMissedYield();
\r
2318 mtCOVERAGE_TEST_MARKER();
\r
2323 /* Tasks that are removed from the event list will get
\r
2324 * added to the pending ready list as the scheduler is still
\r
2326 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2328 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2330 /* The task waiting has a higher priority so record that a
\r
2331 * context switch is required. */
\r
2332 vTaskMissedYield();
\r
2336 mtCOVERAGE_TEST_MARKER();
\r
2345 #else /* configUSE_QUEUE_SETS */
\r
2347 /* Tasks that are removed from the event list will get added to
\r
2348 * the pending ready list as the scheduler is still suspended. */
\r
2349 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2351 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2353 /* The task waiting has a higher priority so record that
\r
2354 * a context switch is required. */
\r
2355 vTaskMissedYield();
\r
2359 mtCOVERAGE_TEST_MARKER();
\r
2367 #endif /* configUSE_QUEUE_SETS */
\r
2372 pxQueue->cTxLock = queueUNLOCKED;
\r
2374 taskEXIT_CRITICAL();
\r
2376 /* Do the same for the Rx lock. */
\r
2377 taskENTER_CRITICAL();
\r
2379 int8_t cRxLock = pxQueue->cRxLock;
\r
2381 while( cRxLock > queueLOCKED_UNMODIFIED )
\r
2383 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2385 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2387 vTaskMissedYield();
\r
2391 mtCOVERAGE_TEST_MARKER();
\r
2402 pxQueue->cRxLock = queueUNLOCKED;
\r
2404 taskEXIT_CRITICAL();
\r
2406 /*-----------------------------------------------------------*/
\r
2408 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
\r
2410 BaseType_t xReturn;
\r
2412 taskENTER_CRITICAL();
\r
2414 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2420 xReturn = pdFALSE;
\r
2423 taskEXIT_CRITICAL();
\r
2427 /*-----------------------------------------------------------*/
\r
2429 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
\r
2431 BaseType_t xReturn;
\r
2432 Queue_t * const pxQueue = xQueue;
\r
2434 configASSERT( pxQueue );
\r
2436 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2442 xReturn = pdFALSE;
\r
2446 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2447 /*-----------------------------------------------------------*/
\r
2449 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
\r
2451 BaseType_t xReturn;
\r
2453 taskENTER_CRITICAL();
\r
2455 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2461 xReturn = pdFALSE;
\r
2464 taskEXIT_CRITICAL();
\r
2468 /*-----------------------------------------------------------*/
\r
2470 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
\r
2472 BaseType_t xReturn;
\r
2473 Queue_t * const pxQueue = xQueue;
\r
2475 configASSERT( pxQueue );
\r
2477 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2483 xReturn = pdFALSE;
\r
2487 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2488 /*-----------------------------------------------------------*/
\r
2490 #if ( configUSE_CO_ROUTINES == 1 )
\r
2492 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
\r
2493 const void * pvItemToQueue,
\r
2494 TickType_t xTicksToWait )
\r
2496 BaseType_t xReturn;
\r
2497 Queue_t * const pxQueue = xQueue;
\r
2499 /* If the queue is already full we may have to block. A critical section
\r
2500 * is required to prevent an interrupt removing something from the queue
\r
2501 * between the check to see if the queue is full and blocking on the queue. */
\r
2502 portDISABLE_INTERRUPTS();
\r
2504 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
2506 /* The queue is full - do we want to block or just leave without
\r
2508 if( xTicksToWait > ( TickType_t ) 0 )
\r
2510 /* As this is called from a coroutine we cannot block directly, but
\r
2511 * return indicating that we need to block. */
\r
2512 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
\r
2513 portENABLE_INTERRUPTS();
\r
2514 return errQUEUE_BLOCKED;
\r
2518 portENABLE_INTERRUPTS();
\r
2519 return errQUEUE_FULL;
\r
2523 portENABLE_INTERRUPTS();
\r
2525 portDISABLE_INTERRUPTS();
\r
2527 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2529 /* There is room in the queue, copy the data into the queue. */
\r
2530 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2533 /* Were any co-routines waiting for data to become available? */
\r
2534 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2536 /* In this instance the co-routine could be placed directly
\r
2537 * into the ready list as we are within a critical section.
\r
2538 * Instead the same pending ready list mechanism is used as if
\r
2539 * the event were caused from within an interrupt. */
\r
2540 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2542 /* The co-routine waiting has a higher priority so record
\r
2543 * that a yield might be appropriate. */
\r
2544 xReturn = errQUEUE_YIELD;
\r
2548 mtCOVERAGE_TEST_MARKER();
\r
2553 mtCOVERAGE_TEST_MARKER();
\r
2558 xReturn = errQUEUE_FULL;
\r
2561 portENABLE_INTERRUPTS();
\r
2566 #endif /* configUSE_CO_ROUTINES */
\r
2567 /*-----------------------------------------------------------*/
\r
2569 #if ( configUSE_CO_ROUTINES == 1 )
\r
2571 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
\r
2573 TickType_t xTicksToWait )
\r
2575 BaseType_t xReturn;
\r
2576 Queue_t * const pxQueue = xQueue;
\r
2578 /* If the queue is already empty we may have to block. A critical section
\r
2579 * is required to prevent an interrupt adding something to the queue
\r
2580 * between the check to see if the queue is empty and blocking on the queue. */
\r
2581 portDISABLE_INTERRUPTS();
\r
2583 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2585 /* There are no messages in the queue, do we want to block or just
\r
2586 * leave with nothing? */
\r
2587 if( xTicksToWait > ( TickType_t ) 0 )
\r
2589 /* As this is a co-routine we cannot block directly, but return
\r
2590 * indicating that we need to block. */
\r
2591 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
\r
2592 portENABLE_INTERRUPTS();
\r
2593 return errQUEUE_BLOCKED;
\r
2597 portENABLE_INTERRUPTS();
\r
2598 return errQUEUE_FULL;
\r
2603 mtCOVERAGE_TEST_MARKER();
\r
2606 portENABLE_INTERRUPTS();
\r
2608 portDISABLE_INTERRUPTS();
\r
2610 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2612 /* Data is available from the queue. */
\r
2613 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2615 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2617 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2621 mtCOVERAGE_TEST_MARKER();
\r
2624 --( pxQueue->uxMessagesWaiting );
\r
2625 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2629 /* Were any co-routines waiting for space to become available? */
\r
2630 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2632 /* In this instance the co-routine could be placed directly
\r
2633 * into the ready list as we are within a critical section.
\r
2634 * Instead the same pending ready list mechanism is used as if
\r
2635 * the event were caused from within an interrupt. */
\r
2636 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2638 xReturn = errQUEUE_YIELD;
\r
2642 mtCOVERAGE_TEST_MARKER();
\r
2647 mtCOVERAGE_TEST_MARKER();
\r
2655 portENABLE_INTERRUPTS();
\r
2660 #endif /* configUSE_CO_ROUTINES */
\r
2661 /*-----------------------------------------------------------*/
\r
2663 #if ( configUSE_CO_ROUTINES == 1 )
\r
2665 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
\r
2666 const void * pvItemToQueue,
\r
2667 BaseType_t xCoRoutinePreviouslyWoken )
\r
2669 Queue_t * const pxQueue = xQueue;
\r
2671 /* Cannot block within an ISR so if there is no space on the queue then
\r
2672 * exit without doing anything. */
\r
2673 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2675 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2677 /* We only want to wake one co-routine per ISR, so check that a
\r
2678 * co-routine has not already been woken. */
\r
2679 if( xCoRoutinePreviouslyWoken == pdFALSE )
\r
2681 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2683 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2689 mtCOVERAGE_TEST_MARKER();
\r
2694 mtCOVERAGE_TEST_MARKER();
\r
2699 mtCOVERAGE_TEST_MARKER();
\r
2704 mtCOVERAGE_TEST_MARKER();
\r
2707 return xCoRoutinePreviouslyWoken;
\r
2710 #endif /* configUSE_CO_ROUTINES */
\r
2711 /*-----------------------------------------------------------*/
\r
2713 #if ( configUSE_CO_ROUTINES == 1 )
\r
2715 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
\r
2717 BaseType_t * pxCoRoutineWoken )
\r
2719 BaseType_t xReturn;
\r
2720 Queue_t * const pxQueue = xQueue;
\r
2722 /* We cannot block from an ISR, so check there is data available. If
\r
2723 * not then just leave without doing anything. */
\r
2724 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2726 /* Copy the data from the queue. */
\r
2727 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2729 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2731 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2735 mtCOVERAGE_TEST_MARKER();
\r
2738 --( pxQueue->uxMessagesWaiting );
\r
2739 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2741 if( ( *pxCoRoutineWoken ) == pdFALSE )
\r
2743 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2745 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2747 *pxCoRoutineWoken = pdTRUE;
\r
2751 mtCOVERAGE_TEST_MARKER();
\r
2756 mtCOVERAGE_TEST_MARKER();
\r
2761 mtCOVERAGE_TEST_MARKER();
\r
2774 #endif /* configUSE_CO_ROUTINES */
\r
2775 /*-----------------------------------------------------------*/
\r
2777 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2779 void vQueueAddToRegistry( QueueHandle_t xQueue,
\r
2780 const char * pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2783 QueueRegistryItem_t * pxEntryToWrite = NULL;
\r
2785 configASSERT( xQueue );
\r
2787 if( pcQueueName != NULL )
\r
2789 /* See if there is an empty space in the registry. A NULL name denotes
\r
2791 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2793 /* Replace an existing entry if the queue is already in the registry. */
\r
2794 if( xQueue == xQueueRegistry[ ux ].xHandle )
\r
2796 pxEntryToWrite = &( xQueueRegistry[ ux ] );
\r
2799 /* Otherwise, store in the next empty location */
\r
2800 else if( ( pxEntryToWrite == NULL ) && ( xQueueRegistry[ ux ].pcQueueName == NULL ) )
\r
2802 pxEntryToWrite = &( xQueueRegistry[ ux ] );
\r
2806 mtCOVERAGE_TEST_MARKER();
\r
2811 if( pxEntryToWrite != NULL )
\r
2813 /* Store the information on this queue. */
\r
2814 pxEntryToWrite->pcQueueName = pcQueueName;
\r
2815 pxEntryToWrite->xHandle = xQueue;
\r
2817 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
\r
2821 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2822 /*-----------------------------------------------------------*/
\r
2824 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2826 const char * pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2829 const char * pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2831 configASSERT( xQueue );
\r
2833 /* Note there is nothing here to protect against another task adding or
\r
2834 * removing entries from the registry while it is being searched. */
\r
2836 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2838 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2840 pcReturn = xQueueRegistry[ ux ].pcQueueName;
\r
2845 mtCOVERAGE_TEST_MARKER();
\r
2850 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
\r
2852 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2853 /*-----------------------------------------------------------*/
\r
2855 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2857 void vQueueUnregisterQueue( QueueHandle_t xQueue )
\r
2861 configASSERT( xQueue );
\r
2863 /* See if the handle of the queue being unregistered in actually in the
\r
2865 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2867 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2869 /* Set the name to NULL to show that this slot if free again. */
\r
2870 xQueueRegistry[ ux ].pcQueueName = NULL;
\r
2872 /* Set the handle to NULL to ensure the same queue handle cannot
\r
2873 * appear in the registry twice if it is added, removed, then
\r
2875 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
\r
2880 mtCOVERAGE_TEST_MARKER();
\r
2883 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2885 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2886 /*-----------------------------------------------------------*/
\r
2888 #if ( configUSE_TIMERS == 1 )
\r
2890 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
\r
2891 TickType_t xTicksToWait,
\r
2892 const BaseType_t xWaitIndefinitely )
\r
2894 Queue_t * const pxQueue = xQueue;
\r
2896 /* This function should not be called by application code hence the
\r
2897 * 'Restricted' in its name. It is not part of the public API. It is
\r
2898 * designed for use by kernel code, and has special calling requirements.
\r
2899 * It can result in vListInsert() being called on a list that can only
\r
2900 * possibly ever have one item in it, so the list will be fast, but even
\r
2901 * so it should be called with the scheduler locked and not from a critical
\r
2904 /* Only do anything if there are no messages in the queue. This function
\r
2905 * will not actually cause the task to block, just place it on a blocked
\r
2906 * list. It will not block until the scheduler is unlocked - at which
\r
2907 * time a yield will be performed. If an item is added to the queue while
\r
2908 * the queue is locked, and the calling task blocks on the queue, then the
\r
2909 * calling task will be immediately unblocked when the queue is unlocked. */
\r
2910 prvLockQueue( pxQueue );
\r
2912 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
\r
2914 /* There is nothing in the queue, block for the specified period. */
\r
2915 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
\r
2919 mtCOVERAGE_TEST_MARKER();
\r
2922 prvUnlockQueue( pxQueue );
\r
2925 #endif /* configUSE_TIMERS */
\r
2926 /*-----------------------------------------------------------*/
\r
2928 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
2930 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
\r
2932 QueueSetHandle_t pxQueue;
\r
2934 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
\r
2939 #endif /* configUSE_QUEUE_SETS */
\r
2940 /*-----------------------------------------------------------*/
\r
2942 #if ( configUSE_QUEUE_SETS == 1 )
\r
2944 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2945 QueueSetHandle_t xQueueSet )
\r
2947 BaseType_t xReturn;
\r
2949 taskENTER_CRITICAL();
\r
2951 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
\r
2953 /* Cannot add a queue/semaphore to more than one queue set. */
\r
2956 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2958 /* Cannot add a queue/semaphore to a queue set if there are already
\r
2959 * items in the queue/semaphore. */
\r
2964 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
\r
2968 taskEXIT_CRITICAL();
\r
2973 #endif /* configUSE_QUEUE_SETS */
\r
2974 /*-----------------------------------------------------------*/
\r
2976 #if ( configUSE_QUEUE_SETS == 1 )
\r
2978 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2979 QueueSetHandle_t xQueueSet )
\r
2981 BaseType_t xReturn;
\r
2982 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
\r
2984 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
\r
2986 /* The queue was not a member of the set. */
\r
2989 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2991 /* It is dangerous to remove a queue from a set when the queue is
\r
2992 * not empty because the queue set will still hold pending events for
\r
2998 taskENTER_CRITICAL();
\r
3000 /* The queue is no longer contained in the set. */
\r
3001 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
\r
3003 taskEXIT_CRITICAL();
\r
3008 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
\r
3010 #endif /* configUSE_QUEUE_SETS */
\r
3011 /*-----------------------------------------------------------*/
\r
3013 #if ( configUSE_QUEUE_SETS == 1 )
\r
3015 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
\r
3016 TickType_t const xTicksToWait )
\r
3018 QueueSetMemberHandle_t xReturn = NULL;
\r
3020 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
3024 #endif /* configUSE_QUEUE_SETS */
\r
3025 /*-----------------------------------------------------------*/
\r
3027 #if ( configUSE_QUEUE_SETS == 1 )
\r
3029 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
\r
3031 QueueSetMemberHandle_t xReturn = NULL;
\r
3033 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
3037 #endif /* configUSE_QUEUE_SETS */
\r
3038 /*-----------------------------------------------------------*/
\r
3040 #if ( configUSE_QUEUE_SETS == 1 )
\r
3042 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
\r
3044 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
\r
3045 BaseType_t xReturn = pdFALSE;
\r
3047 /* This function must be called form a critical section. */
\r
3049 /* The following line is not reachable in unit tests because every call
\r
3050 * to prvNotifyQueueSetContainer is preceded by a check that
\r
3051 * pxQueueSetContainer != NULL */
\r
3052 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
\r
3053 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
\r
3055 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
\r
3057 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
\r
3059 traceQUEUE_SET_SEND( pxQueueSetContainer );
\r
3061 /* The data copied is the handle of the queue that contains data. */
\r
3062 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
\r
3064 if( cTxLock == queueUNLOCKED )
\r
3066 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
\r
3068 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
\r
3070 /* The task waiting has a higher priority. */
\r
3075 mtCOVERAGE_TEST_MARKER();
\r
3080 mtCOVERAGE_TEST_MARKER();
\r
3085 prvIncrementQueueTxLock( pxQueueSetContainer, cTxLock );
\r
3090 mtCOVERAGE_TEST_MARKER();
\r
3096 #endif /* configUSE_QUEUE_SETS */
\r