2 * FreeRTOS Kernel V10.3.1
\r
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * http://www.FreeRTOS.org
\r
23 * http://aws.amazon.com/freertos
\r
27 /* Standard includes. */
\r
31 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
32 * all the API functions to use the MPU wrappers. That should only be done when
\r
33 * task.h is included from an application file. */
\r
34 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
36 /* FreeRTOS includes. */
\r
37 #include "FreeRTOS.h"
\r
40 #include "stack_macros.h"
\r
42 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
43 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
44 * for the header files above, but not in this file, in order to generate the
\r
45 * correct privileged Vs unprivileged linkage and placement. */
\r
46 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
48 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
49 * functions but without including stdio.h here. */
\r
50 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
52 /* At the bottom of this file are two optional functions that can be used
\r
53 * to generate human readable text from the raw data generated by the
\r
54 * uxTaskGetSystemState() function. Note the formatting functions are provided
\r
55 * for convenience only, and are NOT considered part of the kernel. */
\r
57 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
59 #if ( configUSE_PREEMPTION == 0 )
\r
61 /* If the cooperative scheduler is being used then a yield should not be
\r
62 * performed just because a higher priority task has been woken. */
\r
63 #define taskYIELD_IF_USING_PREEMPTION()
\r
65 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
68 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
69 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
\r
70 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
71 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
74 * The value used to fill the stack of a task when the task is created. This
\r
75 * is used purely for checking the high water mark for tasks.
\r
77 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
79 /* Bits used to recored how a task's stack and TCB were allocated. */
\r
80 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
81 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
82 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
84 /* If any of the following are set then task stacks are filled with a known
\r
85 * value so the high water mark can be determined. If none of the following are
\r
86 * set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
87 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
88 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
94 * Macros used by vListTask to indicate which state a task is in.
\r
96 #define tskRUNNING_CHAR ( 'X' )
\r
97 #define tskBLOCKED_CHAR ( 'B' )
\r
98 #define tskREADY_CHAR ( 'R' )
\r
99 #define tskDELETED_CHAR ( 'D' )
\r
100 #define tskSUSPENDED_CHAR ( 'S' )
\r
103 * Some kernel aware debuggers require the data the debugger needs access to be
\r
104 * global, rather than file scope.
\r
106 #ifdef portREMOVE_STATIC_QUALIFIER
\r
110 /* The name allocated to the Idle task. This can be overridden by defining
\r
111 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
112 #ifndef configIDLE_TASK_NAME
\r
113 #define configIDLE_TASK_NAME "IDLE"
\r
116 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
118 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
119 * performed in a generic way that is not optimised to any particular
\r
120 * microcontroller architecture. */
\r
122 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
124 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
126 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
128 uxTopReadyPriority = ( uxPriority ); \
\r
130 } /* taskRECORD_READY_PRIORITY */
\r
132 /*-----------------------------------------------------------*/
\r
134 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
136 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
138 /* Find the highest priority queue that contains ready tasks. */ \
\r
139 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
141 configASSERT( uxTopPriority ); \
\r
145 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
146 * the same priority get an equal share of the processor time. */ \
\r
147 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
148 uxTopReadyPriority = uxTopPriority; \
\r
149 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
151 /*-----------------------------------------------------------*/
\r
153 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
154 * they are only required when a port optimised method of task selection is
\r
156 #define taskRESET_READY_PRIORITY( uxPriority )
\r
157 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
159 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
162 * performed in a way that is tailored to the particular microcontroller
\r
163 * architecture being used. */
\r
165 /* A port optimised version is provided. Call the port defined macros. */
\r
166 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
168 /*-----------------------------------------------------------*/
\r
170 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
172 UBaseType_t uxTopPriority; \
\r
174 /* Find the highest priority list that contains ready tasks. */ \
\r
175 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
176 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
177 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
178 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
180 /*-----------------------------------------------------------*/
\r
182 /* A port optimised version is provided, call it only if the TCB being reset
\r
183 * is being referenced from a ready list. If it is referenced from a delayed
\r
184 * or suspended list then it won't be in a ready list. */
\r
185 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
187 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
189 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
193 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
195 /*-----------------------------------------------------------*/
\r
197 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
198 * count overflows. */
\r
199 #define taskSWITCH_DELAYED_LISTS() \
\r
203 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
204 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
206 pxTemp = pxDelayedTaskList; \
\r
207 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
208 pxOverflowDelayedTaskList = pxTemp; \
\r
209 xNumOfOverflows++; \
\r
210 prvResetNextTaskUnblockTime(); \
\r
213 /*-----------------------------------------------------------*/
\r
216 * Place the task represented by pxTCB into the appropriate ready list for
\r
217 * the task. It is inserted at the end of the list.
\r
219 #define prvAddTaskToReadyList( pxTCB ) \
\r
220 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
221 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
222 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
223 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
224 /*-----------------------------------------------------------*/
\r
227 * Several functions take an TaskHandle_t parameter that can optionally be NULL,
\r
228 * where NULL is used to indicate that the handle of the currently executing
\r
229 * task should be used in place of the parameter. This macro simply checks to
\r
230 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
232 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
234 /* The item value of the event list item is normally used to hold the priority
\r
235 * of the task to which it belongs (coded to allow it to be held in reverse
\r
236 * priority order). However, it is occasionally borrowed for other purposes. It
\r
237 * is important its value is not updated due to a task priority change while it is
\r
238 * being used for another purpose. The following bit definition is used to inform
\r
239 * the scheduler that the value should not be changed - in which case it is the
\r
240 * responsibility of whichever module is using the value to ensure it gets set back
\r
241 * to its original value when it is released. */
\r
242 #if ( configUSE_16_BIT_TICKS == 1 )
\r
243 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
249 * Task control block. A task control block (TCB) is allocated for each task,
\r
250 * and stores task state information, including a pointer to the task's context
\r
251 * (the task's run time environment, including register values)
\r
253 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
255 volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
257 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
258 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
261 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
262 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
263 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
264 StackType_t * pxStack; /*< Points to the start of the stack. */
\r
265 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
267 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
268 StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
271 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
272 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
275 #if ( configUSE_TRACE_FACILITY == 1 )
\r
276 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
277 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
280 #if ( configUSE_MUTEXES == 1 )
\r
281 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
282 UBaseType_t uxMutexesHeld;
\r
285 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
286 TaskHookFunction_t pxTaskTag;
\r
289 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
290 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
293 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
294 uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
297 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
299 /* Allocate a Newlib reent structure that is specific to this task.
\r
300 * Note Newlib support has been included by popular demand, but is not
\r
301 * used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
302 * responsible for resulting newlib operation. User must be familiar with
\r
303 * newlib and must provide system-wide implementations of the necessary
\r
304 * stubs. Be warned that (at the time of writing) the current newlib design
\r
305 * implements a system-wide malloc() that must be provided with locks.
\r
307 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
308 * for additional information. */
\r
309 struct _reent xNewLib_reent;
\r
312 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
313 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
314 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
317 /* See the comments in FreeRTOS.h with the definition of
\r
318 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
319 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
320 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
323 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
324 uint8_t ucDelayAborted;
\r
327 #if ( configUSE_POSIX_ERRNO == 1 )
\r
332 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
333 * below to enable the use of older kernel aware debuggers. */
\r
334 typedef tskTCB TCB_t;
\r
336 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
337 * which static variables must be declared volatile. */
\r
338 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
340 /* Lists for ready and blocked tasks. --------------------
\r
341 * xDelayedTaskList1 and xDelayedTaskList2 could be move to function scople but
\r
342 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
343 * the static qualifier. */
\r
344 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
\r
345 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
346 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
347 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
348 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
349 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
351 #if ( INCLUDE_vTaskDelete == 1 )
\r
353 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
354 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
358 #if ( INCLUDE_vTaskSuspend == 1 )
\r
360 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
364 /* Global POSIX errno. Its value is changed upon context switching to match
\r
365 * the errno of the currently running task. */
\r
366 #if ( configUSE_POSIX_ERRNO == 1 )
\r
367 int FreeRTOS_errno = 0;
\r
370 /* Other file private variables. --------------------------------*/
\r
371 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
372 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
373 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
374 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
375 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
376 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
377 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
378 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
379 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
380 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
382 /* Context switches are held pending while the scheduler is suspended. Also,
\r
383 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
384 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
385 * If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
386 * moves the task's event list item into the xPendingReadyList, ready for the
\r
387 * kernel to move the task from the pending ready list into the real ready list
\r
388 * when the scheduler is unsuspended. The pending ready list itself can only be
\r
389 * accessed from a critical section. */
\r
390 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
392 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
394 /* Do not move these variables to function scope as doing so prevents the
\r
395 * code working with debuggers that need to remove the static qualifier. */
\r
396 PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
397 PRIVILEGED_DATA static volatile uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
403 /*-----------------------------------------------------------*/
\r
405 /* Callback function prototypes. --------------------------*/
\r
406 #if ( configCHECK_FOR_STACK_OVERFLOW > 0 )
\r
408 extern void vApplicationStackOverflowHook( TaskHandle_t xTask,
\r
409 char * pcTaskName );
\r
413 #if ( configUSE_TICK_HOOK > 0 )
\r
415 extern void vApplicationTickHook( void ); /*lint !e526 Symbol not defined as it is an application callback. */
\r
419 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
421 extern void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
\r
422 StackType_t ** ppxIdleTaskStackBuffer,
\r
423 uint32_t * pulIdleTaskStackSize ); /*lint !e526 Symbol not defined as it is an application callback. */
\r
427 /* File private functions. --------------------------------*/
\r
430 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
431 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
432 * is in any other state.
\r
434 #if ( INCLUDE_vTaskSuspend == 1 )
\r
436 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
438 #endif /* INCLUDE_vTaskSuspend */
\r
441 * Utility to ready all the lists used by the scheduler. This is called
\r
442 * automatically upon the creation of the first task.
\r
444 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
447 * The idle task, which as all tasks is implemented as a never ending loop.
\r
448 * The idle task is automatically created and added to the ready lists upon
\r
449 * creation of the first user task.
\r
451 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
452 * language extensions. The equivalent prototype for this function is:
\r
454 * void prvIdleTask( void *pvParameters );
\r
457 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
\r
460 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
461 * including the stack pointed to by the TCB.
\r
463 * This does not free memory allocated by the task itself (i.e. memory
\r
464 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
466 #if ( INCLUDE_vTaskDelete == 1 )
\r
468 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
\r
473 * Used only by the idle task. This checks to see if anything has been placed
\r
474 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
475 * and its TCB deleted.
\r
477 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
480 * The currently executing task is entering the Blocked state. Add the task to
\r
481 * either the current or the overflow delayed task list.
\r
483 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
484 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
487 * Fills an TaskStatus_t structure with information on each task that is
\r
488 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
489 * a suspended list, etc.).
\r
491 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
492 * NORMAL APPLICATION CODE.
\r
494 #if ( configUSE_TRACE_FACILITY == 1 )
\r
496 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
498 eTaskState eState ) PRIVILEGED_FUNCTION;
\r
503 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
504 * the task if it is found, or NULL if the task is not found.
\r
506 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
508 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
509 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
514 * When a task is created, the stack of the task is filled with a known value.
\r
515 * This function determines the 'high water mark' of the task stack by
\r
516 * determining how much of the stack remains at the original preset value.
\r
518 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
520 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
525 * Return the amount of time, in ticks, that will pass before the kernel will
\r
526 * next move a task from the Blocked state to the Running state.
\r
528 * This conditional compilation should use inequality to 0, not equality to 1.
\r
529 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
530 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
531 * set to a value other than 1.
\r
533 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
535 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
540 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
541 * will exit the Blocked state.
\r
543 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
\r
545 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
548 * Helper function used to pad task names with spaces when printing out
\r
549 * human readable tables of task information.
\r
551 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
552 const char * pcTaskName ) PRIVILEGED_FUNCTION;
\r
557 * Called after a Task_t structure has been allocated either statically or
\r
558 * dynamically to fill in the structure's members.
\r
560 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
561 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
562 const uint32_t ulStackDepth,
\r
563 void * const pvParameters,
\r
564 UBaseType_t uxPriority,
\r
565 TaskHandle_t * const pxCreatedTask,
\r
567 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
570 * Called after a new task has been created and initialised to place the task
\r
571 * under the control of the scheduler.
\r
573 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
\r
576 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
577 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
578 * called by the function.
\r
580 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
582 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
586 /*-----------------------------------------------------------*/
\r
588 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
590 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
591 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
592 const uint32_t ulStackDepth,
\r
593 void * const pvParameters,
\r
594 UBaseType_t uxPriority,
\r
595 StackType_t * const puxStackBuffer,
\r
596 StaticTask_t * const pxTaskBuffer )
\r
599 TaskHandle_t xReturn;
\r
601 configASSERT( puxStackBuffer != NULL );
\r
602 configASSERT( pxTaskBuffer != NULL );
\r
604 #if ( configASSERT_DEFINED == 1 )
\r
606 /* Sanity check that the size of the structure used to declare a
\r
607 * variable of type StaticTask_t equals the size of the real task
\r
609 volatile size_t xSize = sizeof( StaticTask_t );
\r
610 configASSERT( xSize == sizeof( TCB_t ) );
\r
611 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
613 #endif /* configASSERT_DEFINED */
\r
615 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
617 /* The memory used for the task's TCB and stack are passed into this
\r
618 * function - use them. */
\r
619 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
620 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
622 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
624 /* Tasks can be created statically or dynamically, so note this
\r
625 * task was created statically in case the task is later deleted. */
\r
626 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
628 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
630 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
631 prvAddNewTaskToReadyList( pxNewTCB );
\r
641 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
642 /*-----------------------------------------------------------*/
\r
644 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
646 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
\r
647 TaskHandle_t * pxCreatedTask )
\r
650 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
652 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
653 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
655 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
657 /* Allocate space for the TCB. Where the memory comes from depends
\r
658 * on the implementation of the port malloc function and whether or
\r
659 * not static allocation is being used. */
\r
660 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
662 /* Store the stack location in the TCB. */
\r
663 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
665 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
667 /* Tasks can be created statically or dynamically, so note this
\r
668 * task was created statically in case the task is later deleted. */
\r
669 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
671 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
673 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
674 pxTaskDefinition->pcName,
\r
675 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
676 pxTaskDefinition->pvParameters,
\r
677 pxTaskDefinition->uxPriority,
\r
678 pxCreatedTask, pxNewTCB,
\r
679 pxTaskDefinition->xRegions );
\r
681 prvAddNewTaskToReadyList( pxNewTCB );
\r
688 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
689 /*-----------------------------------------------------------*/
\r
691 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
693 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
\r
694 TaskHandle_t * pxCreatedTask )
\r
697 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
699 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
701 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
703 /* Allocate space for the TCB. Where the memory comes from depends
\r
704 * on the implementation of the port malloc function and whether or
\r
705 * not static allocation is being used. */
\r
706 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
708 if( pxNewTCB != NULL )
\r
710 /* Store the stack location in the TCB. */
\r
711 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
713 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
715 /* Tasks can be created statically or dynamically, so note
\r
716 * this task had a statically allocated stack in case it is
\r
717 * later deleted. The TCB was allocated dynamically. */
\r
718 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
720 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
722 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
723 pxTaskDefinition->pcName,
\r
724 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
725 pxTaskDefinition->pvParameters,
\r
726 pxTaskDefinition->uxPriority,
\r
727 pxCreatedTask, pxNewTCB,
\r
728 pxTaskDefinition->xRegions );
\r
730 prvAddNewTaskToReadyList( pxNewTCB );
\r
738 #endif /* portUSING_MPU_WRAPPERS */
\r
739 /*-----------------------------------------------------------*/
\r
741 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
743 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
744 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
745 const configSTACK_DEPTH_TYPE usStackDepth,
\r
746 void * const pvParameters,
\r
747 UBaseType_t uxPriority,
\r
748 TaskHandle_t * const pxCreatedTask )
\r
751 BaseType_t xReturn;
\r
753 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
754 * does not grow into the TCB. Likewise if the stack grows up then allocate
\r
755 * the TCB then the stack. */
\r
756 #if ( portSTACK_GROWTH > 0 )
\r
758 /* Allocate space for the TCB. Where the memory comes from depends on
\r
759 * the implementation of the port malloc function and whether or not static
\r
760 * allocation is being used. */
\r
761 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
763 if( pxNewTCB != NULL )
\r
765 /* Allocate space for the stack used by the task being created.
\r
766 * The base of the stack memory stored in the TCB so the task can
\r
767 * be deleted later if required. */
\r
768 pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
770 if( pxNewTCB->pxStack == NULL )
\r
772 /* Could not allocate the stack. Delete the allocated TCB. */
\r
773 vPortFree( pxNewTCB );
\r
778 #else /* portSTACK_GROWTH */
\r
780 StackType_t * pxStack;
\r
782 /* Allocate space for the stack used by the task being created. */
\r
783 pxStack = pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
785 if( pxStack != NULL )
\r
787 /* Allocate space for the TCB. */
\r
788 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
790 if( pxNewTCB != NULL )
\r
792 /* Store the stack location in the TCB. */
\r
793 pxNewTCB->pxStack = pxStack;
\r
797 /* The stack cannot be used as the TCB was not created. Free
\r
799 vPortFree( pxStack );
\r
807 #endif /* portSTACK_GROWTH */
\r
809 if( pxNewTCB != NULL )
\r
811 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
813 /* Tasks can be created statically or dynamically, so note this
\r
814 * task was created dynamically in case it is later deleted. */
\r
815 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
817 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
819 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
820 prvAddNewTaskToReadyList( pxNewTCB );
\r
825 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
831 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
832 /*-----------------------------------------------------------*/
\r
834 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
835 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
836 const uint32_t ulStackDepth,
\r
837 void * const pvParameters,
\r
838 UBaseType_t uxPriority,
\r
839 TaskHandle_t * const pxCreatedTask,
\r
841 const MemoryRegion_t * const xRegions )
\r
843 StackType_t * pxTopOfStack;
\r
846 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
847 /* Should the task be created in privileged mode? */
\r
848 BaseType_t xRunPrivileged;
\r
850 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
852 xRunPrivileged = pdTRUE;
\r
856 xRunPrivileged = pdFALSE;
\r
858 uxPriority &= ~portPRIVILEGE_BIT;
\r
859 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
861 /* Avoid dependency on memset() if it is not required. */
\r
862 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
864 /* Fill the stack with a known value to assist debugging. */
\r
865 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
867 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
869 /* Calculate the top of stack address. This depends on whether the stack
\r
870 * grows from high memory to low (as per the 80x86) or vice versa.
\r
871 * portSTACK_GROWTH is used to make the result positive or negative as required
\r
873 #if ( portSTACK_GROWTH < 0 )
\r
875 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
876 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
878 /* Check the alignment of the calculated top of stack is correct. */
\r
879 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
881 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
883 /* Also record the stack's high address, which may assist
\r
885 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
887 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
889 #else /* portSTACK_GROWTH */
\r
891 pxTopOfStack = pxNewTCB->pxStack;
\r
893 /* Check the alignment of the stack buffer is correct. */
\r
894 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
896 /* The other extreme of the stack space is required if stack checking is
\r
898 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
900 #endif /* portSTACK_GROWTH */
\r
902 /* Store the task name in the TCB. */
\r
903 if( pcName != NULL )
\r
905 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
907 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
909 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
910 * configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
911 * string is not accessible (extremely unlikely). */
\r
912 if( pcName[ x ] == ( char ) 0x00 )
\r
918 mtCOVERAGE_TEST_MARKER();
\r
922 /* Ensure the name string is terminated in the case that the string length
\r
923 * was greater or equal to configMAX_TASK_NAME_LEN. */
\r
924 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
928 /* The task has not been given a name, so just ensure there is a NULL
\r
929 * terminator when it is read out. */
\r
930 pxNewTCB->pcTaskName[ 0 ] = 0x00;
\r
933 /* This is used as an array index so must ensure it's not too large. First
\r
934 * remove the privilege bit if one is present. */
\r
935 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
937 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
941 mtCOVERAGE_TEST_MARKER();
\r
944 pxNewTCB->uxPriority = uxPriority;
\r
945 #if ( configUSE_MUTEXES == 1 )
\r
947 pxNewTCB->uxBasePriority = uxPriority;
\r
948 pxNewTCB->uxMutexesHeld = 0;
\r
950 #endif /* configUSE_MUTEXES */
\r
952 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
953 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
955 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
956 * back to the containing TCB from a generic item in a list. */
\r
957 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
959 /* Event lists are always in priority order. */
\r
960 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
961 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
963 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
965 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
967 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
969 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
971 pxNewTCB->pxTaskTag = NULL;
\r
973 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
975 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
977 pxNewTCB->ulRunTimeCounter = 0UL;
\r
979 #endif /* configGENERATE_RUN_TIME_STATS */
\r
981 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
983 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
987 /* Avoid compiler warning about unreferenced parameter. */
\r
992 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
994 memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
\r
998 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1000 memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
\r
1001 memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
\r
1005 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
1007 /* Initialise this task's Newlib reent structure.
\r
1008 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
1009 * for additional information. */
\r
1010 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
1014 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
1016 pxNewTCB->ucDelayAborted = pdFALSE;
\r
1020 /* Initialize the TCB stack to look as if the task was already running,
\r
1021 * but had been interrupted by the scheduler. The return address is set
\r
1022 * to the start of the task function. Once the stack has been initialised
\r
1023 * the top of stack variable is updated. */
\r
1024 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
1026 /* If the port has capability to detect stack overflow,
\r
1027 * pass the stack end address to the stack initialization
\r
1028 * function as well. */
\r
1029 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1031 #if ( portSTACK_GROWTH < 0 )
\r
1033 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1035 #else /* portSTACK_GROWTH */
\r
1037 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1039 #endif /* portSTACK_GROWTH */
\r
1041 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1043 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1045 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1047 #else /* portUSING_MPU_WRAPPERS */
\r
1049 /* If the port has capability to detect stack overflow,
\r
1050 * pass the stack end address to the stack initialization
\r
1051 * function as well. */
\r
1052 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1054 #if ( portSTACK_GROWTH < 0 )
\r
1056 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
1058 #else /* portSTACK_GROWTH */
\r
1060 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1062 #endif /* portSTACK_GROWTH */
\r
1064 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1066 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1068 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1070 #endif /* portUSING_MPU_WRAPPERS */
\r
1072 if( pxCreatedTask != NULL )
\r
1074 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1075 * change the created task's priority, delete the created task, etc.*/
\r
1076 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1080 mtCOVERAGE_TEST_MARKER();
\r
1083 /*-----------------------------------------------------------*/
\r
1085 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
\r
1087 /* Ensure interrupts don't access the task lists while the lists are being
\r
1089 taskENTER_CRITICAL();
\r
1091 uxCurrentNumberOfTasks++;
\r
1093 if( pxCurrentTCB == NULL )
\r
1095 /* There are no other tasks, or all the other tasks are in
\r
1096 * the suspended state - make this the current task. */
\r
1097 pxCurrentTCB = pxNewTCB;
\r
1099 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1101 /* This is the first task to be created so do the preliminary
\r
1102 * initialisation required. We will not recover if this call
\r
1103 * fails, but we will report the failure. */
\r
1104 prvInitialiseTaskLists();
\r
1108 mtCOVERAGE_TEST_MARKER();
\r
1113 /* If the scheduler is not already running, make this task the
\r
1114 * current task if it is the highest priority task to be created
\r
1116 if( xSchedulerRunning == pdFALSE )
\r
1118 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1120 pxCurrentTCB = pxNewTCB;
\r
1124 mtCOVERAGE_TEST_MARKER();
\r
1129 mtCOVERAGE_TEST_MARKER();
\r
1135 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1137 /* Add a counter into the TCB for tracing only. */
\r
1138 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1140 #endif /* configUSE_TRACE_FACILITY */
\r
1141 traceTASK_CREATE( pxNewTCB );
\r
1143 prvAddTaskToReadyList( pxNewTCB );
\r
1145 portSETUP_TCB( pxNewTCB );
\r
1147 taskEXIT_CRITICAL();
\r
1149 if( xSchedulerRunning != pdFALSE )
\r
1151 /* If the created task is of a higher priority than the current task
\r
1152 * then it should run now. */
\r
1153 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1155 taskYIELD_IF_USING_PREEMPTION();
\r
1159 mtCOVERAGE_TEST_MARKER();
\r
1164 mtCOVERAGE_TEST_MARKER();
\r
1167 /*-----------------------------------------------------------*/
\r
1169 #if ( INCLUDE_vTaskDelete == 1 )
\r
1171 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1175 taskENTER_CRITICAL();
\r
1177 /* If null is passed in here then it is the calling task that is
\r
1178 * being deleted. */
\r
1179 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1181 /* Remove task from the ready/delayed list. */
\r
1182 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1184 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1188 mtCOVERAGE_TEST_MARKER();
\r
1191 /* Is the task waiting on an event also? */
\r
1192 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1194 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1198 mtCOVERAGE_TEST_MARKER();
\r
1201 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1202 * detect that the task lists need re-generating. This is done before
\r
1203 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1207 if( pxTCB == pxCurrentTCB )
\r
1209 /* A task is deleting itself. This cannot complete within the
\r
1210 * task itself, as a context switch to another task is required.
\r
1211 * Place the task in the termination list. The idle task will
\r
1212 * check the termination list and free up any memory allocated by
\r
1213 * the scheduler for the TCB and stack of the deleted task. */
\r
1214 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1216 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1217 * there is a task that has been deleted and that it should therefore
\r
1218 * check the xTasksWaitingTermination list. */
\r
1219 ++uxDeletedTasksWaitingCleanUp;
\r
1221 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1222 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1223 traceTASK_DELETE( pxTCB );
\r
1225 /* The pre-delete hook is primarily for the Windows simulator,
\r
1226 * in which Windows specific clean up operations are performed,
\r
1227 * after which it is not possible to yield away from this task -
\r
1228 * hence xYieldPending is used to latch that a context switch is
\r
1230 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1234 --uxCurrentNumberOfTasks;
\r
1235 traceTASK_DELETE( pxTCB );
\r
1236 prvDeleteTCB( pxTCB );
\r
1238 /* Reset the next expected unblock time in case it referred to
\r
1239 * the task that has just been deleted. */
\r
1240 prvResetNextTaskUnblockTime();
\r
1243 taskEXIT_CRITICAL();
\r
1245 /* Force a reschedule if it is the currently running task that has just
\r
1246 * been deleted. */
\r
1247 if( xSchedulerRunning != pdFALSE )
\r
1249 if( pxTCB == pxCurrentTCB )
\r
1251 configASSERT( uxSchedulerSuspended == 0 );
\r
1252 portYIELD_WITHIN_API();
\r
1256 mtCOVERAGE_TEST_MARKER();
\r
1261 #endif /* INCLUDE_vTaskDelete */
\r
1262 /*-----------------------------------------------------------*/
\r
1264 #if ( INCLUDE_vTaskDelayUntil == 1 )
\r
1266 void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
\r
1267 const TickType_t xTimeIncrement )
\r
1269 TickType_t xTimeToWake;
\r
1270 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1272 configASSERT( pxPreviousWakeTime );
\r
1273 configASSERT( ( xTimeIncrement > 0U ) );
\r
1274 configASSERT( uxSchedulerSuspended == 0 );
\r
1276 vTaskSuspendAll();
\r
1278 /* Minor optimisation. The tick count cannot change in this
\r
1280 const TickType_t xConstTickCount = xTickCount;
\r
1282 /* Generate the tick time at which the task wants to wake. */
\r
1283 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1285 if( xConstTickCount < *pxPreviousWakeTime )
\r
1287 /* The tick count has overflowed since this function was
\r
1288 * lasted called. In this case the only time we should ever
\r
1289 * actually delay is if the wake time has also overflowed,
\r
1290 * and the wake time is greater than the tick time. When this
\r
1291 * is the case it is as if neither time had overflowed. */
\r
1292 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1294 xShouldDelay = pdTRUE;
\r
1298 mtCOVERAGE_TEST_MARKER();
\r
1303 /* The tick time has not overflowed. In this case we will
\r
1304 * delay if either the wake time has overflowed, and/or the
\r
1305 * tick time is less than the wake time. */
\r
1306 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1308 xShouldDelay = pdTRUE;
\r
1312 mtCOVERAGE_TEST_MARKER();
\r
1316 /* Update the wake time ready for the next call. */
\r
1317 *pxPreviousWakeTime = xTimeToWake;
\r
1319 if( xShouldDelay != pdFALSE )
\r
1321 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1323 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1324 * the time to wake, so subtract the current tick count. */
\r
1325 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1329 mtCOVERAGE_TEST_MARKER();
\r
1332 xAlreadyYielded = xTaskResumeAll();
\r
1334 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1335 * have put ourselves to sleep. */
\r
1336 if( xAlreadyYielded == pdFALSE )
\r
1338 portYIELD_WITHIN_API();
\r
1342 mtCOVERAGE_TEST_MARKER();
\r
1346 #endif /* INCLUDE_vTaskDelayUntil */
\r
1347 /*-----------------------------------------------------------*/
\r
1349 #if ( INCLUDE_vTaskDelay == 1 )
\r
1351 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1353 BaseType_t xAlreadyYielded = pdFALSE;
\r
1355 /* A delay time of zero just forces a reschedule. */
\r
1356 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1358 configASSERT( uxSchedulerSuspended == 0 );
\r
1359 vTaskSuspendAll();
\r
1361 traceTASK_DELAY();
\r
1363 /* A task that is removed from the event list while the
\r
1364 * scheduler is suspended will not get placed in the ready
\r
1365 * list or removed from the blocked list until the scheduler
\r
1368 * This task cannot be in an event list as it is the currently
\r
1369 * executing task. */
\r
1370 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1372 xAlreadyYielded = xTaskResumeAll();
\r
1376 mtCOVERAGE_TEST_MARKER();
\r
1379 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1380 * have put ourselves to sleep. */
\r
1381 if( xAlreadyYielded == pdFALSE )
\r
1383 portYIELD_WITHIN_API();
\r
1387 mtCOVERAGE_TEST_MARKER();
\r
1391 #endif /* INCLUDE_vTaskDelay */
\r
1392 /*-----------------------------------------------------------*/
\r
1394 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1396 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1398 eTaskState eReturn;
\r
1399 List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
\r
1400 const TCB_t * const pxTCB = xTask;
\r
1402 configASSERT( pxTCB );
\r
1404 if( pxTCB == pxCurrentTCB )
\r
1406 /* The task calling this function is querying its own state. */
\r
1407 eReturn = eRunning;
\r
1411 taskENTER_CRITICAL();
\r
1413 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1414 pxDelayedList = pxDelayedTaskList;
\r
1415 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1417 taskEXIT_CRITICAL();
\r
1419 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1421 /* The task being queried is referenced from one of the Blocked
\r
1423 eReturn = eBlocked;
\r
1426 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1427 else if( pxStateList == &xSuspendedTaskList )
\r
1429 /* The task being queried is referenced from the suspended
\r
1430 * list. Is it genuinely suspended or is it blocked
\r
1431 * indefinitely? */
\r
1432 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1434 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1438 /* The task does not appear on the event list item of
\r
1439 * and of the RTOS objects, but could still be in the
\r
1440 * blocked state if it is waiting on its notification
\r
1441 * rather than waiting on an object. If not, is
\r
1443 eReturn = eSuspended;
\r
1445 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1447 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1449 eReturn = eBlocked;
\r
1454 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1456 eReturn = eSuspended;
\r
1458 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1462 eReturn = eBlocked;
\r
1465 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
\r
1467 #if ( INCLUDE_vTaskDelete == 1 )
\r
1468 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1470 /* The task being queried is referenced from the deleted
\r
1471 * tasks list, or it is not referenced from any lists at
\r
1473 eReturn = eDeleted;
\r
1477 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1479 /* If the task is not in any other state, it must be in the
\r
1480 * Ready (including pending ready) state. */
\r
1486 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1488 #endif /* INCLUDE_eTaskGetState */
\r
1489 /*-----------------------------------------------------------*/
\r
1491 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1493 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1495 TCB_t const * pxTCB;
\r
1496 UBaseType_t uxReturn;
\r
1498 taskENTER_CRITICAL();
\r
1500 /* If null is passed in here then it is the priority of the task
\r
1501 * that called uxTaskPriorityGet() that is being queried. */
\r
1502 pxTCB = prvGetTCBFromHandle( xTask );
\r
1503 uxReturn = pxTCB->uxPriority;
\r
1505 taskEXIT_CRITICAL();
\r
1510 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1511 /*-----------------------------------------------------------*/
\r
1513 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1515 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1517 TCB_t const * pxTCB;
\r
1518 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1520 /* RTOS ports that support interrupt nesting have the concept of a
\r
1521 * maximum system call (or maximum API call) interrupt priority.
\r
1522 * Interrupts that are above the maximum system call priority are keep
\r
1523 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1524 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1525 * is defined in FreeRTOSConfig.h then
\r
1526 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1527 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1528 * been assigned a priority above the configured maximum system call
\r
1529 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1530 * from interrupts that have been assigned a priority at or (logically)
\r
1531 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1532 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1533 * simple as possible. More information (albeit Cortex-M specific) is
\r
1534 * provided on the following link:
\r
1535 * https://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1536 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1538 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1540 /* If null is passed in here then it is the priority of the calling
\r
1541 * task that is being queried. */
\r
1542 pxTCB = prvGetTCBFromHandle( xTask );
\r
1543 uxReturn = pxTCB->uxPriority;
\r
1545 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1550 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1551 /*-----------------------------------------------------------*/
\r
1553 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1555 void vTaskPrioritySet( TaskHandle_t xTask,
\r
1556 UBaseType_t uxNewPriority )
\r
1559 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1560 BaseType_t xYieldRequired = pdFALSE;
\r
1562 configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
\r
1564 /* Ensure the new priority is valid. */
\r
1565 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1567 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1571 mtCOVERAGE_TEST_MARKER();
\r
1574 taskENTER_CRITICAL();
\r
1576 /* If null is passed in here then it is the priority of the calling
\r
1577 * task that is being changed. */
\r
1578 pxTCB = prvGetTCBFromHandle( xTask );
\r
1580 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1582 #if ( configUSE_MUTEXES == 1 )
\r
1584 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1588 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1592 if( uxCurrentBasePriority != uxNewPriority )
\r
1594 /* The priority change may have readied a task of higher
\r
1595 * priority than the calling task. */
\r
1596 if( uxNewPriority > uxCurrentBasePriority )
\r
1598 if( pxTCB != pxCurrentTCB )
\r
1600 /* The priority of a task other than the currently
\r
1601 * running task is being raised. Is the priority being
\r
1602 * raised above that of the running task? */
\r
1603 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1605 xYieldRequired = pdTRUE;
\r
1609 mtCOVERAGE_TEST_MARKER();
\r
1614 /* The priority of the running task is being raised,
\r
1615 * but the running task must already be the highest
\r
1616 * priority task able to run so no yield is required. */
\r
1619 else if( pxTCB == pxCurrentTCB )
\r
1621 /* Setting the priority of the running task down means
\r
1622 * there may now be another task of higher priority that
\r
1623 * is ready to execute. */
\r
1624 xYieldRequired = pdTRUE;
\r
1628 /* Setting the priority of any other task down does not
\r
1629 * require a yield as the running task must be above the
\r
1630 * new priority of the task being modified. */
\r
1633 /* Remember the ready list the task might be referenced from
\r
1634 * before its uxPriority member is changed so the
\r
1635 * taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1636 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1638 #if ( configUSE_MUTEXES == 1 )
\r
1640 /* Only change the priority being used if the task is not
\r
1641 * currently using an inherited priority. */
\r
1642 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1644 pxTCB->uxPriority = uxNewPriority;
\r
1648 mtCOVERAGE_TEST_MARKER();
\r
1651 /* The base priority gets set whatever. */
\r
1652 pxTCB->uxBasePriority = uxNewPriority;
\r
1654 #else /* if ( configUSE_MUTEXES == 1 ) */
\r
1656 pxTCB->uxPriority = uxNewPriority;
\r
1658 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1660 /* Only reset the event list item value if the value is not
\r
1661 * being used for anything else. */
\r
1662 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1664 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1668 mtCOVERAGE_TEST_MARKER();
\r
1671 /* If the task is in the blocked or suspended list we need do
\r
1672 * nothing more than change its priority variable. However, if
\r
1673 * the task is in a ready list it needs to be removed and placed
\r
1674 * in the list appropriate to its new priority. */
\r
1675 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1677 /* The task is currently in its ready list - remove before
\r
1678 * adding it to it's new ready list. As we are in a critical
\r
1679 * section we can do this even if the scheduler is suspended. */
\r
1680 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1682 /* It is known that the task is in its ready list so
\r
1683 * there is no need to check again and the port level
\r
1684 * reset macro can be called directly. */
\r
1685 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1689 mtCOVERAGE_TEST_MARKER();
\r
1692 prvAddTaskToReadyList( pxTCB );
\r
1696 mtCOVERAGE_TEST_MARKER();
\r
1699 if( xYieldRequired != pdFALSE )
\r
1701 taskYIELD_IF_USING_PREEMPTION();
\r
1705 mtCOVERAGE_TEST_MARKER();
\r
1708 /* Remove compiler warning about unused variables when the port
\r
1709 * optimised task selection is not being used. */
\r
1710 ( void ) uxPriorityUsedOnEntry;
\r
1713 taskEXIT_CRITICAL();
\r
1716 #endif /* INCLUDE_vTaskPrioritySet */
\r
1717 /*-----------------------------------------------------------*/
\r
1719 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1721 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1725 taskENTER_CRITICAL();
\r
1727 /* If null is passed in here then it is the running task that is
\r
1728 * being suspended. */
\r
1729 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1731 traceTASK_SUSPEND( pxTCB );
\r
1733 /* Remove task from the ready/delayed list and place in the
\r
1734 * suspended list. */
\r
1735 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1737 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1741 mtCOVERAGE_TEST_MARKER();
\r
1744 /* Is the task waiting on an event also? */
\r
1745 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1747 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1751 mtCOVERAGE_TEST_MARKER();
\r
1754 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1756 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1760 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1762 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1764 /* The task was blocked to wait for a notification, but is
\r
1765 * now suspended, so no notification was received. */
\r
1766 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
\r
1770 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1772 taskEXIT_CRITICAL();
\r
1774 if( xSchedulerRunning != pdFALSE )
\r
1776 /* Reset the next expected unblock time in case it referred to the
\r
1777 * task that is now in the Suspended state. */
\r
1778 taskENTER_CRITICAL();
\r
1780 prvResetNextTaskUnblockTime();
\r
1782 taskEXIT_CRITICAL();
\r
1786 mtCOVERAGE_TEST_MARKER();
\r
1789 if( pxTCB == pxCurrentTCB )
\r
1791 if( xSchedulerRunning != pdFALSE )
\r
1793 /* The current task has just been suspended. */
\r
1794 configASSERT( uxSchedulerSuspended == 0 );
\r
1795 portYIELD_WITHIN_API();
\r
1799 /* The scheduler is not running, but the task that was pointed
\r
1800 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1801 * must be adjusted to point to a different task. */
\r
1802 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1804 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1805 * NULL so when the next task is created pxCurrentTCB will
\r
1806 * be set to point to it no matter what its relative priority
\r
1808 pxCurrentTCB = NULL;
\r
1812 vTaskSwitchContext();
\r
1818 mtCOVERAGE_TEST_MARKER();
\r
1822 #endif /* INCLUDE_vTaskSuspend */
\r
1823 /*-----------------------------------------------------------*/
\r
1825 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1827 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1829 BaseType_t xReturn = pdFALSE;
\r
1830 const TCB_t * const pxTCB = xTask;
\r
1832 /* Accesses xPendingReadyList so must be called from a critical
\r
1835 /* It does not make sense to check if the calling task is suspended. */
\r
1836 configASSERT( xTask );
\r
1838 /* Is the task being resumed actually in the suspended list? */
\r
1839 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1841 /* Has the task already been resumed from within an ISR? */
\r
1842 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1844 /* Is it in the suspended list because it is in the Suspended
\r
1845 * state, or because is is blocked with no timeout? */
\r
1846 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1852 mtCOVERAGE_TEST_MARKER();
\r
1857 mtCOVERAGE_TEST_MARKER();
\r
1862 mtCOVERAGE_TEST_MARKER();
\r
1866 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1868 #endif /* INCLUDE_vTaskSuspend */
\r
1869 /*-----------------------------------------------------------*/
\r
1871 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1873 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1875 TCB_t * const pxTCB = xTaskToResume;
\r
1877 /* It does not make sense to resume the calling task. */
\r
1878 configASSERT( xTaskToResume );
\r
1880 /* The parameter cannot be NULL as it is impossible to resume the
\r
1881 * currently executing task. */
\r
1882 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1884 taskENTER_CRITICAL();
\r
1886 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1888 traceTASK_RESUME( pxTCB );
\r
1890 /* The ready list can be accessed even if the scheduler is
\r
1891 * suspended because this is inside a critical section. */
\r
1892 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1893 prvAddTaskToReadyList( pxTCB );
\r
1895 /* A higher priority task may have just been resumed. */
\r
1896 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1898 /* This yield may not cause the task just resumed to run,
\r
1899 * but will leave the lists in the correct state for the
\r
1901 taskYIELD_IF_USING_PREEMPTION();
\r
1905 mtCOVERAGE_TEST_MARKER();
\r
1910 mtCOVERAGE_TEST_MARKER();
\r
1913 taskEXIT_CRITICAL();
\r
1917 mtCOVERAGE_TEST_MARKER();
\r
1921 #endif /* INCLUDE_vTaskSuspend */
\r
1923 /*-----------------------------------------------------------*/
\r
1925 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1927 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1929 BaseType_t xYieldRequired = pdFALSE;
\r
1930 TCB_t * const pxTCB = xTaskToResume;
\r
1931 UBaseType_t uxSavedInterruptStatus;
\r
1933 configASSERT( xTaskToResume );
\r
1935 /* RTOS ports that support interrupt nesting have the concept of a
\r
1936 * maximum system call (or maximum API call) interrupt priority.
\r
1937 * Interrupts that are above the maximum system call priority are keep
\r
1938 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1939 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1940 * is defined in FreeRTOSConfig.h then
\r
1941 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1942 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1943 * been assigned a priority above the configured maximum system call
\r
1944 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1945 * from interrupts that have been assigned a priority at or (logically)
\r
1946 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1947 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1948 * simple as possible. More information (albeit Cortex-M specific) is
\r
1949 * provided on the following link:
\r
1950 * https://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1951 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1953 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1955 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1957 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1959 /* Check the ready lists can be accessed. */
\r
1960 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1962 /* Ready lists can be accessed so move the task from the
\r
1963 * suspended list to the ready list directly. */
\r
1964 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1966 xYieldRequired = pdTRUE;
\r
1970 mtCOVERAGE_TEST_MARKER();
\r
1973 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1974 prvAddTaskToReadyList( pxTCB );
\r
1978 /* The delayed or ready lists cannot be accessed so the task
\r
1979 * is held in the pending ready list until the scheduler is
\r
1981 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1986 mtCOVERAGE_TEST_MARKER();
\r
1989 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1991 return xYieldRequired;
\r
1994 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1995 /*-----------------------------------------------------------*/
\r
1997 void vTaskStartScheduler( void )
\r
1999 BaseType_t xReturn;
\r
2001 /* Add the idle task at the lowest priority. */
\r
2002 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
2004 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
\r
2005 StackType_t * pxIdleTaskStackBuffer = NULL;
\r
2006 uint32_t ulIdleTaskStackSize;
\r
2008 /* The Idle task is created using user provided RAM - obtain the
\r
2009 * address of the RAM then create the idle task. */
\r
2010 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
2011 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
2012 configIDLE_TASK_NAME,
\r
2013 ulIdleTaskStackSize,
\r
2014 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
2015 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2016 pxIdleTaskStackBuffer,
\r
2017 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2019 if( xIdleTaskHandle != NULL )
\r
2028 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
2030 /* The Idle task is being created using dynamically allocated RAM. */
\r
2031 xReturn = xTaskCreate( prvIdleTask,
\r
2032 configIDLE_TASK_NAME,
\r
2033 configMINIMAL_STACK_SIZE,
\r
2035 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2036 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2038 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
2040 #if ( configUSE_TIMERS == 1 )
\r
2042 if( xReturn == pdPASS )
\r
2044 xReturn = xTimerCreateTimerTask();
\r
2048 mtCOVERAGE_TEST_MARKER();
\r
2051 #endif /* configUSE_TIMERS */
\r
2053 if( xReturn == pdPASS )
\r
2055 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2056 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2057 * the only macro called by the function. */
\r
2058 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2060 freertos_tasks_c_additions_init();
\r
2064 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2065 * before or during the call to xPortStartScheduler(). The stacks of
\r
2066 * the created tasks contain a status word with interrupts switched on
\r
2067 * so interrupts will automatically get re-enabled when the first task
\r
2068 * starts to run. */
\r
2069 portDISABLE_INTERRUPTS();
\r
2071 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2073 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2074 * structure specific to the task that will run first.
\r
2075 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
2076 * for additional information. */
\r
2077 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2079 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2081 xNextTaskUnblockTime = portMAX_DELAY;
\r
2082 xSchedulerRunning = pdTRUE;
\r
2083 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2085 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2086 * macro must be defined to configure the timer/counter used to generate
\r
2087 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2088 * is set to 0 and the following line fails to build then ensure you do not
\r
2089 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2090 * FreeRTOSConfig.h file. */
\r
2091 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2093 traceTASK_SWITCHED_IN();
\r
2095 /* Setting up the timer tick is hardware specific and thus in the
\r
2096 * portable interface. */
\r
2097 if( xPortStartScheduler() != pdFALSE )
\r
2099 /* Should not reach here as if the scheduler is running the
\r
2100 * function will not return. */
\r
2104 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2109 /* This line will only be reached if the kernel could not be started,
\r
2110 * because there was not enough FreeRTOS heap to create the idle task
\r
2111 * or the timer task. */
\r
2112 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2115 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2116 * meaning xIdleTaskHandle is not used anywhere else. */
\r
2117 ( void ) xIdleTaskHandle;
\r
2119 /*-----------------------------------------------------------*/
\r
2121 void vTaskEndScheduler( void )
\r
2123 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2124 * routine so the original ISRs can be restored if necessary. The port
\r
2125 * layer must ensure interrupts enable bit is left in the correct state. */
\r
2126 portDISABLE_INTERRUPTS();
\r
2127 xSchedulerRunning = pdFALSE;
\r
2128 vPortEndScheduler();
\r
2130 /*----------------------------------------------------------*/
\r
2132 void vTaskSuspendAll( void )
\r
2134 /* A critical section is not required as the variable is of type
\r
2135 * BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2136 * post in the FreeRTOS support forum before reporting this as a bug! -
\r
2137 * http://goo.gl/wu4acr */
\r
2139 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2140 * do not otherwise exhibit real time behaviour. */
\r
2141 portSOFTWARE_BARRIER();
\r
2143 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2144 * is used to allow calls to vTaskSuspendAll() to nest. */
\r
2145 ++uxSchedulerSuspended;
\r
2147 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2148 * the above increment elsewhere. */
\r
2149 portMEMORY_BARRIER();
\r
2151 /*----------------------------------------------------------*/
\r
2153 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2155 static TickType_t prvGetExpectedIdleTime( void )
\r
2157 TickType_t xReturn;
\r
2158 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2160 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2161 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2162 * task that are in the Ready state, even though the idle task is
\r
2164 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2166 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2168 uxHigherPriorityReadyTasks = pdTRUE;
\r
2173 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2175 /* When port optimised task selection is used the uxTopReadyPriority
\r
2176 * variable is used as a bit map. If bits other than the least
\r
2177 * significant bit are set then there are tasks that have a priority
\r
2178 * above the idle priority that are in the Ready state. This takes
\r
2179 * care of the case where the co-operative scheduler is in use. */
\r
2180 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2182 uxHigherPriorityReadyTasks = pdTRUE;
\r
2185 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
\r
2187 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2191 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2193 /* There are other idle priority tasks in the ready state. If
\r
2194 * time slicing is used then the very next tick interrupt must be
\r
2198 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2200 /* There are tasks in the Ready state that have a priority above the
\r
2201 * idle priority. This path can only be reached if
\r
2202 * configUSE_PREEMPTION is 0. */
\r
2207 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2213 #endif /* configUSE_TICKLESS_IDLE */
\r
2214 /*----------------------------------------------------------*/
\r
2216 BaseType_t xTaskResumeAll( void )
\r
2218 TCB_t * pxTCB = NULL;
\r
2219 BaseType_t xAlreadyYielded = pdFALSE;
\r
2221 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2222 * previous call to vTaskSuspendAll(). */
\r
2223 configASSERT( uxSchedulerSuspended );
\r
2225 /* It is possible that an ISR caused a task to be removed from an event
\r
2226 * list while the scheduler was suspended. If this was the case then the
\r
2227 * removed task will have been added to the xPendingReadyList. Once the
\r
2228 * scheduler has been resumed it is safe to move all the pending ready
\r
2229 * tasks from this list into their appropriate ready list. */
\r
2230 taskENTER_CRITICAL();
\r
2232 --uxSchedulerSuspended;
\r
2234 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2236 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2238 /* Move any readied tasks from the pending list into the
\r
2239 * appropriate ready list. */
\r
2240 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2242 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2243 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2244 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2245 prvAddTaskToReadyList( pxTCB );
\r
2247 /* If the moved task has a priority higher than the current
\r
2248 * task then a yield must be performed. */
\r
2249 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2251 xYieldPending = pdTRUE;
\r
2255 mtCOVERAGE_TEST_MARKER();
\r
2259 if( pxTCB != NULL )
\r
2261 /* A task was unblocked while the scheduler was suspended,
\r
2262 * which may have prevented the next unblock time from being
\r
2263 * re-calculated, in which case re-calculate it now. Mainly
\r
2264 * important for low power tickless implementations, where
\r
2265 * this can prevent an unnecessary exit from low power
\r
2267 prvResetNextTaskUnblockTime();
\r
2270 /* If any ticks occurred while the scheduler was suspended then
\r
2271 * they should be processed now. This ensures the tick count does
\r
2272 * not slip, and that any delayed tasks are resumed at the correct
\r
2275 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2277 if( xPendedCounts > ( TickType_t ) 0U )
\r
2281 if( xTaskIncrementTick() != pdFALSE )
\r
2283 xYieldPending = pdTRUE;
\r
2287 mtCOVERAGE_TEST_MARKER();
\r
2291 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2297 mtCOVERAGE_TEST_MARKER();
\r
2301 if( xYieldPending != pdFALSE )
\r
2303 #if ( configUSE_PREEMPTION != 0 )
\r
2305 xAlreadyYielded = pdTRUE;
\r
2308 taskYIELD_IF_USING_PREEMPTION();
\r
2312 mtCOVERAGE_TEST_MARKER();
\r
2318 mtCOVERAGE_TEST_MARKER();
\r
2321 taskEXIT_CRITICAL();
\r
2323 return xAlreadyYielded;
\r
2325 /*-----------------------------------------------------------*/
\r
2327 TickType_t xTaskGetTickCount( void )
\r
2329 TickType_t xTicks;
\r
2331 /* Critical section required if running on a 16 bit processor. */
\r
2332 portTICK_TYPE_ENTER_CRITICAL();
\r
2334 xTicks = xTickCount;
\r
2336 portTICK_TYPE_EXIT_CRITICAL();
\r
2340 /*-----------------------------------------------------------*/
\r
2342 TickType_t xTaskGetTickCountFromISR( void )
\r
2344 TickType_t xReturn;
\r
2345 UBaseType_t uxSavedInterruptStatus;
\r
2347 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2348 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
2349 * above the maximum system call priority are kept permanently enabled, even
\r
2350 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2351 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2352 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2353 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2354 * assigned a priority above the configured maximum system call priority.
\r
2355 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2356 * that have been assigned a priority at or (logically) below the maximum
\r
2357 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2358 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2359 * More information (albeit Cortex-M specific) is provided on the following
\r
2360 * link: https://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
2361 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2363 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2365 xReturn = xTickCount;
\r
2367 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2371 /*-----------------------------------------------------------*/
\r
2373 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2375 /* A critical section is not required because the variables are of type
\r
2377 return uxCurrentNumberOfTasks;
\r
2379 /*-----------------------------------------------------------*/
\r
2381 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2385 /* If null is passed in here then the name of the calling task is being
\r
2387 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2388 configASSERT( pxTCB );
\r
2389 return &( pxTCB->pcTaskName[ 0 ] );
\r
2391 /*-----------------------------------------------------------*/
\r
2393 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2395 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
2396 const char pcNameToQuery[] )
\r
2398 TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
\r
2401 BaseType_t xBreakLoop;
\r
2403 /* This function is called with the scheduler suspended. */
\r
2405 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2407 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2411 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2413 /* Check each character in the name looking for a match or
\r
2415 xBreakLoop = pdFALSE;
\r
2417 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2419 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2421 if( cNextChar != pcNameToQuery[ x ] )
\r
2423 /* Characters didn't match. */
\r
2424 xBreakLoop = pdTRUE;
\r
2426 else if( cNextChar == ( char ) 0x00 )
\r
2428 /* Both strings terminated, a match must have been
\r
2430 pxReturn = pxNextTCB;
\r
2431 xBreakLoop = pdTRUE;
\r
2435 mtCOVERAGE_TEST_MARKER();
\r
2438 if( xBreakLoop != pdFALSE )
\r
2444 if( pxReturn != NULL )
\r
2446 /* The handle has been found. */
\r
2449 } while( pxNextTCB != pxFirstTCB );
\r
2453 mtCOVERAGE_TEST_MARKER();
\r
2459 #endif /* INCLUDE_xTaskGetHandle */
\r
2460 /*-----------------------------------------------------------*/
\r
2462 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2464 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2466 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2469 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2470 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2472 vTaskSuspendAll();
\r
2474 /* Search the ready lists. */
\r
2478 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2480 if( pxTCB != NULL )
\r
2482 /* Found the handle. */
\r
2485 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2487 /* Search the delayed lists. */
\r
2488 if( pxTCB == NULL )
\r
2490 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2493 if( pxTCB == NULL )
\r
2495 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2498 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2500 if( pxTCB == NULL )
\r
2502 /* Search the suspended list. */
\r
2503 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2508 #if ( INCLUDE_vTaskDelete == 1 )
\r
2510 if( pxTCB == NULL )
\r
2512 /* Search the deleted list. */
\r
2513 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2518 ( void ) xTaskResumeAll();
\r
2523 #endif /* INCLUDE_xTaskGetHandle */
\r
2524 /*-----------------------------------------------------------*/
\r
2526 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2528 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
\r
2529 const UBaseType_t uxArraySize,
\r
2530 uint32_t * const pulTotalRunTime )
\r
2532 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2534 vTaskSuspendAll();
\r
2536 /* Is there a space in the array for each task in the system? */
\r
2537 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2539 /* Fill in an TaskStatus_t structure with information on each
\r
2540 * task in the Ready state. */
\r
2544 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2545 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2547 /* Fill in an TaskStatus_t structure with information on each
\r
2548 * task in the Blocked state. */
\r
2549 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2550 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2552 #if ( INCLUDE_vTaskDelete == 1 )
\r
2554 /* Fill in an TaskStatus_t structure with information on
\r
2555 * each task that has been deleted but not yet cleaned up. */
\r
2556 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2560 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2562 /* Fill in an TaskStatus_t structure with information on
\r
2563 * each task in the Suspended state. */
\r
2564 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2568 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2570 if( pulTotalRunTime != NULL )
\r
2572 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2573 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2575 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2579 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2581 if( pulTotalRunTime != NULL )
\r
2583 *pulTotalRunTime = 0;
\r
2586 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2590 mtCOVERAGE_TEST_MARKER();
\r
2593 ( void ) xTaskResumeAll();
\r
2598 #endif /* configUSE_TRACE_FACILITY */
\r
2599 /*----------------------------------------------------------*/
\r
2601 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2603 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2605 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2606 * started, then xIdleTaskHandle will be NULL. */
\r
2607 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2608 return xIdleTaskHandle;
\r
2611 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2612 /*----------------------------------------------------------*/
\r
2614 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2615 * This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2616 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2618 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2620 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2622 /* Correct the tick count value after a period during which the tick
\r
2623 * was suppressed. Note this does *not* call the tick hook function for
\r
2624 * each stepped tick. */
\r
2625 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2626 xTickCount += xTicksToJump;
\r
2627 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2630 #endif /* configUSE_TICKLESS_IDLE */
\r
2631 /*----------------------------------------------------------*/
\r
2633 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2635 BaseType_t xYieldOccurred;
\r
2637 /* Must not be called with the scheduler suspended as the implementation
\r
2638 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2639 configASSERT( uxSchedulerSuspended == 0 );
\r
2641 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2642 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2643 vTaskSuspendAll();
\r
2644 xPendedTicks += xTicksToCatchUp;
\r
2645 xYieldOccurred = xTaskResumeAll();
\r
2647 return xYieldOccurred;
\r
2649 /*----------------------------------------------------------*/
\r
2651 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2653 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2655 TCB_t * pxTCB = xTask;
\r
2656 BaseType_t xReturn;
\r
2658 configASSERT( pxTCB );
\r
2660 vTaskSuspendAll();
\r
2662 /* A task can only be prematurely removed from the Blocked state if
\r
2663 * it is actually in the Blocked state. */
\r
2664 if( eTaskGetState( xTask ) == eBlocked )
\r
2668 /* Remove the reference to the task from the blocked list. An
\r
2669 * interrupt won't touch the xStateListItem because the
\r
2670 * scheduler is suspended. */
\r
2671 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2673 /* Is the task waiting on an event also? If so remove it from
\r
2674 * the event list too. Interrupts can touch the event list item,
\r
2675 * even though the scheduler is suspended, so a critical section
\r
2677 taskENTER_CRITICAL();
\r
2679 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2681 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2683 /* This lets the task know it was forcibly removed from the
\r
2684 * blocked state so it should not re-evaluate its block time and
\r
2685 * then block again. */
\r
2686 pxTCB->ucDelayAborted = pdTRUE;
\r
2690 mtCOVERAGE_TEST_MARKER();
\r
2693 taskEXIT_CRITICAL();
\r
2695 /* Place the unblocked task into the appropriate ready list. */
\r
2696 prvAddTaskToReadyList( pxTCB );
\r
2698 /* A task being unblocked cannot cause an immediate context
\r
2699 * switch if preemption is turned off. */
\r
2700 #if ( configUSE_PREEMPTION == 1 )
\r
2702 /* Preemption is on, but a context switch should only be
\r
2703 * performed if the unblocked task has a priority that is
\r
2704 * equal to or higher than the currently executing task. */
\r
2705 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2707 /* Pend the yield to be performed when the scheduler
\r
2708 * is unsuspended. */
\r
2709 xYieldPending = pdTRUE;
\r
2713 mtCOVERAGE_TEST_MARKER();
\r
2716 #endif /* configUSE_PREEMPTION */
\r
2723 ( void ) xTaskResumeAll();
\r
2728 #endif /* INCLUDE_xTaskAbortDelay */
\r
2729 /*----------------------------------------------------------*/
\r
2731 BaseType_t xTaskIncrementTick( void )
\r
2734 TickType_t xItemValue;
\r
2735 BaseType_t xSwitchRequired = pdFALSE;
\r
2737 /* Called by the portable layer each time a tick interrupt occurs.
\r
2738 * Increments the tick then checks to see if the new tick value will cause any
\r
2739 * tasks to be unblocked. */
\r
2740 traceTASK_INCREMENT_TICK( xTickCount );
\r
2742 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2744 /* Minor optimisation. The tick count cannot change in this
\r
2746 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2748 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2749 * delayed lists if it wraps to 0. */
\r
2750 xTickCount = xConstTickCount;
\r
2752 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2754 taskSWITCH_DELAYED_LISTS();
\r
2758 mtCOVERAGE_TEST_MARKER();
\r
2761 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2762 * the queue in the order of their wake time - meaning once one task
\r
2763 * has been found whose block time has not expired there is no need to
\r
2764 * look any further down the list. */
\r
2765 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2769 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2771 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2772 * to the maximum possible value so it is extremely
\r
2773 * unlikely that the
\r
2774 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2775 * next time through. */
\r
2776 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2781 /* The delayed list is not empty, get the value of the
\r
2782 * item at the head of the delayed list. This is the time
\r
2783 * at which the task at the head of the delayed list must
\r
2784 * be removed from the Blocked state. */
\r
2785 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2786 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2788 if( xConstTickCount < xItemValue )
\r
2790 /* It is not time to unblock this item yet, but the
\r
2791 * item value is the time at which the task at the head
\r
2792 * of the blocked list must be removed from the Blocked
\r
2793 * state - so record the item value in
\r
2794 * xNextTaskUnblockTime. */
\r
2795 xNextTaskUnblockTime = xItemValue;
\r
2796 break; /*lint !e9011 Code structure here is deedmed easier to understand with multiple breaks. */
\r
2800 mtCOVERAGE_TEST_MARKER();
\r
2803 /* It is time to remove the item from the Blocked state. */
\r
2804 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2806 /* Is the task waiting on an event also? If so remove
\r
2807 * it from the event list. */
\r
2808 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2810 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2814 mtCOVERAGE_TEST_MARKER();
\r
2817 /* Place the unblocked task into the appropriate ready
\r
2819 prvAddTaskToReadyList( pxTCB );
\r
2821 /* A task being unblocked cannot cause an immediate
\r
2822 * context switch if preemption is turned off. */
\r
2823 #if ( configUSE_PREEMPTION == 1 )
\r
2825 /* Preemption is on, but a context switch should
\r
2826 * only be performed if the unblocked task has a
\r
2827 * priority that is equal to or higher than the
\r
2828 * currently executing task. */
\r
2829 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2831 xSwitchRequired = pdTRUE;
\r
2835 mtCOVERAGE_TEST_MARKER();
\r
2838 #endif /* configUSE_PREEMPTION */
\r
2843 /* Tasks of equal priority to the currently running task will share
\r
2844 * processing time (time slice) if preemption is on, and the application
\r
2845 * writer has not explicitly turned time slicing off. */
\r
2846 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2848 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2850 xSwitchRequired = pdTRUE;
\r
2854 mtCOVERAGE_TEST_MARKER();
\r
2857 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2859 #if ( configUSE_TICK_HOOK == 1 )
\r
2861 /* Guard against the tick hook being called when the pended tick
\r
2862 * count is being unwound (when the scheduler is being unlocked). */
\r
2863 if( xPendedTicks == ( TickType_t ) 0 )
\r
2865 vApplicationTickHook();
\r
2869 mtCOVERAGE_TEST_MARKER();
\r
2872 #endif /* configUSE_TICK_HOOK */
\r
2874 #if ( configUSE_PREEMPTION == 1 )
\r
2876 if( xYieldPending != pdFALSE )
\r
2878 xSwitchRequired = pdTRUE;
\r
2882 mtCOVERAGE_TEST_MARKER();
\r
2885 #endif /* configUSE_PREEMPTION */
\r
2891 /* The tick hook gets called at regular intervals, even if the
\r
2892 * scheduler is locked. */
\r
2893 #if ( configUSE_TICK_HOOK == 1 )
\r
2895 vApplicationTickHook();
\r
2900 return xSwitchRequired;
\r
2902 /*-----------------------------------------------------------*/
\r
2904 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2906 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
\r
2907 TaskHookFunction_t pxHookFunction )
\r
2911 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2913 if( xTask == NULL )
\r
2915 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2922 /* Save the hook function in the TCB. A critical section is required as
\r
2923 * the value can be accessed from an interrupt. */
\r
2924 taskENTER_CRITICAL();
\r
2926 xTCB->pxTaskTag = pxHookFunction;
\r
2928 taskEXIT_CRITICAL();
\r
2931 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2932 /*-----------------------------------------------------------*/
\r
2934 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2936 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2939 TaskHookFunction_t xReturn;
\r
2941 /* If xTask is NULL then set the calling task's hook. */
\r
2942 pxTCB = prvGetTCBFromHandle( xTask );
\r
2944 /* Save the hook function in the TCB. A critical section is required as
\r
2945 * the value can be accessed from an interrupt. */
\r
2946 taskENTER_CRITICAL();
\r
2948 xReturn = pxTCB->pxTaskTag;
\r
2950 taskEXIT_CRITICAL();
\r
2955 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2956 /*-----------------------------------------------------------*/
\r
2958 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2960 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2963 TaskHookFunction_t xReturn;
\r
2964 UBaseType_t uxSavedInterruptStatus;
\r
2966 /* If xTask is NULL then set the calling task's hook. */
\r
2967 pxTCB = prvGetTCBFromHandle( xTask );
\r
2969 /* Save the hook function in the TCB. A critical section is required as
\r
2970 * the value can be accessed from an interrupt. */
\r
2971 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2973 xReturn = pxTCB->pxTaskTag;
\r
2975 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2980 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2981 /*-----------------------------------------------------------*/
\r
2983 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2985 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
\r
2986 void * pvParameter )
\r
2989 BaseType_t xReturn;
\r
2991 /* If xTask is NULL then we are calling our own task hook. */
\r
2992 if( xTask == NULL )
\r
2994 xTCB = pxCurrentTCB;
\r
3001 if( xTCB->pxTaskTag != NULL )
\r
3003 xReturn = xTCB->pxTaskTag( pvParameter );
\r
3013 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
3014 /*-----------------------------------------------------------*/
\r
3016 void vTaskSwitchContext( void )
\r
3018 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
3020 /* The scheduler is currently suspended - do not allow a context
\r
3022 xYieldPending = pdTRUE;
\r
3026 xYieldPending = pdFALSE;
\r
3027 traceTASK_SWITCHED_OUT();
\r
3029 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3031 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3032 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3034 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3037 /* Add the amount of time the task has been running to the
\r
3038 * accumulated time so far. The time the task started running was
\r
3039 * stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3040 * protection here so count values are only valid until the timer
\r
3041 * overflows. The guard against negative values is to protect
\r
3042 * against suspect run time stat counter implementations - which
\r
3043 * are provided by the application, not the kernel. */
\r
3044 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3046 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3050 mtCOVERAGE_TEST_MARKER();
\r
3053 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3055 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3057 /* Check for stack overflow, if configured. */
\r
3058 taskCHECK_FOR_STACK_OVERFLOW();
\r
3060 /* Before the currently running task is switched out, save its errno. */
\r
3061 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3063 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3067 /* Select a new task to run using either the generic C or port
\r
3068 * optimised asm code. */
\r
3069 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3070 traceTASK_SWITCHED_IN();
\r
3072 /* After the new task is switched in, update the global errno. */
\r
3073 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3075 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3079 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3081 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
3082 * structure specific to this task.
\r
3083 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3084 * for additional information. */
\r
3085 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
3087 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3090 /*-----------------------------------------------------------*/
\r
3092 void vTaskPlaceOnEventList( List_t * const pxEventList,
\r
3093 const TickType_t xTicksToWait )
\r
3095 configASSERT( pxEventList );
\r
3097 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3098 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3100 /* Place the event list item of the TCB in the appropriate event list.
\r
3101 * This is placed in the list in priority order so the highest priority task
\r
3102 * is the first to be woken by the event. The queue that contains the event
\r
3103 * list is locked, preventing simultaneous access from interrupts. */
\r
3104 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3106 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3108 /*-----------------------------------------------------------*/
\r
3110 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
\r
3111 const TickType_t xItemValue,
\r
3112 const TickType_t xTicksToWait )
\r
3114 configASSERT( pxEventList );
\r
3116 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3117 * the event groups implementation. */
\r
3118 configASSERT( uxSchedulerSuspended != 0 );
\r
3120 /* Store the item value in the event list item. It is safe to access the
\r
3121 * event list item here as interrupts won't access the event list item of a
\r
3122 * task that is not in the Blocked state. */
\r
3123 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3125 /* Place the event list item of the TCB at the end of the appropriate event
\r
3126 * list. It is safe to access the event list here because it is part of an
\r
3127 * event group implementation - and interrupts don't access event groups
\r
3128 * directly (instead they access them indirectly by pending function calls to
\r
3129 * the task level). */
\r
3130 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3132 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3134 /*-----------------------------------------------------------*/
\r
3136 #if ( configUSE_TIMERS == 1 )
\r
3138 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
\r
3139 TickType_t xTicksToWait,
\r
3140 const BaseType_t xWaitIndefinitely )
\r
3142 configASSERT( pxEventList );
\r
3144 /* This function should not be called by application code hence the
\r
3145 * 'Restricted' in its name. It is not part of the public API. It is
\r
3146 * designed for use by kernel code, and has special calling requirements -
\r
3147 * it should be called with the scheduler suspended. */
\r
3150 /* Place the event list item of the TCB in the appropriate event list.
\r
3151 * In this case it is assume that this is the only task that is going to
\r
3152 * be waiting on this event list, so the faster vListInsertEnd() function
\r
3153 * can be used in place of vListInsert. */
\r
3154 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3156 /* If the task should block indefinitely then set the block time to a
\r
3157 * value that will be recognised as an indefinite delay inside the
\r
3158 * prvAddCurrentTaskToDelayedList() function. */
\r
3159 if( xWaitIndefinitely != pdFALSE )
\r
3161 xTicksToWait = portMAX_DELAY;
\r
3164 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3165 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3168 #endif /* configUSE_TIMERS */
\r
3169 /*-----------------------------------------------------------*/
\r
3171 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3173 TCB_t * pxUnblockedTCB;
\r
3174 BaseType_t xReturn;
\r
3176 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3177 * called from a critical section within an ISR. */
\r
3179 /* The event list is sorted in priority order, so the first in the list can
\r
3180 * be removed as it is known to be the highest priority. Remove the TCB from
\r
3181 * the delayed list, and add it to the ready list.
\r
3183 * If an event is for a queue that is locked then this function will never
\r
3184 * get called - the lock count on the queue will get modified instead. This
\r
3185 * means exclusive access to the event list is guaranteed here.
\r
3187 * This function assumes that a check has already been made to ensure that
\r
3188 * pxEventList is not empty. */
\r
3189 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3190 configASSERT( pxUnblockedTCB );
\r
3191 ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
\r
3193 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3195 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3196 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3198 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3200 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3201 * might be set to the blocked task's time out time. If the task is
\r
3202 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3203 * normally left unchanged, because it is automatically reset to a new
\r
3204 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3205 * tickless idling is used it might be more important to enter sleep mode
\r
3206 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3207 * ensure it is updated at the earliest possible time. */
\r
3208 prvResetNextTaskUnblockTime();
\r
3214 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3215 * pending until the scheduler is resumed. */
\r
3216 vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3219 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3221 /* Return true if the task removed from the event list has a higher
\r
3222 * priority than the calling task. This allows the calling task to know if
\r
3223 * it should force a context switch now. */
\r
3226 /* Mark that a yield is pending in case the user is not using the
\r
3227 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3228 xYieldPending = pdTRUE;
\r
3232 xReturn = pdFALSE;
\r
3237 /*-----------------------------------------------------------*/
\r
3239 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
\r
3240 const TickType_t xItemValue )
\r
3242 TCB_t * pxUnblockedTCB;
\r
3244 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3245 * the event flags implementation. */
\r
3246 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3248 /* Store the new item value in the event list. */
\r
3249 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3251 /* Remove the event list form the event flag. Interrupts do not access
\r
3253 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3254 configASSERT( pxUnblockedTCB );
\r
3255 ( void ) uxListRemove( pxEventListItem );
\r
3257 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3259 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3260 * might be set to the blocked task's time out time. If the task is
\r
3261 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3262 * normally left unchanged, because it is automatically reset to a new
\r
3263 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3264 * tickless idling is used it might be more important to enter sleep mode
\r
3265 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3266 * ensure it is updated at the earliest possible time. */
\r
3267 prvResetNextTaskUnblockTime();
\r
3271 /* Remove the task from the delayed list and add it to the ready list. The
\r
3272 * scheduler is suspended so interrupts will not be accessing the ready
\r
3274 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3275 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3277 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3279 /* The unblocked task has a priority above that of the calling task, so
\r
3280 * a context switch is required. This function is called with the
\r
3281 * scheduler suspended so xYieldPending is set so the context switch
\r
3282 * occurs immediately that the scheduler is resumed (unsuspended). */
\r
3283 xYieldPending = pdTRUE;
\r
3286 /*-----------------------------------------------------------*/
\r
3288 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3290 configASSERT( pxTimeOut );
\r
3291 taskENTER_CRITICAL();
\r
3293 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3294 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3296 taskEXIT_CRITICAL();
\r
3298 /*-----------------------------------------------------------*/
\r
3300 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3302 /* For internal use only as it does not use a critical section. */
\r
3303 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3304 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3306 /*-----------------------------------------------------------*/
\r
3308 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
\r
3309 TickType_t * const pxTicksToWait )
\r
3311 BaseType_t xReturn;
\r
3313 configASSERT( pxTimeOut );
\r
3314 configASSERT( pxTicksToWait );
\r
3316 taskENTER_CRITICAL();
\r
3318 /* Minor optimisation. The tick count cannot change in this block. */
\r
3319 const TickType_t xConstTickCount = xTickCount;
\r
3320 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3322 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
3323 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3325 /* The delay was aborted, which is not the same as a time out,
\r
3326 * but has the same result. */
\r
3327 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3333 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3334 if( *pxTicksToWait == portMAX_DELAY )
\r
3336 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3337 * specified is the maximum block time then the task should block
\r
3338 * indefinitely, and therefore never time out. */
\r
3339 xReturn = pdFALSE;
\r
3344 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3346 /* The tick count is greater than the time at which
\r
3347 * vTaskSetTimeout() was called, but has also overflowed since
\r
3348 * vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3349 * around and gone past again. This passed since vTaskSetTimeout()
\r
3352 *pxTicksToWait = ( TickType_t ) 0;
\r
3354 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3356 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3357 *pxTicksToWait -= xElapsedTime;
\r
3358 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3359 xReturn = pdFALSE;
\r
3363 *pxTicksToWait = ( TickType_t ) 0;
\r
3367 taskEXIT_CRITICAL();
\r
3371 /*-----------------------------------------------------------*/
\r
3373 void vTaskMissedYield( void )
\r
3375 xYieldPending = pdTRUE;
\r
3377 /*-----------------------------------------------------------*/
\r
3379 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3381 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3383 UBaseType_t uxReturn;
\r
3384 TCB_t const * pxTCB;
\r
3386 if( xTask != NULL )
\r
3389 uxReturn = pxTCB->uxTaskNumber;
\r
3399 #endif /* configUSE_TRACE_FACILITY */
\r
3400 /*-----------------------------------------------------------*/
\r
3402 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3404 void vTaskSetTaskNumber( TaskHandle_t xTask,
\r
3405 const UBaseType_t uxHandle )
\r
3409 if( xTask != NULL )
\r
3412 pxTCB->uxTaskNumber = uxHandle;
\r
3416 #endif /* configUSE_TRACE_FACILITY */
\r
3419 * -----------------------------------------------------------
\r
3421 * ----------------------------------------------------------
\r
3423 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3424 * language extensions. The equivalent prototype for this function is:
\r
3426 * void prvIdleTask( void *pvParameters );
\r
3429 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3431 /* Stop warnings. */
\r
3432 ( void ) pvParameters;
\r
3434 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3435 * SCHEDULER IS STARTED. **/
\r
3437 /* In case a task that has a secure context deletes itself, in which case
\r
3438 * the idle task is responsible for deleting the task's secure context, if
\r
3440 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3444 /* See if any tasks have deleted themselves - if so then the idle task
\r
3445 * is responsible for freeing the deleted task's TCB and stack. */
\r
3446 prvCheckTasksWaitingTermination();
\r
3448 #if ( configUSE_PREEMPTION == 0 )
\r
3450 /* If we are not using preemption we keep forcing a task switch to
\r
3451 * see if any other task has become available. If we are using
\r
3452 * preemption we don't need to do this as any task becoming available
\r
3453 * will automatically get the processor anyway. */
\r
3456 #endif /* configUSE_PREEMPTION */
\r
3458 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3460 /* When using preemption tasks of equal priority will be
\r
3461 * timesliced. If a task that is sharing the idle priority is ready
\r
3462 * to run then the idle task should yield before the end of the
\r
3465 * A critical region is not required here as we are just reading from
\r
3466 * the list, and an occasional incorrect value will not matter. If
\r
3467 * the ready list at the idle priority contains more than one task
\r
3468 * then a task other than the idle task is ready to execute. */
\r
3469 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3475 mtCOVERAGE_TEST_MARKER();
\r
3478 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3480 #if ( configUSE_IDLE_HOOK == 1 )
\r
3482 extern void vApplicationIdleHook( void );
\r
3484 /* Call the user defined function from within the idle task. This
\r
3485 * allows the application designer to add background functionality
\r
3486 * without the overhead of a separate task.
\r
3487 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3488 * CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3489 vApplicationIdleHook();
\r
3491 #endif /* configUSE_IDLE_HOOK */
\r
3493 /* This conditional compilation should use inequality to 0, not equality
\r
3494 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3495 * user defined low power mode implementations require
\r
3496 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3497 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3499 TickType_t xExpectedIdleTime;
\r
3501 /* It is not desirable to suspend then resume the scheduler on
\r
3502 * each iteration of the idle task. Therefore, a preliminary
\r
3503 * test of the expected idle time is performed without the
\r
3504 * scheduler suspended. The result here is not necessarily
\r
3506 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3508 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3510 vTaskSuspendAll();
\r
3512 /* Now the scheduler is suspended, the expected idle
\r
3513 * time can be sampled again, and this time its value can
\r
3515 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3516 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3518 /* Define the following macro to set xExpectedIdleTime to 0
\r
3519 * if the application does not want
\r
3520 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3521 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3523 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3525 traceLOW_POWER_IDLE_BEGIN();
\r
3526 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3527 traceLOW_POWER_IDLE_END();
\r
3531 mtCOVERAGE_TEST_MARKER();
\r
3534 ( void ) xTaskResumeAll();
\r
3538 mtCOVERAGE_TEST_MARKER();
\r
3541 #endif /* configUSE_TICKLESS_IDLE */
\r
3544 /*-----------------------------------------------------------*/
\r
3546 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3548 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3550 /* The idle task exists in addition to the application tasks. */
\r
3551 const UBaseType_t uxNonApplicationTasks = 1;
\r
3552 eSleepModeStatus eReturn = eStandardSleep;
\r
3554 /* This function must be called from a critical section. */
\r
3556 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3558 /* A task was made ready while the scheduler was suspended. */
\r
3559 eReturn = eAbortSleep;
\r
3561 else if( xYieldPending != pdFALSE )
\r
3563 /* A yield was pended while the scheduler was suspended. */
\r
3564 eReturn = eAbortSleep;
\r
3566 else if( xPendedTicks != 0 )
\r
3568 /* A tick interrupt has already occurred but was held pending
\r
3569 * because the scheduler is suspended. */
\r
3570 eReturn = eAbortSleep;
\r
3574 /* If all the tasks are in the suspended list (which might mean they
\r
3575 * have an infinite block time rather than actually being suspended)
\r
3576 * then it is safe to turn all clocks off and just wait for external
\r
3578 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3580 eReturn = eNoTasksWaitingTimeout;
\r
3584 mtCOVERAGE_TEST_MARKER();
\r
3591 #endif /* configUSE_TICKLESS_IDLE */
\r
3592 /*-----------------------------------------------------------*/
\r
3594 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3596 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
\r
3597 BaseType_t xIndex,
\r
3602 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3604 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3605 configASSERT( pxTCB != NULL );
\r
3606 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3610 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3611 /*-----------------------------------------------------------*/
\r
3613 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3615 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
\r
3616 BaseType_t xIndex )
\r
3618 void * pvReturn = NULL;
\r
3621 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3623 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3624 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3634 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3635 /*-----------------------------------------------------------*/
\r
3637 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3639 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
\r
3640 const MemoryRegion_t * const xRegions )
\r
3644 /* If null is passed in here then we are modifying the MPU settings of
\r
3645 * the calling task. */
\r
3646 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3648 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3651 #endif /* portUSING_MPU_WRAPPERS */
\r
3652 /*-----------------------------------------------------------*/
\r
3654 static void prvInitialiseTaskLists( void )
\r
3656 UBaseType_t uxPriority;
\r
3658 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3660 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3663 vListInitialise( &xDelayedTaskList1 );
\r
3664 vListInitialise( &xDelayedTaskList2 );
\r
3665 vListInitialise( &xPendingReadyList );
\r
3667 #if ( INCLUDE_vTaskDelete == 1 )
\r
3669 vListInitialise( &xTasksWaitingTermination );
\r
3671 #endif /* INCLUDE_vTaskDelete */
\r
3673 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3675 vListInitialise( &xSuspendedTaskList );
\r
3677 #endif /* INCLUDE_vTaskSuspend */
\r
3679 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3681 pxDelayedTaskList = &xDelayedTaskList1;
\r
3682 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3684 /*-----------------------------------------------------------*/
\r
3686 static void prvCheckTasksWaitingTermination( void )
\r
3688 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3690 #if ( INCLUDE_vTaskDelete == 1 )
\r
3694 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3695 * being called too often in the idle task. */
\r
3696 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3698 taskENTER_CRITICAL();
\r
3700 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3701 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3702 --uxCurrentNumberOfTasks;
\r
3703 --uxDeletedTasksWaitingCleanUp;
\r
3705 taskEXIT_CRITICAL();
\r
3707 prvDeleteTCB( pxTCB );
\r
3710 #endif /* INCLUDE_vTaskDelete */
\r
3712 /*-----------------------------------------------------------*/
\r
3714 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3716 void vTaskGetInfo( TaskHandle_t xTask,
\r
3717 TaskStatus_t * pxTaskStatus,
\r
3718 BaseType_t xGetFreeStackSpace,
\r
3719 eTaskState eState )
\r
3723 /* xTask is NULL then get the state of the calling task. */
\r
3724 pxTCB = prvGetTCBFromHandle( xTask );
\r
3726 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3727 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
\r
3728 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3729 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3730 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3732 #if ( configUSE_MUTEXES == 1 )
\r
3734 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3738 pxTaskStatus->uxBasePriority = 0;
\r
3742 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3744 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3748 pxTaskStatus->ulRunTimeCounter = 0;
\r
3752 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3753 * value of eState passed into this function is eInvalid - otherwise the
\r
3754 * state is just set to whatever is passed in. */
\r
3755 if( eState != eInvalid )
\r
3757 if( pxTCB == pxCurrentTCB )
\r
3759 pxTaskStatus->eCurrentState = eRunning;
\r
3763 pxTaskStatus->eCurrentState = eState;
\r
3765 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3767 /* If the task is in the suspended list then there is a
\r
3768 * chance it is actually just blocked indefinitely - so really
\r
3769 * it should be reported as being in the Blocked state. */
\r
3770 if( eState == eSuspended )
\r
3772 vTaskSuspendAll();
\r
3774 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3776 pxTaskStatus->eCurrentState = eBlocked;
\r
3779 ( void ) xTaskResumeAll();
\r
3782 #endif /* INCLUDE_vTaskSuspend */
\r
3787 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3790 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3791 * parameter is provided to allow it to be skipped. */
\r
3792 if( xGetFreeStackSpace != pdFALSE )
\r
3794 #if ( portSTACK_GROWTH > 0 )
\r
3796 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3800 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3806 pxTaskStatus->usStackHighWaterMark = 0;
\r
3810 #endif /* configUSE_TRACE_FACILITY */
\r
3811 /*-----------------------------------------------------------*/
\r
3813 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3815 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
3817 eTaskState eState )
\r
3819 configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
\r
3820 UBaseType_t uxTask = 0;
\r
3822 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3824 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3826 /* Populate an TaskStatus_t structure within the
\r
3827 * pxTaskStatusArray array for each task that is referenced from
\r
3828 * pxList. See the definition of TaskStatus_t in task.h for the
\r
3829 * meaning of each TaskStatus_t structure member. */
\r
3832 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3833 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3835 } while( pxNextTCB != pxFirstTCB );
\r
3839 mtCOVERAGE_TEST_MARKER();
\r
3845 #endif /* configUSE_TRACE_FACILITY */
\r
3846 /*-----------------------------------------------------------*/
\r
3848 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3850 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3852 uint32_t ulCount = 0U;
\r
3854 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3856 pucStackByte -= portSTACK_GROWTH;
\r
3860 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3862 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3865 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3866 /*-----------------------------------------------------------*/
\r
3868 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3870 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3871 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3872 * user to determine the return type. It gets around the problem of the value
\r
3873 * overflowing on 8-bit types without breaking backward compatibility for
\r
3874 * applications that expect an 8-bit return type. */
\r
3875 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3878 uint8_t * pucEndOfStack;
\r
3879 configSTACK_DEPTH_TYPE uxReturn;
\r
3881 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3882 * the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3883 * allows the user to determine the return type. It gets around the
\r
3884 * problem of the value overflowing on 8-bit types without breaking
\r
3885 * backward compatibility for applications that expect an 8-bit return
\r
3888 pxTCB = prvGetTCBFromHandle( xTask );
\r
3890 #if portSTACK_GROWTH < 0
\r
3892 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3896 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3900 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3905 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3906 /*-----------------------------------------------------------*/
\r
3908 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3910 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3913 uint8_t * pucEndOfStack;
\r
3914 UBaseType_t uxReturn;
\r
3916 pxTCB = prvGetTCBFromHandle( xTask );
\r
3918 #if portSTACK_GROWTH < 0
\r
3920 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3924 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3928 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3933 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3934 /*-----------------------------------------------------------*/
\r
3936 #if ( INCLUDE_vTaskDelete == 1 )
\r
3938 static void prvDeleteTCB( TCB_t * pxTCB )
\r
3940 /* This call is required specifically for the TriCore port. It must be
\r
3941 * above the vPortFree() calls. The call is also used by ports/demos that
\r
3942 * want to allocate and clean RAM statically. */
\r
3943 portCLEAN_UP_TCB( pxTCB );
\r
3945 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3946 * to the task to free any memory allocated at the application level.
\r
3947 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3948 * for additional information. */
\r
3949 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3951 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3953 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3955 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3957 /* The task can only have been allocated dynamically - free both
\r
3958 * the stack and TCB. */
\r
3959 vPortFree( pxTCB->pxStack );
\r
3960 vPortFree( pxTCB );
\r
3962 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3964 /* The task could have been allocated statically or dynamically, so
\r
3965 * check what was statically allocated before trying to free the
\r
3967 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3969 /* Both the stack and TCB were allocated dynamically, so both
\r
3970 * must be freed. */
\r
3971 vPortFree( pxTCB->pxStack );
\r
3972 vPortFree( pxTCB );
\r
3974 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3976 /* Only the stack was statically allocated, so the TCB is the
\r
3977 * only memory that must be freed. */
\r
3978 vPortFree( pxTCB );
\r
3982 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3983 * nothing needs to be freed. */
\r
3984 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
3985 mtCOVERAGE_TEST_MARKER();
\r
3988 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3991 #endif /* INCLUDE_vTaskDelete */
\r
3992 /*-----------------------------------------------------------*/
\r
3994 static void prvResetNextTaskUnblockTime( void )
\r
3996 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
3998 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
3999 * the maximum possible value so it is extremely unlikely that the
\r
4000 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
4001 * there is an item in the delayed list. */
\r
4002 xNextTaskUnblockTime = portMAX_DELAY;
\r
4006 /* The new current delayed list is not empty, get the value of
\r
4007 * the item at the head of the delayed list. This is the time at
\r
4008 * which the task at the head of the delayed list should be removed
\r
4009 * from the Blocked state. */
\r
4010 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
4013 /*-----------------------------------------------------------*/
\r
4015 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
4017 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
4019 TaskHandle_t xReturn;
\r
4021 /* A critical section is not required as this is not called from
\r
4022 * an interrupt and the current TCB will always be the same for any
\r
4023 * individual execution thread. */
\r
4024 xReturn = pxCurrentTCB;
\r
4029 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
4030 /*-----------------------------------------------------------*/
\r
4032 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
4034 BaseType_t xTaskGetSchedulerState( void )
\r
4036 BaseType_t xReturn;
\r
4038 if( xSchedulerRunning == pdFALSE )
\r
4040 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4044 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4046 xReturn = taskSCHEDULER_RUNNING;
\r
4050 xReturn = taskSCHEDULER_SUSPENDED;
\r
4057 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4058 /*-----------------------------------------------------------*/
\r
4060 #if ( configUSE_MUTEXES == 1 )
\r
4062 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4064 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4065 BaseType_t xReturn = pdFALSE;
\r
4067 /* If the mutex was given back by an interrupt while the queue was
\r
4068 * locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4069 * needed as interrupts can no longer use mutexes? */
\r
4070 if( pxMutexHolder != NULL )
\r
4072 /* If the holder of the mutex has a priority below the priority of
\r
4073 * the task attempting to obtain the mutex then it will temporarily
\r
4074 * inherit the priority of the task attempting to obtain the mutex. */
\r
4075 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4077 /* Adjust the mutex holder state to account for its new
\r
4078 * priority. Only reset the event list item value if the value is
\r
4079 * not being used for anything else. */
\r
4080 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4082 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4086 mtCOVERAGE_TEST_MARKER();
\r
4089 /* If the task being modified is in the ready state it will need
\r
4090 * to be moved into a new list. */
\r
4091 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4093 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4095 /* It is known that the task is in its ready list so
\r
4096 * there is no need to check again and the port level
\r
4097 * reset macro can be called directly. */
\r
4098 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4102 mtCOVERAGE_TEST_MARKER();
\r
4105 /* Inherit the priority before being moved into the new list. */
\r
4106 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4107 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4111 /* Just inherit the priority. */
\r
4112 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4115 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4117 /* Inheritance occurred. */
\r
4122 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4124 /* The base priority of the mutex holder is lower than the
\r
4125 * priority of the task attempting to take the mutex, but the
\r
4126 * current priority of the mutex holder is not lower than the
\r
4127 * priority of the task attempting to take the mutex.
\r
4128 * Therefore the mutex holder must have already inherited a
\r
4129 * priority, but inheritance would have occurred if that had
\r
4130 * not been the case. */
\r
4135 mtCOVERAGE_TEST_MARKER();
\r
4141 mtCOVERAGE_TEST_MARKER();
\r
4147 #endif /* configUSE_MUTEXES */
\r
4148 /*-----------------------------------------------------------*/
\r
4150 #if ( configUSE_MUTEXES == 1 )
\r
4152 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4154 TCB_t * const pxTCB = pxMutexHolder;
\r
4155 BaseType_t xReturn = pdFALSE;
\r
4157 if( pxMutexHolder != NULL )
\r
4159 /* A task can only have an inherited priority if it holds the mutex.
\r
4160 * If the mutex is held by a task then it cannot be given from an
\r
4161 * interrupt, and if a mutex is given by the holding task then it must
\r
4162 * be the running state task. */
\r
4163 configASSERT( pxTCB == pxCurrentTCB );
\r
4164 configASSERT( pxTCB->uxMutexesHeld );
\r
4165 ( pxTCB->uxMutexesHeld )--;
\r
4167 /* Has the holder of the mutex inherited the priority of another
\r
4169 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4171 /* Only disinherit if no other mutexes are held. */
\r
4172 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4174 /* A task can only have an inherited priority if it holds
\r
4175 * the mutex. If the mutex is held by a task then it cannot be
\r
4176 * given from an interrupt, and if a mutex is given by the
\r
4177 * holding task then it must be the running state task. Remove
\r
4178 * the holding task from the ready list. */
\r
4179 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4181 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4185 mtCOVERAGE_TEST_MARKER();
\r
4188 /* Disinherit the priority before adding the task into the
\r
4189 * new ready list. */
\r
4190 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4191 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4193 /* Reset the event list item value. It cannot be in use for
\r
4194 * any other purpose if this task is running, and it must be
\r
4195 * running to give back the mutex. */
\r
4196 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4197 prvAddTaskToReadyList( pxTCB );
\r
4199 /* Return true to indicate that a context switch is required.
\r
4200 * This is only actually required in the corner case whereby
\r
4201 * multiple mutexes were held and the mutexes were given back
\r
4202 * in an order different to that in which they were taken.
\r
4203 * If a context switch did not occur when the first mutex was
\r
4204 * returned, even if a task was waiting on it, then a context
\r
4205 * switch should occur when the last mutex is returned whether
\r
4206 * a task is waiting on it or not. */
\r
4211 mtCOVERAGE_TEST_MARKER();
\r
4216 mtCOVERAGE_TEST_MARKER();
\r
4221 mtCOVERAGE_TEST_MARKER();
\r
4227 #endif /* configUSE_MUTEXES */
\r
4228 /*-----------------------------------------------------------*/
\r
4230 #if ( configUSE_MUTEXES == 1 )
\r
4232 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
\r
4233 UBaseType_t uxHighestPriorityWaitingTask )
\r
4235 TCB_t * const pxTCB = pxMutexHolder;
\r
4236 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4237 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4239 if( pxMutexHolder != NULL )
\r
4241 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4243 configASSERT( pxTCB->uxMutexesHeld );
\r
4245 /* Determine the priority to which the priority of the task that
\r
4246 * holds the mutex should be set. This will be the greater of the
\r
4247 * holding task's base priority and the priority of the highest
\r
4248 * priority task that is waiting to obtain the mutex. */
\r
4249 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4251 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4255 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4258 /* Does the priority need to change? */
\r
4259 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4261 /* Only disinherit if no other mutexes are held. This is a
\r
4262 * simplification in the priority inheritance implementation. If
\r
4263 * the task that holds the mutex is also holding other mutexes then
\r
4264 * the other mutexes may have caused the priority inheritance. */
\r
4265 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4267 /* If a task has timed out because it already holds the
\r
4268 * mutex it was trying to obtain then it cannot of inherited
\r
4269 * its own priority. */
\r
4270 configASSERT( pxTCB != pxCurrentTCB );
\r
4272 /* Disinherit the priority, remembering the previous
\r
4273 * priority to facilitate determining the subject task's
\r
4275 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
\r
4276 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4277 pxTCB->uxPriority = uxPriorityToUse;
\r
4279 /* Only reset the event list item value if the value is not
\r
4280 * being used for anything else. */
\r
4281 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4283 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4287 mtCOVERAGE_TEST_MARKER();
\r
4290 /* If the running task is not the task that holds the mutex
\r
4291 * then the task that holds the mutex could be in either the
\r
4292 * Ready, Blocked or Suspended states. Only remove the task
\r
4293 * from its current state list if it is in the Ready state as
\r
4294 * the task's priority is going to change and there is one
\r
4295 * Ready list per priority. */
\r
4296 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4298 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4300 /* It is known that the task is in its ready list so
\r
4301 * there is no need to check again and the port level
\r
4302 * reset macro can be called directly. */
\r
4303 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4307 mtCOVERAGE_TEST_MARKER();
\r
4310 prvAddTaskToReadyList( pxTCB );
\r
4314 mtCOVERAGE_TEST_MARKER();
\r
4319 mtCOVERAGE_TEST_MARKER();
\r
4324 mtCOVERAGE_TEST_MARKER();
\r
4329 mtCOVERAGE_TEST_MARKER();
\r
4333 #endif /* configUSE_MUTEXES */
\r
4334 /*-----------------------------------------------------------*/
\r
4336 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4338 void vTaskEnterCritical( void )
\r
4340 portDISABLE_INTERRUPTS();
\r
4342 if( xSchedulerRunning != pdFALSE )
\r
4344 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4346 /* This is not the interrupt safe version of the enter critical
\r
4347 * function so assert() if it is being called from an interrupt
\r
4348 * context. Only API functions that end in "FromISR" can be used in an
\r
4349 * interrupt. Only assert if the critical nesting count is 1 to
\r
4350 * protect against recursive calls if the assert function also uses a
\r
4351 * critical section. */
\r
4352 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4354 portASSERT_IF_IN_ISR();
\r
4359 mtCOVERAGE_TEST_MARKER();
\r
4363 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4364 /*-----------------------------------------------------------*/
\r
4366 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4368 void vTaskExitCritical( void )
\r
4370 if( xSchedulerRunning != pdFALSE )
\r
4372 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4374 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4376 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4378 portENABLE_INTERRUPTS();
\r
4382 mtCOVERAGE_TEST_MARKER();
\r
4387 mtCOVERAGE_TEST_MARKER();
\r
4392 mtCOVERAGE_TEST_MARKER();
\r
4396 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4397 /*-----------------------------------------------------------*/
\r
4399 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4401 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
4402 const char * pcTaskName )
\r
4406 /* Start by copying the entire string. */
\r
4407 strcpy( pcBuffer, pcTaskName );
\r
4409 /* Pad the end of the string with spaces to ensure columns line up when
\r
4411 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4413 pcBuffer[ x ] = ' ';
\r
4417 pcBuffer[ x ] = ( char ) 0x00;
\r
4419 /* Return the new end of string. */
\r
4420 return &( pcBuffer[ x ] );
\r
4423 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4424 /*-----------------------------------------------------------*/
\r
4426 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4428 void vTaskList( char * pcWriteBuffer )
\r
4430 TaskStatus_t * pxTaskStatusArray;
\r
4431 UBaseType_t uxArraySize, x;
\r
4437 * This function is provided for convenience only, and is used by many
\r
4438 * of the demo applications. Do not consider it to be part of the
\r
4441 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4442 * uxTaskGetSystemState() output into a human readable table that
\r
4443 * displays task names, states and stack usage.
\r
4445 * vTaskList() has a dependency on the sprintf() C library function that
\r
4446 * might bloat the code size, use a lot of stack, and provide different
\r
4447 * results on different platforms. An alternative, tiny, third party,
\r
4448 * and limited functionality implementation of sprintf() is provided in
\r
4449 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4450 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4451 * snprintf() implementation!).
\r
4453 * It is recommended that production systems call uxTaskGetSystemState()
\r
4454 * directly to get access to raw stats data, rather than indirectly
\r
4455 * through a call to vTaskList().
\r
4459 /* Make sure the write buffer does not contain a string. */
\r
4460 *pcWriteBuffer = ( char ) 0x00;
\r
4462 /* Take a snapshot of the number of tasks in case it changes while this
\r
4463 * function is executing. */
\r
4464 uxArraySize = uxCurrentNumberOfTasks;
\r
4466 /* Allocate an array index for each task. NOTE! if
\r
4467 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4468 * equate to NULL. */
\r
4469 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4471 if( pxTaskStatusArray != NULL )
\r
4473 /* Generate the (binary) data. */
\r
4474 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4476 /* Create a human readable table from the binary data. */
\r
4477 for( x = 0; x < uxArraySize; x++ )
\r
4479 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4482 cStatus = tskRUNNING_CHAR;
\r
4486 cStatus = tskREADY_CHAR;
\r
4490 cStatus = tskBLOCKED_CHAR;
\r
4494 cStatus = tskSUSPENDED_CHAR;
\r
4498 cStatus = tskDELETED_CHAR;
\r
4501 case eInvalid: /* Fall through. */
\r
4502 default: /* Should not get here, but it is included
\r
4503 * to prevent static checking errors. */
\r
4504 cStatus = ( char ) 0x00;
\r
4508 /* Write the task name to the string, padding with spaces so it
\r
4509 * can be printed in tabular form more easily. */
\r
4510 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4512 /* Write the rest of the string. */
\r
4513 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4514 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4517 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4518 * is 0 then vPortFree() will be #defined to nothing. */
\r
4519 vPortFree( pxTaskStatusArray );
\r
4523 mtCOVERAGE_TEST_MARKER();
\r
4527 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4528 /*----------------------------------------------------------*/
\r
4530 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4532 void vTaskGetRunTimeStats( char * pcWriteBuffer )
\r
4534 TaskStatus_t * pxTaskStatusArray;
\r
4535 UBaseType_t uxArraySize, x;
\r
4536 uint32_t ulTotalTime, ulStatsAsPercentage;
\r
4538 #if ( configUSE_TRACE_FACILITY != 1 )
\r
4540 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4547 * This function is provided for convenience only, and is used by many
\r
4548 * of the demo applications. Do not consider it to be part of the
\r
4551 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4552 * of the uxTaskGetSystemState() output into a human readable table that
\r
4553 * displays the amount of time each task has spent in the Running state
\r
4554 * in both absolute and percentage terms.
\r
4556 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4557 * function that might bloat the code size, use a lot of stack, and
\r
4558 * provide different results on different platforms. An alternative,
\r
4559 * tiny, third party, and limited functionality implementation of
\r
4560 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4561 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4562 * a full snprintf() implementation!).
\r
4564 * It is recommended that production systems call uxTaskGetSystemState()
\r
4565 * directly to get access to raw stats data, rather than indirectly
\r
4566 * through a call to vTaskGetRunTimeStats().
\r
4569 /* Make sure the write buffer does not contain a string. */
\r
4570 *pcWriteBuffer = ( char ) 0x00;
\r
4572 /* Take a snapshot of the number of tasks in case it changes while this
\r
4573 * function is executing. */
\r
4574 uxArraySize = uxCurrentNumberOfTasks;
\r
4576 /* Allocate an array index for each task. NOTE! If
\r
4577 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4578 * equate to NULL. */
\r
4579 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4581 if( pxTaskStatusArray != NULL )
\r
4583 /* Generate the (binary) data. */
\r
4584 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4586 /* For percentage calculations. */
\r
4587 ulTotalTime /= 100UL;
\r
4589 /* Avoid divide by zero errors. */
\r
4590 if( ulTotalTime > 0UL )
\r
4592 /* Create a human readable table from the binary data. */
\r
4593 for( x = 0; x < uxArraySize; x++ )
\r
4595 /* What percentage of the total run time has the task used?
\r
4596 * This will always be rounded down to the nearest integer.
\r
4597 * ulTotalRunTimeDiv100 has already been divided by 100. */
\r
4598 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4600 /* Write the task name to the string, padding with
\r
4601 * spaces so it can be printed in tabular form more
\r
4603 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4605 if( ulStatsAsPercentage > 0UL )
\r
4607 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4609 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4613 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4614 * printf() library can be used. */
\r
4615 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4621 /* If the percentage is zero here then the task has
\r
4622 * consumed less than 1% of the total run time. */
\r
4623 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4625 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4629 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4630 * printf() library can be used. */
\r
4631 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4636 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4641 mtCOVERAGE_TEST_MARKER();
\r
4644 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4645 * is 0 then vPortFree() will be #defined to nothing. */
\r
4646 vPortFree( pxTaskStatusArray );
\r
4650 mtCOVERAGE_TEST_MARKER();
\r
4654 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4655 /*-----------------------------------------------------------*/
\r
4657 TickType_t uxTaskResetEventItemValue( void )
\r
4659 TickType_t uxReturn;
\r
4661 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4663 /* Reset the event list item to its normal value - so it can be used with
\r
4664 * queues and semaphores. */
\r
4665 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4669 /*-----------------------------------------------------------*/
\r
4671 #if ( configUSE_MUTEXES == 1 )
\r
4673 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4675 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4676 * then pxCurrentTCB will be NULL. */
\r
4677 if( pxCurrentTCB != NULL )
\r
4679 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4682 return pxCurrentTCB;
\r
4685 #endif /* configUSE_MUTEXES */
\r
4686 /*-----------------------------------------------------------*/
\r
4688 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4690 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
\r
4691 BaseType_t xClearCountOnExit,
\r
4692 TickType_t xTicksToWait )
\r
4694 uint32_t ulReturn;
\r
4696 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4698 taskENTER_CRITICAL();
\r
4700 /* Only block if the notification count is not already non-zero. */
\r
4701 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
\r
4703 /* Mark this task as waiting for a notification. */
\r
4704 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4706 if( xTicksToWait > ( TickType_t ) 0 )
\r
4708 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4709 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
\r
4711 /* All ports are written to allow a yield in a critical
\r
4712 * section (some will yield immediately, others wait until the
\r
4713 * critical section exits) - but it is not something that
\r
4714 * application code should ever do. */
\r
4715 portYIELD_WITHIN_API();
\r
4719 mtCOVERAGE_TEST_MARKER();
\r
4724 mtCOVERAGE_TEST_MARKER();
\r
4727 taskEXIT_CRITICAL();
\r
4729 taskENTER_CRITICAL();
\r
4731 traceTASK_NOTIFY_TAKE( uxIndexToWait );
\r
4732 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4734 if( ulReturn != 0UL )
\r
4736 if( xClearCountOnExit != pdFALSE )
\r
4738 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
\r
4742 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
\r
4747 mtCOVERAGE_TEST_MARKER();
\r
4750 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4752 taskEXIT_CRITICAL();
\r
4757 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4758 /*-----------------------------------------------------------*/
\r
4760 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4762 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
\r
4763 uint32_t ulBitsToClearOnEntry,
\r
4764 uint32_t ulBitsToClearOnExit,
\r
4765 uint32_t * pulNotificationValue,
\r
4766 TickType_t xTicksToWait )
\r
4768 BaseType_t xReturn;
\r
4770 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4772 taskENTER_CRITICAL();
\r
4774 /* Only block if a notification is not already pending. */
\r
4775 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4777 /* Clear bits in the task's notification value as bits may get
\r
4778 * set by the notifying task or interrupt. This can be used to
\r
4779 * clear the value to zero. */
\r
4780 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
\r
4782 /* Mark this task as waiting for a notification. */
\r
4783 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4785 if( xTicksToWait > ( TickType_t ) 0 )
\r
4787 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4788 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
\r
4790 /* All ports are written to allow a yield in a critical
\r
4791 * section (some will yield immediately, others wait until the
\r
4792 * critical section exits) - but it is not something that
\r
4793 * application code should ever do. */
\r
4794 portYIELD_WITHIN_API();
\r
4798 mtCOVERAGE_TEST_MARKER();
\r
4803 mtCOVERAGE_TEST_MARKER();
\r
4806 taskEXIT_CRITICAL();
\r
4808 taskENTER_CRITICAL();
\r
4810 traceTASK_NOTIFY_WAIT( uxIndexToWait );
\r
4812 if( pulNotificationValue != NULL )
\r
4814 /* Output the current notification value, which may or may not
\r
4815 * have changed. */
\r
4816 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4819 /* If ucNotifyValue is set then either the task never entered the
\r
4820 * blocked state (because a notification was already pending) or the
\r
4821 * task unblocked because of a notification. Otherwise the task
\r
4822 * unblocked because of a timeout. */
\r
4823 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4825 /* A notification was not received. */
\r
4826 xReturn = pdFALSE;
\r
4830 /* A notification was already pending or a notification was
\r
4831 * received while the task was waiting. */
\r
4832 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
\r
4836 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4838 taskEXIT_CRITICAL();
\r
4843 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4844 /*-----------------------------------------------------------*/
\r
4846 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4848 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
\r
4849 UBaseType_t uxIndexToNotify,
\r
4851 eNotifyAction eAction,
\r
4852 uint32_t * pulPreviousNotificationValue )
\r
4855 BaseType_t xReturn = pdPASS;
\r
4856 uint8_t ucOriginalNotifyState;
\r
4858 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4859 configASSERT( xTaskToNotify );
\r
4860 pxTCB = xTaskToNotify;
\r
4862 taskENTER_CRITICAL();
\r
4864 if( pulPreviousNotificationValue != NULL )
\r
4866 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
4869 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
4871 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
4876 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
4880 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
4883 case eSetValueWithOverwrite:
\r
4884 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4887 case eSetValueWithoutOverwrite:
\r
4889 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4891 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4895 /* The value could not be written to the task. */
\r
4903 /* The task is being notified without its notify value being
\r
4909 /* Should not get here if all enums are handled.
\r
4910 * Artificially force an assert by testing a value the
\r
4911 * compiler can't assume is const. */
\r
4912 configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL );
\r
4917 traceTASK_NOTIFY( uxIndexToNotify );
\r
4919 /* If the task is in the blocked state specifically to wait for a
\r
4920 * notification then unblock it now. */
\r
4921 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4923 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4924 prvAddTaskToReadyList( pxTCB );
\r
4926 /* The task should not have been on an event list. */
\r
4927 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4929 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
4931 /* If a task is blocked waiting for a notification then
\r
4932 * xNextTaskUnblockTime might be set to the blocked task's time
\r
4933 * out time. If the task is unblocked for a reason other than
\r
4934 * a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4935 * because it will automatically get reset to a new value when
\r
4936 * the tick count equals xNextTaskUnblockTime. However if
\r
4937 * tickless idling is used it might be more important to enter
\r
4938 * sleep mode at the earliest possible time - so reset
\r
4939 * xNextTaskUnblockTime here to ensure it is updated at the
\r
4940 * earliest possible time. */
\r
4941 prvResetNextTaskUnblockTime();
\r
4945 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4947 /* The notified task has a priority above the currently
\r
4948 * executing task so a yield is required. */
\r
4949 taskYIELD_IF_USING_PREEMPTION();
\r
4953 mtCOVERAGE_TEST_MARKER();
\r
4958 mtCOVERAGE_TEST_MARKER();
\r
4961 taskEXIT_CRITICAL();
\r
4966 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4967 /*-----------------------------------------------------------*/
\r
4969 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4971 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
\r
4972 UBaseType_t uxIndexToNotify,
\r
4974 eNotifyAction eAction,
\r
4975 uint32_t * pulPreviousNotificationValue,
\r
4976 BaseType_t * pxHigherPriorityTaskWoken )
\r
4979 uint8_t ucOriginalNotifyState;
\r
4980 BaseType_t xReturn = pdPASS;
\r
4981 UBaseType_t uxSavedInterruptStatus;
\r
4983 configASSERT( xTaskToNotify );
\r
4984 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4986 /* RTOS ports that support interrupt nesting have the concept of a
\r
4987 * maximum system call (or maximum API call) interrupt priority.
\r
4988 * Interrupts that are above the maximum system call priority are keep
\r
4989 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
4990 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4991 * is defined in FreeRTOSConfig.h then
\r
4992 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4993 * failure if a FreeRTOS API function is called from an interrupt that has
\r
4994 * been assigned a priority above the configured maximum system call
\r
4995 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
4996 * from interrupts that have been assigned a priority at or (logically)
\r
4997 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
4998 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
4999 * simple as possible. More information (albeit Cortex-M specific) is
\r
5000 * provided on the following link:
\r
5001 * http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
5002 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5004 pxTCB = xTaskToNotify;
\r
5006 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5008 if( pulPreviousNotificationValue != NULL )
\r
5010 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
5013 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5014 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5019 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
5023 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5026 case eSetValueWithOverwrite:
\r
5027 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5030 case eSetValueWithoutOverwrite:
\r
5032 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
5034 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5038 /* The value could not be written to the task. */
\r
5046 /* The task is being notified without its notify value being
\r
5052 /* Should not get here if all enums are handled.
\r
5053 * Artificially force an assert by testing a value the
\r
5054 * compiler can't assume is const. */
\r
5055 configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL );
\r
5059 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
\r
5061 /* If the task is in the blocked state specifically to wait for a
\r
5062 * notification then unblock it now. */
\r
5063 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5065 /* The task should not have been on an event list. */
\r
5066 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5068 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5070 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
5071 prvAddTaskToReadyList( pxTCB );
\r
5075 /* The delayed and ready lists cannot be accessed, so hold
\r
5076 * this task pending until the scheduler is resumed. */
\r
5077 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5080 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5082 /* The notified task has a priority above the currently
\r
5083 * executing task so a yield is required. */
\r
5084 if( pxHigherPriorityTaskWoken != NULL )
\r
5086 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5089 /* Mark that a yield is pending in case the user is not
\r
5090 * using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5091 * safe FreeRTOS function. */
\r
5092 xYieldPending = pdTRUE;
\r
5096 mtCOVERAGE_TEST_MARKER();
\r
5100 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5105 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5106 /*-----------------------------------------------------------*/
\r
5108 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5110 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
\r
5111 UBaseType_t uxIndexToNotify,
\r
5112 BaseType_t * pxHigherPriorityTaskWoken )
\r
5115 uint8_t ucOriginalNotifyState;
\r
5116 UBaseType_t uxSavedInterruptStatus;
\r
5118 configASSERT( xTaskToNotify );
\r
5119 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5121 /* RTOS ports that support interrupt nesting have the concept of a
\r
5122 * maximum system call (or maximum API call) interrupt priority.
\r
5123 * Interrupts that are above the maximum system call priority are keep
\r
5124 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5125 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5126 * is defined in FreeRTOSConfig.h then
\r
5127 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5128 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5129 * been assigned a priority above the configured maximum system call
\r
5130 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5131 * from interrupts that have been assigned a priority at or (logically)
\r
5132 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5133 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5134 * simple as possible. More information (albeit Cortex-M specific) is
\r
5135 * provided on the following link:
\r
5136 * http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
5137 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5139 pxTCB = xTaskToNotify;
\r
5141 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5143 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5144 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5146 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5148 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5150 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
\r
5152 /* If the task is in the blocked state specifically to wait for a
\r
5153 * notification then unblock it now. */
\r
5154 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5156 /* The task should not have been on an event list. */
\r
5157 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5159 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5161 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
5162 prvAddTaskToReadyList( pxTCB );
\r
5166 /* The delayed and ready lists cannot be accessed, so hold
\r
5167 * this task pending until the scheduler is resumed. */
\r
5168 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5171 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5173 /* The notified task has a priority above the currently
\r
5174 * executing task so a yield is required. */
\r
5175 if( pxHigherPriorityTaskWoken != NULL )
\r
5177 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5180 /* Mark that a yield is pending in case the user is not
\r
5181 * using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5182 * safe FreeRTOS function. */
\r
5183 xYieldPending = pdTRUE;
\r
5187 mtCOVERAGE_TEST_MARKER();
\r
5191 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5194 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5195 /*-----------------------------------------------------------*/
\r
5197 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5199 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
\r
5200 UBaseType_t uxIndexToClear )
\r
5203 BaseType_t xReturn;
\r
5205 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5207 /* If null is passed in here then it is the calling task that is having
\r
5208 * its notification state cleared. */
\r
5209 pxTCB = prvGetTCBFromHandle( xTask );
\r
5211 taskENTER_CRITICAL();
\r
5213 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
\r
5215 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
\r
5223 taskEXIT_CRITICAL();
\r
5228 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5229 /*-----------------------------------------------------------*/
\r
5231 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5233 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
\r
5234 UBaseType_t uxIndexToClear,
\r
5235 uint32_t ulBitsToClear )
\r
5238 uint32_t ulReturn;
\r
5240 /* If null is passed in here then it is the calling task that is having
\r
5241 * its notification state cleared. */
\r
5242 pxTCB = prvGetTCBFromHandle( xTask );
\r
5244 taskENTER_CRITICAL();
\r
5246 /* Return the notification as it was before the bits were cleared,
\r
5247 * then clear the bit mask. */
\r
5248 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
\r
5249 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
\r
5251 taskEXIT_CRITICAL();
\r
5256 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5257 /*-----------------------------------------------------------*/
\r
5259 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5261 uint32_t ulTaskGetIdleRunTimeCounter( void )
\r
5263 return xIdleTaskHandle->ulRunTimeCounter;
\r
5267 /*-----------------------------------------------------------*/
\r
5269 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
5270 const BaseType_t xCanBlockIndefinitely )
\r
5272 TickType_t xTimeToWake;
\r
5273 const TickType_t xConstTickCount = xTickCount;
\r
5275 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
5277 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5278 * reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5279 * when the task leaves the Blocked state. */
\r
5280 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5284 /* Remove the task from the ready list before adding it to the blocked list
\r
5285 * as the same list item is used for both lists. */
\r
5286 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5288 /* The current task must be in a ready list, so there is no need to
\r
5289 * check, and the port reset macro can be called directly. */
\r
5290 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5294 mtCOVERAGE_TEST_MARKER();
\r
5297 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5299 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5301 /* Add the task to the suspended task list instead of a delayed task
\r
5302 * list to ensure it is not woken by a timing event. It will block
\r
5303 * indefinitely. */
\r
5304 vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5308 /* Calculate the time at which the task should be woken if the event
\r
5309 * does not occur. This may overflow but this doesn't matter, the
\r
5310 * kernel will manage it correctly. */
\r
5311 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5313 /* The list item will be inserted in wake time order. */
\r
5314 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5316 if( xTimeToWake < xConstTickCount )
\r
5318 /* Wake time has overflowed. Place this item in the overflow
\r
5320 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5324 /* The wake time has not overflowed, so the current block list
\r
5326 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5328 /* If the task entering the blocked state was placed at the
\r
5329 * head of the list of blocked tasks then xNextTaskUnblockTime
\r
5330 * needs to be updated too. */
\r
5331 if( xTimeToWake < xNextTaskUnblockTime )
\r
5333 xNextTaskUnblockTime = xTimeToWake;
\r
5337 mtCOVERAGE_TEST_MARKER();
\r
5342 #else /* INCLUDE_vTaskSuspend */
\r
5344 /* Calculate the time at which the task should be woken if the event
\r
5345 * does not occur. This may overflow but this doesn't matter, the kernel
\r
5346 * will manage it correctly. */
\r
5347 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5349 /* The list item will be inserted in wake time order. */
\r
5350 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5352 if( xTimeToWake < xConstTickCount )
\r
5354 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5355 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5359 /* The wake time has not overflowed, so the current block list is used. */
\r
5360 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5362 /* If the task entering the blocked state was placed at the head of the
\r
5363 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5365 if( xTimeToWake < xNextTaskUnblockTime )
\r
5367 xNextTaskUnblockTime = xTimeToWake;
\r
5371 mtCOVERAGE_TEST_MARKER();
\r
5375 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5376 ( void ) xCanBlockIndefinitely;
\r
5378 #endif /* INCLUDE_vTaskSuspend */
\r
5381 /* Code below here allows additional code to be inserted into this source file,
\r
5382 * especially where access to file scope functions and data is needed (for example
\r
5383 * when performing module tests). */
\r
5385 #ifdef FREERTOS_MODULE_TEST
\r
5386 #include "tasks_test_access_functions.h"
\r
5390 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5392 #include "freertos_tasks_c_additions.h"
\r
5394 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5395 static void freertos_tasks_c_additions_init( void )
\r
5397 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r
5401 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
\r