2 * FreeRTOS Kernel V10.4.3
\r
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * https://www.FreeRTOS.org
\r
23 * https://github.com/FreeRTOS
\r
30 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
31 * all the API functions to use the MPU wrappers. That should only be done when
\r
32 * task.h is included from an application file. */
\r
33 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
35 #include "FreeRTOS.h"
\r
39 #if ( configUSE_CO_ROUTINES == 1 )
\r
40 #include "croutine.h"
\r
43 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
44 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
45 * for the header files above, but not in this file, in order to generate the
\r
46 * correct privileged Vs unprivileged linkage and placement. */
\r
47 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Constants used with the cRxLock and cTxLock structure members. */
\r
51 #define queueUNLOCKED ( ( int8_t ) -1 )
\r
52 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
\r
53 #define queueINT8_MAX ( ( int8_t ) 127 )
\r
55 /* When the Queue_t structure is used to represent a base queue its pcHead and
\r
56 * pcTail members are used as pointers into the queue storage area. When the
\r
57 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
\r
58 * not necessary, and the pcHead pointer is set to NULL to indicate that the
\r
59 * structure instead holds a pointer to the mutex holder (if any). Map alternative
\r
60 * names to the pcHead and structure member to ensure the readability of the code
\r
61 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
\r
62 * a union as their usage is mutually exclusive dependent on what the queue is
\r
63 * being used for. */
\r
64 #define uxQueueType pcHead
\r
65 #define queueQUEUE_IS_MUTEX NULL
\r
67 typedef struct QueuePointers
\r
69 int8_t * pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
\r
70 int8_t * pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
\r
73 typedef struct SemaphoreData
\r
75 TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex. */
\r
76 UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
\r
79 /* Semaphores do not actually store or copy data, so have an item size of
\r
81 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
\r
82 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
\r
84 #if ( configUSE_PREEMPTION == 0 )
\r
86 /* If the cooperative scheduler is being used then a yield should not be
\r
87 * performed just because a higher priority task has been woken. */
\r
88 #define queueYIELD_IF_USING_PREEMPTION()
\r
90 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
94 * Definition of the queue used by the scheduler.
\r
95 * Items are queued by copy, not reference. See the following link for the
\r
96 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
\r
98 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
100 int8_t * pcHead; /*< Points to the beginning of the queue storage area. */
\r
101 int8_t * pcWriteTo; /*< Points to the free next place in the storage area. */
\r
105 QueuePointers_t xQueue; /*< Data required exclusively when this structure is used as a queue. */
\r
106 SemaphoreData_t xSemaphore; /*< Data required exclusively when this structure is used as a semaphore. */
\r
109 List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
\r
110 List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
\r
112 volatile UBaseType_t uxMessagesWaiting; /*< The number of items currently in the queue. */
\r
113 UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
\r
114 UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
\r
116 volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
117 volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
119 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
120 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
\r
123 #if ( configUSE_QUEUE_SETS == 1 )
\r
124 struct QueueDefinition * pxQueueSetContainer;
\r
127 #if ( configUSE_TRACE_FACILITY == 1 )
\r
128 UBaseType_t uxQueueNumber;
\r
129 uint8_t ucQueueType;
\r
133 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
\r
134 * name below to enable the use of older kernel aware debuggers. */
\r
135 typedef xQUEUE Queue_t;
\r
137 /*-----------------------------------------------------------*/
\r
140 * The queue registry is just a means for kernel aware debuggers to locate
\r
141 * queue structures. It has no other purpose so is an optional component.
\r
143 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
145 /* The type stored within the queue registry array. This allows a name
\r
146 * to be assigned to each queue making kernel aware debugging a little
\r
147 * more user friendly. */
\r
148 typedef struct QUEUE_REGISTRY_ITEM
\r
150 const char * pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
151 QueueHandle_t xHandle;
\r
152 } xQueueRegistryItem;
\r
154 /* The old xQueueRegistryItem name is maintained above then typedefed to the
\r
155 * new xQueueRegistryItem name below to enable the use of older kernel aware
\r
157 typedef xQueueRegistryItem QueueRegistryItem_t;
\r
159 /* The queue registry is simply an array of QueueRegistryItem_t structures.
\r
160 * The pcQueueName member of a structure being NULL is indicative of the
\r
161 * array position being vacant. */
\r
162 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
\r
164 #endif /* configQUEUE_REGISTRY_SIZE */
\r
167 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
\r
168 * prevent an ISR from adding or removing items to the queue, but does prevent
\r
169 * an ISR from removing tasks from the queue event lists. If an ISR finds a
\r
170 * queue is locked it will instead increment the appropriate queue lock count
\r
171 * to indicate that a task may require unblocking. When the queue in unlocked
\r
172 * these lock counts are inspected, and the appropriate action taken.
\r
174 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
177 * Uses a critical section to determine if there is any data in a queue.
\r
179 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
\r
181 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
184 * Uses a critical section to determine if there is any space in a queue.
\r
186 * @return pdTRUE if there is no space, otherwise pdFALSE;
\r
188 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
191 * Copies an item into the queue, either at the front of the queue or the
\r
192 * back of the queue.
\r
194 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
195 const void * pvItemToQueue,
\r
196 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
\r
199 * Copies an item out of a queue.
\r
201 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
202 void * const pvBuffer ) PRIVILEGED_FUNCTION;
\r
204 #if ( configUSE_QUEUE_SETS == 1 )
\r
207 * Checks to see if a queue is a member of a queue set, and if so, notifies
\r
208 * the queue set that the queue contains data.
\r
210 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
214 * Called after a Queue_t structure has been allocated either statically or
\r
215 * dynamically to fill in the structure's members.
\r
217 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
218 const UBaseType_t uxItemSize,
\r
219 uint8_t * pucQueueStorage,
\r
220 const uint8_t ucQueueType,
\r
221 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
224 * Mutexes are a special type of queue. When a mutex is created, first the
\r
225 * queue is created, then prvInitialiseMutex() is called to configure the queue
\r
228 #if ( configUSE_MUTEXES == 1 )
\r
229 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
232 #if ( configUSE_MUTEXES == 1 )
\r
235 * If a task waiting for a mutex causes the mutex holder to inherit a
\r
236 * priority, but the waiting task times out, then the holder should
\r
237 * disinherit the priority - but only down to the highest priority of any
\r
238 * other tasks that are waiting for the same mutex. This function returns
\r
241 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
243 /*-----------------------------------------------------------*/
\r
246 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
\r
247 * accessing the queue event lists.
\r
249 #define prvLockQueue( pxQueue ) \
\r
250 taskENTER_CRITICAL(); \
\r
252 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
\r
254 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
\r
256 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
\r
258 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
\r
261 taskEXIT_CRITICAL()
\r
262 /*-----------------------------------------------------------*/
\r
264 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
\r
265 BaseType_t xNewQueue )
\r
267 Queue_t * const pxQueue = xQueue;
\r
269 configASSERT( pxQueue );
\r
271 taskENTER_CRITICAL();
\r
273 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
274 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
\r
275 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
276 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
277 pxQueue->cRxLock = queueUNLOCKED;
\r
278 pxQueue->cTxLock = queueUNLOCKED;
\r
280 if( xNewQueue == pdFALSE )
\r
282 /* If there are tasks blocked waiting to read from the queue, then
\r
283 * the tasks will remain blocked as after this function exits the queue
\r
284 * will still be empty. If there are tasks blocked waiting to write to
\r
285 * the queue, then one should be unblocked as after this function exits
\r
286 * it will be possible to write to it. */
\r
287 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
289 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
291 queueYIELD_IF_USING_PREEMPTION();
\r
295 mtCOVERAGE_TEST_MARKER();
\r
300 mtCOVERAGE_TEST_MARKER();
\r
305 /* Ensure the event queues start in the correct state. */
\r
306 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
\r
307 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
\r
310 taskEXIT_CRITICAL();
\r
312 /* A value is returned for calling semantic consistency with previous
\r
316 /*-----------------------------------------------------------*/
\r
318 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
320 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
\r
321 const UBaseType_t uxItemSize,
\r
322 uint8_t * pucQueueStorage,
\r
323 StaticQueue_t * pxStaticQueue,
\r
324 const uint8_t ucQueueType )
\r
326 Queue_t * pxNewQueue;
\r
328 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
\r
330 /* The StaticQueue_t structure and the queue storage area must be
\r
332 configASSERT( pxStaticQueue != NULL );
\r
334 /* A queue storage area should be provided if the item size is not 0, and
\r
335 * should not be provided if the item size is 0. */
\r
336 configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) );
\r
337 configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) );
\r
339 #if ( configASSERT_DEFINED == 1 )
\r
341 /* Sanity check that the size of the structure used to declare a
\r
342 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
\r
343 * the real queue and semaphore structures. */
\r
344 volatile size_t xSize = sizeof( StaticQueue_t );
\r
346 /* This assertion cannot be branch covered in unit tests */
\r
347 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
\r
348 ( void ) xSize; /* Keeps lint quiet when configASSERT() is not defined. */
\r
350 #endif /* configASSERT_DEFINED */
\r
352 /* The address of a statically allocated queue was passed in, use it.
\r
353 * The address of a statically allocated storage area was also passed in
\r
354 * but is already set. */
\r
355 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
357 if( pxNewQueue != NULL )
\r
359 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
361 /* Queues can be allocated wither statically or dynamically, so
\r
362 * note this queue was allocated statically in case the queue is
\r
363 * later deleted. */
\r
364 pxNewQueue->ucStaticallyAllocated = pdTRUE;
\r
366 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
368 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
372 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
373 mtCOVERAGE_TEST_MARKER();
\r
379 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
380 /*-----------------------------------------------------------*/
\r
382 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
384 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
\r
385 const UBaseType_t uxItemSize,
\r
386 const uint8_t ucQueueType )
\r
388 Queue_t * pxNewQueue;
\r
389 size_t xQueueSizeInBytes;
\r
390 uint8_t * pucQueueStorage;
\r
392 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
\r
394 /* Allocate enough space to hold the maximum number of items that
\r
395 * can be in the queue at any time. It is valid for uxItemSize to be
\r
396 * zero in the case the queue is used as a semaphore. */
\r
397 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
399 /* Check for multiplication overflow. */
\r
400 configASSERT( ( uxItemSize == 0 ) || ( uxQueueLength == ( xQueueSizeInBytes / uxItemSize ) ) );
\r
402 /* Check for addition overflow. */
\r
403 configASSERT( ( sizeof( Queue_t ) + xQueueSizeInBytes ) > xQueueSizeInBytes );
\r
405 /* Allocate the queue and storage area. Justification for MISRA
\r
406 * deviation as follows: pvPortMalloc() always ensures returned memory
\r
407 * blocks are aligned per the requirements of the MCU stack. In this case
\r
408 * pvPortMalloc() must return a pointer that is guaranteed to meet the
\r
409 * alignment requirements of the Queue_t structure - which in this case
\r
410 * is an int8_t *. Therefore, whenever the stack alignment requirements
\r
411 * are greater than or equal to the pointer to char requirements the cast
\r
412 * is safe. In other cases alignment requirements are not strict (one or
\r
414 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); /*lint !e9087 !e9079 see comment above. */
\r
416 if( pxNewQueue != NULL )
\r
418 /* Jump past the queue structure to find the location of the queue
\r
420 pucQueueStorage = ( uint8_t * ) pxNewQueue;
\r
421 pucQueueStorage += sizeof( Queue_t ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
423 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
425 /* Queues can be created either statically or dynamically, so
\r
426 * note this task was created dynamically in case it is later
\r
428 pxNewQueue->ucStaticallyAllocated = pdFALSE;
\r
430 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
432 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
436 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
437 mtCOVERAGE_TEST_MARKER();
\r
443 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
444 /*-----------------------------------------------------------*/
\r
446 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
447 const UBaseType_t uxItemSize,
\r
448 uint8_t * pucQueueStorage,
\r
449 const uint8_t ucQueueType,
\r
450 Queue_t * pxNewQueue )
\r
452 /* Remove compiler warnings about unused parameters should
\r
453 * configUSE_TRACE_FACILITY not be set to 1. */
\r
454 ( void ) ucQueueType;
\r
456 if( uxItemSize == ( UBaseType_t ) 0 )
\r
458 /* No RAM was allocated for the queue storage area, but PC head cannot
\r
459 * be set to NULL because NULL is used as a key to say the queue is used as
\r
460 * a mutex. Therefore just set pcHead to point to the queue as a benign
\r
461 * value that is known to be within the memory map. */
\r
462 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
\r
466 /* Set the head to the start of the queue storage area. */
\r
467 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
\r
470 /* Initialise the queue members as described where the queue type is
\r
472 pxNewQueue->uxLength = uxQueueLength;
\r
473 pxNewQueue->uxItemSize = uxItemSize;
\r
474 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
\r
476 #if ( configUSE_TRACE_FACILITY == 1 )
\r
478 pxNewQueue->ucQueueType = ucQueueType;
\r
480 #endif /* configUSE_TRACE_FACILITY */
\r
482 #if ( configUSE_QUEUE_SETS == 1 )
\r
484 pxNewQueue->pxQueueSetContainer = NULL;
\r
486 #endif /* configUSE_QUEUE_SETS */
\r
488 traceQUEUE_CREATE( pxNewQueue );
\r
490 /*-----------------------------------------------------------*/
\r
492 #if ( configUSE_MUTEXES == 1 )
\r
494 static void prvInitialiseMutex( Queue_t * pxNewQueue )
\r
496 if( pxNewQueue != NULL )
\r
498 /* The queue create function will set all the queue structure members
\r
499 * correctly for a generic queue, but this function is creating a
\r
500 * mutex. Overwrite those members that need to be set differently -
\r
501 * in particular the information required for priority inheritance. */
\r
502 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
\r
503 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
\r
505 /* In case this is a recursive mutex. */
\r
506 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
\r
508 traceCREATE_MUTEX( pxNewQueue );
\r
510 /* Start with the semaphore in the expected state. */
\r
511 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
\r
515 traceCREATE_MUTEX_FAILED();
\r
519 #endif /* configUSE_MUTEXES */
\r
520 /*-----------------------------------------------------------*/
\r
522 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
524 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
\r
526 QueueHandle_t xNewQueue;
\r
527 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
529 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
\r
530 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
535 #endif /* configUSE_MUTEXES */
\r
536 /*-----------------------------------------------------------*/
\r
538 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
540 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
\r
541 StaticQueue_t * pxStaticQueue )
\r
543 QueueHandle_t xNewQueue;
\r
544 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
546 /* Prevent compiler warnings about unused parameters if
\r
547 * configUSE_TRACE_FACILITY does not equal 1. */
\r
548 ( void ) ucQueueType;
\r
550 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
\r
551 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
556 #endif /* configUSE_MUTEXES */
\r
557 /*-----------------------------------------------------------*/
\r
559 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
561 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
\r
563 TaskHandle_t pxReturn;
\r
564 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
\r
566 configASSERT( xSemaphore );
\r
568 /* This function is called by xSemaphoreGetMutexHolder(), and should not
\r
569 * be called directly. Note: This is a good way of determining if the
\r
570 * calling task is the mutex holder, but not a good way of determining the
\r
571 * identity of the mutex holder, as the holder may change between the
\r
572 * following critical section exiting and the function returning. */
\r
573 taskENTER_CRITICAL();
\r
575 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
\r
577 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
\r
584 taskEXIT_CRITICAL();
\r
587 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
589 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
590 /*-----------------------------------------------------------*/
\r
592 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
594 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
\r
596 TaskHandle_t pxReturn;
\r
598 configASSERT( xSemaphore );
\r
600 /* Mutexes cannot be used in interrupt service routines, so the mutex
\r
601 * holder should not change in an ISR, and therefore a critical section is
\r
602 * not required here. */
\r
603 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
\r
605 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
\r
613 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
615 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
616 /*-----------------------------------------------------------*/
\r
618 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
620 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
\r
622 BaseType_t xReturn;
\r
623 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
625 configASSERT( pxMutex );
\r
627 /* If this is the task that holds the mutex then xMutexHolder will not
\r
628 * change outside of this task. If this task does not hold the mutex then
\r
629 * pxMutexHolder can never coincidentally equal the tasks handle, and as
\r
630 * this is the only condition we are interested in it does not matter if
\r
631 * pxMutexHolder is accessed simultaneously by another task. Therefore no
\r
632 * mutual exclusion is required to test the pxMutexHolder variable. */
\r
633 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
635 traceGIVE_MUTEX_RECURSIVE( pxMutex );
\r
637 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
\r
638 * the task handle, therefore no underflow check is required. Also,
\r
639 * uxRecursiveCallCount is only modified by the mutex holder, and as
\r
640 * there can only be one, no mutual exclusion is required to modify the
\r
641 * uxRecursiveCallCount member. */
\r
642 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
\r
644 /* Has the recursive call count unwound to 0? */
\r
645 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
\r
647 /* Return the mutex. This will automatically unblock any other
\r
648 * task that might be waiting to access the mutex. */
\r
649 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
\r
653 mtCOVERAGE_TEST_MARKER();
\r
660 /* The mutex cannot be given because the calling task is not the
\r
664 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
670 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
671 /*-----------------------------------------------------------*/
\r
673 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
675 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
\r
676 TickType_t xTicksToWait )
\r
678 BaseType_t xReturn;
\r
679 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
681 configASSERT( pxMutex );
\r
683 /* Comments regarding mutual exclusion as per those within
\r
684 * xQueueGiveMutexRecursive(). */
\r
686 traceTAKE_MUTEX_RECURSIVE( pxMutex );
\r
688 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
690 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
695 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
\r
697 /* pdPASS will only be returned if the mutex was successfully
\r
698 * obtained. The calling task may have entered the Blocked state
\r
699 * before reaching here. */
\r
700 if( xReturn != pdFAIL )
\r
702 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
706 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
713 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
714 /*-----------------------------------------------------------*/
\r
716 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
718 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
\r
719 const UBaseType_t uxInitialCount,
\r
720 StaticQueue_t * pxStaticQueue )
\r
722 QueueHandle_t xHandle;
\r
724 configASSERT( uxMaxCount != 0 );
\r
725 configASSERT( uxInitialCount <= uxMaxCount );
\r
727 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
729 if( xHandle != NULL )
\r
731 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
733 traceCREATE_COUNTING_SEMAPHORE();
\r
737 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
743 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
744 /*-----------------------------------------------------------*/
\r
746 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
748 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
\r
749 const UBaseType_t uxInitialCount )
\r
751 QueueHandle_t xHandle;
\r
753 configASSERT( uxMaxCount != 0 );
\r
754 configASSERT( uxInitialCount <= uxMaxCount );
\r
756 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
758 if( xHandle != NULL )
\r
760 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
762 traceCREATE_COUNTING_SEMAPHORE();
\r
766 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
772 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
773 /*-----------------------------------------------------------*/
\r
775 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
\r
776 const void * const pvItemToQueue,
\r
777 TickType_t xTicksToWait,
\r
778 const BaseType_t xCopyPosition )
\r
780 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
\r
781 TimeOut_t xTimeOut;
\r
782 Queue_t * const pxQueue = xQueue;
\r
784 configASSERT( pxQueue );
\r
785 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
786 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
787 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
789 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
793 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
794 * allow return statements within the function itself. This is done in the
\r
795 * interest of execution time efficiency. */
\r
798 taskENTER_CRITICAL();
\r
800 /* Is there room on the queue now? The running task must be the
\r
801 * highest priority task wanting to access the queue. If the head item
\r
802 * in the queue is to be overwritten then it does not matter if the
\r
803 * queue is full. */
\r
804 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
806 traceQUEUE_SEND( pxQueue );
\r
808 #if ( configUSE_QUEUE_SETS == 1 )
\r
810 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
812 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
814 if( pxQueue->pxQueueSetContainer != NULL )
\r
816 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
818 /* Do not notify the queue set as an existing item
\r
819 * was overwritten in the queue so the number of items
\r
820 * in the queue has not changed. */
\r
821 mtCOVERAGE_TEST_MARKER();
\r
823 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
825 /* The queue is a member of a queue set, and posting
\r
826 * to the queue set caused a higher priority task to
\r
827 * unblock. A context switch is required. */
\r
828 queueYIELD_IF_USING_PREEMPTION();
\r
832 mtCOVERAGE_TEST_MARKER();
\r
837 /* If there was a task waiting for data to arrive on the
\r
838 * queue then unblock it now. */
\r
839 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
841 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
843 /* The unblocked task has a priority higher than
\r
844 * our own so yield immediately. Yes it is ok to
\r
845 * do this from within the critical section - the
\r
846 * kernel takes care of that. */
\r
847 queueYIELD_IF_USING_PREEMPTION();
\r
851 mtCOVERAGE_TEST_MARKER();
\r
854 else if( xYieldRequired != pdFALSE )
\r
856 /* This path is a special case that will only get
\r
857 * executed if the task was holding multiple mutexes
\r
858 * and the mutexes were given back in an order that is
\r
859 * different to that in which they were taken. */
\r
860 queueYIELD_IF_USING_PREEMPTION();
\r
864 mtCOVERAGE_TEST_MARKER();
\r
868 #else /* configUSE_QUEUE_SETS */
\r
870 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
872 /* If there was a task waiting for data to arrive on the
\r
873 * queue then unblock it now. */
\r
874 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
876 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
878 /* The unblocked task has a priority higher than
\r
879 * our own so yield immediately. Yes it is ok to do
\r
880 * this from within the critical section - the kernel
\r
881 * takes care of that. */
\r
882 queueYIELD_IF_USING_PREEMPTION();
\r
886 mtCOVERAGE_TEST_MARKER();
\r
889 else if( xYieldRequired != pdFALSE )
\r
891 /* This path is a special case that will only get
\r
892 * executed if the task was holding multiple mutexes and
\r
893 * the mutexes were given back in an order that is
\r
894 * different to that in which they were taken. */
\r
895 queueYIELD_IF_USING_PREEMPTION();
\r
899 mtCOVERAGE_TEST_MARKER();
\r
902 #endif /* configUSE_QUEUE_SETS */
\r
904 taskEXIT_CRITICAL();
\r
909 if( xTicksToWait == ( TickType_t ) 0 )
\r
911 /* The queue was full and no block time is specified (or
\r
912 * the block time has expired) so leave now. */
\r
913 taskEXIT_CRITICAL();
\r
915 /* Return to the original privilege level before exiting
\r
917 traceQUEUE_SEND_FAILED( pxQueue );
\r
918 return errQUEUE_FULL;
\r
920 else if( xEntryTimeSet == pdFALSE )
\r
922 /* The queue was full and a block time was specified so
\r
923 * configure the timeout structure. */
\r
924 vTaskInternalSetTimeOutState( &xTimeOut );
\r
925 xEntryTimeSet = pdTRUE;
\r
929 /* Entry time was already set. */
\r
930 mtCOVERAGE_TEST_MARKER();
\r
934 taskEXIT_CRITICAL();
\r
936 /* Interrupts and other tasks can send to and receive from the queue
\r
937 * now the critical section has been exited. */
\r
940 prvLockQueue( pxQueue );
\r
942 /* Update the timeout state to see if it has expired yet. */
\r
943 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
945 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
947 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
\r
948 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
\r
950 /* Unlocking the queue means queue events can effect the
\r
951 * event list. It is possible that interrupts occurring now
\r
952 * remove this task from the event list again - but as the
\r
953 * scheduler is suspended the task will go onto the pending
\r
954 * ready list instead of the actual ready list. */
\r
955 prvUnlockQueue( pxQueue );
\r
957 /* Resuming the scheduler will move tasks from the pending
\r
958 * ready list into the ready list - so it is feasible that this
\r
959 * task is already in the ready list before it yields - in which
\r
960 * case the yield will not cause a context switch unless there
\r
961 * is also a higher priority task in the pending ready list. */
\r
962 if( xTaskResumeAll() == pdFALSE )
\r
964 portYIELD_WITHIN_API();
\r
970 prvUnlockQueue( pxQueue );
\r
971 ( void ) xTaskResumeAll();
\r
976 /* The timeout has expired. */
\r
977 prvUnlockQueue( pxQueue );
\r
978 ( void ) xTaskResumeAll();
\r
980 traceQUEUE_SEND_FAILED( pxQueue );
\r
981 return errQUEUE_FULL;
\r
983 } /*lint -restore */
\r
985 /*-----------------------------------------------------------*/
\r
987 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
\r
988 const void * const pvItemToQueue,
\r
989 BaseType_t * const pxHigherPriorityTaskWoken,
\r
990 const BaseType_t xCopyPosition )
\r
992 BaseType_t xReturn;
\r
993 UBaseType_t uxSavedInterruptStatus;
\r
994 Queue_t * const pxQueue = xQueue;
\r
996 configASSERT( pxQueue );
\r
997 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
998 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
1000 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1001 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1002 * above the maximum system call priority are kept permanently enabled, even
\r
1003 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1004 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1005 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1006 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1007 * assigned a priority above the configured maximum system call priority.
\r
1008 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1009 * that have been assigned a priority at or (logically) below the maximum
\r
1010 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1011 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1012 * More information (albeit Cortex-M specific) is provided on the following
\r
1013 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1014 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1016 /* Similar to xQueueGenericSend, except without blocking if there is no room
\r
1017 * in the queue. Also don't directly wake a task that was blocked on a queue
\r
1018 * read, instead return a flag to say whether a context switch is required or
\r
1019 * not (i.e. has a task with a higher priority than us been woken by this
\r
1021 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1023 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
1025 const int8_t cTxLock = pxQueue->cTxLock;
\r
1026 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1028 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1030 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
\r
1031 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
\r
1032 * in a task disinheriting a priority and prvCopyDataToQueue() can be
\r
1033 * called here even though the disinherit function does not check if
\r
1034 * the scheduler is suspended before accessing the ready lists. */
\r
1035 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
1037 /* The event list is not altered if the queue is locked. This will
\r
1038 * be done when the queue is unlocked later. */
\r
1039 if( cTxLock == queueUNLOCKED )
\r
1041 #if ( configUSE_QUEUE_SETS == 1 )
\r
1043 if( pxQueue->pxQueueSetContainer != NULL )
\r
1045 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
1047 /* Do not notify the queue set as an existing item
\r
1048 * was overwritten in the queue so the number of items
\r
1049 * in the queue has not changed. */
\r
1050 mtCOVERAGE_TEST_MARKER();
\r
1052 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1054 /* The queue is a member of a queue set, and posting
\r
1055 * to the queue set caused a higher priority task to
\r
1056 * unblock. A context switch is required. */
\r
1057 if( pxHigherPriorityTaskWoken != NULL )
\r
1059 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1063 mtCOVERAGE_TEST_MARKER();
\r
1068 mtCOVERAGE_TEST_MARKER();
\r
1073 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1075 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1077 /* The task waiting has a higher priority so
\r
1078 * record that a context switch is required. */
\r
1079 if( pxHigherPriorityTaskWoken != NULL )
\r
1081 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1085 mtCOVERAGE_TEST_MARKER();
\r
1090 mtCOVERAGE_TEST_MARKER();
\r
1095 mtCOVERAGE_TEST_MARKER();
\r
1099 #else /* configUSE_QUEUE_SETS */
\r
1101 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1103 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1105 /* The task waiting has a higher priority so record that a
\r
1106 * context switch is required. */
\r
1107 if( pxHigherPriorityTaskWoken != NULL )
\r
1109 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1113 mtCOVERAGE_TEST_MARKER();
\r
1118 mtCOVERAGE_TEST_MARKER();
\r
1123 mtCOVERAGE_TEST_MARKER();
\r
1126 /* Not used in this path. */
\r
1127 ( void ) uxPreviousMessagesWaiting;
\r
1129 #endif /* configUSE_QUEUE_SETS */
\r
1133 /* Increment the lock count so the task that unlocks the queue
\r
1134 * knows that data was posted while it was locked. */
\r
1135 configASSERT( cTxLock != queueINT8_MAX );
\r
1137 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1144 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1145 xReturn = errQUEUE_FULL;
\r
1148 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1152 /*-----------------------------------------------------------*/
\r
1154 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
\r
1155 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1157 BaseType_t xReturn;
\r
1158 UBaseType_t uxSavedInterruptStatus;
\r
1159 Queue_t * const pxQueue = xQueue;
\r
1161 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
\r
1162 * item size is 0. Don't directly wake a task that was blocked on a queue
\r
1163 * read, instead return a flag to say whether a context switch is required or
\r
1164 * not (i.e. has a task with a higher priority than us been woken by this
\r
1167 configASSERT( pxQueue );
\r
1169 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
\r
1170 * if the item size is not 0. */
\r
1171 configASSERT( pxQueue->uxItemSize == 0 );
\r
1173 /* Normally a mutex would not be given from an interrupt, especially if
\r
1174 * there is a mutex holder, as priority inheritance makes no sense for an
\r
1175 * interrupts, only tasks. */
\r
1176 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
\r
1178 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1179 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1180 * above the maximum system call priority are kept permanently enabled, even
\r
1181 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1182 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1183 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1184 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1185 * assigned a priority above the configured maximum system call priority.
\r
1186 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1187 * that have been assigned a priority at or (logically) below the maximum
\r
1188 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1189 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1190 * More information (albeit Cortex-M specific) is provided on the following
\r
1191 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1192 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1194 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1196 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1198 /* When the queue is used to implement a semaphore no data is ever
\r
1199 * moved through the queue but it is still valid to see if the queue 'has
\r
1201 if( uxMessagesWaiting < pxQueue->uxLength )
\r
1203 const int8_t cTxLock = pxQueue->cTxLock;
\r
1205 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1207 /* A task can only have an inherited priority if it is a mutex
\r
1208 * holder - and if there is a mutex holder then the mutex cannot be
\r
1209 * given from an ISR. As this is the ISR version of the function it
\r
1210 * can be assumed there is no mutex holder and no need to determine if
\r
1211 * priority disinheritance is needed. Simply increase the count of
\r
1212 * messages (semaphores) available. */
\r
1213 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
1215 /* The event list is not altered if the queue is locked. This will
\r
1216 * be done when the queue is unlocked later. */
\r
1217 if( cTxLock == queueUNLOCKED )
\r
1219 #if ( configUSE_QUEUE_SETS == 1 )
\r
1221 if( pxQueue->pxQueueSetContainer != NULL )
\r
1223 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1225 /* The semaphore is a member of a queue set, and
\r
1226 * posting to the queue set caused a higher priority
\r
1227 * task to unblock. A context switch is required. */
\r
1228 if( pxHigherPriorityTaskWoken != NULL )
\r
1230 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1234 mtCOVERAGE_TEST_MARKER();
\r
1239 mtCOVERAGE_TEST_MARKER();
\r
1244 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1246 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1248 /* The task waiting has a higher priority so
\r
1249 * record that a context switch is required. */
\r
1250 if( pxHigherPriorityTaskWoken != NULL )
\r
1252 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1256 mtCOVERAGE_TEST_MARKER();
\r
1261 mtCOVERAGE_TEST_MARKER();
\r
1266 mtCOVERAGE_TEST_MARKER();
\r
1270 #else /* configUSE_QUEUE_SETS */
\r
1272 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1274 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1276 /* The task waiting has a higher priority so record that a
\r
1277 * context switch is required. */
\r
1278 if( pxHigherPriorityTaskWoken != NULL )
\r
1280 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1284 mtCOVERAGE_TEST_MARKER();
\r
1289 mtCOVERAGE_TEST_MARKER();
\r
1294 mtCOVERAGE_TEST_MARKER();
\r
1297 #endif /* configUSE_QUEUE_SETS */
\r
1301 /* Increment the lock count so the task that unlocks the queue
\r
1302 * knows that data was posted while it was locked. */
\r
1303 configASSERT( cTxLock != queueINT8_MAX );
\r
1305 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1312 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1313 xReturn = errQUEUE_FULL;
\r
1316 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1320 /*-----------------------------------------------------------*/
\r
1322 BaseType_t xQueueReceive( QueueHandle_t xQueue,
\r
1323 void * const pvBuffer,
\r
1324 TickType_t xTicksToWait )
\r
1326 BaseType_t xEntryTimeSet = pdFALSE;
\r
1327 TimeOut_t xTimeOut;
\r
1328 Queue_t * const pxQueue = xQueue;
\r
1330 /* Check the pointer is not NULL. */
\r
1331 configASSERT( ( pxQueue ) );
\r
1333 /* The buffer into which data is received can only be NULL if the data size
\r
1334 * is zero (so no data is copied into the buffer). */
\r
1335 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1337 /* Cannot block if the scheduler is suspended. */
\r
1338 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1340 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1344 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1345 * allow return statements within the function itself. This is done in the
\r
1346 * interest of execution time efficiency. */
\r
1349 taskENTER_CRITICAL();
\r
1351 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1353 /* Is there data in the queue now? To be running the calling task
\r
1354 * must be the highest priority task wanting to access the queue. */
\r
1355 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1357 /* Data available, remove one item. */
\r
1358 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1359 traceQUEUE_RECEIVE( pxQueue );
\r
1360 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1362 /* There is now space in the queue, were any tasks waiting to
\r
1363 * post to the queue? If so, unblock the highest priority waiting
\r
1365 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1367 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1369 queueYIELD_IF_USING_PREEMPTION();
\r
1373 mtCOVERAGE_TEST_MARKER();
\r
1378 mtCOVERAGE_TEST_MARKER();
\r
1381 taskEXIT_CRITICAL();
\r
1386 if( xTicksToWait == ( TickType_t ) 0 )
\r
1388 /* The queue was empty and no block time is specified (or
\r
1389 * the block time has expired) so leave now. */
\r
1390 taskEXIT_CRITICAL();
\r
1391 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1392 return errQUEUE_EMPTY;
\r
1394 else if( xEntryTimeSet == pdFALSE )
\r
1396 /* The queue was empty and a block time was specified so
\r
1397 * configure the timeout structure. */
\r
1398 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1399 xEntryTimeSet = pdTRUE;
\r
1403 /* Entry time was already set. */
\r
1404 mtCOVERAGE_TEST_MARKER();
\r
1408 taskEXIT_CRITICAL();
\r
1410 /* Interrupts and other tasks can send to and receive from the queue
\r
1411 * now the critical section has been exited. */
\r
1413 vTaskSuspendAll();
\r
1414 prvLockQueue( pxQueue );
\r
1416 /* Update the timeout state to see if it has expired yet. */
\r
1417 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1419 /* The timeout has not expired. If the queue is still empty place
\r
1420 * the task on the list of tasks waiting to receive from the queue. */
\r
1421 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1423 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1424 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1425 prvUnlockQueue( pxQueue );
\r
1427 if( xTaskResumeAll() == pdFALSE )
\r
1429 portYIELD_WITHIN_API();
\r
1433 mtCOVERAGE_TEST_MARKER();
\r
1438 /* The queue contains data again. Loop back to try and read the
\r
1440 prvUnlockQueue( pxQueue );
\r
1441 ( void ) xTaskResumeAll();
\r
1446 /* Timed out. If there is no data in the queue exit, otherwise loop
\r
1447 * back and attempt to read the data. */
\r
1448 prvUnlockQueue( pxQueue );
\r
1449 ( void ) xTaskResumeAll();
\r
1451 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1453 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1454 return errQUEUE_EMPTY;
\r
1458 mtCOVERAGE_TEST_MARKER();
\r
1461 } /*lint -restore */
\r
1463 /*-----------------------------------------------------------*/
\r
1465 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
\r
1466 TickType_t xTicksToWait )
\r
1468 BaseType_t xEntryTimeSet = pdFALSE;
\r
1469 TimeOut_t xTimeOut;
\r
1470 Queue_t * const pxQueue = xQueue;
\r
1472 #if ( configUSE_MUTEXES == 1 )
\r
1473 BaseType_t xInheritanceOccurred = pdFALSE;
\r
1476 /* Check the queue pointer is not NULL. */
\r
1477 configASSERT( ( pxQueue ) );
\r
1479 /* Check this really is a semaphore, in which case the item size will be
\r
1481 configASSERT( pxQueue->uxItemSize == 0 );
\r
1483 /* Cannot block if the scheduler is suspended. */
\r
1484 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1486 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1490 /*lint -save -e904 This function relaxes the coding standard somewhat to allow return
\r
1491 * statements within the function itself. This is done in the interest
\r
1492 * of execution time efficiency. */
\r
1495 taskENTER_CRITICAL();
\r
1497 /* Semaphores are queues with an item size of 0, and where the
\r
1498 * number of messages in the queue is the semaphore's count value. */
\r
1499 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
\r
1501 /* Is there data in the queue now? To be running the calling task
\r
1502 * must be the highest priority task wanting to access the queue. */
\r
1503 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
\r
1505 traceQUEUE_RECEIVE( pxQueue );
\r
1507 /* Semaphores are queues with a data size of zero and where the
\r
1508 * messages waiting is the semaphore's count. Reduce the count. */
\r
1509 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
\r
1511 #if ( configUSE_MUTEXES == 1 )
\r
1513 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1515 /* Record the information required to implement
\r
1516 * priority inheritance should it become necessary. */
\r
1517 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
\r
1521 mtCOVERAGE_TEST_MARKER();
\r
1524 #endif /* configUSE_MUTEXES */
\r
1526 /* Check to see if other tasks are blocked waiting to give the
\r
1527 * semaphore, and if so, unblock the highest priority such task. */
\r
1528 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1530 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1532 queueYIELD_IF_USING_PREEMPTION();
\r
1536 mtCOVERAGE_TEST_MARKER();
\r
1541 mtCOVERAGE_TEST_MARKER();
\r
1544 taskEXIT_CRITICAL();
\r
1549 if( xTicksToWait == ( TickType_t ) 0 )
\r
1551 /* For inheritance to have occurred there must have been an
\r
1552 * initial timeout, and an adjusted timeout cannot become 0, as
\r
1553 * if it were 0 the function would have exited. */
\r
1554 #if ( configUSE_MUTEXES == 1 )
\r
1556 configASSERT( xInheritanceOccurred == pdFALSE );
\r
1558 #endif /* configUSE_MUTEXES */
\r
1560 /* The semaphore count was 0 and no block time is specified
\r
1561 * (or the block time has expired) so exit now. */
\r
1562 taskEXIT_CRITICAL();
\r
1563 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1564 return errQUEUE_EMPTY;
\r
1566 else if( xEntryTimeSet == pdFALSE )
\r
1568 /* The semaphore count was 0 and a block time was specified
\r
1569 * so configure the timeout structure ready to block. */
\r
1570 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1571 xEntryTimeSet = pdTRUE;
\r
1575 /* Entry time was already set. */
\r
1576 mtCOVERAGE_TEST_MARKER();
\r
1580 taskEXIT_CRITICAL();
\r
1582 /* Interrupts and other tasks can give to and take from the semaphore
\r
1583 * now the critical section has been exited. */
\r
1585 vTaskSuspendAll();
\r
1586 prvLockQueue( pxQueue );
\r
1588 /* Update the timeout state to see if it has expired yet. */
\r
1589 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1591 /* A block time is specified and not expired. If the semaphore
\r
1592 * count is 0 then enter the Blocked state to wait for a semaphore to
\r
1593 * become available. As semaphores are implemented with queues the
\r
1594 * queue being empty is equivalent to the semaphore count being 0. */
\r
1595 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1597 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1599 #if ( configUSE_MUTEXES == 1 )
\r
1601 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1603 taskENTER_CRITICAL();
\r
1605 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
1607 taskEXIT_CRITICAL();
\r
1611 mtCOVERAGE_TEST_MARKER();
\r
1614 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1616 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1617 prvUnlockQueue( pxQueue );
\r
1619 if( xTaskResumeAll() == pdFALSE )
\r
1621 portYIELD_WITHIN_API();
\r
1625 mtCOVERAGE_TEST_MARKER();
\r
1630 /* There was no timeout and the semaphore count was not 0, so
\r
1631 * attempt to take the semaphore again. */
\r
1632 prvUnlockQueue( pxQueue );
\r
1633 ( void ) xTaskResumeAll();
\r
1639 prvUnlockQueue( pxQueue );
\r
1640 ( void ) xTaskResumeAll();
\r
1642 /* If the semaphore count is 0 exit now as the timeout has
\r
1643 * expired. Otherwise return to attempt to take the semaphore that is
\r
1644 * known to be available. As semaphores are implemented by queues the
\r
1645 * queue being empty is equivalent to the semaphore count being 0. */
\r
1646 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1648 #if ( configUSE_MUTEXES == 1 )
\r
1650 /* xInheritanceOccurred could only have be set if
\r
1651 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
\r
1652 * test the mutex type again to check it is actually a mutex. */
\r
1653 if( xInheritanceOccurred != pdFALSE )
\r
1655 taskENTER_CRITICAL();
\r
1657 UBaseType_t uxHighestWaitingPriority;
\r
1659 /* This task blocking on the mutex caused another
\r
1660 * task to inherit this task's priority. Now this task
\r
1661 * has timed out the priority should be disinherited
\r
1662 * again, but only as low as the next highest priority
\r
1663 * task that is waiting for the same mutex. */
\r
1664 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
\r
1665 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
\r
1667 taskEXIT_CRITICAL();
\r
1670 #endif /* configUSE_MUTEXES */
\r
1672 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1673 return errQUEUE_EMPTY;
\r
1677 mtCOVERAGE_TEST_MARKER();
\r
1680 } /*lint -restore */
\r
1682 /*-----------------------------------------------------------*/
\r
1684 BaseType_t xQueuePeek( QueueHandle_t xQueue,
\r
1685 void * const pvBuffer,
\r
1686 TickType_t xTicksToWait )
\r
1688 BaseType_t xEntryTimeSet = pdFALSE;
\r
1689 TimeOut_t xTimeOut;
\r
1690 int8_t * pcOriginalReadPosition;
\r
1691 Queue_t * const pxQueue = xQueue;
\r
1693 /* Check the pointer is not NULL. */
\r
1694 configASSERT( ( pxQueue ) );
\r
1696 /* The buffer into which data is received can only be NULL if the data size
\r
1697 * is zero (so no data is copied into the buffer. */
\r
1698 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1700 /* Cannot block if the scheduler is suspended. */
\r
1701 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1703 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1707 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1708 * allow return statements within the function itself. This is done in the
\r
1709 * interest of execution time efficiency. */
\r
1712 taskENTER_CRITICAL();
\r
1714 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1716 /* Is there data in the queue now? To be running the calling task
\r
1717 * must be the highest priority task wanting to access the queue. */
\r
1718 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1720 /* Remember the read position so it can be reset after the data
\r
1721 * is read from the queue as this function is only peeking the
\r
1722 * data, not removing it. */
\r
1723 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1725 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1726 traceQUEUE_PEEK( pxQueue );
\r
1728 /* The data is not being removed, so reset the read pointer. */
\r
1729 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1731 /* The data is being left in the queue, so see if there are
\r
1732 * any other tasks waiting for the data. */
\r
1733 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1735 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1737 /* The task waiting has a higher priority than this task. */
\r
1738 queueYIELD_IF_USING_PREEMPTION();
\r
1742 mtCOVERAGE_TEST_MARKER();
\r
1747 mtCOVERAGE_TEST_MARKER();
\r
1750 taskEXIT_CRITICAL();
\r
1755 if( xTicksToWait == ( TickType_t ) 0 )
\r
1757 /* The queue was empty and no block time is specified (or
\r
1758 * the block time has expired) so leave now. */
\r
1759 taskEXIT_CRITICAL();
\r
1760 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1761 return errQUEUE_EMPTY;
\r
1763 else if( xEntryTimeSet == pdFALSE )
\r
1765 /* The queue was empty and a block time was specified so
\r
1766 * configure the timeout structure ready to enter the blocked
\r
1768 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1769 xEntryTimeSet = pdTRUE;
\r
1773 /* Entry time was already set. */
\r
1774 mtCOVERAGE_TEST_MARKER();
\r
1778 taskEXIT_CRITICAL();
\r
1780 /* Interrupts and other tasks can send to and receive from the queue
\r
1781 * now that the critical section has been exited. */
\r
1783 vTaskSuspendAll();
\r
1784 prvLockQueue( pxQueue );
\r
1786 /* Update the timeout state to see if it has expired yet. */
\r
1787 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1789 /* Timeout has not expired yet, check to see if there is data in the
\r
1790 * queue now, and if not enter the Blocked state to wait for data. */
\r
1791 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1793 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
\r
1794 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1795 prvUnlockQueue( pxQueue );
\r
1797 if( xTaskResumeAll() == pdFALSE )
\r
1799 portYIELD_WITHIN_API();
\r
1803 mtCOVERAGE_TEST_MARKER();
\r
1808 /* There is data in the queue now, so don't enter the blocked
\r
1809 * state, instead return to try and obtain the data. */
\r
1810 prvUnlockQueue( pxQueue );
\r
1811 ( void ) xTaskResumeAll();
\r
1816 /* The timeout has expired. If there is still no data in the queue
\r
1817 * exit, otherwise go back and try to read the data again. */
\r
1818 prvUnlockQueue( pxQueue );
\r
1819 ( void ) xTaskResumeAll();
\r
1821 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1823 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1824 return errQUEUE_EMPTY;
\r
1828 mtCOVERAGE_TEST_MARKER();
\r
1831 } /*lint -restore */
\r
1833 /*-----------------------------------------------------------*/
\r
1835 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
\r
1836 void * const pvBuffer,
\r
1837 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1839 BaseType_t xReturn;
\r
1840 UBaseType_t uxSavedInterruptStatus;
\r
1841 Queue_t * const pxQueue = xQueue;
\r
1843 configASSERT( pxQueue );
\r
1844 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1846 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1847 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1848 * above the maximum system call priority are kept permanently enabled, even
\r
1849 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1850 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1851 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1852 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1853 * assigned a priority above the configured maximum system call priority.
\r
1854 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1855 * that have been assigned a priority at or (logically) below the maximum
\r
1856 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1857 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1858 * More information (albeit Cortex-M specific) is provided on the following
\r
1859 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1860 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1862 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1864 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1866 /* Cannot block in an ISR, so check there is data available. */
\r
1867 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1869 const int8_t cRxLock = pxQueue->cRxLock;
\r
1871 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
\r
1873 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1874 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1876 /* If the queue is locked the event list will not be modified.
\r
1877 * Instead update the lock count so the task that unlocks the queue
\r
1878 * will know that an ISR has removed data while the queue was
\r
1880 if( cRxLock == queueUNLOCKED )
\r
1882 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1884 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1886 /* The task waiting has a higher priority than us so
\r
1887 * force a context switch. */
\r
1888 if( pxHigherPriorityTaskWoken != NULL )
\r
1890 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1894 mtCOVERAGE_TEST_MARKER();
\r
1899 mtCOVERAGE_TEST_MARKER();
\r
1904 mtCOVERAGE_TEST_MARKER();
\r
1909 /* Increment the lock count so the task that unlocks the queue
\r
1910 * knows that data was removed while it was locked. */
\r
1911 configASSERT( cRxLock != queueINT8_MAX );
\r
1913 pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
\r
1921 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
\r
1924 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1928 /*-----------------------------------------------------------*/
\r
1930 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
\r
1931 void * const pvBuffer )
\r
1933 BaseType_t xReturn;
\r
1934 UBaseType_t uxSavedInterruptStatus;
\r
1935 int8_t * pcOriginalReadPosition;
\r
1936 Queue_t * const pxQueue = xQueue;
\r
1938 configASSERT( pxQueue );
\r
1939 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1940 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
\r
1942 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1943 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1944 * above the maximum system call priority are kept permanently enabled, even
\r
1945 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1946 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1947 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1948 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1949 * assigned a priority above the configured maximum system call priority.
\r
1950 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1951 * that have been assigned a priority at or (logically) below the maximum
\r
1952 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1953 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1954 * More information (albeit Cortex-M specific) is provided on the following
\r
1955 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1956 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1958 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1960 /* Cannot block in an ISR, so check there is data available. */
\r
1961 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1963 traceQUEUE_PEEK_FROM_ISR( pxQueue );
\r
1965 /* Remember the read position so it can be reset as nothing is
\r
1966 * actually being removed from the queue. */
\r
1967 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1968 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1969 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1976 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
\r
1979 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1983 /*-----------------------------------------------------------*/
\r
1985 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
\r
1987 UBaseType_t uxReturn;
\r
1989 configASSERT( xQueue );
\r
1991 taskENTER_CRITICAL();
\r
1993 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
\r
1995 taskEXIT_CRITICAL();
\r
1998 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
1999 /*-----------------------------------------------------------*/
\r
2001 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
\r
2003 UBaseType_t uxReturn;
\r
2004 Queue_t * const pxQueue = xQueue;
\r
2006 configASSERT( pxQueue );
\r
2008 taskENTER_CRITICAL();
\r
2010 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
\r
2012 taskEXIT_CRITICAL();
\r
2015 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2016 /*-----------------------------------------------------------*/
\r
2018 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
\r
2020 UBaseType_t uxReturn;
\r
2021 Queue_t * const pxQueue = xQueue;
\r
2023 configASSERT( pxQueue );
\r
2024 uxReturn = pxQueue->uxMessagesWaiting;
\r
2027 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2028 /*-----------------------------------------------------------*/
\r
2030 void vQueueDelete( QueueHandle_t xQueue )
\r
2032 Queue_t * const pxQueue = xQueue;
\r
2034 configASSERT( pxQueue );
\r
2035 traceQUEUE_DELETE( pxQueue );
\r
2037 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2039 vQueueUnregisterQueue( pxQueue );
\r
2043 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
\r
2045 /* The queue can only have been allocated dynamically - free it
\r
2047 vPortFree( pxQueue );
\r
2049 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
2051 /* The queue could have been allocated statically or dynamically, so
\r
2052 * check before attempting to free the memory. */
\r
2053 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
\r
2055 vPortFree( pxQueue );
\r
2059 mtCOVERAGE_TEST_MARKER();
\r
2062 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
\r
2064 /* The queue must have been statically allocated, so is not going to be
\r
2065 * deleted. Avoid compiler warnings about the unused parameter. */
\r
2068 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
2070 /*-----------------------------------------------------------*/
\r
2072 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2074 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
\r
2076 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
\r
2079 #endif /* configUSE_TRACE_FACILITY */
\r
2080 /*-----------------------------------------------------------*/
\r
2082 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2084 void vQueueSetQueueNumber( QueueHandle_t xQueue,
\r
2085 UBaseType_t uxQueueNumber )
\r
2087 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
\r
2090 #endif /* configUSE_TRACE_FACILITY */
\r
2091 /*-----------------------------------------------------------*/
\r
2093 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2095 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
\r
2097 return ( ( Queue_t * ) xQueue )->ucQueueType;
\r
2100 #endif /* configUSE_TRACE_FACILITY */
\r
2101 /*-----------------------------------------------------------*/
\r
2103 #if ( configUSE_MUTEXES == 1 )
\r
2105 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
\r
2107 UBaseType_t uxHighestPriorityOfWaitingTasks;
\r
2109 /* If a task waiting for a mutex causes the mutex holder to inherit a
\r
2110 * priority, but the waiting task times out, then the holder should
\r
2111 * disinherit the priority - but only down to the highest priority of any
\r
2112 * other tasks that are waiting for the same mutex. For this purpose,
\r
2113 * return the priority of the highest priority task that is waiting for the
\r
2115 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
\r
2117 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) );
\r
2121 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
\r
2124 return uxHighestPriorityOfWaitingTasks;
\r
2127 #endif /* configUSE_MUTEXES */
\r
2128 /*-----------------------------------------------------------*/
\r
2130 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
2131 const void * pvItemToQueue,
\r
2132 const BaseType_t xPosition )
\r
2134 BaseType_t xReturn = pdFALSE;
\r
2135 UBaseType_t uxMessagesWaiting;
\r
2137 /* This function is called from a critical section. */
\r
2139 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
2141 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
\r
2143 #if ( configUSE_MUTEXES == 1 )
\r
2145 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
2147 /* The mutex is no longer being held. */
\r
2148 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
2149 pxQueue->u.xSemaphore.xMutexHolder = NULL;
\r
2153 mtCOVERAGE_TEST_MARKER();
\r
2156 #endif /* configUSE_MUTEXES */
\r
2158 else if( xPosition == queueSEND_TO_BACK )
\r
2160 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2161 pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2163 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2165 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
2169 mtCOVERAGE_TEST_MARKER();
\r
2174 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
\r
2175 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
\r
2177 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2179 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
\r
2183 mtCOVERAGE_TEST_MARKER();
\r
2186 if( xPosition == queueOVERWRITE )
\r
2188 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2190 /* An item is not being added but overwritten, so subtract
\r
2191 * one from the recorded number of items in the queue so when
\r
2192 * one is added again below the number of recorded items remains
\r
2194 --uxMessagesWaiting;
\r
2198 mtCOVERAGE_TEST_MARKER();
\r
2203 mtCOVERAGE_TEST_MARKER();
\r
2207 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
2211 /*-----------------------------------------------------------*/
\r
2213 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
2214 void * const pvBuffer )
\r
2216 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
\r
2218 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2220 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
\r
2222 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2226 mtCOVERAGE_TEST_MARKER();
\r
2229 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2232 /*-----------------------------------------------------------*/
\r
2234 static void prvUnlockQueue( Queue_t * const pxQueue )
\r
2236 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
\r
2238 /* The lock counts contains the number of extra data items placed or
\r
2239 * removed from the queue while the queue was locked. When a queue is
\r
2240 * locked items can be added or removed, but the event lists cannot be
\r
2242 taskENTER_CRITICAL();
\r
2244 int8_t cTxLock = pxQueue->cTxLock;
\r
2246 /* See if data was added to the queue while it was locked. */
\r
2247 while( cTxLock > queueLOCKED_UNMODIFIED )
\r
2249 /* Data was posted while the queue was locked. Are any tasks
\r
2250 * blocked waiting for data to become available? */
\r
2251 #if ( configUSE_QUEUE_SETS == 1 )
\r
2253 if( pxQueue->pxQueueSetContainer != NULL )
\r
2255 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
2257 /* The queue is a member of a queue set, and posting to
\r
2258 * the queue set caused a higher priority task to unblock.
\r
2259 * A context switch is required. */
\r
2260 vTaskMissedYield();
\r
2264 mtCOVERAGE_TEST_MARKER();
\r
2269 /* Tasks that are removed from the event list will get
\r
2270 * added to the pending ready list as the scheduler is still
\r
2272 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2274 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2276 /* The task waiting has a higher priority so record that a
\r
2277 * context switch is required. */
\r
2278 vTaskMissedYield();
\r
2282 mtCOVERAGE_TEST_MARKER();
\r
2291 #else /* configUSE_QUEUE_SETS */
\r
2293 /* Tasks that are removed from the event list will get added to
\r
2294 * the pending ready list as the scheduler is still suspended. */
\r
2295 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2297 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2299 /* The task waiting has a higher priority so record that
\r
2300 * a context switch is required. */
\r
2301 vTaskMissedYield();
\r
2305 mtCOVERAGE_TEST_MARKER();
\r
2313 #endif /* configUSE_QUEUE_SETS */
\r
2318 pxQueue->cTxLock = queueUNLOCKED;
\r
2320 taskEXIT_CRITICAL();
\r
2322 /* Do the same for the Rx lock. */
\r
2323 taskENTER_CRITICAL();
\r
2325 int8_t cRxLock = pxQueue->cRxLock;
\r
2327 while( cRxLock > queueLOCKED_UNMODIFIED )
\r
2329 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2331 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2333 vTaskMissedYield();
\r
2337 mtCOVERAGE_TEST_MARKER();
\r
2348 pxQueue->cRxLock = queueUNLOCKED;
\r
2350 taskEXIT_CRITICAL();
\r
2352 /*-----------------------------------------------------------*/
\r
2354 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
\r
2356 BaseType_t xReturn;
\r
2358 taskENTER_CRITICAL();
\r
2360 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2366 xReturn = pdFALSE;
\r
2369 taskEXIT_CRITICAL();
\r
2373 /*-----------------------------------------------------------*/
\r
2375 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
\r
2377 BaseType_t xReturn;
\r
2378 Queue_t * const pxQueue = xQueue;
\r
2380 configASSERT( pxQueue );
\r
2382 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2388 xReturn = pdFALSE;
\r
2392 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2393 /*-----------------------------------------------------------*/
\r
2395 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
\r
2397 BaseType_t xReturn;
\r
2399 taskENTER_CRITICAL();
\r
2401 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2407 xReturn = pdFALSE;
\r
2410 taskEXIT_CRITICAL();
\r
2414 /*-----------------------------------------------------------*/
\r
2416 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
\r
2418 BaseType_t xReturn;
\r
2419 Queue_t * const pxQueue = xQueue;
\r
2421 configASSERT( pxQueue );
\r
2423 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2429 xReturn = pdFALSE;
\r
2433 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2434 /*-----------------------------------------------------------*/
\r
2436 #if ( configUSE_CO_ROUTINES == 1 )
\r
2438 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
\r
2439 const void * pvItemToQueue,
\r
2440 TickType_t xTicksToWait )
\r
2442 BaseType_t xReturn;
\r
2443 Queue_t * const pxQueue = xQueue;
\r
2445 /* If the queue is already full we may have to block. A critical section
\r
2446 * is required to prevent an interrupt removing something from the queue
\r
2447 * between the check to see if the queue is full and blocking on the queue. */
\r
2448 portDISABLE_INTERRUPTS();
\r
2450 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
2452 /* The queue is full - do we want to block or just leave without
\r
2454 if( xTicksToWait > ( TickType_t ) 0 )
\r
2456 /* As this is called from a coroutine we cannot block directly, but
\r
2457 * return indicating that we need to block. */
\r
2458 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
\r
2459 portENABLE_INTERRUPTS();
\r
2460 return errQUEUE_BLOCKED;
\r
2464 portENABLE_INTERRUPTS();
\r
2465 return errQUEUE_FULL;
\r
2469 portENABLE_INTERRUPTS();
\r
2471 portDISABLE_INTERRUPTS();
\r
2473 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2475 /* There is room in the queue, copy the data into the queue. */
\r
2476 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2479 /* Were any co-routines waiting for data to become available? */
\r
2480 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2482 /* In this instance the co-routine could be placed directly
\r
2483 * into the ready list as we are within a critical section.
\r
2484 * Instead the same pending ready list mechanism is used as if
\r
2485 * the event were caused from within an interrupt. */
\r
2486 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2488 /* The co-routine waiting has a higher priority so record
\r
2489 * that a yield might be appropriate. */
\r
2490 xReturn = errQUEUE_YIELD;
\r
2494 mtCOVERAGE_TEST_MARKER();
\r
2499 mtCOVERAGE_TEST_MARKER();
\r
2504 xReturn = errQUEUE_FULL;
\r
2507 portENABLE_INTERRUPTS();
\r
2512 #endif /* configUSE_CO_ROUTINES */
\r
2513 /*-----------------------------------------------------------*/
\r
2515 #if ( configUSE_CO_ROUTINES == 1 )
\r
2517 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
\r
2519 TickType_t xTicksToWait )
\r
2521 BaseType_t xReturn;
\r
2522 Queue_t * const pxQueue = xQueue;
\r
2524 /* If the queue is already empty we may have to block. A critical section
\r
2525 * is required to prevent an interrupt adding something to the queue
\r
2526 * between the check to see if the queue is empty and blocking on the queue. */
\r
2527 portDISABLE_INTERRUPTS();
\r
2529 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2531 /* There are no messages in the queue, do we want to block or just
\r
2532 * leave with nothing? */
\r
2533 if( xTicksToWait > ( TickType_t ) 0 )
\r
2535 /* As this is a co-routine we cannot block directly, but return
\r
2536 * indicating that we need to block. */
\r
2537 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
\r
2538 portENABLE_INTERRUPTS();
\r
2539 return errQUEUE_BLOCKED;
\r
2543 portENABLE_INTERRUPTS();
\r
2544 return errQUEUE_FULL;
\r
2549 mtCOVERAGE_TEST_MARKER();
\r
2552 portENABLE_INTERRUPTS();
\r
2554 portDISABLE_INTERRUPTS();
\r
2556 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2558 /* Data is available from the queue. */
\r
2559 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2561 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2563 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2567 mtCOVERAGE_TEST_MARKER();
\r
2570 --( pxQueue->uxMessagesWaiting );
\r
2571 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2575 /* Were any co-routines waiting for space to become available? */
\r
2576 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2578 /* In this instance the co-routine could be placed directly
\r
2579 * into the ready list as we are within a critical section.
\r
2580 * Instead the same pending ready list mechanism is used as if
\r
2581 * the event were caused from within an interrupt. */
\r
2582 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2584 xReturn = errQUEUE_YIELD;
\r
2588 mtCOVERAGE_TEST_MARKER();
\r
2593 mtCOVERAGE_TEST_MARKER();
\r
2601 portENABLE_INTERRUPTS();
\r
2606 #endif /* configUSE_CO_ROUTINES */
\r
2607 /*-----------------------------------------------------------*/
\r
2609 #if ( configUSE_CO_ROUTINES == 1 )
\r
2611 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
\r
2612 const void * pvItemToQueue,
\r
2613 BaseType_t xCoRoutinePreviouslyWoken )
\r
2615 Queue_t * const pxQueue = xQueue;
\r
2617 /* Cannot block within an ISR so if there is no space on the queue then
\r
2618 * exit without doing anything. */
\r
2619 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2621 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2623 /* We only want to wake one co-routine per ISR, so check that a
\r
2624 * co-routine has not already been woken. */
\r
2625 if( xCoRoutinePreviouslyWoken == pdFALSE )
\r
2627 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2629 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2635 mtCOVERAGE_TEST_MARKER();
\r
2640 mtCOVERAGE_TEST_MARKER();
\r
2645 mtCOVERAGE_TEST_MARKER();
\r
2650 mtCOVERAGE_TEST_MARKER();
\r
2653 return xCoRoutinePreviouslyWoken;
\r
2656 #endif /* configUSE_CO_ROUTINES */
\r
2657 /*-----------------------------------------------------------*/
\r
2659 #if ( configUSE_CO_ROUTINES == 1 )
\r
2661 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
\r
2663 BaseType_t * pxCoRoutineWoken )
\r
2665 BaseType_t xReturn;
\r
2666 Queue_t * const pxQueue = xQueue;
\r
2668 /* We cannot block from an ISR, so check there is data available. If
\r
2669 * not then just leave without doing anything. */
\r
2670 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2672 /* Copy the data from the queue. */
\r
2673 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2675 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2677 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2681 mtCOVERAGE_TEST_MARKER();
\r
2684 --( pxQueue->uxMessagesWaiting );
\r
2685 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2687 if( ( *pxCoRoutineWoken ) == pdFALSE )
\r
2689 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2691 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2693 *pxCoRoutineWoken = pdTRUE;
\r
2697 mtCOVERAGE_TEST_MARKER();
\r
2702 mtCOVERAGE_TEST_MARKER();
\r
2707 mtCOVERAGE_TEST_MARKER();
\r
2720 #endif /* configUSE_CO_ROUTINES */
\r
2721 /*-----------------------------------------------------------*/
\r
2723 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2725 void vQueueAddToRegistry( QueueHandle_t xQueue,
\r
2726 const char * pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2730 configASSERT( xQueue );
\r
2731 configASSERT( pcQueueName );
\r
2733 /* See if there is an empty space in the registry. A NULL name denotes
\r
2735 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2737 if( xQueueRegistry[ ux ].pcQueueName == NULL )
\r
2739 /* Store the information on this queue. */
\r
2740 xQueueRegistry[ ux ].pcQueueName = pcQueueName;
\r
2741 xQueueRegistry[ ux ].xHandle = xQueue;
\r
2743 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
\r
2748 mtCOVERAGE_TEST_MARKER();
\r
2753 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2754 /*-----------------------------------------------------------*/
\r
2756 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2758 const char * pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2761 const char * pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2763 configASSERT( xQueue );
\r
2765 /* Note there is nothing here to protect against another task adding or
\r
2766 * removing entries from the registry while it is being searched. */
\r
2768 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2770 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2772 pcReturn = xQueueRegistry[ ux ].pcQueueName;
\r
2777 mtCOVERAGE_TEST_MARKER();
\r
2782 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
\r
2784 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2785 /*-----------------------------------------------------------*/
\r
2787 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2789 void vQueueUnregisterQueue( QueueHandle_t xQueue )
\r
2793 configASSERT( xQueue );
\r
2795 /* See if the handle of the queue being unregistered in actually in the
\r
2797 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2799 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2801 /* Set the name to NULL to show that this slot if free again. */
\r
2802 xQueueRegistry[ ux ].pcQueueName = NULL;
\r
2804 /* Set the handle to NULL to ensure the same queue handle cannot
\r
2805 * appear in the registry twice if it is added, removed, then
\r
2807 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
\r
2812 mtCOVERAGE_TEST_MARKER();
\r
2815 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2817 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2818 /*-----------------------------------------------------------*/
\r
2820 #if ( configUSE_TIMERS == 1 )
\r
2822 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
\r
2823 TickType_t xTicksToWait,
\r
2824 const BaseType_t xWaitIndefinitely )
\r
2826 Queue_t * const pxQueue = xQueue;
\r
2828 /* This function should not be called by application code hence the
\r
2829 * 'Restricted' in its name. It is not part of the public API. It is
\r
2830 * designed for use by kernel code, and has special calling requirements.
\r
2831 * It can result in vListInsert() being called on a list that can only
\r
2832 * possibly ever have one item in it, so the list will be fast, but even
\r
2833 * so it should be called with the scheduler locked and not from a critical
\r
2836 /* Only do anything if there are no messages in the queue. This function
\r
2837 * will not actually cause the task to block, just place it on a blocked
\r
2838 * list. It will not block until the scheduler is unlocked - at which
\r
2839 * time a yield will be performed. If an item is added to the queue while
\r
2840 * the queue is locked, and the calling task blocks on the queue, then the
\r
2841 * calling task will be immediately unblocked when the queue is unlocked. */
\r
2842 prvLockQueue( pxQueue );
\r
2844 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
\r
2846 /* There is nothing in the queue, block for the specified period. */
\r
2847 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
\r
2851 mtCOVERAGE_TEST_MARKER();
\r
2854 prvUnlockQueue( pxQueue );
\r
2857 #endif /* configUSE_TIMERS */
\r
2858 /*-----------------------------------------------------------*/
\r
2860 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
2862 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
\r
2864 QueueSetHandle_t pxQueue;
\r
2866 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
\r
2871 #endif /* configUSE_QUEUE_SETS */
\r
2872 /*-----------------------------------------------------------*/
\r
2874 #if ( configUSE_QUEUE_SETS == 1 )
\r
2876 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2877 QueueSetHandle_t xQueueSet )
\r
2879 BaseType_t xReturn;
\r
2881 taskENTER_CRITICAL();
\r
2883 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
\r
2885 /* Cannot add a queue/semaphore to more than one queue set. */
\r
2888 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2890 /* Cannot add a queue/semaphore to a queue set if there are already
\r
2891 * items in the queue/semaphore. */
\r
2896 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
\r
2900 taskEXIT_CRITICAL();
\r
2905 #endif /* configUSE_QUEUE_SETS */
\r
2906 /*-----------------------------------------------------------*/
\r
2908 #if ( configUSE_QUEUE_SETS == 1 )
\r
2910 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2911 QueueSetHandle_t xQueueSet )
\r
2913 BaseType_t xReturn;
\r
2914 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
\r
2916 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
\r
2918 /* The queue was not a member of the set. */
\r
2921 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2923 /* It is dangerous to remove a queue from a set when the queue is
\r
2924 * not empty because the queue set will still hold pending events for
\r
2930 taskENTER_CRITICAL();
\r
2932 /* The queue is no longer contained in the set. */
\r
2933 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
\r
2935 taskEXIT_CRITICAL();
\r
2940 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
\r
2942 #endif /* configUSE_QUEUE_SETS */
\r
2943 /*-----------------------------------------------------------*/
\r
2945 #if ( configUSE_QUEUE_SETS == 1 )
\r
2947 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
\r
2948 TickType_t const xTicksToWait )
\r
2950 QueueSetMemberHandle_t xReturn = NULL;
\r
2952 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2956 #endif /* configUSE_QUEUE_SETS */
\r
2957 /*-----------------------------------------------------------*/
\r
2959 #if ( configUSE_QUEUE_SETS == 1 )
\r
2961 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
\r
2963 QueueSetMemberHandle_t xReturn = NULL;
\r
2965 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
2969 #endif /* configUSE_QUEUE_SETS */
\r
2970 /*-----------------------------------------------------------*/
\r
2972 #if ( configUSE_QUEUE_SETS == 1 )
\r
2974 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
\r
2976 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
\r
2977 BaseType_t xReturn = pdFALSE;
\r
2979 /* This function must be called form a critical section. */
\r
2981 /* The following line is not reachable in unit tests because every call
\r
2982 * to prvNotifyQueueSetContainer is preceded by a check that
\r
2983 * pxQueueSetContainer != NULL */
\r
2984 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
\r
2985 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
\r
2987 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
\r
2989 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
\r
2991 traceQUEUE_SET_SEND( pxQueueSetContainer );
\r
2993 /* The data copied is the handle of the queue that contains data. */
\r
2994 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
\r
2996 if( cTxLock == queueUNLOCKED )
\r
2998 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
\r
3000 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
\r
3002 /* The task waiting has a higher priority. */
\r
3007 mtCOVERAGE_TEST_MARKER();
\r
3012 mtCOVERAGE_TEST_MARKER();
\r
3017 configASSERT( cTxLock != queueINT8_MAX );
\r
3019 pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
3024 mtCOVERAGE_TEST_MARKER();
\r
3030 #endif /* configUSE_QUEUE_SETS */
\r