2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 * SPDX-License-Identifier: MIT
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
29 /* Standard includes. */
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
34 * all the API functions to use the MPU wrappers. That should only be done when
35 * task.h is included from an application file. */
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
38 /* FreeRTOS includes. */
42 #include "stack_macros.h"
44 /* The default definitions are only available for non-MPU ports. The
45 * reason is that the stack alignment requirements vary for different
47 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS != 0 ) )
48 #error configKERNEL_PROVIDED_STATIC_MEMORY cannot be set to 1 when using an MPU port. The vApplicationGet*TaskMemory() functions must be provided manually.
51 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
52 * for the header files above, but not in this file, in order to generate the
53 * correct privileged Vs unprivileged linkage and placement. */
54 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
56 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
57 * functions but without including stdio.h here. */
58 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
60 /* At the bottom of this file are two optional functions that can be used
61 * to generate human readable text from the raw data generated by the
62 * uxTaskGetSystemState() function. Note the formatting functions are provided
63 * for convenience only, and are NOT considered part of the kernel. */
65 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
67 #if ( configUSE_PREEMPTION == 0 )
69 /* If the cooperative scheduler is being used then a yield should not be
70 * performed just because a higher priority task has been woken. */
71 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )
72 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )
75 #if ( configNUMBER_OF_CORES == 1 )
77 /* This macro requests the running task pxTCB to yield. In single core
78 * scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API()
79 * can be used to request the task running on core 0 to yield. Therefore, pxTCB
80 * is not used in this macro. */
81 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \
84 portYIELD_WITHIN_API(); \
87 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \
89 if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority ) \
91 portYIELD_WITHIN_API(); \
95 mtCOVERAGE_TEST_MARKER(); \
99 #else /* if ( configNUMBER_OF_CORES == 1 ) */
101 /* Yield the core on which this task is running. */
102 #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldCore( ( pxTCB )->xTaskRunState )
104 /* Yield for the task if a running task has priority lower than this task. */
105 #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldForTask( pxTCB )
107 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
109 #endif /* if ( configUSE_PREEMPTION == 0 ) */
111 /* Values that can be assigned to the ucNotifyState member of the TCB. */
112 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
113 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
114 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
117 * The value used to fill the stack of a task when the task is created. This
118 * is used purely for checking the high water mark for tasks.
120 #define tskSTACK_FILL_BYTE ( 0xa5U )
122 /* Bits used to record how a task's stack and TCB were allocated. */
123 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
124 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
125 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
127 /* If any of the following are set then task stacks are filled with a known
128 * value so the high water mark can be determined. If none of the following are
129 * set then don't fill the stack so there is no unnecessary dependency on memset. */
130 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
131 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
133 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
137 * Macros used by vListTask to indicate which state a task is in.
139 #define tskRUNNING_CHAR ( 'X' )
140 #define tskBLOCKED_CHAR ( 'B' )
141 #define tskREADY_CHAR ( 'R' )
142 #define tskDELETED_CHAR ( 'D' )
143 #define tskSUSPENDED_CHAR ( 'S' )
146 * Some kernel aware debuggers require the data the debugger needs access to to
147 * be global, rather than file scope.
149 #ifdef portREMOVE_STATIC_QUALIFIER
153 /* The name allocated to the Idle task. This can be overridden by defining
154 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
155 #ifndef configIDLE_TASK_NAME
156 #define configIDLE_TASK_NAME "IDLE"
159 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
162 * performed in a generic way that is not optimised to any particular
163 * microcontroller architecture. */
165 /* uxTopReadyPriority holds the priority of the highest priority ready
167 #define taskRECORD_READY_PRIORITY( uxPriority ) \
169 if( ( uxPriority ) > uxTopReadyPriority ) \
171 uxTopReadyPriority = ( uxPriority ); \
173 } while( 0 ) /* taskRECORD_READY_PRIORITY */
175 /*-----------------------------------------------------------*/
177 #if ( configNUMBER_OF_CORES == 1 )
178 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
180 UBaseType_t uxTopPriority = uxTopReadyPriority; \
182 /* Find the highest priority queue that contains ready tasks. */ \
183 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
185 configASSERT( uxTopPriority ); \
189 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
190 * the same priority get an equal share of the processor time. */ \
191 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
192 uxTopReadyPriority = uxTopPriority; \
193 } while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */
194 #else /* if ( configNUMBER_OF_CORES == 1 ) */
196 #define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ) prvSelectHighestPriorityTask( xCoreID )
198 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
200 /*-----------------------------------------------------------*/
202 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
203 * they are only required when a port optimised method of task selection is
205 #define taskRESET_READY_PRIORITY( uxPriority )
206 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
208 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
210 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
211 * performed in a way that is tailored to the particular microcontroller
212 * architecture being used. */
214 /* A port optimised version is provided. Call the port defined macros. */
215 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
217 /*-----------------------------------------------------------*/
219 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
221 UBaseType_t uxTopPriority; \
223 /* Find the highest priority list that contains ready tasks. */ \
224 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
225 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
226 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
229 /*-----------------------------------------------------------*/
231 /* A port optimised version is provided, call it only if the TCB being reset
232 * is being referenced from a ready list. If it is referenced from a delayed
233 * or suspended list then it won't be in a ready list. */
234 #define taskRESET_READY_PRIORITY( uxPriority ) \
236 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
238 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
242 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
244 /*-----------------------------------------------------------*/
246 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
247 * count overflows. */
248 #define taskSWITCH_DELAYED_LISTS() \
252 /* The delayed tasks list should be empty when the lists are switched. */ \
253 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
255 pxTemp = pxDelayedTaskList; \
256 pxDelayedTaskList = pxOverflowDelayedTaskList; \
257 pxOverflowDelayedTaskList = pxTemp; \
259 prvResetNextTaskUnblockTime(); \
262 /*-----------------------------------------------------------*/
265 * Place the task represented by pxTCB into the appropriate ready list for
266 * the task. It is inserted at the end of the list.
268 #define prvAddTaskToReadyList( pxTCB ) \
270 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
271 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
272 listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
273 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ); \
275 /*-----------------------------------------------------------*/
278 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
279 * where NULL is used to indicate that the handle of the currently executing
280 * task should be used in place of the parameter. This macro simply checks to
281 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
283 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
285 /* The item value of the event list item is normally used to hold the priority
286 * of the task to which it belongs (coded to allow it to be held in reverse
287 * priority order). However, it is occasionally borrowed for other purposes. It
288 * is important its value is not updated due to a task priority change while it is
289 * being used for another purpose. The following bit definition is used to inform
290 * the scheduler that the value should not be changed - in which case it is the
291 * responsibility of whichever module is using the value to ensure it gets set back
292 * to its original value when it is released. */
293 #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
294 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint16_t ) 0x8000U )
295 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
296 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint32_t ) 0x80000000UL )
297 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS )
298 #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint64_t ) 0x8000000000000000ULL )
301 /* Indicates that the task is not actively running on any core. */
302 #define taskTASK_NOT_RUNNING ( ( BaseType_t ) ( -1 ) )
304 /* Indicates that the task is actively running but scheduled to yield. */
305 #define taskTASK_SCHEDULED_TO_YIELD ( ( BaseType_t ) ( -2 ) )
307 /* Returns pdTRUE if the task is actively running and not scheduled to yield. */
308 #if ( configNUMBER_OF_CORES == 1 )
309 #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
310 #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
312 #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) )
313 #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) )
316 /* Indicates that the task is an Idle task. */
317 #define taskATTRIBUTE_IS_IDLE ( UBaseType_t ) ( 1UL << 0UL )
319 #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) )
320 #define portGET_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting )
321 #define portSET_CRITICAL_NESTING_COUNT( x ) ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) )
322 #define portINCREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ )
323 #define portDECREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- )
324 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */
326 #define taskBITS_PER_BYTE ( ( size_t ) 8 )
328 #if ( configNUMBER_OF_CORES > 1 )
330 /* Yields the given core. This must be called from a critical section and xCoreID
331 * must be valid. This macro is not required in single core since there is only
332 * one core to yield. */
333 #define prvYieldCore( xCoreID ) \
335 if( ( xCoreID ) == ( BaseType_t ) portGET_CORE_ID() ) \
337 /* Pending a yield for this core since it is in the critical section. */ \
338 xYieldPendings[ ( xCoreID ) ] = pdTRUE; \
342 /* Request other core to yield if it is not requested before. */ \
343 if( pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \
345 portYIELD_CORE( xCoreID ); \
346 pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD; \
350 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
351 /*-----------------------------------------------------------*/
354 * Task control block. A task control block (TCB) is allocated for each task,
355 * and stores task state information, including a pointer to the task's context
356 * (the task's run time environment, including register values)
358 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
360 volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
362 #if ( portUSING_MPU_WRAPPERS == 1 )
363 xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
366 #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
367 UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores. UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */
370 ListItem_t xStateListItem; /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
371 ListItem_t xEventListItem; /**< Used to reference a task from an event list. */
372 UBaseType_t uxPriority; /**< The priority of the task. 0 is the lowest priority. */
373 StackType_t * pxStack; /**< Points to the start of the stack. */
374 #if ( configNUMBER_OF_CORES > 1 )
375 volatile BaseType_t xTaskRunState; /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */
376 UBaseType_t uxTaskAttributes; /**< Task's attributes - currently used to identify the idle tasks. */
378 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created. Facilitates debugging only. */
380 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
381 BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */
384 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
385 StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */
388 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
389 UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
392 #if ( configUSE_TRACE_FACILITY == 1 )
393 UBaseType_t uxTCBNumber; /**< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
394 UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */
397 #if ( configUSE_MUTEXES == 1 )
398 UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */
399 UBaseType_t uxMutexesHeld;
402 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
403 TaskHookFunction_t pxTaskTag;
406 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
407 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
410 #if ( configGENERATE_RUN_TIME_STATS == 1 )
411 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */
414 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
415 configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */
418 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
419 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
420 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
423 /* See the comments in FreeRTOS.h with the definition of
424 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
425 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
426 uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
429 #if ( INCLUDE_xTaskAbortDelay == 1 )
430 uint8_t ucDelayAborted;
433 #if ( configUSE_POSIX_ERRNO == 1 )
438 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
439 * below to enable the use of older kernel aware debuggers. */
440 typedef tskTCB TCB_t;
442 #if ( configNUMBER_OF_CORES == 1 )
443 /* MISRA Ref 8.4.1 [Declaration shall be visible] */
444 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
445 /* coverity[misra_c_2012_rule_8_4_violation] */
446 portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
448 /* MISRA Ref 8.4.1 [Declaration shall be visible] */
449 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
450 /* coverity[misra_c_2012_rule_8_4_violation] */
451 portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ];
452 #define pxCurrentTCB xTaskGetCurrentTaskHandle()
455 /* Lists for ready and blocked tasks. --------------------
456 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
457 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
458 * the static qualifier. */
459 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */
460 PRIVILEGED_DATA static List_t xDelayedTaskList1; /**< Delayed tasks. */
461 PRIVILEGED_DATA static List_t xDelayedTaskList2; /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
462 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /**< Points to the delayed task list currently being used. */
463 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
464 PRIVILEGED_DATA static List_t xPendingReadyList; /**< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
466 #if ( INCLUDE_vTaskDelete == 1 )
468 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */
469 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
473 #if ( INCLUDE_vTaskSuspend == 1 )
475 PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */
479 /* Global POSIX errno. Its value is changed upon context switching to match
480 * the errno of the currently running task. */
481 #if ( configUSE_POSIX_ERRNO == 1 )
482 int FreeRTOS_errno = 0;
485 /* Other file private variables. --------------------------------*/
486 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
487 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
488 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
489 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
490 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
491 PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE };
492 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
493 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
494 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
495 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ]; /**< Holds the handles of the idle tasks. The idle tasks are created automatically when the scheduler is started. */
497 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
498 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
499 * to determine the number of priority lists to read back from the remote target. */
500 static const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
502 /* Context switches are held pending while the scheduler is suspended. Also,
503 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
504 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
505 * If an interrupt needs to unblock a task while the scheduler is suspended then it
506 * moves the task's event list item into the xPendingReadyList, ready for the
507 * kernel to move the task from the pending ready list into the real ready list
508 * when the scheduler is unsuspended. The pending ready list itself can only be
509 * accessed from a critical section.
511 * Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock
512 * and must not be done from an ISR. Reads must be protected by either lock and may be done
513 * from either an ISR or a task. */
514 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U;
516 #if ( configGENERATE_RUN_TIME_STATS == 1 )
518 /* Do not move these variables to function scope as doing so prevents the
519 * code working with debuggers that need to remove the static qualifier. */
520 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the value of a timer/counter the last time a task was switched in. */
521 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */
525 /*-----------------------------------------------------------*/
527 /* File private functions. --------------------------------*/
530 * Creates the idle tasks during scheduler start.
532 static BaseType_t prvCreateIdleTasks( void );
534 #if ( configNUMBER_OF_CORES > 1 )
537 * Checks to see if another task moved the current task out of the ready
538 * list while it was waiting to enter a critical section and yields, if so.
540 static void prvCheckForRunStateChange( void );
541 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
543 #if ( configNUMBER_OF_CORES > 1 )
546 * Yields a core, or cores if multiple priorities are not allowed to run
547 * simultaneously, to allow the task pxTCB to run.
549 static void prvYieldForTask( const TCB_t * pxTCB );
550 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
552 #if ( configNUMBER_OF_CORES > 1 )
555 * Selects the highest priority available task for the given core.
557 static void prvSelectHighestPriorityTask( BaseType_t xCoreID );
558 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
561 * Utility task that simply returns pdTRUE if the task referenced by xTask is
562 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
563 * is in any other state.
565 #if ( INCLUDE_vTaskSuspend == 1 )
567 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
569 #endif /* INCLUDE_vTaskSuspend */
572 * Utility to ready all the lists used by the scheduler. This is called
573 * automatically upon the creation of the first task.
575 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
578 * The idle task, which as all tasks is implemented as a never ending loop.
579 * The idle task is automatically created and added to the ready lists upon
580 * creation of the first user task.
582 * In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also
583 * created to ensure that each core has an idle task to run when no other
584 * task is available to run.
586 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
587 * language extensions. The equivalent prototype for these functions are:
589 * void prvIdleTask( void *pvParameters );
590 * void prvPassiveIdleTask( void *pvParameters );
593 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
594 #if ( configNUMBER_OF_CORES > 1 )
595 static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
599 * Utility to free all memory allocated by the scheduler to hold a TCB,
600 * including the stack pointed to by the TCB.
602 * This does not free memory allocated by the task itself (i.e. memory
603 * allocated by calls to pvPortMalloc from within the tasks application code).
605 #if ( INCLUDE_vTaskDelete == 1 )
607 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
612 * Used only by the idle task. This checks to see if anything has been placed
613 * in the list of tasks waiting to be deleted. If so the task is cleaned up
614 * and its TCB deleted.
616 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
619 * The currently executing task is entering the Blocked state. Add the task to
620 * either the current or the overflow delayed task list.
622 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
623 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
626 * Fills an TaskStatus_t structure with information on each task that is
627 * referenced from the pxList list (which may be a ready list, a delayed list,
628 * a suspended list, etc.).
630 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
631 * NORMAL APPLICATION CODE.
633 #if ( configUSE_TRACE_FACILITY == 1 )
635 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
637 eTaskState eState ) PRIVILEGED_FUNCTION;
642 * Searches pxList for a task with name pcNameToQuery - returning a handle to
643 * the task if it is found, or NULL if the task is not found.
645 #if ( INCLUDE_xTaskGetHandle == 1 )
647 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
648 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
653 * When a task is created, the stack of the task is filled with a known value.
654 * This function determines the 'high water mark' of the task stack by
655 * determining how much of the stack remains at the original preset value.
657 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
659 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
664 * Return the amount of time, in ticks, that will pass before the kernel will
665 * next move a task from the Blocked state to the Running state.
667 * This conditional compilation should use inequality to 0, not equality to 1.
668 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
669 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
670 * set to a value other than 1.
672 #if ( configUSE_TICKLESS_IDLE != 0 )
674 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
679 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
680 * will exit the Blocked state.
682 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
684 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
687 * Helper function used to pad task names with spaces when printing out
688 * human readable tables of task information.
690 static char * prvWriteNameToBuffer( char * pcBuffer,
691 const char * pcTaskName ) PRIVILEGED_FUNCTION;
696 * Called after a Task_t structure has been allocated either statically or
697 * dynamically to fill in the structure's members.
699 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
700 const char * const pcName,
701 const uint32_t ulStackDepth,
702 void * const pvParameters,
703 UBaseType_t uxPriority,
704 TaskHandle_t * const pxCreatedTask,
706 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
709 * Called after a new task has been created and initialised to place the task
710 * under the control of the scheduler.
712 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
715 * Create a task with static buffer for both TCB and stack. Returns a handle to
716 * the task if it is created successfully. Otherwise, returns NULL.
718 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
719 static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
720 const char * const pcName,
721 const uint32_t ulStackDepth,
722 void * const pvParameters,
723 UBaseType_t uxPriority,
724 StackType_t * const puxStackBuffer,
725 StaticTask_t * const pxTaskBuffer,
726 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
727 #endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
730 * Create a restricted task with static buffer for both TCB and stack. Returns
731 * a handle to the task if it is created successfully. Otherwise, returns NULL.
733 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
734 static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
735 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
736 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
739 * Create a restricted task with static buffer for task stack and allocated buffer
740 * for TCB. Returns a handle to the task if it is created successfully. Otherwise,
743 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
744 static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
745 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
746 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
749 * Create a task with allocated buffer for both TCB and stack. Returns a handle to
750 * the task if it is created successfully. Otherwise, returns NULL.
752 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
753 static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
754 const char * const pcName,
755 const configSTACK_DEPTH_TYPE usStackDepth,
756 void * const pvParameters,
757 UBaseType_t uxPriority,
758 TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
759 #endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */
762 * freertos_tasks_c_additions_init() should only be called if the user definable
763 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
764 * called by the function.
766 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
768 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
772 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
773 extern void vApplicationPassiveIdleHook( void );
774 #endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */
776 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
779 * Convert the snprintf return value to the number of characters
780 * written. The following are the possible cases:
782 * 1. The buffer supplied to snprintf is large enough to hold the
783 * generated string. The return value in this case is the number
784 * of characters actually written, not counting the terminating
786 * 2. The buffer supplied to snprintf is NOT large enough to hold
787 * the generated string. The return value in this case is the
788 * number of characters that would have been written if the
789 * buffer had been sufficiently large, not counting the
790 * terminating null character.
791 * 3. Encoding error. The return value in this case is a negative
794 * From 1 and 2 above ==> Only when the return value is non-negative
795 * and less than the supplied buffer length, the string has been
796 * completely written.
798 static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
801 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
802 /*-----------------------------------------------------------*/
804 #if ( configNUMBER_OF_CORES > 1 )
805 static void prvCheckForRunStateChange( void )
807 UBaseType_t uxPrevCriticalNesting;
808 const TCB_t * pxThisTCB;
810 /* This must only be called from within a task. */
811 portASSERT_IF_IN_ISR();
813 /* This function is always called with interrupts disabled
814 * so this is safe. */
815 pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];
817 while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD )
819 /* We are only here if we just entered a critical section
820 * or if we just suspended the scheduler, and another task
821 * has requested that we yield.
823 * This is slightly complicated since we need to save and restore
824 * the suspension and critical nesting counts, as well as release
825 * and reacquire the correct locks. And then, do it all over again
826 * if our state changed again during the reacquisition. */
827 uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT();
829 if( uxPrevCriticalNesting > 0U )
831 portSET_CRITICAL_NESTING_COUNT( 0U );
832 portRELEASE_ISR_LOCK();
836 /* The scheduler is suspended. uxSchedulerSuspended is updated
837 * only when the task is not requested to yield. */
838 mtCOVERAGE_TEST_MARKER();
841 portRELEASE_TASK_LOCK();
842 portMEMORY_BARRIER();
843 configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD );
845 portENABLE_INTERRUPTS();
847 /* Enabling interrupts should cause this core to immediately
848 * service the pending interrupt and yield. If the run state is still
849 * yielding here then that is a problem. */
850 configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD );
852 portDISABLE_INTERRUPTS();
856 portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting );
858 if( uxPrevCriticalNesting == 0U )
860 portRELEASE_ISR_LOCK();
864 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
866 /*-----------------------------------------------------------*/
868 #if ( configNUMBER_OF_CORES > 1 )
869 static void prvYieldForTask( const TCB_t * pxTCB )
871 BaseType_t xLowestPriorityToPreempt;
872 BaseType_t xCurrentCoreTaskPriority;
873 BaseType_t xLowestPriorityCore = ( BaseType_t ) -1;
876 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
877 BaseType_t xYieldCount = 0;
878 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
880 /* This must be called from a critical section. */
881 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
883 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
885 /* No task should yield for this one if it is a lower priority
886 * than priority level of currently ready tasks. */
887 if( pxTCB->uxPriority >= uxTopReadyPriority )
889 /* Yield is not required for a task which is already running. */
890 if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
893 xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority;
895 /* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB
896 * is 0. This is ok as we will give system idle tasks a priority of -1 below. */
897 --xLowestPriorityToPreempt;
899 for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
901 xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority;
903 /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */
904 if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
906 xCurrentCoreTaskPriority = xCurrentCoreTaskPriority - 1;
909 if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) )
911 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
912 if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
915 if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt )
917 #if ( configUSE_CORE_AFFINITY == 1 )
918 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
921 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
922 if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
925 xLowestPriorityToPreempt = xCurrentCoreTaskPriority;
926 xLowestPriorityCore = xCoreID;
932 mtCOVERAGE_TEST_MARKER();
936 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
938 /* Yield all currently running non-idle tasks with a priority lower than
939 * the task that needs to run. */
940 if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) &&
941 ( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
943 prvYieldCore( xCoreID );
948 mtCOVERAGE_TEST_MARKER();
951 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
955 mtCOVERAGE_TEST_MARKER();
959 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
960 if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) )
961 #else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
962 if( xLowestPriorityCore >= 0 )
963 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
965 prvYieldCore( xLowestPriorityCore );
968 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
969 /* Verify that the calling core always yields to higher priority tasks. */
970 if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) &&
971 ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
973 configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) ||
974 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) );
979 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
980 /*-----------------------------------------------------------*/
982 #if ( configNUMBER_OF_CORES > 1 )
983 static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
985 UBaseType_t uxCurrentPriority = uxTopReadyPriority;
986 BaseType_t xTaskScheduled = pdFALSE;
987 BaseType_t xDecrementTopPriority = pdTRUE;
989 #if ( configUSE_CORE_AFFINITY == 1 )
990 const TCB_t * pxPreviousTCB = NULL;
992 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
993 BaseType_t xPriorityDropped = pdFALSE;
996 /* This function should be called when scheduler is running. */
997 configASSERT( xSchedulerRunning == pdTRUE );
999 /* A new task is created and a running task with the same priority yields
1000 * itself to run the new task. When a running task yields itself, it is still
1001 * in the ready list. This running task will be selected before the new task
1002 * since the new task is always added to the end of the ready list.
1003 * The other problem is that the running task still in the same position of
1004 * the ready list when it yields itself. It is possible that it will be selected
1005 * earlier then other tasks which waits longer than this task.
1007 * To fix these problems, the running task should be put to the end of the
1008 * ready list before searching for the ready task in the ready list. */
1009 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1010 &pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE )
1012 ( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1013 vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1014 &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1017 while( xTaskScheduled == pdFALSE )
1019 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1021 if( uxCurrentPriority < uxTopReadyPriority )
1023 /* We can't schedule any tasks, other than idle, that have a
1024 * priority lower than the priority of a task currently running
1025 * on another core. */
1026 uxCurrentPriority = tskIDLE_PRIORITY;
1031 if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
1033 const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
1034 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList );
1035 ListItem_t * pxIterator;
1037 /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
1038 * must not be decremented any further. */
1039 xDecrementTopPriority = pdFALSE;
1041 for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
1043 /* MISRA Ref 11.5.3 [Void pointer assignment] */
1044 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1045 /* coverity[misra_c_2012_rule_11_5_violation] */
1046 TCB_t * pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator );
1048 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1050 /* When falling back to the idle priority because only one priority
1051 * level is allowed to run at a time, we should ONLY schedule the true
1052 * idle tasks, not user tasks at the idle priority. */
1053 if( uxCurrentPriority < uxTopReadyPriority )
1055 if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U )
1061 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1063 if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
1065 #if ( configUSE_CORE_AFFINITY == 1 )
1066 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1069 /* If the task is not being executed by any core swap it in. */
1070 pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
1071 #if ( configUSE_CORE_AFFINITY == 1 )
1072 pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
1074 pxTCB->xTaskRunState = xCoreID;
1075 pxCurrentTCBs[ xCoreID ] = pxTCB;
1076 xTaskScheduled = pdTRUE;
1079 else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
1081 configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) );
1083 #if ( configUSE_CORE_AFFINITY == 1 )
1084 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1087 /* The task is already running on this core, mark it as scheduled. */
1088 pxTCB->xTaskRunState = xCoreID;
1089 xTaskScheduled = pdTRUE;
1094 /* This task is running on the core other than xCoreID. */
1095 mtCOVERAGE_TEST_MARKER();
1098 if( xTaskScheduled != pdFALSE )
1100 /* A task has been selected to run on this core. */
1107 if( xDecrementTopPriority != pdFALSE )
1109 uxTopReadyPriority--;
1110 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1112 xPriorityDropped = pdTRUE;
1118 /* There are configNUMBER_OF_CORES Idle tasks created when scheduler started.
1119 * The scheduler should be able to select a task to run when uxCurrentPriority
1120 * is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow
1121 * tskIDLE_PRIORITY. */
1122 if( uxCurrentPriority > tskIDLE_PRIORITY )
1124 uxCurrentPriority--;
1128 /* This function is called when idle task is not created. Break the
1129 * loop to prevent uxCurrentPriority overrun. */
1134 #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1136 if( xTaskScheduled == pdTRUE )
1138 if( xPriorityDropped != pdFALSE )
1140 /* There may be several ready tasks that were being prevented from running because there was
1141 * a higher priority task running. Now that the last of the higher priority tasks is no longer
1142 * running, make sure all the other idle tasks yield. */
1145 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ )
1147 if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1155 #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1157 #if ( configUSE_CORE_AFFINITY == 1 )
1159 if( xTaskScheduled == pdTRUE )
1161 if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
1163 /* A ready task was just evicted from this core. See if it can be
1164 * scheduled on any other core. */
1165 UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
1166 BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority;
1167 BaseType_t xLowestPriorityCore = -1;
1170 if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1172 xLowestPriority = xLowestPriority - 1;
1175 if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1177 /* pxPreviousTCB was removed from this core and this core is not excluded
1178 * from it's core affinity mask.
1180 * pxPreviousTCB is preempted by the new higher priority task
1181 * pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB,
1182 * we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ]
1183 * is allowed to run. The reason is - when more than one cores are
1184 * eligible for an incoming task, we preempt the core with the minimum
1185 * priority task. Because this core (i.e. xCoreID) was preempted for
1186 * pxCurrentTCBs[ xCoreID ], this means that all the others cores
1187 * where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority
1188 * no lower than pxPreviousTCB's priority. Therefore, the only cores where
1189 * which can be preempted for pxPreviousTCB are the ones where
1190 * pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously,
1191 * pxPreviousTCB is allowed to run).
1193 * This is an optimization which reduces the number of cores needed to be
1194 * searched for pxPreviousTCB to run. */
1195 uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
1199 /* pxPreviousTCB's core affinity mask is changed and it is no longer
1200 * allowed to run on this core. Searching all the cores in pxPreviousTCB's
1201 * new core affinity mask to find a core on which it can run. */
1204 uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U );
1206 for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- )
1208 UBaseType_t uxCore = ( UBaseType_t ) x;
1209 BaseType_t xTaskPriority;
1211 if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U )
1213 xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority;
1215 if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1217 xTaskPriority = xTaskPriority - ( BaseType_t ) 1;
1220 uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore );
1222 if( ( xTaskPriority < xLowestPriority ) &&
1223 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) &&
1224 ( xYieldPendings[ uxCore ] == pdFALSE ) )
1226 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
1227 if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
1230 xLowestPriority = xTaskPriority;
1231 xLowestPriorityCore = ( BaseType_t ) uxCore;
1237 if( xLowestPriorityCore >= 0 )
1239 prvYieldCore( xLowestPriorityCore );
1244 #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */
1247 #endif /* ( configNUMBER_OF_CORES > 1 ) */
1249 /*-----------------------------------------------------------*/
1251 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1253 static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
1254 const char * const pcName,
1255 const uint32_t ulStackDepth,
1256 void * const pvParameters,
1257 UBaseType_t uxPriority,
1258 StackType_t * const puxStackBuffer,
1259 StaticTask_t * const pxTaskBuffer,
1260 TaskHandle_t * const pxCreatedTask )
1264 configASSERT( puxStackBuffer != NULL );
1265 configASSERT( pxTaskBuffer != NULL );
1267 #if ( configASSERT_DEFINED == 1 )
1269 /* Sanity check that the size of the structure used to declare a
1270 * variable of type StaticTask_t equals the size of the real task
1272 volatile size_t xSize = sizeof( StaticTask_t );
1273 configASSERT( xSize == sizeof( TCB_t ) );
1274 ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not used. */
1276 #endif /* configASSERT_DEFINED */
1278 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
1280 /* The memory used for the task's TCB and stack are passed into this
1281 * function - use them. */
1282 /* MISRA Ref 11.3.1 [Misaligned access] */
1283 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
1284 /* coverity[misra_c_2012_rule_11_3_violation] */
1285 pxNewTCB = ( TCB_t * ) pxTaskBuffer;
1286 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1287 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
1289 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1291 /* Tasks can be created statically or dynamically, so note this
1292 * task was created statically in case the task is later deleted. */
1293 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1295 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1297 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1306 /*-----------------------------------------------------------*/
1308 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
1309 const char * const pcName,
1310 const uint32_t ulStackDepth,
1311 void * const pvParameters,
1312 UBaseType_t uxPriority,
1313 StackType_t * const puxStackBuffer,
1314 StaticTask_t * const pxTaskBuffer )
1316 TaskHandle_t xReturn = NULL;
1319 traceENTER_xTaskCreateStatic( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
1321 pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1323 if( pxNewTCB != NULL )
1325 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1327 /* Set the task's affinity before scheduling it. */
1328 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1332 prvAddNewTaskToReadyList( pxNewTCB );
1336 mtCOVERAGE_TEST_MARKER();
1339 traceRETURN_xTaskCreateStatic( xReturn );
1343 /*-----------------------------------------------------------*/
1345 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1346 TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
1347 const char * const pcName,
1348 const uint32_t ulStackDepth,
1349 void * const pvParameters,
1350 UBaseType_t uxPriority,
1351 StackType_t * const puxStackBuffer,
1352 StaticTask_t * const pxTaskBuffer,
1353 UBaseType_t uxCoreAffinityMask )
1355 TaskHandle_t xReturn = NULL;
1358 traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask );
1360 pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1362 if( pxNewTCB != NULL )
1364 /* Set the task's affinity before scheduling it. */
1365 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1367 prvAddNewTaskToReadyList( pxNewTCB );
1371 mtCOVERAGE_TEST_MARKER();
1374 traceRETURN_xTaskCreateStaticAffinitySet( xReturn );
1378 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1380 #endif /* SUPPORT_STATIC_ALLOCATION */
1381 /*-----------------------------------------------------------*/
1383 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
1384 static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
1385 TaskHandle_t * const pxCreatedTask )
1389 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
1390 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
1392 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
1394 /* Allocate space for the TCB. Where the memory comes from depends
1395 * on the implementation of the port malloc function and whether or
1396 * not static allocation is being used. */
1397 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
1398 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1400 /* Store the stack location in the TCB. */
1401 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1403 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1405 /* Tasks can be created statically or dynamically, so note this
1406 * task was created statically in case the task is later deleted. */
1407 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1409 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1411 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1412 pxTaskDefinition->pcName,
1413 ( uint32_t ) pxTaskDefinition->usStackDepth,
1414 pxTaskDefinition->pvParameters,
1415 pxTaskDefinition->uxPriority,
1416 pxCreatedTask, pxNewTCB,
1417 pxTaskDefinition->xRegions );
1426 /*-----------------------------------------------------------*/
1428 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
1429 TaskHandle_t * pxCreatedTask )
1434 traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask );
1436 configASSERT( pxTaskDefinition != NULL );
1438 pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1440 if( pxNewTCB != NULL )
1442 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1444 /* Set the task's affinity before scheduling it. */
1445 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1449 prvAddNewTaskToReadyList( pxNewTCB );
1454 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1457 traceRETURN_xTaskCreateRestrictedStatic( xReturn );
1461 /*-----------------------------------------------------------*/
1463 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1464 BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1465 UBaseType_t uxCoreAffinityMask,
1466 TaskHandle_t * pxCreatedTask )
1471 traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1473 configASSERT( pxTaskDefinition != NULL );
1475 pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1477 if( pxNewTCB != NULL )
1479 /* Set the task's affinity before scheduling it. */
1480 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1482 prvAddNewTaskToReadyList( pxNewTCB );
1487 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1490 traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn );
1494 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1496 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
1497 /*-----------------------------------------------------------*/
1499 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
1500 static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
1501 TaskHandle_t * const pxCreatedTask )
1505 configASSERT( pxTaskDefinition->puxStackBuffer );
1507 if( pxTaskDefinition->puxStackBuffer != NULL )
1509 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1510 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1511 /* coverity[misra_c_2012_rule_11_5_violation] */
1512 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1514 if( pxNewTCB != NULL )
1516 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1518 /* Store the stack location in the TCB. */
1519 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1521 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1523 /* Tasks can be created statically or dynamically, so note
1524 * this task had a statically allocated stack in case it is
1525 * later deleted. The TCB was allocated dynamically. */
1526 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
1528 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1530 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1531 pxTaskDefinition->pcName,
1532 ( uint32_t ) pxTaskDefinition->usStackDepth,
1533 pxTaskDefinition->pvParameters,
1534 pxTaskDefinition->uxPriority,
1535 pxCreatedTask, pxNewTCB,
1536 pxTaskDefinition->xRegions );
1546 /*-----------------------------------------------------------*/
1548 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
1549 TaskHandle_t * pxCreatedTask )
1554 traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask );
1556 pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1558 if( pxNewTCB != NULL )
1560 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1562 /* Set the task's affinity before scheduling it. */
1563 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1565 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1567 prvAddNewTaskToReadyList( pxNewTCB );
1573 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1576 traceRETURN_xTaskCreateRestricted( xReturn );
1580 /*-----------------------------------------------------------*/
1582 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1583 BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1584 UBaseType_t uxCoreAffinityMask,
1585 TaskHandle_t * pxCreatedTask )
1590 traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1592 pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1594 if( pxNewTCB != NULL )
1596 /* Set the task's affinity before scheduling it. */
1597 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1599 prvAddNewTaskToReadyList( pxNewTCB );
1605 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1608 traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn );
1612 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1615 #endif /* portUSING_MPU_WRAPPERS */
1616 /*-----------------------------------------------------------*/
1618 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
1619 static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
1620 const char * const pcName,
1621 const configSTACK_DEPTH_TYPE usStackDepth,
1622 void * const pvParameters,
1623 UBaseType_t uxPriority,
1624 TaskHandle_t * const pxCreatedTask )
1628 /* If the stack grows down then allocate the stack then the TCB so the stack
1629 * does not grow into the TCB. Likewise if the stack grows up then allocate
1630 * the TCB then the stack. */
1631 #if ( portSTACK_GROWTH > 0 )
1633 /* Allocate space for the TCB. Where the memory comes from depends on
1634 * the implementation of the port malloc function and whether or not static
1635 * allocation is being used. */
1636 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1637 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1638 /* coverity[misra_c_2012_rule_11_5_violation] */
1639 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1641 if( pxNewTCB != NULL )
1643 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1645 /* Allocate space for the stack used by the task being created.
1646 * The base of the stack memory stored in the TCB so the task can
1647 * be deleted later if required. */
1648 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1649 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1650 /* coverity[misra_c_2012_rule_11_5_violation] */
1651 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) );
1653 if( pxNewTCB->pxStack == NULL )
1655 /* Could not allocate the stack. Delete the allocated TCB. */
1656 vPortFree( pxNewTCB );
1661 #else /* portSTACK_GROWTH */
1663 StackType_t * pxStack;
1665 /* Allocate space for the stack used by the task being created. */
1666 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1667 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1668 /* coverity[misra_c_2012_rule_11_5_violation] */
1669 pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) );
1671 if( pxStack != NULL )
1673 /* Allocate space for the TCB. */
1674 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1675 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1676 /* coverity[misra_c_2012_rule_11_5_violation] */
1677 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1679 if( pxNewTCB != NULL )
1681 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1683 /* Store the stack location in the TCB. */
1684 pxNewTCB->pxStack = pxStack;
1688 /* The stack cannot be used as the TCB was not created. Free
1690 vPortFreeStack( pxStack );
1698 #endif /* portSTACK_GROWTH */
1700 if( pxNewTCB != NULL )
1702 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1704 /* Tasks can be created statically or dynamically, so note this
1705 * task was created dynamically in case it is later deleted. */
1706 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
1708 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1710 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1715 /*-----------------------------------------------------------*/
1717 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
1718 const char * const pcName,
1719 const configSTACK_DEPTH_TYPE usStackDepth,
1720 void * const pvParameters,
1721 UBaseType_t uxPriority,
1722 TaskHandle_t * const pxCreatedTask )
1727 traceENTER_xTaskCreate( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask );
1729 pxNewTCB = prvCreateTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask );
1731 if( pxNewTCB != NULL )
1733 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1735 /* Set the task's affinity before scheduling it. */
1736 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1740 prvAddNewTaskToReadyList( pxNewTCB );
1745 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1748 traceRETURN_xTaskCreate( xReturn );
1752 /*-----------------------------------------------------------*/
1754 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1755 BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
1756 const char * const pcName,
1757 const configSTACK_DEPTH_TYPE usStackDepth,
1758 void * const pvParameters,
1759 UBaseType_t uxPriority,
1760 UBaseType_t uxCoreAffinityMask,
1761 TaskHandle_t * const pxCreatedTask )
1766 traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask );
1768 pxNewTCB = prvCreateTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask );
1770 if( pxNewTCB != NULL )
1772 /* Set the task's affinity before scheduling it. */
1773 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1775 prvAddNewTaskToReadyList( pxNewTCB );
1780 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1783 traceRETURN_xTaskCreateAffinitySet( xReturn );
1787 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1789 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
1790 /*-----------------------------------------------------------*/
1792 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
1793 const char * const pcName,
1794 const uint32_t ulStackDepth,
1795 void * const pvParameters,
1796 UBaseType_t uxPriority,
1797 TaskHandle_t * const pxCreatedTask,
1799 const MemoryRegion_t * const xRegions )
1801 StackType_t * pxTopOfStack;
1804 #if ( portUSING_MPU_WRAPPERS == 1 )
1805 /* Should the task be created in privileged mode? */
1806 BaseType_t xRunPrivileged;
1808 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
1810 xRunPrivileged = pdTRUE;
1814 xRunPrivileged = pdFALSE;
1816 uxPriority &= ~portPRIVILEGE_BIT;
1817 #endif /* portUSING_MPU_WRAPPERS == 1 */
1819 /* Avoid dependency on memset() if it is not required. */
1820 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
1822 /* Fill the stack with a known value to assist debugging. */
1823 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
1825 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
1827 /* Calculate the top of stack address. This depends on whether the stack
1828 * grows from high memory to low (as per the 80x86) or vice versa.
1829 * portSTACK_GROWTH is used to make the result positive or negative as required
1831 #if ( portSTACK_GROWTH < 0 )
1833 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
1834 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1836 /* Check the alignment of the calculated top of stack is correct. */
1837 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
1839 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
1841 /* Also record the stack's high address, which may assist
1843 pxNewTCB->pxEndOfStack = pxTopOfStack;
1845 #endif /* configRECORD_STACK_HIGH_ADDRESS */
1847 #else /* portSTACK_GROWTH */
1849 pxTopOfStack = pxNewTCB->pxStack;
1850 pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1852 /* Check the alignment of the calculated top of stack is correct. */
1853 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
1855 /* The other extreme of the stack space is required if stack checking is
1857 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
1859 #endif /* portSTACK_GROWTH */
1861 /* Store the task name in the TCB. */
1862 if( pcName != NULL )
1864 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
1866 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
1868 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
1869 * configMAX_TASK_NAME_LEN characters just in case the memory after the
1870 * string is not accessible (extremely unlikely). */
1871 if( pcName[ x ] == ( char ) 0x00 )
1877 mtCOVERAGE_TEST_MARKER();
1881 /* Ensure the name string is terminated in the case that the string length
1882 * was greater or equal to configMAX_TASK_NAME_LEN. */
1883 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1U ] = '\0';
1887 mtCOVERAGE_TEST_MARKER();
1890 /* This is used as an array index so must ensure it's not too large. */
1891 configASSERT( uxPriority < configMAX_PRIORITIES );
1893 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
1895 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
1899 mtCOVERAGE_TEST_MARKER();
1902 pxNewTCB->uxPriority = uxPriority;
1903 #if ( configUSE_MUTEXES == 1 )
1905 pxNewTCB->uxBasePriority = uxPriority;
1907 #endif /* configUSE_MUTEXES */
1909 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
1910 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
1912 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
1913 * back to the containing TCB from a generic item in a list. */
1914 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
1916 /* Event lists are always in priority order. */
1917 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority );
1918 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
1920 #if ( portUSING_MPU_WRAPPERS == 1 )
1922 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
1926 /* Avoid compiler warning about unreferenced parameter. */
1931 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
1933 /* Allocate and initialize memory for the task's TLS Block. */
1934 configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack );
1938 /* Initialize the TCB stack to look as if the task was already running,
1939 * but had been interrupted by the scheduler. The return address is set
1940 * to the start of the task function. Once the stack has been initialised
1941 * the top of stack variable is updated. */
1942 #if ( portUSING_MPU_WRAPPERS == 1 )
1944 /* If the port has capability to detect stack overflow,
1945 * pass the stack end address to the stack initialization
1946 * function as well. */
1947 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1949 #if ( portSTACK_GROWTH < 0 )
1951 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1953 #else /* portSTACK_GROWTH */
1955 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1957 #endif /* portSTACK_GROWTH */
1959 #else /* portHAS_STACK_OVERFLOW_CHECKING */
1961 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1963 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1965 #else /* portUSING_MPU_WRAPPERS */
1967 /* If the port has capability to detect stack overflow,
1968 * pass the stack end address to the stack initialization
1969 * function as well. */
1970 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1972 #if ( portSTACK_GROWTH < 0 )
1974 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
1976 #else /* portSTACK_GROWTH */
1978 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
1980 #endif /* portSTACK_GROWTH */
1982 #else /* portHAS_STACK_OVERFLOW_CHECKING */
1984 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
1986 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1988 #endif /* portUSING_MPU_WRAPPERS */
1990 /* Initialize task state and task attributes. */
1991 #if ( configNUMBER_OF_CORES > 1 )
1993 pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;
1995 /* Is this an idle task? */
1996 if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) )
1998 pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE;
2001 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2003 if( pxCreatedTask != NULL )
2005 /* Pass the handle out in an anonymous way. The handle can be used to
2006 * change the created task's priority, delete the created task, etc.*/
2007 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
2011 mtCOVERAGE_TEST_MARKER();
2014 /*-----------------------------------------------------------*/
2016 #if ( configNUMBER_OF_CORES == 1 )
2018 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2020 /* Ensure interrupts don't access the task lists while the lists are being
2022 taskENTER_CRITICAL();
2024 uxCurrentNumberOfTasks++;
2026 if( pxCurrentTCB == NULL )
2028 /* There are no other tasks, or all the other tasks are in
2029 * the suspended state - make this the current task. */
2030 pxCurrentTCB = pxNewTCB;
2032 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2034 /* This is the first task to be created so do the preliminary
2035 * initialisation required. We will not recover if this call
2036 * fails, but we will report the failure. */
2037 prvInitialiseTaskLists();
2041 mtCOVERAGE_TEST_MARKER();
2046 /* If the scheduler is not already running, make this task the
2047 * current task if it is the highest priority task to be created
2049 if( xSchedulerRunning == pdFALSE )
2051 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
2053 pxCurrentTCB = pxNewTCB;
2057 mtCOVERAGE_TEST_MARKER();
2062 mtCOVERAGE_TEST_MARKER();
2068 #if ( configUSE_TRACE_FACILITY == 1 )
2070 /* Add a counter into the TCB for tracing only. */
2071 pxNewTCB->uxTCBNumber = uxTaskNumber;
2073 #endif /* configUSE_TRACE_FACILITY */
2074 traceTASK_CREATE( pxNewTCB );
2076 prvAddTaskToReadyList( pxNewTCB );
2078 portSETUP_TCB( pxNewTCB );
2080 taskEXIT_CRITICAL();
2082 if( xSchedulerRunning != pdFALSE )
2084 /* If the created task is of a higher priority than the current task
2085 * then it should run now. */
2086 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2090 mtCOVERAGE_TEST_MARKER();
2094 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2096 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2098 /* Ensure interrupts don't access the task lists while the lists are being
2100 taskENTER_CRITICAL();
2102 uxCurrentNumberOfTasks++;
2104 if( xSchedulerRunning == pdFALSE )
2106 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2108 /* This is the first task to be created so do the preliminary
2109 * initialisation required. We will not recover if this call
2110 * fails, but we will report the failure. */
2111 prvInitialiseTaskLists();
2115 mtCOVERAGE_TEST_MARKER();
2118 /* All the cores start with idle tasks before the SMP scheduler
2119 * is running. Idle tasks are assigned to cores when they are
2120 * created in prvCreateIdleTasks(). */
2125 #if ( configUSE_TRACE_FACILITY == 1 )
2127 /* Add a counter into the TCB for tracing only. */
2128 pxNewTCB->uxTCBNumber = uxTaskNumber;
2130 #endif /* configUSE_TRACE_FACILITY */
2131 traceTASK_CREATE( pxNewTCB );
2133 prvAddTaskToReadyList( pxNewTCB );
2135 portSETUP_TCB( pxNewTCB );
2137 if( xSchedulerRunning != pdFALSE )
2139 /* If the created task is of a higher priority than another
2140 * currently running task and preemption is on then it should
2142 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2146 mtCOVERAGE_TEST_MARKER();
2149 taskEXIT_CRITICAL();
2152 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2153 /*-----------------------------------------------------------*/
2155 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
2157 static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
2160 size_t uxCharsWritten;
2162 if( iSnprintfReturnValue < 0 )
2164 /* Encoding error - Return 0 to indicate that nothing
2165 * was written to the buffer. */
2168 else if( iSnprintfReturnValue >= ( int ) n )
2170 /* This is the case when the supplied buffer is not
2171 * large to hold the generated string. Return the
2172 * number of characters actually written without
2173 * counting the terminating NULL character. */
2174 uxCharsWritten = n - 1U;
2178 /* Complete string was written to the buffer. */
2179 uxCharsWritten = ( size_t ) iSnprintfReturnValue;
2182 return uxCharsWritten;
2185 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
2186 /*-----------------------------------------------------------*/
2188 #if ( INCLUDE_vTaskDelete == 1 )
2190 void vTaskDelete( TaskHandle_t xTaskToDelete )
2194 traceENTER_vTaskDelete( xTaskToDelete );
2196 taskENTER_CRITICAL();
2198 /* If null is passed in here then it is the calling task that is
2200 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
2202 /* Remove task from the ready/delayed list. */
2203 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2205 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
2209 mtCOVERAGE_TEST_MARKER();
2212 /* Is the task waiting on an event also? */
2213 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
2215 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
2219 mtCOVERAGE_TEST_MARKER();
2222 /* Increment the uxTaskNumber also so kernel aware debuggers can
2223 * detect that the task lists need re-generating. This is done before
2224 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
2228 /* If the task is running (or yielding), we must add it to the
2229 * termination list so that an idle task can delete it when it is
2230 * no longer running. */
2231 if( taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) != pdFALSE )
2233 /* A running task or a task which is scheduled to yield is being
2234 * deleted. This cannot complete when the task is still running
2235 * on a core, as a context switch to another task is required.
2236 * Place the task in the termination list. The idle task will check
2237 * the termination list and free up any memory allocated by the
2238 * scheduler for the TCB and stack of the deleted task. */
2239 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
2241 /* Increment the ucTasksDeleted variable so the idle task knows
2242 * there is a task that has been deleted and that it should therefore
2243 * check the xTasksWaitingTermination list. */
2244 ++uxDeletedTasksWaitingCleanUp;
2246 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
2247 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
2248 traceTASK_DELETE( pxTCB );
2250 /* The pre-delete hook is primarily for the Windows simulator,
2251 * in which Windows specific clean up operations are performed,
2252 * after which it is not possible to yield away from this task -
2253 * hence xYieldPending is used to latch that a context switch is
2255 #if ( configNUMBER_OF_CORES == 1 )
2256 portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) );
2258 portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) );
2263 --uxCurrentNumberOfTasks;
2264 traceTASK_DELETE( pxTCB );
2266 /* Reset the next expected unblock time in case it referred to
2267 * the task that has just been deleted. */
2268 prvResetNextTaskUnblockTime();
2272 #if ( configNUMBER_OF_CORES == 1 )
2274 taskEXIT_CRITICAL();
2276 /* If the task is not deleting itself, call prvDeleteTCB from outside of
2277 * critical section. If a task deletes itself, prvDeleteTCB is called
2278 * from prvCheckTasksWaitingTermination which is called from Idle task. */
2279 if( pxTCB != pxCurrentTCB )
2281 prvDeleteTCB( pxTCB );
2284 /* Force a reschedule if it is the currently running task that has just
2286 if( xSchedulerRunning != pdFALSE )
2288 if( pxTCB == pxCurrentTCB )
2290 configASSERT( uxSchedulerSuspended == 0 );
2291 portYIELD_WITHIN_API();
2295 mtCOVERAGE_TEST_MARKER();
2299 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2301 /* If a running task is not deleting itself, call prvDeleteTCB. If a running
2302 * task deletes itself, prvDeleteTCB is called from prvCheckTasksWaitingTermination
2303 * which is called from Idle task. */
2304 if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
2306 prvDeleteTCB( pxTCB );
2309 /* Force a reschedule if the task that has just been deleted was running. */
2310 if( ( xSchedulerRunning != pdFALSE ) && ( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) )
2312 if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
2314 configASSERT( uxSchedulerSuspended == 0 );
2315 vTaskYieldWithinAPI();
2319 prvYieldCore( pxTCB->xTaskRunState );
2323 taskEXIT_CRITICAL();
2325 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2327 traceRETURN_vTaskDelete();
2330 #endif /* INCLUDE_vTaskDelete */
2331 /*-----------------------------------------------------------*/
2333 #if ( INCLUDE_xTaskDelayUntil == 1 )
2335 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
2336 const TickType_t xTimeIncrement )
2338 TickType_t xTimeToWake;
2339 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
2341 traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
2343 configASSERT( pxPreviousWakeTime );
2344 configASSERT( ( xTimeIncrement > 0U ) );
2348 /* Minor optimisation. The tick count cannot change in this
2350 const TickType_t xConstTickCount = xTickCount;
2352 configASSERT( uxSchedulerSuspended == 1U );
2354 /* Generate the tick time at which the task wants to wake. */
2355 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
2357 if( xConstTickCount < *pxPreviousWakeTime )
2359 /* The tick count has overflowed since this function was
2360 * lasted called. In this case the only time we should ever
2361 * actually delay is if the wake time has also overflowed,
2362 * and the wake time is greater than the tick time. When this
2363 * is the case it is as if neither time had overflowed. */
2364 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
2366 xShouldDelay = pdTRUE;
2370 mtCOVERAGE_TEST_MARKER();
2375 /* The tick time has not overflowed. In this case we will
2376 * delay if either the wake time has overflowed, and/or the
2377 * tick time is less than the wake time. */
2378 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
2380 xShouldDelay = pdTRUE;
2384 mtCOVERAGE_TEST_MARKER();
2388 /* Update the wake time ready for the next call. */
2389 *pxPreviousWakeTime = xTimeToWake;
2391 if( xShouldDelay != pdFALSE )
2393 traceTASK_DELAY_UNTIL( xTimeToWake );
2395 /* prvAddCurrentTaskToDelayedList() needs the block time, not
2396 * the time to wake, so subtract the current tick count. */
2397 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
2401 mtCOVERAGE_TEST_MARKER();
2404 xAlreadyYielded = xTaskResumeAll();
2406 /* Force a reschedule if xTaskResumeAll has not already done so, we may
2407 * have put ourselves to sleep. */
2408 if( xAlreadyYielded == pdFALSE )
2410 taskYIELD_WITHIN_API();
2414 mtCOVERAGE_TEST_MARKER();
2417 traceRETURN_xTaskDelayUntil( xShouldDelay );
2419 return xShouldDelay;
2422 #endif /* INCLUDE_xTaskDelayUntil */
2423 /*-----------------------------------------------------------*/
2425 #if ( INCLUDE_vTaskDelay == 1 )
2427 void vTaskDelay( const TickType_t xTicksToDelay )
2429 BaseType_t xAlreadyYielded = pdFALSE;
2431 traceENTER_vTaskDelay( xTicksToDelay );
2433 /* A delay time of zero just forces a reschedule. */
2434 if( xTicksToDelay > ( TickType_t ) 0U )
2438 configASSERT( uxSchedulerSuspended == 1U );
2442 /* A task that is removed from the event list while the
2443 * scheduler is suspended will not get placed in the ready
2444 * list or removed from the blocked list until the scheduler
2447 * This task cannot be in an event list as it is the currently
2448 * executing task. */
2449 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
2451 xAlreadyYielded = xTaskResumeAll();
2455 mtCOVERAGE_TEST_MARKER();
2458 /* Force a reschedule if xTaskResumeAll has not already done so, we may
2459 * have put ourselves to sleep. */
2460 if( xAlreadyYielded == pdFALSE )
2462 taskYIELD_WITHIN_API();
2466 mtCOVERAGE_TEST_MARKER();
2469 traceRETURN_vTaskDelay();
2472 #endif /* INCLUDE_vTaskDelay */
2473 /*-----------------------------------------------------------*/
2475 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
2477 eTaskState eTaskGetState( TaskHandle_t xTask )
2480 List_t const * pxStateList;
2481 List_t const * pxEventList;
2482 List_t const * pxDelayedList;
2483 List_t const * pxOverflowedDelayedList;
2484 const TCB_t * const pxTCB = xTask;
2486 traceENTER_eTaskGetState( xTask );
2488 configASSERT( pxTCB );
2490 #if ( configNUMBER_OF_CORES == 1 )
2491 if( pxTCB == pxCurrentTCB )
2493 /* The task calling this function is querying its own state. */
2499 taskENTER_CRITICAL();
2501 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
2502 pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) );
2503 pxDelayedList = pxDelayedTaskList;
2504 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
2506 taskEXIT_CRITICAL();
2508 if( pxEventList == &xPendingReadyList )
2510 /* The task has been placed on the pending ready list, so its
2511 * state is eReady regardless of what list the task's state list
2512 * item is currently placed on. */
2515 else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
2517 /* The task being queried is referenced from one of the Blocked
2522 #if ( INCLUDE_vTaskSuspend == 1 )
2523 else if( pxStateList == &xSuspendedTaskList )
2525 /* The task being queried is referenced from the suspended
2526 * list. Is it genuinely suspended or is it blocked
2528 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
2530 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
2534 /* The task does not appear on the event list item of
2535 * and of the RTOS objects, but could still be in the
2536 * blocked state if it is waiting on its notification
2537 * rather than waiting on an object. If not, is
2539 eReturn = eSuspended;
2541 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
2543 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
2550 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2552 eReturn = eSuspended;
2554 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2561 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
2563 #if ( INCLUDE_vTaskDelete == 1 )
2564 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
2566 /* The task being queried is referenced from the deleted
2567 * tasks list, or it is not referenced from any lists at
2575 #if ( configNUMBER_OF_CORES == 1 )
2577 /* If the task is not in any other state, it must be in the
2578 * Ready (including pending ready) state. */
2581 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2583 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2585 /* Is it actively running on a core? */
2590 /* If the task is not in any other state, it must be in the
2591 * Ready (including pending ready) state. */
2595 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2599 traceRETURN_eTaskGetState( eReturn );
2604 #endif /* INCLUDE_eTaskGetState */
2605 /*-----------------------------------------------------------*/
2607 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2609 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
2611 TCB_t const * pxTCB;
2612 UBaseType_t uxReturn;
2614 traceENTER_uxTaskPriorityGet( xTask );
2616 taskENTER_CRITICAL();
2618 /* If null is passed in here then it is the priority of the task
2619 * that called uxTaskPriorityGet() that is being queried. */
2620 pxTCB = prvGetTCBFromHandle( xTask );
2621 uxReturn = pxTCB->uxPriority;
2623 taskEXIT_CRITICAL();
2625 traceRETURN_uxTaskPriorityGet( uxReturn );
2630 #endif /* INCLUDE_uxTaskPriorityGet */
2631 /*-----------------------------------------------------------*/
2633 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2635 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
2637 TCB_t const * pxTCB;
2638 UBaseType_t uxReturn;
2639 UBaseType_t uxSavedInterruptStatus;
2641 traceENTER_uxTaskPriorityGetFromISR( xTask );
2643 /* RTOS ports that support interrupt nesting have the concept of a
2644 * maximum system call (or maximum API call) interrupt priority.
2645 * Interrupts that are above the maximum system call priority are keep
2646 * permanently enabled, even when the RTOS kernel is in a critical section,
2647 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
2648 * is defined in FreeRTOSConfig.h then
2649 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2650 * failure if a FreeRTOS API function is called from an interrupt that has
2651 * been assigned a priority above the configured maximum system call
2652 * priority. Only FreeRTOS functions that end in FromISR can be called
2653 * from interrupts that have been assigned a priority at or (logically)
2654 * below the maximum system call interrupt priority. FreeRTOS maintains a
2655 * separate interrupt safe API to ensure interrupt entry is as fast and as
2656 * simple as possible. More information (albeit Cortex-M specific) is
2657 * provided on the following link:
2658 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2659 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2661 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
2663 /* If null is passed in here then it is the priority of the calling
2664 * task that is being queried. */
2665 pxTCB = prvGetTCBFromHandle( xTask );
2666 uxReturn = pxTCB->uxPriority;
2668 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2670 traceRETURN_uxTaskPriorityGetFromISR( uxReturn );
2675 #endif /* INCLUDE_uxTaskPriorityGet */
2676 /*-----------------------------------------------------------*/
2678 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2680 UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask )
2682 TCB_t const * pxTCB;
2683 UBaseType_t uxReturn;
2685 traceENTER_uxTaskBasePriorityGet( xTask );
2687 taskENTER_CRITICAL();
2689 /* If null is passed in here then it is the base priority of the task
2690 * that called uxTaskBasePriorityGet() that is being queried. */
2691 pxTCB = prvGetTCBFromHandle( xTask );
2692 uxReturn = pxTCB->uxBasePriority;
2694 taskEXIT_CRITICAL();
2696 traceRETURN_uxTaskBasePriorityGet( uxReturn );
2701 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2702 /*-----------------------------------------------------------*/
2704 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2706 UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask )
2708 TCB_t const * pxTCB;
2709 UBaseType_t uxReturn;
2710 UBaseType_t uxSavedInterruptStatus;
2712 traceENTER_uxTaskBasePriorityGetFromISR( xTask );
2714 /* RTOS ports that support interrupt nesting have the concept of a
2715 * maximum system call (or maximum API call) interrupt priority.
2716 * Interrupts that are above the maximum system call priority are keep
2717 * permanently enabled, even when the RTOS kernel is in a critical section,
2718 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
2719 * is defined in FreeRTOSConfig.h then
2720 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2721 * failure if a FreeRTOS API function is called from an interrupt that has
2722 * been assigned a priority above the configured maximum system call
2723 * priority. Only FreeRTOS functions that end in FromISR can be called
2724 * from interrupts that have been assigned a priority at or (logically)
2725 * below the maximum system call interrupt priority. FreeRTOS maintains a
2726 * separate interrupt safe API to ensure interrupt entry is as fast and as
2727 * simple as possible. More information (albeit Cortex-M specific) is
2728 * provided on the following link:
2729 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2730 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2732 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
2734 /* If null is passed in here then it is the base priority of the calling
2735 * task that is being queried. */
2736 pxTCB = prvGetTCBFromHandle( xTask );
2737 uxReturn = pxTCB->uxBasePriority;
2739 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2741 traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn );
2746 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2747 /*-----------------------------------------------------------*/
2749 #if ( INCLUDE_vTaskPrioritySet == 1 )
2751 void vTaskPrioritySet( TaskHandle_t xTask,
2752 UBaseType_t uxNewPriority )
2755 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
2756 BaseType_t xYieldRequired = pdFALSE;
2758 #if ( configNUMBER_OF_CORES > 1 )
2759 BaseType_t xYieldForTask = pdFALSE;
2762 traceENTER_vTaskPrioritySet( xTask, uxNewPriority );
2764 configASSERT( uxNewPriority < configMAX_PRIORITIES );
2766 /* Ensure the new priority is valid. */
2767 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
2769 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
2773 mtCOVERAGE_TEST_MARKER();
2776 taskENTER_CRITICAL();
2778 /* If null is passed in here then it is the priority of the calling
2779 * task that is being changed. */
2780 pxTCB = prvGetTCBFromHandle( xTask );
2782 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
2784 #if ( configUSE_MUTEXES == 1 )
2786 uxCurrentBasePriority = pxTCB->uxBasePriority;
2790 uxCurrentBasePriority = pxTCB->uxPriority;
2794 if( uxCurrentBasePriority != uxNewPriority )
2796 /* The priority change may have readied a task of higher
2797 * priority than a running task. */
2798 if( uxNewPriority > uxCurrentBasePriority )
2800 #if ( configNUMBER_OF_CORES == 1 )
2802 if( pxTCB != pxCurrentTCB )
2804 /* The priority of a task other than the currently
2805 * running task is being raised. Is the priority being
2806 * raised above that of the running task? */
2807 if( uxNewPriority > pxCurrentTCB->uxPriority )
2809 xYieldRequired = pdTRUE;
2813 mtCOVERAGE_TEST_MARKER();
2818 /* The priority of the running task is being raised,
2819 * but the running task must already be the highest
2820 * priority task able to run so no yield is required. */
2823 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2825 /* The priority of a task is being raised so
2826 * perform a yield for this task later. */
2827 xYieldForTask = pdTRUE;
2829 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2831 else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2833 /* Setting the priority of a running task down means
2834 * there may now be another task of higher priority that
2835 * is ready to execute. */
2836 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
2837 if( pxTCB->xPreemptionDisable == pdFALSE )
2840 xYieldRequired = pdTRUE;
2845 /* Setting the priority of any other task down does not
2846 * require a yield as the running task must be above the
2847 * new priority of the task being modified. */
2850 /* Remember the ready list the task might be referenced from
2851 * before its uxPriority member is changed so the
2852 * taskRESET_READY_PRIORITY() macro can function correctly. */
2853 uxPriorityUsedOnEntry = pxTCB->uxPriority;
2855 #if ( configUSE_MUTEXES == 1 )
2857 /* Only change the priority being used if the task is not
2858 * currently using an inherited priority or the new priority
2859 * is bigger than the inherited priority. */
2860 if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) )
2862 pxTCB->uxPriority = uxNewPriority;
2866 mtCOVERAGE_TEST_MARKER();
2869 /* The base priority gets set whatever. */
2870 pxTCB->uxBasePriority = uxNewPriority;
2872 #else /* if ( configUSE_MUTEXES == 1 ) */
2874 pxTCB->uxPriority = uxNewPriority;
2876 #endif /* if ( configUSE_MUTEXES == 1 ) */
2878 /* Only reset the event list item value if the value is not
2879 * being used for anything else. */
2880 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
2882 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) );
2886 mtCOVERAGE_TEST_MARKER();
2889 /* If the task is in the blocked or suspended list we need do
2890 * nothing more than change its priority variable. However, if
2891 * the task is in a ready list it needs to be removed and placed
2892 * in the list appropriate to its new priority. */
2893 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
2895 /* The task is currently in its ready list - remove before
2896 * adding it to its new ready list. As we are in a critical
2897 * section we can do this even if the scheduler is suspended. */
2898 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2900 /* It is known that the task is in its ready list so
2901 * there is no need to check again and the port level
2902 * reset macro can be called directly. */
2903 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
2907 mtCOVERAGE_TEST_MARKER();
2910 prvAddTaskToReadyList( pxTCB );
2914 #if ( configNUMBER_OF_CORES == 1 )
2916 mtCOVERAGE_TEST_MARKER();
2920 /* It's possible that xYieldForTask was already set to pdTRUE because
2921 * its priority is being raised. However, since it is not in a ready list
2922 * we don't actually need to yield for it. */
2923 xYieldForTask = pdFALSE;
2928 if( xYieldRequired != pdFALSE )
2930 /* The running task priority is set down. Request the task to yield. */
2931 taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
2935 #if ( configNUMBER_OF_CORES > 1 )
2936 if( xYieldForTask != pdFALSE )
2938 /* The priority of the task is being raised. If a running
2939 * task has priority lower than this task, it should yield
2941 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
2944 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
2946 mtCOVERAGE_TEST_MARKER();
2950 /* Remove compiler warning about unused variables when the port
2951 * optimised task selection is not being used. */
2952 ( void ) uxPriorityUsedOnEntry;
2955 taskEXIT_CRITICAL();
2957 traceRETURN_vTaskPrioritySet();
2960 #endif /* INCLUDE_vTaskPrioritySet */
2961 /*-----------------------------------------------------------*/
2963 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
2964 void vTaskCoreAffinitySet( const TaskHandle_t xTask,
2965 UBaseType_t uxCoreAffinityMask )
2969 UBaseType_t uxPrevCoreAffinityMask;
2971 #if ( configUSE_PREEMPTION == 1 )
2972 UBaseType_t uxPrevNotAllowedCores;
2975 traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask );
2977 taskENTER_CRITICAL();
2979 pxTCB = prvGetTCBFromHandle( xTask );
2981 uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask;
2982 pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;
2984 if( xSchedulerRunning != pdFALSE )
2986 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2988 xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
2990 /* If the task can no longer run on the core it was running,
2991 * request the core to yield. */
2992 if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U )
2994 prvYieldCore( xCoreID );
2999 #if ( configUSE_PREEMPTION == 1 )
3001 /* Calculate the cores on which this task was not allowed to
3002 * run previously. */
3003 uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U );
3005 /* Does the new core mask enables this task to run on any of the
3006 * previously not allowed cores? If yes, check if this task can be
3007 * scheduled on any of those cores. */
3008 if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U )
3010 prvYieldForTask( pxTCB );
3013 #else /* #if( configUSE_PREEMPTION == 1 ) */
3015 mtCOVERAGE_TEST_MARKER();
3017 #endif /* #if( configUSE_PREEMPTION == 1 ) */
3021 taskEXIT_CRITICAL();
3023 traceRETURN_vTaskCoreAffinitySet();
3025 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3026 /*-----------------------------------------------------------*/
3028 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
3029 UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask )
3031 const TCB_t * pxTCB;
3032 UBaseType_t uxCoreAffinityMask;
3034 traceENTER_vTaskCoreAffinityGet( xTask );
3036 taskENTER_CRITICAL();
3038 pxTCB = prvGetTCBFromHandle( xTask );
3039 uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
3041 taskEXIT_CRITICAL();
3043 traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask );
3045 return uxCoreAffinityMask;
3047 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3049 /*-----------------------------------------------------------*/
3051 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3053 void vTaskPreemptionDisable( const TaskHandle_t xTask )
3057 traceENTER_vTaskPreemptionDisable( xTask );
3059 taskENTER_CRITICAL();
3061 pxTCB = prvGetTCBFromHandle( xTask );
3063 pxTCB->xPreemptionDisable = pdTRUE;
3065 taskEXIT_CRITICAL();
3067 traceRETURN_vTaskPreemptionDisable();
3070 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3071 /*-----------------------------------------------------------*/
3073 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3075 void vTaskPreemptionEnable( const TaskHandle_t xTask )
3080 traceENTER_vTaskPreemptionEnable( xTask );
3082 taskENTER_CRITICAL();
3084 pxTCB = prvGetTCBFromHandle( xTask );
3086 pxTCB->xPreemptionDisable = pdFALSE;
3088 if( xSchedulerRunning != pdFALSE )
3090 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3092 xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
3093 prvYieldCore( xCoreID );
3097 taskEXIT_CRITICAL();
3099 traceRETURN_vTaskPreemptionEnable();
3102 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3103 /*-----------------------------------------------------------*/
3105 #if ( INCLUDE_vTaskSuspend == 1 )
3107 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
3111 #if ( configNUMBER_OF_CORES > 1 )
3112 BaseType_t xTaskRunningOnCore;
3115 traceENTER_vTaskSuspend( xTaskToSuspend );
3117 taskENTER_CRITICAL();
3119 /* If null is passed in here then it is the running task that is
3120 * being suspended. */
3121 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
3123 traceTASK_SUSPEND( pxTCB );
3125 #if ( configNUMBER_OF_CORES > 1 )
3126 xTaskRunningOnCore = pxTCB->xTaskRunState;
3129 /* Remove task from the ready/delayed list and place in the
3130 * suspended list. */
3131 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
3133 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
3137 mtCOVERAGE_TEST_MARKER();
3140 /* Is the task waiting on an event also? */
3141 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
3143 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
3147 mtCOVERAGE_TEST_MARKER();
3150 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
3152 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3156 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3158 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3160 /* The task was blocked to wait for a notification, but is
3161 * now suspended, so no notification was received. */
3162 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
3166 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3169 #if ( configNUMBER_OF_CORES == 1 )
3171 taskEXIT_CRITICAL();
3173 if( xSchedulerRunning != pdFALSE )
3175 /* Reset the next expected unblock time in case it referred to the
3176 * task that is now in the Suspended state. */
3177 taskENTER_CRITICAL();
3179 prvResetNextTaskUnblockTime();
3181 taskEXIT_CRITICAL();
3185 mtCOVERAGE_TEST_MARKER();
3188 if( pxTCB == pxCurrentTCB )
3190 if( xSchedulerRunning != pdFALSE )
3192 /* The current task has just been suspended. */
3193 configASSERT( uxSchedulerSuspended == 0 );
3194 portYIELD_WITHIN_API();
3198 /* The scheduler is not running, but the task that was pointed
3199 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
3200 * must be adjusted to point to a different task. */
3201 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
3203 /* No other tasks are ready, so set pxCurrentTCB back to
3204 * NULL so when the next task is created pxCurrentTCB will
3205 * be set to point to it no matter what its relative priority
3207 pxCurrentTCB = NULL;
3211 vTaskSwitchContext();
3217 mtCOVERAGE_TEST_MARKER();
3220 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3222 if( xSchedulerRunning != pdFALSE )
3224 /* Reset the next expected unblock time in case it referred to the
3225 * task that is now in the Suspended state. */
3226 prvResetNextTaskUnblockTime();
3230 mtCOVERAGE_TEST_MARKER();
3233 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3235 if( xSchedulerRunning != pdFALSE )
3237 if( xTaskRunningOnCore == ( BaseType_t ) portGET_CORE_ID() )
3239 /* The current task has just been suspended. */
3240 configASSERT( uxSchedulerSuspended == 0 );
3241 vTaskYieldWithinAPI();
3245 prvYieldCore( xTaskRunningOnCore );
3250 /* This code path is not possible because only Idle tasks are
3251 * assigned a core before the scheduler is started ( i.e.
3252 * taskTASK_IS_RUNNING is only true for idle tasks before
3253 * the scheduler is started ) and idle tasks cannot be
3255 mtCOVERAGE_TEST_MARKER();
3260 mtCOVERAGE_TEST_MARKER();
3263 taskEXIT_CRITICAL();
3265 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3267 traceRETURN_vTaskSuspend();
3270 #endif /* INCLUDE_vTaskSuspend */
3271 /*-----------------------------------------------------------*/
3273 #if ( INCLUDE_vTaskSuspend == 1 )
3275 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
3277 BaseType_t xReturn = pdFALSE;
3278 const TCB_t * const pxTCB = xTask;
3280 /* Accesses xPendingReadyList so must be called from a critical
3283 /* It does not make sense to check if the calling task is suspended. */
3284 configASSERT( xTask );
3286 /* Is the task being resumed actually in the suspended list? */
3287 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
3289 /* Has the task already been resumed from within an ISR? */
3290 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
3292 /* Is it in the suspended list because it is in the Suspended
3293 * state, or because it is blocked with no timeout? */
3294 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
3296 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3300 /* The task does not appear on the event list item of
3301 * and of the RTOS objects, but could still be in the
3302 * blocked state if it is waiting on its notification
3303 * rather than waiting on an object. If not, is
3307 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3309 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3316 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3320 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3324 mtCOVERAGE_TEST_MARKER();
3329 mtCOVERAGE_TEST_MARKER();
3334 mtCOVERAGE_TEST_MARKER();
3340 #endif /* INCLUDE_vTaskSuspend */
3341 /*-----------------------------------------------------------*/
3343 #if ( INCLUDE_vTaskSuspend == 1 )
3345 void vTaskResume( TaskHandle_t xTaskToResume )
3347 TCB_t * const pxTCB = xTaskToResume;
3349 traceENTER_vTaskResume( xTaskToResume );
3351 /* It does not make sense to resume the calling task. */
3352 configASSERT( xTaskToResume );
3354 #if ( configNUMBER_OF_CORES == 1 )
3356 /* The parameter cannot be NULL as it is impossible to resume the
3357 * currently executing task. */
3358 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
3361 /* The parameter cannot be NULL as it is impossible to resume the
3362 * currently executing task. It is also impossible to resume a task
3363 * that is actively running on another core but it is not safe
3364 * to check their run state here. Therefore, we get into a critical
3365 * section and check if the task is actually suspended or not. */
3369 taskENTER_CRITICAL();
3371 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3373 traceTASK_RESUME( pxTCB );
3375 /* The ready list can be accessed even if the scheduler is
3376 * suspended because this is inside a critical section. */
3377 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3378 prvAddTaskToReadyList( pxTCB );
3380 /* This yield may not cause the task just resumed to run,
3381 * but will leave the lists in the correct state for the
3383 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
3387 mtCOVERAGE_TEST_MARKER();
3390 taskEXIT_CRITICAL();
3394 mtCOVERAGE_TEST_MARKER();
3397 traceRETURN_vTaskResume();
3400 #endif /* INCLUDE_vTaskSuspend */
3402 /*-----------------------------------------------------------*/
3404 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
3406 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
3408 BaseType_t xYieldRequired = pdFALSE;
3409 TCB_t * const pxTCB = xTaskToResume;
3410 UBaseType_t uxSavedInterruptStatus;
3412 traceENTER_xTaskResumeFromISR( xTaskToResume );
3414 configASSERT( xTaskToResume );
3416 /* RTOS ports that support interrupt nesting have the concept of a
3417 * maximum system call (or maximum API call) interrupt priority.
3418 * Interrupts that are above the maximum system call priority are keep
3419 * permanently enabled, even when the RTOS kernel is in a critical section,
3420 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
3421 * is defined in FreeRTOSConfig.h then
3422 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
3423 * failure if a FreeRTOS API function is called from an interrupt that has
3424 * been assigned a priority above the configured maximum system call
3425 * priority. Only FreeRTOS functions that end in FromISR can be called
3426 * from interrupts that have been assigned a priority at or (logically)
3427 * below the maximum system call interrupt priority. FreeRTOS maintains a
3428 * separate interrupt safe API to ensure interrupt entry is as fast and as
3429 * simple as possible. More information (albeit Cortex-M specific) is
3430 * provided on the following link:
3431 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
3432 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
3434 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
3436 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3438 traceTASK_RESUME_FROM_ISR( pxTCB );
3440 /* Check the ready lists can be accessed. */
3441 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3443 #if ( configNUMBER_OF_CORES == 1 )
3445 /* Ready lists can be accessed so move the task from the
3446 * suspended list to the ready list directly. */
3447 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3449 xYieldRequired = pdTRUE;
3451 /* Mark that a yield is pending in case the user is not
3452 * using the return value to initiate a context switch
3453 * from the ISR using the port specific portYIELD_FROM_ISR(). */
3454 xYieldPendings[ 0 ] = pdTRUE;
3458 mtCOVERAGE_TEST_MARKER();
3461 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3463 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3464 prvAddTaskToReadyList( pxTCB );
3468 /* The delayed or ready lists cannot be accessed so the task
3469 * is held in the pending ready list until the scheduler is
3471 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
3474 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) )
3476 prvYieldForTask( pxTCB );
3478 if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
3480 xYieldRequired = pdTRUE;
3483 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */
3487 mtCOVERAGE_TEST_MARKER();
3490 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
3492 traceRETURN_xTaskResumeFromISR( xYieldRequired );
3494 return xYieldRequired;
3497 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
3498 /*-----------------------------------------------------------*/
3500 static BaseType_t prvCreateIdleTasks( void )
3502 BaseType_t xReturn = pdPASS;
3504 char cIdleName[ configMAX_TASK_NAME_LEN ];
3505 TaskFunction_t pxIdleTaskFunction = NULL;
3506 BaseType_t xIdleTaskNameIndex;
3508 for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ )
3510 cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ];
3512 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
3513 * configMAX_TASK_NAME_LEN characters just in case the memory after the
3514 * string is not accessible (extremely unlikely). */
3515 if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 )
3521 mtCOVERAGE_TEST_MARKER();
3525 /* Add each idle task at the lowest priority. */
3526 for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3528 #if ( configNUMBER_OF_CORES == 1 )
3530 pxIdleTaskFunction = prvIdleTask;
3532 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3534 /* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks
3535 * are also created to ensure that each core has an idle task to
3536 * run when no other task is available to run. */
3539 pxIdleTaskFunction = prvIdleTask;
3543 pxIdleTaskFunction = prvPassiveIdleTask;
3546 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3548 /* Update the idle task name with suffix to differentiate the idle tasks.
3549 * This function is not required in single core FreeRTOS since there is
3550 * only one idle task. */
3551 #if ( configNUMBER_OF_CORES > 1 )
3553 /* Append the idle task number to the end of the name if there is space. */
3554 if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3556 cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' );
3558 /* And append a null character if there is space. */
3559 if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3561 cIdleName[ xIdleTaskNameIndex + 1 ] = '\0';
3565 mtCOVERAGE_TEST_MARKER();
3570 mtCOVERAGE_TEST_MARKER();
3573 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
3575 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
3577 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
3578 StackType_t * pxIdleTaskStackBuffer = NULL;
3579 uint32_t ulIdleTaskStackSize;
3581 /* The Idle task is created using user provided RAM - obtain the
3582 * address of the RAM then create the idle task. */
3583 #if ( configNUMBER_OF_CORES == 1 )
3585 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
3591 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
3595 vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize, xCoreID - 1 );
3598 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
3599 xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction,
3601 ulIdleTaskStackSize,
3603 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3604 pxIdleTaskStackBuffer,
3605 pxIdleTaskTCBBuffer );
3607 if( xIdleTaskHandles[ xCoreID ] != NULL )
3616 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
3618 /* The Idle task is being created using dynamically allocated RAM. */
3619 xReturn = xTaskCreate( pxIdleTaskFunction,
3621 configMINIMAL_STACK_SIZE,
3623 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3624 &xIdleTaskHandles[ xCoreID ] );
3626 #endif /* configSUPPORT_STATIC_ALLOCATION */
3628 /* Break the loop if any of the idle task is failed to be created. */
3629 if( xReturn == pdFAIL )
3635 #if ( configNUMBER_OF_CORES == 1 )
3637 mtCOVERAGE_TEST_MARKER();
3641 /* Assign idle task to each core before SMP scheduler is running. */
3642 xIdleTaskHandles[ xCoreID ]->xTaskRunState = xCoreID;
3643 pxCurrentTCBs[ xCoreID ] = xIdleTaskHandles[ xCoreID ];
3652 /*-----------------------------------------------------------*/
3654 void vTaskStartScheduler( void )
3658 traceENTER_vTaskStartScheduler();
3660 #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
3662 /* Sanity check that the UBaseType_t must have greater than or equal to
3663 * the number of bits as confNUMBER_OF_CORES. */
3664 configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES );
3666 #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
3668 xReturn = prvCreateIdleTasks();
3670 #if ( configUSE_TIMERS == 1 )
3672 if( xReturn == pdPASS )
3674 xReturn = xTimerCreateTimerTask();
3678 mtCOVERAGE_TEST_MARKER();
3681 #endif /* configUSE_TIMERS */
3683 if( xReturn == pdPASS )
3685 /* freertos_tasks_c_additions_init() should only be called if the user
3686 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
3687 * the only macro called by the function. */
3688 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
3690 freertos_tasks_c_additions_init();
3694 /* Interrupts are turned off here, to ensure a tick does not occur
3695 * before or during the call to xPortStartScheduler(). The stacks of
3696 * the created tasks contain a status word with interrupts switched on
3697 * so interrupts will automatically get re-enabled when the first task
3699 portDISABLE_INTERRUPTS();
3701 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
3703 /* Switch C-Runtime's TLS Block to point to the TLS
3704 * block specific to the task that will run first. */
3705 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
3709 xNextTaskUnblockTime = portMAX_DELAY;
3710 xSchedulerRunning = pdTRUE;
3711 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
3713 /* If configGENERATE_RUN_TIME_STATS is defined then the following
3714 * macro must be defined to configure the timer/counter used to generate
3715 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
3716 * is set to 0 and the following line fails to build then ensure you do not
3717 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
3718 * FreeRTOSConfig.h file. */
3719 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
3721 traceTASK_SWITCHED_IN();
3723 /* Setting up the timer tick is hardware specific and thus in the
3724 * portable interface. */
3726 /* The return value for xPortStartScheduler is not required
3727 * hence using a void datatype. */
3728 ( void ) xPortStartScheduler();
3730 /* In most cases, xPortStartScheduler() will not return. If it
3731 * returns pdTRUE then there was not enough heap memory available
3732 * to create either the Idle or the Timer task. If it returned
3733 * pdFALSE, then the application called xTaskEndScheduler().
3734 * Most ports don't implement xTaskEndScheduler() as there is
3735 * nothing to return to. */
3739 /* This line will only be reached if the kernel could not be started,
3740 * because there was not enough FreeRTOS heap to create the idle task
3741 * or the timer task. */
3742 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
3745 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
3746 * meaning xIdleTaskHandles are not used anywhere else. */
3747 ( void ) xIdleTaskHandles;
3749 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
3750 * from getting optimized out as it is no longer used by the kernel. */
3751 ( void ) uxTopUsedPriority;
3753 traceRETURN_vTaskStartScheduler();
3755 /*-----------------------------------------------------------*/
3757 void vTaskEndScheduler( void )
3759 traceENTER_vTaskEndScheduler();
3761 /* Stop the scheduler interrupts and call the portable scheduler end
3762 * routine so the original ISRs can be restored if necessary. The port
3763 * layer must ensure interrupts enable bit is left in the correct state. */
3764 portDISABLE_INTERRUPTS();
3765 xSchedulerRunning = pdFALSE;
3766 vPortEndScheduler();
3768 traceRETURN_vTaskEndScheduler();
3770 /*----------------------------------------------------------*/
3772 void vTaskSuspendAll( void )
3774 traceENTER_vTaskSuspendAll();
3776 #if ( configNUMBER_OF_CORES == 1 )
3778 /* A critical section is not required as the variable is of type
3779 * BaseType_t. Please read Richard Barry's reply in the following link to a
3780 * post in the FreeRTOS support forum before reporting this as a bug! -
3781 * https://goo.gl/wu4acr */
3783 /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
3784 * do not otherwise exhibit real time behaviour. */
3785 portSOFTWARE_BARRIER();
3787 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3788 * is used to allow calls to vTaskSuspendAll() to nest. */
3789 ++uxSchedulerSuspended;
3791 /* Enforces ordering for ports and optimised compilers that may otherwise place
3792 * the above increment elsewhere. */
3793 portMEMORY_BARRIER();
3795 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3797 UBaseType_t ulState;
3799 /* This must only be called from within a task. */
3800 portASSERT_IF_IN_ISR();
3802 if( xSchedulerRunning != pdFALSE )
3804 /* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks.
3805 * We must disable interrupts before we grab the locks in the event that this task is
3806 * interrupted and switches context before incrementing uxSchedulerSuspended.
3807 * It is safe to re-enable interrupts after releasing the ISR lock and incrementing
3808 * uxSchedulerSuspended since that will prevent context switches. */
3809 ulState = portSET_INTERRUPT_MASK();
3811 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
3812 * do not otherwise exhibit real time behaviour. */
3813 portSOFTWARE_BARRIER();
3815 portGET_TASK_LOCK();
3817 /* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The
3818 * purpose is to prevent altering the variable when fromISR APIs are readying
3820 if( uxSchedulerSuspended == 0U )
3822 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
3824 prvCheckForRunStateChange();
3828 mtCOVERAGE_TEST_MARKER();
3833 mtCOVERAGE_TEST_MARKER();
3838 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3839 * is used to allow calls to vTaskSuspendAll() to nest. */
3840 ++uxSchedulerSuspended;
3841 portRELEASE_ISR_LOCK();
3843 portCLEAR_INTERRUPT_MASK( ulState );
3847 mtCOVERAGE_TEST_MARKER();
3850 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3852 traceRETURN_vTaskSuspendAll();
3855 /*----------------------------------------------------------*/
3857 #if ( configUSE_TICKLESS_IDLE != 0 )
3859 static TickType_t prvGetExpectedIdleTime( void )
3862 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
3864 /* uxHigherPriorityReadyTasks takes care of the case where
3865 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
3866 * task that are in the Ready state, even though the idle task is
3868 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
3870 if( uxTopReadyPriority > tskIDLE_PRIORITY )
3872 uxHigherPriorityReadyTasks = pdTRUE;
3877 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
3879 /* When port optimised task selection is used the uxTopReadyPriority
3880 * variable is used as a bit map. If bits other than the least
3881 * significant bit are set then there are tasks that have a priority
3882 * above the idle priority that are in the Ready state. This takes
3883 * care of the case where the co-operative scheduler is in use. */
3884 if( uxTopReadyPriority > uxLeastSignificantBit )
3886 uxHigherPriorityReadyTasks = pdTRUE;
3889 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
3891 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
3895 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1U )
3897 /* There are other idle priority tasks in the ready state. If
3898 * time slicing is used then the very next tick interrupt must be
3902 else if( uxHigherPriorityReadyTasks != pdFALSE )
3904 /* There are tasks in the Ready state that have a priority above the
3905 * idle priority. This path can only be reached if
3906 * configUSE_PREEMPTION is 0. */
3911 xReturn = xNextTaskUnblockTime;
3912 xReturn -= xTickCount;
3918 #endif /* configUSE_TICKLESS_IDLE */
3919 /*----------------------------------------------------------*/
3921 BaseType_t xTaskResumeAll( void )
3923 TCB_t * pxTCB = NULL;
3924 BaseType_t xAlreadyYielded = pdFALSE;
3926 traceENTER_xTaskResumeAll();
3928 #if ( configNUMBER_OF_CORES > 1 )
3929 if( xSchedulerRunning != pdFALSE )
3932 /* It is possible that an ISR caused a task to be removed from an event
3933 * list while the scheduler was suspended. If this was the case then the
3934 * removed task will have been added to the xPendingReadyList. Once the
3935 * scheduler has been resumed it is safe to move all the pending ready
3936 * tasks from this list into their appropriate ready list. */
3937 taskENTER_CRITICAL();
3940 xCoreID = ( BaseType_t ) portGET_CORE_ID();
3942 /* If uxSchedulerSuspended is zero then this function does not match a
3943 * previous call to vTaskSuspendAll(). */
3944 configASSERT( uxSchedulerSuspended != 0U );
3946 --uxSchedulerSuspended;
3947 portRELEASE_TASK_LOCK();
3949 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3951 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
3953 /* Move any readied tasks from the pending list into the
3954 * appropriate ready list. */
3955 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
3957 /* MISRA Ref 11.5.3 [Void pointer assignment] */
3958 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
3959 /* coverity[misra_c_2012_rule_11_5_violation] */
3960 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
3961 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
3962 portMEMORY_BARRIER();
3963 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
3964 prvAddTaskToReadyList( pxTCB );
3966 #if ( configNUMBER_OF_CORES == 1 )
3968 /* If the moved task has a priority higher than the current
3969 * task then a yield must be performed. */
3970 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3972 xYieldPendings[ xCoreID ] = pdTRUE;
3976 mtCOVERAGE_TEST_MARKER();
3979 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3981 /* All appropriate tasks yield at the moment a task is added to xPendingReadyList.
3982 * If the current core yielded then vTaskSwitchContext() has already been called
3983 * which sets xYieldPendings for the current core to pdTRUE. */
3985 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3990 /* A task was unblocked while the scheduler was suspended,
3991 * which may have prevented the next unblock time from being
3992 * re-calculated, in which case re-calculate it now. Mainly
3993 * important for low power tickless implementations, where
3994 * this can prevent an unnecessary exit from low power
3996 prvResetNextTaskUnblockTime();
3999 /* If any ticks occurred while the scheduler was suspended then
4000 * they should be processed now. This ensures the tick count does
4001 * not slip, and that any delayed tasks are resumed at the correct
4004 * It should be safe to call xTaskIncrementTick here from any core
4005 * since we are in a critical section and xTaskIncrementTick itself
4006 * protects itself within a critical section. Suspending the scheduler
4007 * from any core causes xTaskIncrementTick to increment uxPendedCounts. */
4009 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
4011 if( xPendedCounts > ( TickType_t ) 0U )
4015 if( xTaskIncrementTick() != pdFALSE )
4017 /* Other cores are interrupted from
4018 * within xTaskIncrementTick(). */
4019 xYieldPendings[ xCoreID ] = pdTRUE;
4023 mtCOVERAGE_TEST_MARKER();
4027 } while( xPendedCounts > ( TickType_t ) 0U );
4033 mtCOVERAGE_TEST_MARKER();
4037 if( xYieldPendings[ xCoreID ] != pdFALSE )
4039 #if ( configUSE_PREEMPTION != 0 )
4041 xAlreadyYielded = pdTRUE;
4043 #endif /* #if ( configUSE_PREEMPTION != 0 ) */
4045 #if ( configNUMBER_OF_CORES == 1 )
4047 taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB );
4049 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4053 mtCOVERAGE_TEST_MARKER();
4059 mtCOVERAGE_TEST_MARKER();
4062 taskEXIT_CRITICAL();
4065 traceRETURN_xTaskResumeAll( xAlreadyYielded );
4067 return xAlreadyYielded;
4069 /*-----------------------------------------------------------*/
4071 TickType_t xTaskGetTickCount( void )
4075 traceENTER_xTaskGetTickCount();
4077 /* Critical section required if running on a 16 bit processor. */
4078 portTICK_TYPE_ENTER_CRITICAL();
4080 xTicks = xTickCount;
4082 portTICK_TYPE_EXIT_CRITICAL();
4084 traceRETURN_xTaskGetTickCount( xTicks );
4088 /*-----------------------------------------------------------*/
4090 TickType_t xTaskGetTickCountFromISR( void )
4093 UBaseType_t uxSavedInterruptStatus;
4095 traceENTER_xTaskGetTickCountFromISR();
4097 /* RTOS ports that support interrupt nesting have the concept of a maximum
4098 * system call (or maximum API call) interrupt priority. Interrupts that are
4099 * above the maximum system call priority are kept permanently enabled, even
4100 * when the RTOS kernel is in a critical section, but cannot make any calls to
4101 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
4102 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
4103 * failure if a FreeRTOS API function is called from an interrupt that has been
4104 * assigned a priority above the configured maximum system call priority.
4105 * Only FreeRTOS functions that end in FromISR can be called from interrupts
4106 * that have been assigned a priority at or (logically) below the maximum
4107 * system call interrupt priority. FreeRTOS maintains a separate interrupt
4108 * safe API to ensure interrupt entry is as fast and as simple as possible.
4109 * More information (albeit Cortex-M specific) is provided on the following
4110 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
4111 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
4113 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
4115 xReturn = xTickCount;
4117 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
4119 traceRETURN_xTaskGetTickCountFromISR( xReturn );
4123 /*-----------------------------------------------------------*/
4125 UBaseType_t uxTaskGetNumberOfTasks( void )
4127 traceENTER_uxTaskGetNumberOfTasks();
4129 /* A critical section is not required because the variables are of type
4131 traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks );
4133 return uxCurrentNumberOfTasks;
4135 /*-----------------------------------------------------------*/
4137 char * pcTaskGetName( TaskHandle_t xTaskToQuery )
4141 traceENTER_pcTaskGetName( xTaskToQuery );
4143 /* If null is passed in here then the name of the calling task is being
4145 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
4146 configASSERT( pxTCB );
4148 traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) );
4150 return &( pxTCB->pcTaskName[ 0 ] );
4152 /*-----------------------------------------------------------*/
4154 #if ( INCLUDE_xTaskGetHandle == 1 )
4156 #if ( configNUMBER_OF_CORES == 1 )
4157 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4158 const char pcNameToQuery[] )
4162 TCB_t * pxReturn = NULL;
4165 BaseType_t xBreakLoop;
4167 /* This function is called with the scheduler suspended. */
4169 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4171 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4172 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4173 /* coverity[misra_c_2012_rule_11_5_violation] */
4174 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
4178 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4179 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4180 /* coverity[misra_c_2012_rule_11_5_violation] */
4181 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
4183 /* Check each character in the name looking for a match or
4185 xBreakLoop = pdFALSE;
4187 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4189 cNextChar = pxNextTCB->pcTaskName[ x ];
4191 if( cNextChar != pcNameToQuery[ x ] )
4193 /* Characters didn't match. */
4194 xBreakLoop = pdTRUE;
4196 else if( cNextChar == ( char ) 0x00 )
4198 /* Both strings terminated, a match must have been
4200 pxReturn = pxNextTCB;
4201 xBreakLoop = pdTRUE;
4205 mtCOVERAGE_TEST_MARKER();
4208 if( xBreakLoop != pdFALSE )
4214 if( pxReturn != NULL )
4216 /* The handle has been found. */
4219 } while( pxNextTCB != pxFirstTCB );
4223 mtCOVERAGE_TEST_MARKER();
4228 #else /* if ( configNUMBER_OF_CORES == 1 ) */
4229 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4230 const char pcNameToQuery[] )
4232 TCB_t * pxReturn = NULL;
4235 BaseType_t xBreakLoop;
4236 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
4237 ListItem_t * pxIterator;
4239 /* This function is called with the scheduler suspended. */
4241 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4243 for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
4245 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4246 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4247 /* coverity[misra_c_2012_rule_11_5_violation] */
4248 TCB_t * pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
4250 /* Check each character in the name looking for a match or
4252 xBreakLoop = pdFALSE;
4254 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4256 cNextChar = pxTCB->pcTaskName[ x ];
4258 if( cNextChar != pcNameToQuery[ x ] )
4260 /* Characters didn't match. */
4261 xBreakLoop = pdTRUE;
4263 else if( cNextChar == ( char ) 0x00 )
4265 /* Both strings terminated, a match must have been
4268 xBreakLoop = pdTRUE;
4272 mtCOVERAGE_TEST_MARKER();
4275 if( xBreakLoop != pdFALSE )
4281 if( pxReturn != NULL )
4283 /* The handle has been found. */
4290 mtCOVERAGE_TEST_MARKER();
4295 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4297 #endif /* INCLUDE_xTaskGetHandle */
4298 /*-----------------------------------------------------------*/
4300 #if ( INCLUDE_xTaskGetHandle == 1 )
4302 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery )
4304 UBaseType_t uxQueue = configMAX_PRIORITIES;
4307 traceENTER_xTaskGetHandle( pcNameToQuery );
4309 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
4310 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
4314 /* Search the ready lists. */
4318 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
4322 /* Found the handle. */
4325 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4327 /* Search the delayed lists. */
4330 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
4335 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
4338 #if ( INCLUDE_vTaskSuspend == 1 )
4342 /* Search the suspended list. */
4343 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
4348 #if ( INCLUDE_vTaskDelete == 1 )
4352 /* Search the deleted list. */
4353 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
4358 ( void ) xTaskResumeAll();
4360 traceRETURN_xTaskGetHandle( pxTCB );
4365 #endif /* INCLUDE_xTaskGetHandle */
4366 /*-----------------------------------------------------------*/
4368 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
4370 BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
4371 StackType_t ** ppuxStackBuffer,
4372 StaticTask_t ** ppxTaskBuffer )
4377 traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer );
4379 configASSERT( ppuxStackBuffer != NULL );
4380 configASSERT( ppxTaskBuffer != NULL );
4382 pxTCB = prvGetTCBFromHandle( xTask );
4384 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
4386 if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
4388 *ppuxStackBuffer = pxTCB->pxStack;
4389 /* MISRA Ref 11.3.1 [Misaligned access] */
4390 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
4391 /* coverity[misra_c_2012_rule_11_3_violation] */
4392 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4395 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
4397 *ppuxStackBuffer = pxTCB->pxStack;
4398 *ppxTaskBuffer = NULL;
4406 #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4408 *ppuxStackBuffer = pxTCB->pxStack;
4409 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4412 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4414 traceRETURN_xTaskGetStaticBuffers( xReturn );
4419 #endif /* configSUPPORT_STATIC_ALLOCATION */
4420 /*-----------------------------------------------------------*/
4422 #if ( configUSE_TRACE_FACILITY == 1 )
4424 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
4425 const UBaseType_t uxArraySize,
4426 configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
4428 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
4430 traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime );
4434 /* Is there a space in the array for each task in the system? */
4435 if( uxArraySize >= uxCurrentNumberOfTasks )
4437 /* Fill in an TaskStatus_t structure with information on each
4438 * task in the Ready state. */
4442 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) );
4443 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4445 /* Fill in an TaskStatus_t structure with information on each
4446 * task in the Blocked state. */
4447 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) );
4448 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) );
4450 #if ( INCLUDE_vTaskDelete == 1 )
4452 /* Fill in an TaskStatus_t structure with information on
4453 * each task that has been deleted but not yet cleaned up. */
4454 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) );
4458 #if ( INCLUDE_vTaskSuspend == 1 )
4460 /* Fill in an TaskStatus_t structure with information on
4461 * each task in the Suspended state. */
4462 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) );
4466 #if ( configGENERATE_RUN_TIME_STATS == 1 )
4468 if( pulTotalRunTime != NULL )
4470 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
4471 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
4473 *pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
4477 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4479 if( pulTotalRunTime != NULL )
4481 *pulTotalRunTime = 0;
4484 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4488 mtCOVERAGE_TEST_MARKER();
4491 ( void ) xTaskResumeAll();
4493 traceRETURN_uxTaskGetSystemState( uxTask );
4498 #endif /* configUSE_TRACE_FACILITY */
4499 /*----------------------------------------------------------*/
4501 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
4503 #if ( configNUMBER_OF_CORES == 1 )
4504 TaskHandle_t xTaskGetIdleTaskHandle( void )
4506 traceENTER_xTaskGetIdleTaskHandle();
4508 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4509 * started, then xIdleTaskHandles will be NULL. */
4510 configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) );
4512 traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] );
4514 return xIdleTaskHandles[ 0 ];
4516 #endif /* if ( configNUMBER_OF_CORES == 1 ) */
4518 TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID )
4520 traceENTER_xTaskGetIdleTaskHandleForCore( xCoreID );
4522 /* Ensure the core ID is valid. */
4523 configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
4525 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4526 * started, then xIdleTaskHandles will be NULL. */
4527 configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) );
4529 traceRETURN_xTaskGetIdleTaskHandleForCore( xIdleTaskHandles[ xCoreID ] );
4531 return xIdleTaskHandles[ xCoreID ];
4534 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
4535 /*----------------------------------------------------------*/
4537 /* This conditional compilation should use inequality to 0, not equality to 1.
4538 * This is to ensure vTaskStepTick() is available when user defined low power mode
4539 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
4541 #if ( configUSE_TICKLESS_IDLE != 0 )
4543 void vTaskStepTick( TickType_t xTicksToJump )
4545 TickType_t xUpdatedTickCount;
4547 traceENTER_vTaskStepTick( xTicksToJump );
4549 /* Correct the tick count value after a period during which the tick
4550 * was suppressed. Note this does *not* call the tick hook function for
4551 * each stepped tick. */
4552 xUpdatedTickCount = xTickCount + xTicksToJump;
4553 configASSERT( xUpdatedTickCount <= xNextTaskUnblockTime );
4555 if( xUpdatedTickCount == xNextTaskUnblockTime )
4557 /* Arrange for xTickCount to reach xNextTaskUnblockTime in
4558 * xTaskIncrementTick() when the scheduler resumes. This ensures
4559 * that any delayed tasks are resumed at the correct time. */
4560 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
4561 configASSERT( xTicksToJump != ( TickType_t ) 0 );
4563 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4564 taskENTER_CRITICAL();
4568 taskEXIT_CRITICAL();
4573 mtCOVERAGE_TEST_MARKER();
4576 xTickCount += xTicksToJump;
4578 traceINCREASE_TICK_COUNT( xTicksToJump );
4579 traceRETURN_vTaskStepTick();
4582 #endif /* configUSE_TICKLESS_IDLE */
4583 /*----------------------------------------------------------*/
4585 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
4587 BaseType_t xYieldOccurred;
4589 traceENTER_xTaskCatchUpTicks( xTicksToCatchUp );
4591 /* Must not be called with the scheduler suspended as the implementation
4592 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
4593 configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U );
4595 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
4596 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
4599 /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4600 taskENTER_CRITICAL();
4602 xPendedTicks += xTicksToCatchUp;
4604 taskEXIT_CRITICAL();
4605 xYieldOccurred = xTaskResumeAll();
4607 traceRETURN_xTaskCatchUpTicks( xYieldOccurred );
4609 return xYieldOccurred;
4611 /*----------------------------------------------------------*/
4613 #if ( INCLUDE_xTaskAbortDelay == 1 )
4615 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
4617 TCB_t * pxTCB = xTask;
4620 traceENTER_xTaskAbortDelay( xTask );
4622 configASSERT( pxTCB );
4626 /* A task can only be prematurely removed from the Blocked state if
4627 * it is actually in the Blocked state. */
4628 if( eTaskGetState( xTask ) == eBlocked )
4632 /* Remove the reference to the task from the blocked list. An
4633 * interrupt won't touch the xStateListItem because the
4634 * scheduler is suspended. */
4635 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
4637 /* Is the task waiting on an event also? If so remove it from
4638 * the event list too. Interrupts can touch the event list item,
4639 * even though the scheduler is suspended, so a critical section
4641 taskENTER_CRITICAL();
4643 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4645 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
4647 /* This lets the task know it was forcibly removed from the
4648 * blocked state so it should not re-evaluate its block time and
4649 * then block again. */
4650 pxTCB->ucDelayAborted = pdTRUE;
4654 mtCOVERAGE_TEST_MARKER();
4657 taskEXIT_CRITICAL();
4659 /* Place the unblocked task into the appropriate ready list. */
4660 prvAddTaskToReadyList( pxTCB );
4662 /* A task being unblocked cannot cause an immediate context
4663 * switch if preemption is turned off. */
4664 #if ( configUSE_PREEMPTION == 1 )
4666 #if ( configNUMBER_OF_CORES == 1 )
4668 /* Preemption is on, but a context switch should only be
4669 * performed if the unblocked task has a priority that is
4670 * higher than the currently executing task. */
4671 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4673 /* Pend the yield to be performed when the scheduler
4674 * is unsuspended. */
4675 xYieldPendings[ 0 ] = pdTRUE;
4679 mtCOVERAGE_TEST_MARKER();
4682 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4684 taskENTER_CRITICAL();
4686 prvYieldForTask( pxTCB );
4688 taskEXIT_CRITICAL();
4690 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4692 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4699 ( void ) xTaskResumeAll();
4701 traceRETURN_xTaskAbortDelay( xReturn );
4706 #endif /* INCLUDE_xTaskAbortDelay */
4707 /*----------------------------------------------------------*/
4709 BaseType_t xTaskIncrementTick( void )
4712 TickType_t xItemValue;
4713 BaseType_t xSwitchRequired = pdFALSE;
4715 #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 )
4716 BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE };
4717 #endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
4719 traceENTER_xTaskIncrementTick();
4721 /* Called by the portable layer each time a tick interrupt occurs.
4722 * Increments the tick then checks to see if the new tick value will cause any
4723 * tasks to be unblocked. */
4724 traceTASK_INCREMENT_TICK( xTickCount );
4726 /* Tick increment should occur on every kernel timer event. Core 0 has the
4727 * responsibility to increment the tick, or increment the pended ticks if the
4728 * scheduler is suspended. If pended ticks is greater than zero, the core that
4729 * calls xTaskResumeAll has the responsibility to increment the tick. */
4730 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
4732 /* Minor optimisation. The tick count cannot change in this
4734 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
4736 /* Increment the RTOS tick, switching the delayed and overflowed
4737 * delayed lists if it wraps to 0. */
4738 xTickCount = xConstTickCount;
4740 if( xConstTickCount == ( TickType_t ) 0U )
4742 taskSWITCH_DELAYED_LISTS();
4746 mtCOVERAGE_TEST_MARKER();
4749 /* See if this tick has made a timeout expire. Tasks are stored in
4750 * the queue in the order of their wake time - meaning once one task
4751 * has been found whose block time has not expired there is no need to
4752 * look any further down the list. */
4753 if( xConstTickCount >= xNextTaskUnblockTime )
4757 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
4759 /* The delayed list is empty. Set xNextTaskUnblockTime
4760 * to the maximum possible value so it is extremely
4762 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
4763 * next time through. */
4764 xNextTaskUnblockTime = portMAX_DELAY;
4769 /* The delayed list is not empty, get the value of the
4770 * item at the head of the delayed list. This is the time
4771 * at which the task at the head of the delayed list must
4772 * be removed from the Blocked state. */
4773 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4774 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4775 /* coverity[misra_c_2012_rule_11_5_violation] */
4776 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
4777 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
4779 if( xConstTickCount < xItemValue )
4781 /* It is not time to unblock this item yet, but the
4782 * item value is the time at which the task at the head
4783 * of the blocked list must be removed from the Blocked
4784 * state - so record the item value in
4785 * xNextTaskUnblockTime. */
4786 xNextTaskUnblockTime = xItemValue;
4791 mtCOVERAGE_TEST_MARKER();
4794 /* It is time to remove the item from the Blocked state. */
4795 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
4797 /* Is the task waiting on an event also? If so remove
4798 * it from the event list. */
4799 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4801 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
4805 mtCOVERAGE_TEST_MARKER();
4808 /* Place the unblocked task into the appropriate ready
4810 prvAddTaskToReadyList( pxTCB );
4812 /* A task being unblocked cannot cause an immediate
4813 * context switch if preemption is turned off. */
4814 #if ( configUSE_PREEMPTION == 1 )
4816 #if ( configNUMBER_OF_CORES == 1 )
4818 /* Preemption is on, but a context switch should
4819 * only be performed if the unblocked task's
4820 * priority is higher than the currently executing
4822 * The case of equal priority tasks sharing
4823 * processing time (which happens when both
4824 * preemption and time slicing are on) is
4826 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4828 xSwitchRequired = pdTRUE;
4832 mtCOVERAGE_TEST_MARKER();
4835 #else /* #if( configNUMBER_OF_CORES == 1 ) */
4837 prvYieldForTask( pxTCB );
4839 #endif /* #if( configNUMBER_OF_CORES == 1 ) */
4841 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4846 /* Tasks of equal priority to the currently running task will share
4847 * processing time (time slice) if preemption is on, and the application
4848 * writer has not explicitly turned time slicing off. */
4849 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
4851 #if ( configNUMBER_OF_CORES == 1 )
4853 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > 1U )
4855 xSwitchRequired = pdTRUE;
4859 mtCOVERAGE_TEST_MARKER();
4862 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4866 for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ )
4868 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1U )
4870 xYieldRequiredForCore[ xCoreID ] = pdTRUE;
4874 mtCOVERAGE_TEST_MARKER();
4878 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4880 #endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
4882 #if ( configUSE_TICK_HOOK == 1 )
4884 /* Guard against the tick hook being called when the pended tick
4885 * count is being unwound (when the scheduler is being unlocked). */
4886 if( xPendedTicks == ( TickType_t ) 0 )
4888 vApplicationTickHook();
4892 mtCOVERAGE_TEST_MARKER();
4895 #endif /* configUSE_TICK_HOOK */
4897 #if ( configUSE_PREEMPTION == 1 )
4899 #if ( configNUMBER_OF_CORES == 1 )
4901 /* For single core the core ID is always 0. */
4902 if( xYieldPendings[ 0 ] != pdFALSE )
4904 xSwitchRequired = pdTRUE;
4908 mtCOVERAGE_TEST_MARKER();
4911 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4913 BaseType_t xCoreID, xCurrentCoreID;
4914 xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID();
4916 for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
4918 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
4919 if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
4922 if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) )
4924 if( xCoreID == xCurrentCoreID )
4926 xSwitchRequired = pdTRUE;
4930 prvYieldCore( xCoreID );
4935 mtCOVERAGE_TEST_MARKER();
4940 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4942 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4948 /* The tick hook gets called at regular intervals, even if the
4949 * scheduler is locked. */
4950 #if ( configUSE_TICK_HOOK == 1 )
4952 vApplicationTickHook();
4957 traceRETURN_xTaskIncrementTick( xSwitchRequired );
4959 return xSwitchRequired;
4961 /*-----------------------------------------------------------*/
4963 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4965 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
4966 TaskHookFunction_t pxHookFunction )
4970 traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction );
4972 /* If xTask is NULL then it is the task hook of the calling task that is
4976 xTCB = ( TCB_t * ) pxCurrentTCB;
4983 /* Save the hook function in the TCB. A critical section is required as
4984 * the value can be accessed from an interrupt. */
4985 taskENTER_CRITICAL();
4987 xTCB->pxTaskTag = pxHookFunction;
4989 taskEXIT_CRITICAL();
4991 traceRETURN_vTaskSetApplicationTaskTag();
4994 #endif /* configUSE_APPLICATION_TASK_TAG */
4995 /*-----------------------------------------------------------*/
4997 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4999 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
5002 TaskHookFunction_t xReturn;
5004 traceENTER_xTaskGetApplicationTaskTag( xTask );
5006 /* If xTask is NULL then set the calling task's hook. */
5007 pxTCB = prvGetTCBFromHandle( xTask );
5009 /* Save the hook function in the TCB. A critical section is required as
5010 * the value can be accessed from an interrupt. */
5011 taskENTER_CRITICAL();
5013 xReturn = pxTCB->pxTaskTag;
5015 taskEXIT_CRITICAL();
5017 traceRETURN_xTaskGetApplicationTaskTag( xReturn );
5022 #endif /* configUSE_APPLICATION_TASK_TAG */
5023 /*-----------------------------------------------------------*/
5025 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5027 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
5030 TaskHookFunction_t xReturn;
5031 UBaseType_t uxSavedInterruptStatus;
5033 traceENTER_xTaskGetApplicationTaskTagFromISR( xTask );
5035 /* If xTask is NULL then set the calling task's hook. */
5036 pxTCB = prvGetTCBFromHandle( xTask );
5038 /* Save the hook function in the TCB. A critical section is required as
5039 * the value can be accessed from an interrupt. */
5040 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
5042 xReturn = pxTCB->pxTaskTag;
5044 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
5046 traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn );
5051 #endif /* configUSE_APPLICATION_TASK_TAG */
5052 /*-----------------------------------------------------------*/
5054 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5056 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
5057 void * pvParameter )
5062 traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter );
5064 /* If xTask is NULL then we are calling our own task hook. */
5067 xTCB = pxCurrentTCB;
5074 if( xTCB->pxTaskTag != NULL )
5076 xReturn = xTCB->pxTaskTag( pvParameter );
5083 traceRETURN_xTaskCallApplicationTaskHook( xReturn );
5088 #endif /* configUSE_APPLICATION_TASK_TAG */
5089 /*-----------------------------------------------------------*/
5091 #if ( configNUMBER_OF_CORES == 1 )
5092 void vTaskSwitchContext( void )
5094 traceENTER_vTaskSwitchContext();
5096 if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5098 /* The scheduler is currently suspended - do not allow a context
5100 xYieldPendings[ 0 ] = pdTRUE;
5104 xYieldPendings[ 0 ] = pdFALSE;
5105 traceTASK_SWITCHED_OUT();
5107 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5109 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5110 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] );
5112 ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE();
5115 /* Add the amount of time the task has been running to the
5116 * accumulated time so far. The time the task started running was
5117 * stored in ulTaskSwitchedInTime. Note that there is no overflow
5118 * protection here so count values are only valid until the timer
5119 * overflows. The guard against negative values is to protect
5120 * against suspect run time stat counter implementations - which
5121 * are provided by the application, not the kernel. */
5122 if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] )
5124 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] );
5128 mtCOVERAGE_TEST_MARKER();
5131 ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ];
5133 #endif /* configGENERATE_RUN_TIME_STATS */
5135 /* Check for stack overflow, if configured. */
5136 taskCHECK_FOR_STACK_OVERFLOW();
5138 /* Before the currently running task is switched out, save its errno. */
5139 #if ( configUSE_POSIX_ERRNO == 1 )
5141 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
5145 /* Select a new task to run using either the generic C or port
5146 * optimised asm code. */
5147 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5148 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5149 /* coverity[misra_c_2012_rule_11_5_violation] */
5150 taskSELECT_HIGHEST_PRIORITY_TASK();
5151 traceTASK_SWITCHED_IN();
5153 /* Macro to inject port specific behaviour immediately after
5154 * switching tasks, such as setting an end of stack watchpoint
5155 * or reconfiguring the MPU. */
5156 portTASK_SWITCH_HOOK( pxCurrentTCB );
5158 /* After the new task is switched in, update the global errno. */
5159 #if ( configUSE_POSIX_ERRNO == 1 )
5161 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
5165 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5167 /* Switch C-Runtime's TLS Block to point to the TLS
5168 * Block specific to this task. */
5169 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
5174 traceRETURN_vTaskSwitchContext();
5176 #else /* if ( configNUMBER_OF_CORES == 1 ) */
5177 void vTaskSwitchContext( BaseType_t xCoreID )
5179 traceENTER_vTaskSwitchContext();
5181 /* Acquire both locks:
5182 * - The ISR lock protects the ready list from simultaneous access by
5183 * both other ISRs and tasks.
5184 * - We also take the task lock to pause here in case another core has
5185 * suspended the scheduler. We don't want to simply set xYieldPending
5186 * and move on if another core suspended the scheduler. We should only
5187 * do that if the current core has suspended the scheduler. */
5189 portGET_TASK_LOCK(); /* Must always acquire the task lock first. */
5192 /* vTaskSwitchContext() must never be called from within a critical section.
5193 * This is not necessarily true for single core FreeRTOS, but it is for this
5195 configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
5197 if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5199 /* The scheduler is currently suspended - do not allow a context
5201 xYieldPendings[ xCoreID ] = pdTRUE;
5205 xYieldPendings[ xCoreID ] = pdFALSE;
5206 traceTASK_SWITCHED_OUT();
5208 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5210 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5211 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] );
5213 ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE();
5216 /* Add the amount of time the task has been running to the
5217 * accumulated time so far. The time the task started running was
5218 * stored in ulTaskSwitchedInTime. Note that there is no overflow
5219 * protection here so count values are only valid until the timer
5220 * overflows. The guard against negative values is to protect
5221 * against suspect run time stat counter implementations - which
5222 * are provided by the application, not the kernel. */
5223 if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] )
5225 pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] );
5229 mtCOVERAGE_TEST_MARKER();
5232 ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ];
5234 #endif /* configGENERATE_RUN_TIME_STATS */
5236 /* Check for stack overflow, if configured. */
5237 taskCHECK_FOR_STACK_OVERFLOW();
5239 /* Before the currently running task is switched out, save its errno. */
5240 #if ( configUSE_POSIX_ERRNO == 1 )
5242 pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno;
5246 /* Select a new task to run. */
5247 taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID );
5248 traceTASK_SWITCHED_IN();
5250 /* Macro to inject port specific behaviour immediately after
5251 * switching tasks, such as setting an end of stack watchpoint
5252 * or reconfiguring the MPU. */
5253 portTASK_SWITCH_HOOK( pxCurrentTCBs[ portGET_CORE_ID() ] );
5255 /* After the new task is switched in, update the global errno. */
5256 #if ( configUSE_POSIX_ERRNO == 1 )
5258 FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno;
5262 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5264 /* Switch C-Runtime's TLS Block to point to the TLS
5265 * Block specific to this task. */
5266 configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock );
5271 portRELEASE_ISR_LOCK();
5272 portRELEASE_TASK_LOCK();
5274 traceRETURN_vTaskSwitchContext();
5276 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
5277 /*-----------------------------------------------------------*/
5279 void vTaskPlaceOnEventList( List_t * const pxEventList,
5280 const TickType_t xTicksToWait )
5282 traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait );
5284 configASSERT( pxEventList );
5286 /* THIS FUNCTION MUST BE CALLED WITH THE
5287 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
5289 /* Place the event list item of the TCB in the appropriate event list.
5290 * This is placed in the list in priority order so the highest priority task
5291 * is the first to be woken by the event.
5293 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
5294 * Normally, the xItemValue of a TCB's ListItem_t members is:
5295 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
5296 * Therefore, the event list is sorted in descending priority order.
5298 * The queue that contains the event list is locked, preventing
5299 * simultaneous access from interrupts. */
5300 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5302 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5304 traceRETURN_vTaskPlaceOnEventList();
5306 /*-----------------------------------------------------------*/
5308 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
5309 const TickType_t xItemValue,
5310 const TickType_t xTicksToWait )
5312 traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait );
5314 configASSERT( pxEventList );
5316 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
5317 * the event groups implementation. */
5318 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5320 /* Store the item value in the event list item. It is safe to access the
5321 * event list item here as interrupts won't access the event list item of a
5322 * task that is not in the Blocked state. */
5323 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5325 /* Place the event list item of the TCB at the end of the appropriate event
5326 * list. It is safe to access the event list here because it is part of an
5327 * event group implementation - and interrupts don't access event groups
5328 * directly (instead they access them indirectly by pending function calls to
5329 * the task level). */
5330 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5332 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5334 traceRETURN_vTaskPlaceOnUnorderedEventList();
5336 /*-----------------------------------------------------------*/
5338 #if ( configUSE_TIMERS == 1 )
5340 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
5341 TickType_t xTicksToWait,
5342 const BaseType_t xWaitIndefinitely )
5344 traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely );
5346 configASSERT( pxEventList );
5348 /* This function should not be called by application code hence the
5349 * 'Restricted' in its name. It is not part of the public API. It is
5350 * designed for use by kernel code, and has special calling requirements -
5351 * it should be called with the scheduler suspended. */
5354 /* Place the event list item of the TCB in the appropriate event list.
5355 * In this case it is assume that this is the only task that is going to
5356 * be waiting on this event list, so the faster vListInsertEnd() function
5357 * can be used in place of vListInsert. */
5358 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5360 /* If the task should block indefinitely then set the block time to a
5361 * value that will be recognised as an indefinite delay inside the
5362 * prvAddCurrentTaskToDelayedList() function. */
5363 if( xWaitIndefinitely != pdFALSE )
5365 xTicksToWait = portMAX_DELAY;
5368 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
5369 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
5371 traceRETURN_vTaskPlaceOnEventListRestricted();
5374 #endif /* configUSE_TIMERS */
5375 /*-----------------------------------------------------------*/
5377 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
5379 TCB_t * pxUnblockedTCB;
5382 traceENTER_xTaskRemoveFromEventList( pxEventList );
5384 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
5385 * called from a critical section within an ISR. */
5387 /* The event list is sorted in priority order, so the first in the list can
5388 * be removed as it is known to be the highest priority. Remove the TCB from
5389 * the delayed list, and add it to the ready list.
5391 * If an event is for a queue that is locked then this function will never
5392 * get called - the lock count on the queue will get modified instead. This
5393 * means exclusive access to the event list is guaranteed here.
5395 * This function assumes that a check has already been made to ensure that
5396 * pxEventList is not empty. */
5397 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5398 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5399 /* coverity[misra_c_2012_rule_11_5_violation] */
5400 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
5401 configASSERT( pxUnblockedTCB );
5402 listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
5404 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
5406 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5407 prvAddTaskToReadyList( pxUnblockedTCB );
5409 #if ( configUSE_TICKLESS_IDLE != 0 )
5411 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5412 * might be set to the blocked task's time out time. If the task is
5413 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5414 * normally left unchanged, because it is automatically reset to a new
5415 * value when the tick count equals xNextTaskUnblockTime. However if
5416 * tickless idling is used it might be more important to enter sleep mode
5417 * at the earliest possible time - so reset xNextTaskUnblockTime here to
5418 * ensure it is updated at the earliest possible time. */
5419 prvResetNextTaskUnblockTime();
5425 /* The delayed and ready lists cannot be accessed, so hold this task
5426 * pending until the scheduler is resumed. */
5427 listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
5430 #if ( configNUMBER_OF_CORES == 1 )
5432 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5434 /* Return true if the task removed from the event list has a higher
5435 * priority than the calling task. This allows the calling task to know if
5436 * it should force a context switch now. */
5439 /* Mark that a yield is pending in case the user is not using the
5440 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
5441 xYieldPendings[ 0 ] = pdTRUE;
5448 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5452 #if ( configUSE_PREEMPTION == 1 )
5454 prvYieldForTask( pxUnblockedTCB );
5456 if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5461 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
5463 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5465 traceRETURN_xTaskRemoveFromEventList( xReturn );
5468 /*-----------------------------------------------------------*/
5470 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
5471 const TickType_t xItemValue )
5473 TCB_t * pxUnblockedTCB;
5475 traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue );
5477 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
5478 * the event flags implementation. */
5479 configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5481 /* Store the new item value in the event list. */
5482 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5484 /* Remove the event list form the event flag. Interrupts do not access
5486 /* MISRA Ref 11.5.3 [Void pointer assignment] */
5487 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5488 /* coverity[misra_c_2012_rule_11_5_violation] */
5489 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem );
5490 configASSERT( pxUnblockedTCB );
5491 listREMOVE_ITEM( pxEventListItem );
5493 #if ( configUSE_TICKLESS_IDLE != 0 )
5495 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5496 * might be set to the blocked task's time out time. If the task is
5497 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5498 * normally left unchanged, because it is automatically reset to a new
5499 * value when the tick count equals xNextTaskUnblockTime. However if
5500 * tickless idling is used it might be more important to enter sleep mode
5501 * at the earliest possible time - so reset xNextTaskUnblockTime here to
5502 * ensure it is updated at the earliest possible time. */
5503 prvResetNextTaskUnblockTime();
5507 /* Remove the task from the delayed list and add it to the ready list. The
5508 * scheduler is suspended so interrupts will not be accessing the ready
5510 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5511 prvAddTaskToReadyList( pxUnblockedTCB );
5513 #if ( configNUMBER_OF_CORES == 1 )
5515 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5517 /* The unblocked task has a priority above that of the calling task, so
5518 * a context switch is required. This function is called with the
5519 * scheduler suspended so xYieldPending is set so the context switch
5520 * occurs immediately that the scheduler is resumed (unsuspended). */
5521 xYieldPendings[ 0 ] = pdTRUE;
5524 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5526 #if ( configUSE_PREEMPTION == 1 )
5528 taskENTER_CRITICAL();
5530 prvYieldForTask( pxUnblockedTCB );
5532 taskEXIT_CRITICAL();
5536 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5538 traceRETURN_vTaskRemoveFromUnorderedEventList();
5540 /*-----------------------------------------------------------*/
5542 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
5544 traceENTER_vTaskSetTimeOutState( pxTimeOut );
5546 configASSERT( pxTimeOut );
5547 taskENTER_CRITICAL();
5549 pxTimeOut->xOverflowCount = xNumOfOverflows;
5550 pxTimeOut->xTimeOnEntering = xTickCount;
5552 taskEXIT_CRITICAL();
5554 traceRETURN_vTaskSetTimeOutState();
5556 /*-----------------------------------------------------------*/
5558 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
5560 traceENTER_vTaskInternalSetTimeOutState( pxTimeOut );
5562 /* For internal use only as it does not use a critical section. */
5563 pxTimeOut->xOverflowCount = xNumOfOverflows;
5564 pxTimeOut->xTimeOnEntering = xTickCount;
5566 traceRETURN_vTaskInternalSetTimeOutState();
5568 /*-----------------------------------------------------------*/
5570 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
5571 TickType_t * const pxTicksToWait )
5575 traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait );
5577 configASSERT( pxTimeOut );
5578 configASSERT( pxTicksToWait );
5580 taskENTER_CRITICAL();
5582 /* Minor optimisation. The tick count cannot change in this block. */
5583 const TickType_t xConstTickCount = xTickCount;
5584 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
5586 #if ( INCLUDE_xTaskAbortDelay == 1 )
5587 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
5589 /* The delay was aborted, which is not the same as a time out,
5590 * but has the same result. */
5591 pxCurrentTCB->ucDelayAborted = pdFALSE;
5597 #if ( INCLUDE_vTaskSuspend == 1 )
5598 if( *pxTicksToWait == portMAX_DELAY )
5600 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
5601 * specified is the maximum block time then the task should block
5602 * indefinitely, and therefore never time out. */
5608 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) )
5610 /* The tick count is greater than the time at which
5611 * vTaskSetTimeout() was called, but has also overflowed since
5612 * vTaskSetTimeOut() was called. It must have wrapped all the way
5613 * around and gone past again. This passed since vTaskSetTimeout()
5616 *pxTicksToWait = ( TickType_t ) 0;
5618 else if( xElapsedTime < *pxTicksToWait )
5620 /* Not a genuine timeout. Adjust parameters for time remaining. */
5621 *pxTicksToWait -= xElapsedTime;
5622 vTaskInternalSetTimeOutState( pxTimeOut );
5627 *pxTicksToWait = ( TickType_t ) 0;
5631 taskEXIT_CRITICAL();
5633 traceRETURN_xTaskCheckForTimeOut( xReturn );
5637 /*-----------------------------------------------------------*/
5639 void vTaskMissedYield( void )
5641 traceENTER_vTaskMissedYield();
5643 /* Must be called from within a critical section. */
5644 xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
5646 traceRETURN_vTaskMissedYield();
5648 /*-----------------------------------------------------------*/
5650 #if ( configUSE_TRACE_FACILITY == 1 )
5652 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
5654 UBaseType_t uxReturn;
5655 TCB_t const * pxTCB;
5657 traceENTER_uxTaskGetTaskNumber( xTask );
5662 uxReturn = pxTCB->uxTaskNumber;
5669 traceRETURN_uxTaskGetTaskNumber( uxReturn );
5674 #endif /* configUSE_TRACE_FACILITY */
5675 /*-----------------------------------------------------------*/
5677 #if ( configUSE_TRACE_FACILITY == 1 )
5679 void vTaskSetTaskNumber( TaskHandle_t xTask,
5680 const UBaseType_t uxHandle )
5684 traceENTER_vTaskSetTaskNumber( xTask, uxHandle );
5689 pxTCB->uxTaskNumber = uxHandle;
5692 traceRETURN_vTaskSetTaskNumber();
5695 #endif /* configUSE_TRACE_FACILITY */
5696 /*-----------------------------------------------------------*/
5699 * -----------------------------------------------------------
5700 * The passive idle task.
5701 * ----------------------------------------------------------
5703 * The passive idle task is used for all the additional cores in a SMP
5704 * system. There must be only 1 active idle task and the rest are passive
5707 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5708 * language extensions. The equivalent prototype for this function is:
5710 * void prvPassiveIdleTask( void *pvParameters );
5713 #if ( configNUMBER_OF_CORES > 1 )
5714 static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters )
5716 ( void ) pvParameters;
5720 for( ; configCONTROL_INFINITE_LOOP(); )
5722 #if ( configUSE_PREEMPTION == 0 )
5724 /* If we are not using preemption we keep forcing a task switch to
5725 * see if any other task has become available. If we are using
5726 * preemption we don't need to do this as any task becoming available
5727 * will automatically get the processor anyway. */
5730 #endif /* configUSE_PREEMPTION */
5732 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5734 /* When using preemption tasks of equal priority will be
5735 * timesliced. If a task that is sharing the idle priority is ready
5736 * to run then the idle task should yield before the end of the
5739 * A critical region is not required here as we are just reading from
5740 * the list, and an occasional incorrect value will not matter. If
5741 * the ready list at the idle priority contains one more task than the
5742 * number of idle tasks, which is equal to the configured numbers of cores
5743 * then a task other than the idle task is ready to execute. */
5744 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5750 mtCOVERAGE_TEST_MARKER();
5753 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5755 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
5757 /* Call the user defined function from within the idle task. This
5758 * allows the application designer to add background functionality
5759 * without the overhead of a separate task.
5761 * This hook is intended to manage core activity such as disabling cores that go idle.
5763 * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5764 * CALL A FUNCTION THAT MIGHT BLOCK. */
5765 vApplicationPassiveIdleHook();
5767 #endif /* configUSE_PASSIVE_IDLE_HOOK */
5770 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5773 * -----------------------------------------------------------
5775 * ----------------------------------------------------------
5777 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5778 * language extensions. The equivalent prototype for this function is:
5780 * void prvIdleTask( void *pvParameters );
5784 static portTASK_FUNCTION( prvIdleTask, pvParameters )
5786 /* Stop warnings. */
5787 ( void ) pvParameters;
5789 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
5790 * SCHEDULER IS STARTED. **/
5792 /* In case a task that has a secure context deletes itself, in which case
5793 * the idle task is responsible for deleting the task's secure context, if
5795 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
5797 #if ( configNUMBER_OF_CORES > 1 )
5799 /* SMP all cores start up in the idle task. This initial yield gets the application
5803 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5805 for( ; configCONTROL_INFINITE_LOOP(); )
5807 /* See if any tasks have deleted themselves - if so then the idle task
5808 * is responsible for freeing the deleted task's TCB and stack. */
5809 prvCheckTasksWaitingTermination();
5811 #if ( configUSE_PREEMPTION == 0 )
5813 /* If we are not using preemption we keep forcing a task switch to
5814 * see if any other task has become available. If we are using
5815 * preemption we don't need to do this as any task becoming available
5816 * will automatically get the processor anyway. */
5819 #endif /* configUSE_PREEMPTION */
5821 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5823 /* When using preemption tasks of equal priority will be
5824 * timesliced. If a task that is sharing the idle priority is ready
5825 * to run then the idle task should yield before the end of the
5828 * A critical region is not required here as we are just reading from
5829 * the list, and an occasional incorrect value will not matter. If
5830 * the ready list at the idle priority contains one more task than the
5831 * number of idle tasks, which is equal to the configured numbers of cores
5832 * then a task other than the idle task is ready to execute. */
5833 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5839 mtCOVERAGE_TEST_MARKER();
5842 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5844 #if ( configUSE_IDLE_HOOK == 1 )
5846 /* Call the user defined function from within the idle task. */
5847 vApplicationIdleHook();
5849 #endif /* configUSE_IDLE_HOOK */
5851 /* This conditional compilation should use inequality to 0, not equality
5852 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
5853 * user defined low power mode implementations require
5854 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
5855 #if ( configUSE_TICKLESS_IDLE != 0 )
5857 TickType_t xExpectedIdleTime;
5859 /* It is not desirable to suspend then resume the scheduler on
5860 * each iteration of the idle task. Therefore, a preliminary
5861 * test of the expected idle time is performed without the
5862 * scheduler suspended. The result here is not necessarily
5864 xExpectedIdleTime = prvGetExpectedIdleTime();
5866 if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5870 /* Now the scheduler is suspended, the expected idle
5871 * time can be sampled again, and this time its value can
5873 configASSERT( xNextTaskUnblockTime >= xTickCount );
5874 xExpectedIdleTime = prvGetExpectedIdleTime();
5876 /* Define the following macro to set xExpectedIdleTime to 0
5877 * if the application does not want
5878 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
5879 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
5881 if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5883 traceLOW_POWER_IDLE_BEGIN();
5884 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
5885 traceLOW_POWER_IDLE_END();
5889 mtCOVERAGE_TEST_MARKER();
5892 ( void ) xTaskResumeAll();
5896 mtCOVERAGE_TEST_MARKER();
5899 #endif /* configUSE_TICKLESS_IDLE */
5901 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) )
5903 /* Call the user defined function from within the idle task. This
5904 * allows the application designer to add background functionality
5905 * without the overhead of a separate task.
5907 * This hook is intended to manage core activity such as disabling cores that go idle.
5909 * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5910 * CALL A FUNCTION THAT MIGHT BLOCK. */
5911 vApplicationPassiveIdleHook();
5913 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */
5916 /*-----------------------------------------------------------*/
5918 #if ( configUSE_TICKLESS_IDLE != 0 )
5920 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
5922 #if ( INCLUDE_vTaskSuspend == 1 )
5923 /* The idle task exists in addition to the application tasks. */
5924 const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES;
5925 #endif /* INCLUDE_vTaskSuspend */
5927 eSleepModeStatus eReturn = eStandardSleep;
5929 traceENTER_eTaskConfirmSleepModeStatus();
5931 /* This function must be called from a critical section. */
5933 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0U )
5935 /* A task was made ready while the scheduler was suspended. */
5936 eReturn = eAbortSleep;
5938 else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5940 /* A yield was pended while the scheduler was suspended. */
5941 eReturn = eAbortSleep;
5943 else if( xPendedTicks != 0U )
5945 /* A tick interrupt has already occurred but was held pending
5946 * because the scheduler is suspended. */
5947 eReturn = eAbortSleep;
5950 #if ( INCLUDE_vTaskSuspend == 1 )
5951 else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
5953 /* If all the tasks are in the suspended list (which might mean they
5954 * have an infinite block time rather than actually being suspended)
5955 * then it is safe to turn all clocks off and just wait for external
5957 eReturn = eNoTasksWaitingTimeout;
5959 #endif /* INCLUDE_vTaskSuspend */
5962 mtCOVERAGE_TEST_MARKER();
5965 traceRETURN_eTaskConfirmSleepModeStatus( eReturn );
5970 #endif /* configUSE_TICKLESS_IDLE */
5971 /*-----------------------------------------------------------*/
5973 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5975 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
5981 traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue );
5983 if( ( xIndex >= 0 ) &&
5984 ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
5986 pxTCB = prvGetTCBFromHandle( xTaskToSet );
5987 configASSERT( pxTCB != NULL );
5988 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
5991 traceRETURN_vTaskSetThreadLocalStoragePointer();
5994 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
5995 /*-----------------------------------------------------------*/
5997 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5999 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
6002 void * pvReturn = NULL;
6005 traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex );
6007 if( ( xIndex >= 0 ) &&
6008 ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
6010 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
6011 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
6018 traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn );
6023 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
6024 /*-----------------------------------------------------------*/
6026 #if ( portUSING_MPU_WRAPPERS == 1 )
6028 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
6029 const MemoryRegion_t * const pxRegions )
6033 traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions );
6035 /* If null is passed in here then we are modifying the MPU settings of
6036 * the calling task. */
6037 pxTCB = prvGetTCBFromHandle( xTaskToModify );
6039 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 );
6041 traceRETURN_vTaskAllocateMPURegions();
6044 #endif /* portUSING_MPU_WRAPPERS */
6045 /*-----------------------------------------------------------*/
6047 static void prvInitialiseTaskLists( void )
6049 UBaseType_t uxPriority;
6051 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
6053 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
6056 vListInitialise( &xDelayedTaskList1 );
6057 vListInitialise( &xDelayedTaskList2 );
6058 vListInitialise( &xPendingReadyList );
6060 #if ( INCLUDE_vTaskDelete == 1 )
6062 vListInitialise( &xTasksWaitingTermination );
6064 #endif /* INCLUDE_vTaskDelete */
6066 #if ( INCLUDE_vTaskSuspend == 1 )
6068 vListInitialise( &xSuspendedTaskList );
6070 #endif /* INCLUDE_vTaskSuspend */
6072 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
6074 pxDelayedTaskList = &xDelayedTaskList1;
6075 pxOverflowDelayedTaskList = &xDelayedTaskList2;
6077 /*-----------------------------------------------------------*/
6079 static void prvCheckTasksWaitingTermination( void )
6081 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
6083 #if ( INCLUDE_vTaskDelete == 1 )
6087 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
6088 * being called too often in the idle task. */
6089 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6091 #if ( configNUMBER_OF_CORES == 1 )
6093 taskENTER_CRITICAL();
6096 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6097 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6098 /* coverity[misra_c_2012_rule_11_5_violation] */
6099 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6100 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6101 --uxCurrentNumberOfTasks;
6102 --uxDeletedTasksWaitingCleanUp;
6105 taskEXIT_CRITICAL();
6107 prvDeleteTCB( pxTCB );
6109 #else /* #if( configNUMBER_OF_CORES == 1 ) */
6113 taskENTER_CRITICAL();
6115 /* For SMP, multiple idles can be running simultaneously
6116 * and we need to check that other idles did not cleanup while we were
6117 * waiting to enter the critical section. */
6118 if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6120 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6121 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6122 /* coverity[misra_c_2012_rule_11_5_violation] */
6123 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6125 if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
6127 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6128 --uxCurrentNumberOfTasks;
6129 --uxDeletedTasksWaitingCleanUp;
6133 /* The TCB to be deleted still has not yet been switched out
6134 * by the scheduler, so we will just exit this loop early and
6135 * try again next time. */
6136 taskEXIT_CRITICAL();
6141 taskEXIT_CRITICAL();
6145 prvDeleteTCB( pxTCB );
6148 #endif /* #if( configNUMBER_OF_CORES == 1 ) */
6151 #endif /* INCLUDE_vTaskDelete */
6153 /*-----------------------------------------------------------*/
6155 #if ( configUSE_TRACE_FACILITY == 1 )
6157 void vTaskGetInfo( TaskHandle_t xTask,
6158 TaskStatus_t * pxTaskStatus,
6159 BaseType_t xGetFreeStackSpace,
6164 traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState );
6166 /* xTask is NULL then get the state of the calling task. */
6167 pxTCB = prvGetTCBFromHandle( xTask );
6169 pxTaskStatus->xHandle = pxTCB;
6170 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
6171 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
6172 pxTaskStatus->pxStackBase = pxTCB->pxStack;
6173 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
6174 pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack;
6175 pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
6177 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
6179 #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
6181 pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
6185 #if ( configUSE_MUTEXES == 1 )
6187 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
6191 pxTaskStatus->uxBasePriority = 0;
6195 #if ( configGENERATE_RUN_TIME_STATS == 1 )
6197 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
6201 pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
6205 /* Obtaining the task state is a little fiddly, so is only done if the
6206 * value of eState passed into this function is eInvalid - otherwise the
6207 * state is just set to whatever is passed in. */
6208 if( eState != eInvalid )
6210 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6212 pxTaskStatus->eCurrentState = eRunning;
6216 pxTaskStatus->eCurrentState = eState;
6218 #if ( INCLUDE_vTaskSuspend == 1 )
6220 /* If the task is in the suspended list then there is a
6221 * chance it is actually just blocked indefinitely - so really
6222 * it should be reported as being in the Blocked state. */
6223 if( eState == eSuspended )
6227 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
6229 pxTaskStatus->eCurrentState = eBlocked;
6235 /* The task does not appear on the event list item of
6236 * and of the RTOS objects, but could still be in the
6237 * blocked state if it is waiting on its notification
6238 * rather than waiting on an object. If not, is
6240 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
6242 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
6244 pxTaskStatus->eCurrentState = eBlocked;
6250 ( void ) xTaskResumeAll();
6253 #endif /* INCLUDE_vTaskSuspend */
6255 /* Tasks can be in pending ready list and other state list at the
6256 * same time. These tasks are in ready state no matter what state
6257 * list the task is in. */
6258 taskENTER_CRITICAL();
6260 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE )
6262 pxTaskStatus->eCurrentState = eReady;
6265 taskEXIT_CRITICAL();
6270 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
6273 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
6274 * parameter is provided to allow it to be skipped. */
6275 if( xGetFreeStackSpace != pdFALSE )
6277 #if ( portSTACK_GROWTH > 0 )
6279 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
6283 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
6289 pxTaskStatus->usStackHighWaterMark = 0;
6292 traceRETURN_vTaskGetInfo();
6295 #endif /* configUSE_TRACE_FACILITY */
6296 /*-----------------------------------------------------------*/
6298 #if ( configUSE_TRACE_FACILITY == 1 )
6300 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
6304 configLIST_VOLATILE TCB_t * pxNextTCB;
6305 configLIST_VOLATILE TCB_t * pxFirstTCB;
6306 UBaseType_t uxTask = 0;
6308 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
6310 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6311 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6312 /* coverity[misra_c_2012_rule_11_5_violation] */
6313 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
6315 /* Populate an TaskStatus_t structure within the
6316 * pxTaskStatusArray array for each task that is referenced from
6317 * pxList. See the definition of TaskStatus_t in task.h for the
6318 * meaning of each TaskStatus_t structure member. */
6321 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6322 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6323 /* coverity[misra_c_2012_rule_11_5_violation] */
6324 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
6325 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
6327 } while( pxNextTCB != pxFirstTCB );
6331 mtCOVERAGE_TEST_MARKER();
6337 #endif /* configUSE_TRACE_FACILITY */
6338 /*-----------------------------------------------------------*/
6340 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
6342 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
6344 uint32_t ulCount = 0U;
6346 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
6348 pucStackByte -= portSTACK_GROWTH;
6352 ulCount /= ( uint32_t ) sizeof( StackType_t );
6354 return ( configSTACK_DEPTH_TYPE ) ulCount;
6357 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
6358 /*-----------------------------------------------------------*/
6360 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
6362 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
6363 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
6364 * user to determine the return type. It gets around the problem of the value
6365 * overflowing on 8-bit types without breaking backward compatibility for
6366 * applications that expect an 8-bit return type. */
6367 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
6370 uint8_t * pucEndOfStack;
6371 configSTACK_DEPTH_TYPE uxReturn;
6373 traceENTER_uxTaskGetStackHighWaterMark2( xTask );
6375 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
6376 * the same except for their return type. Using configSTACK_DEPTH_TYPE
6377 * allows the user to determine the return type. It gets around the
6378 * problem of the value overflowing on 8-bit types without breaking
6379 * backward compatibility for applications that expect an 8-bit return
6382 pxTCB = prvGetTCBFromHandle( xTask );
6384 #if portSTACK_GROWTH < 0
6386 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6390 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6394 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
6396 traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn );
6401 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
6402 /*-----------------------------------------------------------*/
6404 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
6406 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
6409 uint8_t * pucEndOfStack;
6410 UBaseType_t uxReturn;
6412 traceENTER_uxTaskGetStackHighWaterMark( xTask );
6414 pxTCB = prvGetTCBFromHandle( xTask );
6416 #if portSTACK_GROWTH < 0
6418 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6422 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6426 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
6428 traceRETURN_uxTaskGetStackHighWaterMark( uxReturn );
6433 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
6434 /*-----------------------------------------------------------*/
6436 #if ( INCLUDE_vTaskDelete == 1 )
6438 static void prvDeleteTCB( TCB_t * pxTCB )
6440 /* This call is required specifically for the TriCore port. It must be
6441 * above the vPortFree() calls. The call is also used by ports/demos that
6442 * want to allocate and clean RAM statically. */
6443 portCLEAN_UP_TCB( pxTCB );
6445 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
6447 /* Free up the memory allocated for the task's TLS Block. */
6448 configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock );
6452 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
6454 /* The task can only have been allocated dynamically - free both
6455 * the stack and TCB. */
6456 vPortFreeStack( pxTCB->pxStack );
6459 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
6461 /* The task could have been allocated statically or dynamically, so
6462 * check what was statically allocated before trying to free the
6464 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
6466 /* Both the stack and TCB were allocated dynamically, so both
6468 vPortFreeStack( pxTCB->pxStack );
6471 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
6473 /* Only the stack was statically allocated, so the TCB is the
6474 * only memory that must be freed. */
6479 /* Neither the stack nor the TCB were allocated dynamically, so
6480 * nothing needs to be freed. */
6481 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
6482 mtCOVERAGE_TEST_MARKER();
6485 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
6488 #endif /* INCLUDE_vTaskDelete */
6489 /*-----------------------------------------------------------*/
6491 static void prvResetNextTaskUnblockTime( void )
6493 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
6495 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
6496 * the maximum possible value so it is extremely unlikely that the
6497 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
6498 * there is an item in the delayed list. */
6499 xNextTaskUnblockTime = portMAX_DELAY;
6503 /* The new current delayed list is not empty, get the value of
6504 * the item at the head of the delayed list. This is the time at
6505 * which the task at the head of the delayed list should be removed
6506 * from the Blocked state. */
6507 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
6510 /*-----------------------------------------------------------*/
6512 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 )
6514 #if ( configNUMBER_OF_CORES == 1 )
6515 TaskHandle_t xTaskGetCurrentTaskHandle( void )
6517 TaskHandle_t xReturn;
6519 traceENTER_xTaskGetCurrentTaskHandle();
6521 /* A critical section is not required as this is not called from
6522 * an interrupt and the current TCB will always be the same for any
6523 * individual execution thread. */
6524 xReturn = pxCurrentTCB;
6526 traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6530 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
6531 TaskHandle_t xTaskGetCurrentTaskHandle( void )
6533 TaskHandle_t xReturn;
6534 UBaseType_t uxSavedInterruptStatus;
6536 traceENTER_xTaskGetCurrentTaskHandle();
6538 uxSavedInterruptStatus = portSET_INTERRUPT_MASK();
6540 xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
6542 portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus );
6544 traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6549 TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID )
6551 TaskHandle_t xReturn = NULL;
6553 traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID );
6555 if( taskVALID_CORE_ID( xCoreID ) != pdFALSE )
6557 xReturn = pxCurrentTCBs[ xCoreID ];
6560 traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn );
6564 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6566 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
6567 /*-----------------------------------------------------------*/
6569 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
6571 BaseType_t xTaskGetSchedulerState( void )
6575 traceENTER_xTaskGetSchedulerState();
6577 if( xSchedulerRunning == pdFALSE )
6579 xReturn = taskSCHEDULER_NOT_STARTED;
6583 #if ( configNUMBER_OF_CORES > 1 )
6584 taskENTER_CRITICAL();
6587 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
6589 xReturn = taskSCHEDULER_RUNNING;
6593 xReturn = taskSCHEDULER_SUSPENDED;
6596 #if ( configNUMBER_OF_CORES > 1 )
6597 taskEXIT_CRITICAL();
6601 traceRETURN_xTaskGetSchedulerState( xReturn );
6606 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
6607 /*-----------------------------------------------------------*/
6609 #if ( configUSE_MUTEXES == 1 )
6611 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
6613 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
6614 BaseType_t xReturn = pdFALSE;
6616 traceENTER_xTaskPriorityInherit( pxMutexHolder );
6618 /* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority
6619 * inheritance is not applied in this scenario. */
6620 if( pxMutexHolder != NULL )
6622 /* If the holder of the mutex has a priority below the priority of
6623 * the task attempting to obtain the mutex then it will temporarily
6624 * inherit the priority of the task attempting to obtain the mutex. */
6625 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
6627 /* Adjust the mutex holder state to account for its new
6628 * priority. Only reset the event list item value if the value is
6629 * not being used for anything else. */
6630 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
6632 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority );
6636 mtCOVERAGE_TEST_MARKER();
6639 /* If the task being modified is in the ready state it will need
6640 * to be moved into a new list. */
6641 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
6643 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6645 /* It is known that the task is in its ready list so
6646 * there is no need to check again and the port level
6647 * reset macro can be called directly. */
6648 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
6652 mtCOVERAGE_TEST_MARKER();
6655 /* Inherit the priority before being moved into the new list. */
6656 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6657 prvAddTaskToReadyList( pxMutexHolderTCB );
6658 #if ( configNUMBER_OF_CORES > 1 )
6660 /* The priority of the task is raised. Yield for this task
6661 * if it is not running. */
6662 if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE )
6664 prvYieldForTask( pxMutexHolderTCB );
6667 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6671 /* Just inherit the priority. */
6672 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6675 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
6677 /* Inheritance occurred. */
6682 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
6684 /* The base priority of the mutex holder is lower than the
6685 * priority of the task attempting to take the mutex, but the
6686 * current priority of the mutex holder is not lower than the
6687 * priority of the task attempting to take the mutex.
6688 * Therefore the mutex holder must have already inherited a
6689 * priority, but inheritance would have occurred if that had
6690 * not been the case. */
6695 mtCOVERAGE_TEST_MARKER();
6701 mtCOVERAGE_TEST_MARKER();
6704 traceRETURN_xTaskPriorityInherit( xReturn );
6709 #endif /* configUSE_MUTEXES */
6710 /*-----------------------------------------------------------*/
6712 #if ( configUSE_MUTEXES == 1 )
6714 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
6716 TCB_t * const pxTCB = pxMutexHolder;
6717 BaseType_t xReturn = pdFALSE;
6719 traceENTER_xTaskPriorityDisinherit( pxMutexHolder );
6721 if( pxMutexHolder != NULL )
6723 /* A task can only have an inherited priority if it holds the mutex.
6724 * If the mutex is held by a task then it cannot be given from an
6725 * interrupt, and if a mutex is given by the holding task then it must
6726 * be the running state task. */
6727 configASSERT( pxTCB == pxCurrentTCB );
6728 configASSERT( pxTCB->uxMutexesHeld );
6729 ( pxTCB->uxMutexesHeld )--;
6731 /* Has the holder of the mutex inherited the priority of another
6733 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
6735 /* Only disinherit if no other mutexes are held. */
6736 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
6738 /* A task can only have an inherited priority if it holds
6739 * the mutex. If the mutex is held by a task then it cannot be
6740 * given from an interrupt, and if a mutex is given by the
6741 * holding task then it must be the running state task. Remove
6742 * the holding task from the ready list. */
6743 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6745 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6749 mtCOVERAGE_TEST_MARKER();
6752 /* Disinherit the priority before adding the task into the
6753 * new ready list. */
6754 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
6755 pxTCB->uxPriority = pxTCB->uxBasePriority;
6757 /* Reset the event list item value. It cannot be in use for
6758 * any other purpose if this task is running, and it must be
6759 * running to give back the mutex. */
6760 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority );
6761 prvAddTaskToReadyList( pxTCB );
6762 #if ( configNUMBER_OF_CORES > 1 )
6764 /* The priority of the task is dropped. Yield the core on
6765 * which the task is running. */
6766 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6768 prvYieldCore( pxTCB->xTaskRunState );
6771 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6773 /* Return true to indicate that a context switch is required.
6774 * This is only actually required in the corner case whereby
6775 * multiple mutexes were held and the mutexes were given back
6776 * in an order different to that in which they were taken.
6777 * If a context switch did not occur when the first mutex was
6778 * returned, even if a task was waiting on it, then a context
6779 * switch should occur when the last mutex is returned whether
6780 * a task is waiting on it or not. */
6785 mtCOVERAGE_TEST_MARKER();
6790 mtCOVERAGE_TEST_MARKER();
6795 mtCOVERAGE_TEST_MARKER();
6798 traceRETURN_xTaskPriorityDisinherit( xReturn );
6803 #endif /* configUSE_MUTEXES */
6804 /*-----------------------------------------------------------*/
6806 #if ( configUSE_MUTEXES == 1 )
6808 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
6809 UBaseType_t uxHighestPriorityWaitingTask )
6811 TCB_t * const pxTCB = pxMutexHolder;
6812 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
6813 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
6815 traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask );
6817 if( pxMutexHolder != NULL )
6819 /* If pxMutexHolder is not NULL then the holder must hold at least
6821 configASSERT( pxTCB->uxMutexesHeld );
6823 /* Determine the priority to which the priority of the task that
6824 * holds the mutex should be set. This will be the greater of the
6825 * holding task's base priority and the priority of the highest
6826 * priority task that is waiting to obtain the mutex. */
6827 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
6829 uxPriorityToUse = uxHighestPriorityWaitingTask;
6833 uxPriorityToUse = pxTCB->uxBasePriority;
6836 /* Does the priority need to change? */
6837 if( pxTCB->uxPriority != uxPriorityToUse )
6839 /* Only disinherit if no other mutexes are held. This is a
6840 * simplification in the priority inheritance implementation. If
6841 * the task that holds the mutex is also holding other mutexes then
6842 * the other mutexes may have caused the priority inheritance. */
6843 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
6845 /* If a task has timed out because it already holds the
6846 * mutex it was trying to obtain then it cannot of inherited
6847 * its own priority. */
6848 configASSERT( pxTCB != pxCurrentTCB );
6850 /* Disinherit the priority, remembering the previous
6851 * priority to facilitate determining the subject task's
6853 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
6854 uxPriorityUsedOnEntry = pxTCB->uxPriority;
6855 pxTCB->uxPriority = uxPriorityToUse;
6857 /* Only reset the event list item value if the value is not
6858 * being used for anything else. */
6859 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
6861 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse );
6865 mtCOVERAGE_TEST_MARKER();
6868 /* If the running task is not the task that holds the mutex
6869 * then the task that holds the mutex could be in either the
6870 * Ready, Blocked or Suspended states. Only remove the task
6871 * from its current state list if it is in the Ready state as
6872 * the task's priority is going to change and there is one
6873 * Ready list per priority. */
6874 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
6876 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6878 /* It is known that the task is in its ready list so
6879 * there is no need to check again and the port level
6880 * reset macro can be called directly. */
6881 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6885 mtCOVERAGE_TEST_MARKER();
6888 prvAddTaskToReadyList( pxTCB );
6889 #if ( configNUMBER_OF_CORES > 1 )
6891 /* The priority of the task is dropped. Yield the core on
6892 * which the task is running. */
6893 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6895 prvYieldCore( pxTCB->xTaskRunState );
6898 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6902 mtCOVERAGE_TEST_MARKER();
6907 mtCOVERAGE_TEST_MARKER();
6912 mtCOVERAGE_TEST_MARKER();
6917 mtCOVERAGE_TEST_MARKER();
6920 traceRETURN_vTaskPriorityDisinheritAfterTimeout();
6923 #endif /* configUSE_MUTEXES */
6924 /*-----------------------------------------------------------*/
6926 #if ( configNUMBER_OF_CORES > 1 )
6928 /* If not in a critical section then yield immediately.
6929 * Otherwise set xYieldPendings to true to wait to
6930 * yield until exiting the critical section.
6932 void vTaskYieldWithinAPI( void )
6934 traceENTER_vTaskYieldWithinAPI();
6936 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6942 xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
6945 traceRETURN_vTaskYieldWithinAPI();
6947 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
6949 /*-----------------------------------------------------------*/
6951 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
6953 void vTaskEnterCritical( void )
6955 traceENTER_vTaskEnterCritical();
6957 portDISABLE_INTERRUPTS();
6959 if( xSchedulerRunning != pdFALSE )
6961 ( pxCurrentTCB->uxCriticalNesting )++;
6963 /* This is not the interrupt safe version of the enter critical
6964 * function so assert() if it is being called from an interrupt
6965 * context. Only API functions that end in "FromISR" can be used in an
6966 * interrupt. Only assert if the critical nesting count is 1 to
6967 * protect against recursive calls if the assert function also uses a
6968 * critical section. */
6969 if( pxCurrentTCB->uxCriticalNesting == 1U )
6971 portASSERT_IF_IN_ISR();
6976 mtCOVERAGE_TEST_MARKER();
6979 traceRETURN_vTaskEnterCritical();
6982 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
6983 /*-----------------------------------------------------------*/
6985 #if ( configNUMBER_OF_CORES > 1 )
6987 void vTaskEnterCritical( void )
6989 traceENTER_vTaskEnterCritical();
6991 portDISABLE_INTERRUPTS();
6993 if( xSchedulerRunning != pdFALSE )
6995 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6997 portGET_TASK_LOCK();
7001 portINCREMENT_CRITICAL_NESTING_COUNT();
7003 /* This is not the interrupt safe version of the enter critical
7004 * function so assert() if it is being called from an interrupt
7005 * context. Only API functions that end in "FromISR" can be used in an
7006 * interrupt. Only assert if the critical nesting count is 1 to
7007 * protect against recursive calls if the assert function also uses a
7008 * critical section. */
7009 if( portGET_CRITICAL_NESTING_COUNT() == 1U )
7011 portASSERT_IF_IN_ISR();
7013 if( uxSchedulerSuspended == 0U )
7015 /* The only time there would be a problem is if this is called
7016 * before a context switch and vTaskExitCritical() is called
7017 * after pxCurrentTCB changes. Therefore this should not be
7018 * used within vTaskSwitchContext(). */
7019 prvCheckForRunStateChange();
7025 mtCOVERAGE_TEST_MARKER();
7028 traceRETURN_vTaskEnterCritical();
7031 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7033 /*-----------------------------------------------------------*/
7035 #if ( configNUMBER_OF_CORES > 1 )
7037 UBaseType_t vTaskEnterCriticalFromISR( void )
7039 UBaseType_t uxSavedInterruptStatus = 0;
7041 traceENTER_vTaskEnterCriticalFromISR();
7043 if( xSchedulerRunning != pdFALSE )
7045 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
7047 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7052 portINCREMENT_CRITICAL_NESTING_COUNT();
7056 mtCOVERAGE_TEST_MARKER();
7059 traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus );
7061 return uxSavedInterruptStatus;
7064 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7065 /*-----------------------------------------------------------*/
7067 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
7069 void vTaskExitCritical( void )
7071 traceENTER_vTaskExitCritical();
7073 if( xSchedulerRunning != pdFALSE )
7075 /* If pxCurrentTCB->uxCriticalNesting is zero then this function
7076 * does not match a previous call to vTaskEnterCritical(). */
7077 configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );
7079 /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7080 * to exit critical section from ISR. */
7081 portASSERT_IF_IN_ISR();
7083 if( pxCurrentTCB->uxCriticalNesting > 0U )
7085 ( pxCurrentTCB->uxCriticalNesting )--;
7087 if( pxCurrentTCB->uxCriticalNesting == 0U )
7089 portENABLE_INTERRUPTS();
7093 mtCOVERAGE_TEST_MARKER();
7098 mtCOVERAGE_TEST_MARKER();
7103 mtCOVERAGE_TEST_MARKER();
7106 traceRETURN_vTaskExitCritical();
7109 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
7110 /*-----------------------------------------------------------*/
7112 #if ( configNUMBER_OF_CORES > 1 )
7114 void vTaskExitCritical( void )
7116 traceENTER_vTaskExitCritical();
7118 if( xSchedulerRunning != pdFALSE )
7120 /* If critical nesting count is zero then this function
7121 * does not match a previous call to vTaskEnterCritical(). */
7122 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7124 /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7125 * to exit critical section from ISR. */
7126 portASSERT_IF_IN_ISR();
7128 if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7130 portDECREMENT_CRITICAL_NESTING_COUNT();
7132 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7134 BaseType_t xYieldCurrentTask;
7136 /* Get the xYieldPending stats inside the critical section. */
7137 xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ];
7139 portRELEASE_ISR_LOCK();
7140 portRELEASE_TASK_LOCK();
7141 portENABLE_INTERRUPTS();
7143 /* When a task yields in a critical section it just sets
7144 * xYieldPending to true. So now that we have exited the
7145 * critical section check if xYieldPending is true, and
7147 if( xYieldCurrentTask != pdFALSE )
7154 mtCOVERAGE_TEST_MARKER();
7159 mtCOVERAGE_TEST_MARKER();
7164 mtCOVERAGE_TEST_MARKER();
7167 traceRETURN_vTaskExitCritical();
7170 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7171 /*-----------------------------------------------------------*/
7173 #if ( configNUMBER_OF_CORES > 1 )
7175 void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus )
7177 traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus );
7179 if( xSchedulerRunning != pdFALSE )
7181 /* If critical nesting count is zero then this function
7182 * does not match a previous call to vTaskEnterCritical(). */
7183 configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7185 if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7187 portDECREMENT_CRITICAL_NESTING_COUNT();
7189 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7191 portRELEASE_ISR_LOCK();
7192 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
7196 mtCOVERAGE_TEST_MARKER();
7201 mtCOVERAGE_TEST_MARKER();
7206 mtCOVERAGE_TEST_MARKER();
7209 traceRETURN_vTaskExitCriticalFromISR();
7212 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7213 /*-----------------------------------------------------------*/
7215 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
7217 static char * prvWriteNameToBuffer( char * pcBuffer,
7218 const char * pcTaskName )
7222 /* Start by copying the entire string. */
7223 ( void ) strcpy( pcBuffer, pcTaskName );
7225 /* Pad the end of the string with spaces to ensure columns line up when
7227 for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ )
7229 pcBuffer[ x ] = ' ';
7233 pcBuffer[ x ] = ( char ) 0x00;
7235 /* Return the new end of string. */
7236 return &( pcBuffer[ x ] );
7239 #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
7240 /*-----------------------------------------------------------*/
7242 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
7244 void vTaskListTasks( char * pcWriteBuffer,
7245 size_t uxBufferLength )
7247 TaskStatus_t * pxTaskStatusArray;
7248 size_t uxConsumedBufferLength = 0;
7249 size_t uxCharsWrittenBySnprintf;
7250 int iSnprintfReturnValue;
7251 BaseType_t xOutputBufferFull = pdFALSE;
7252 UBaseType_t uxArraySize, x;
7255 traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength );
7260 * This function is provided for convenience only, and is used by many
7261 * of the demo applications. Do not consider it to be part of the
7264 * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the
7265 * uxTaskGetSystemState() output into a human readable table that
7266 * displays task: names, states, priority, stack usage and task number.
7267 * Stack usage specified as the number of unused StackType_t words stack can hold
7268 * on top of stack - not the number of bytes.
7270 * vTaskListTasks() has a dependency on the snprintf() C library function that
7271 * might bloat the code size, use a lot of stack, and provide different
7272 * results on different platforms. An alternative, tiny, third party,
7273 * and limited functionality implementation of snprintf() is provided in
7274 * many of the FreeRTOS/Demo sub-directories in a file called
7275 * printf-stdarg.c (note printf-stdarg.c does not provide a full
7276 * snprintf() implementation!).
7278 * It is recommended that production systems call uxTaskGetSystemState()
7279 * directly to get access to raw stats data, rather than indirectly
7280 * through a call to vTaskListTasks().
7284 /* Make sure the write buffer does not contain a string. */
7285 *pcWriteBuffer = ( char ) 0x00;
7287 /* Take a snapshot of the number of tasks in case it changes while this
7288 * function is executing. */
7289 uxArraySize = uxCurrentNumberOfTasks;
7291 /* Allocate an array index for each task. NOTE! if
7292 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7293 * equate to NULL. */
7294 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7295 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7296 /* coverity[misra_c_2012_rule_11_5_violation] */
7297 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7299 if( pxTaskStatusArray != NULL )
7301 /* Generate the (binary) data. */
7302 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
7304 /* Create a human readable table from the binary data. */
7305 for( x = 0; x < uxArraySize; x++ )
7307 switch( pxTaskStatusArray[ x ].eCurrentState )
7310 cStatus = tskRUNNING_CHAR;
7314 cStatus = tskREADY_CHAR;
7318 cStatus = tskBLOCKED_CHAR;
7322 cStatus = tskSUSPENDED_CHAR;
7326 cStatus = tskDELETED_CHAR;
7329 case eInvalid: /* Fall through. */
7330 default: /* Should not get here, but it is included
7331 * to prevent static checking errors. */
7332 cStatus = ( char ) 0x00;
7336 /* Is there enough space in the buffer to hold task name? */
7337 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7339 /* Write the task name to the string, padding with spaces so it
7340 * can be printed in tabular form more easily. */
7341 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7342 /* Do not count the terminating null character. */
7343 uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7345 /* Is there space left in the buffer? -1 is done because snprintf
7346 * writes a terminating null character. So we are essentially
7347 * checking if the buffer has space to write at least one non-null
7349 if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7351 /* Write the rest of the string. */
7352 #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
7353 /* MISRA Ref 21.6.1 [snprintf for utility] */
7354 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7355 /* coverity[misra_c_2012_rule_21_6_violation] */
7356 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7357 uxBufferLength - uxConsumedBufferLength,
7358 "\t%c\t%u\t%u\t%u\t0x%x\r\n",
7360 ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7361 ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7362 ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber,
7363 ( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask );
7364 #else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7365 /* MISRA Ref 21.6.1 [snprintf for utility] */
7366 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7367 /* coverity[misra_c_2012_rule_21_6_violation] */
7368 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7369 uxBufferLength - uxConsumedBufferLength,
7370 "\t%c\t%u\t%u\t%u\r\n",
7372 ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7373 ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7374 ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
7375 #endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7376 uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7378 uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7379 pcWriteBuffer += uxCharsWrittenBySnprintf;
7383 xOutputBufferFull = pdTRUE;
7388 xOutputBufferFull = pdTRUE;
7391 if( xOutputBufferFull == pdTRUE )
7397 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
7398 * is 0 then vPortFree() will be #defined to nothing. */
7399 vPortFree( pxTaskStatusArray );
7403 mtCOVERAGE_TEST_MARKER();
7406 traceRETURN_vTaskListTasks();
7409 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7410 /*----------------------------------------------------------*/
7412 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
7414 void vTaskGetRunTimeStatistics( char * pcWriteBuffer,
7415 size_t uxBufferLength )
7417 TaskStatus_t * pxTaskStatusArray;
7418 size_t uxConsumedBufferLength = 0;
7419 size_t uxCharsWrittenBySnprintf;
7420 int iSnprintfReturnValue;
7421 BaseType_t xOutputBufferFull = pdFALSE;
7422 UBaseType_t uxArraySize, x;
7423 configRUN_TIME_COUNTER_TYPE ulTotalTime = 0;
7424 configRUN_TIME_COUNTER_TYPE ulStatsAsPercentage;
7426 traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength );
7431 * This function is provided for convenience only, and is used by many
7432 * of the demo applications. Do not consider it to be part of the
7435 * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part
7436 * of the uxTaskGetSystemState() output into a human readable table that
7437 * displays the amount of time each task has spent in the Running state
7438 * in both absolute and percentage terms.
7440 * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library
7441 * function that might bloat the code size, use a lot of stack, and
7442 * provide different results on different platforms. An alternative,
7443 * tiny, third party, and limited functionality implementation of
7444 * snprintf() is provided in many of the FreeRTOS/Demo sub-directories in
7445 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
7446 * a full snprintf() implementation!).
7448 * It is recommended that production systems call uxTaskGetSystemState()
7449 * directly to get access to raw stats data, rather than indirectly
7450 * through a call to vTaskGetRunTimeStatistics().
7453 /* Make sure the write buffer does not contain a string. */
7454 *pcWriteBuffer = ( char ) 0x00;
7456 /* Take a snapshot of the number of tasks in case it changes while this
7457 * function is executing. */
7458 uxArraySize = uxCurrentNumberOfTasks;
7460 /* Allocate an array index for each task. NOTE! If
7461 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7462 * equate to NULL. */
7463 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7464 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7465 /* coverity[misra_c_2012_rule_11_5_violation] */
7466 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7468 if( pxTaskStatusArray != NULL )
7470 /* Generate the (binary) data. */
7471 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
7473 /* For percentage calculations. */
7474 ulTotalTime /= ( ( configRUN_TIME_COUNTER_TYPE ) 100UL );
7476 /* Avoid divide by zero errors. */
7477 if( ulTotalTime > 0UL )
7479 /* Create a human readable table from the binary data. */
7480 for( x = 0; x < uxArraySize; x++ )
7482 /* What percentage of the total run time has the task used?
7483 * This will always be rounded down to the nearest integer.
7484 * ulTotalRunTime has already been divided by 100. */
7485 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
7487 /* Is there enough space in the buffer to hold task name? */
7488 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7490 /* Write the task name to the string, padding with
7491 * spaces so it can be printed in tabular form more
7493 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7494 /* Do not count the terminating null character. */
7495 uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7497 /* Is there space left in the buffer? -1 is done because snprintf
7498 * writes a terminating null character. So we are essentially
7499 * checking if the buffer has space to write at least one non-null
7501 if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7503 if( ulStatsAsPercentage > 0UL )
7505 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7507 /* MISRA Ref 21.6.1 [snprintf for utility] */
7508 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7509 /* coverity[misra_c_2012_rule_21_6_violation] */
7510 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7511 uxBufferLength - uxConsumedBufferLength,
7512 "\t%lu\t\t%lu%%\r\n",
7513 pxTaskStatusArray[ x ].ulRunTimeCounter,
7514 ulStatsAsPercentage );
7516 #else /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7518 /* sizeof( int ) == sizeof( long ) so a smaller
7519 * printf() library can be used. */
7520 /* MISRA Ref 21.6.1 [snprintf for utility] */
7521 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7522 /* coverity[misra_c_2012_rule_21_6_violation] */
7523 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7524 uxBufferLength - uxConsumedBufferLength,
7526 ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter,
7527 ( unsigned int ) ulStatsAsPercentage );
7529 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7533 /* If the percentage is zero here then the task has
7534 * consumed less than 1% of the total run time. */
7535 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7537 /* MISRA Ref 21.6.1 [snprintf for utility] */
7538 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7539 /* coverity[misra_c_2012_rule_21_6_violation] */
7540 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7541 uxBufferLength - uxConsumedBufferLength,
7542 "\t%lu\t\t<1%%\r\n",
7543 pxTaskStatusArray[ x ].ulRunTimeCounter );
7547 /* sizeof( int ) == sizeof( long ) so a smaller
7548 * printf() library can be used. */
7549 /* MISRA Ref 21.6.1 [snprintf for utility] */
7550 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7551 /* coverity[misra_c_2012_rule_21_6_violation] */
7552 iSnprintfReturnValue = snprintf( pcWriteBuffer,
7553 uxBufferLength - uxConsumedBufferLength,
7555 ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
7557 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7560 uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7561 uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7562 pcWriteBuffer += uxCharsWrittenBySnprintf;
7566 xOutputBufferFull = pdTRUE;
7571 xOutputBufferFull = pdTRUE;
7574 if( xOutputBufferFull == pdTRUE )
7582 mtCOVERAGE_TEST_MARKER();
7585 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
7586 * is 0 then vPortFree() will be #defined to nothing. */
7587 vPortFree( pxTaskStatusArray );
7591 mtCOVERAGE_TEST_MARKER();
7594 traceRETURN_vTaskGetRunTimeStatistics();
7597 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7598 /*-----------------------------------------------------------*/
7600 TickType_t uxTaskResetEventItemValue( void )
7602 TickType_t uxReturn;
7604 traceENTER_uxTaskResetEventItemValue();
7606 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
7608 /* Reset the event list item to its normal value - so it can be used with
7609 * queues and semaphores. */
7610 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) );
7612 traceRETURN_uxTaskResetEventItemValue( uxReturn );
7616 /*-----------------------------------------------------------*/
7618 #if ( configUSE_MUTEXES == 1 )
7620 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
7624 traceENTER_pvTaskIncrementMutexHeldCount();
7626 pxTCB = pxCurrentTCB;
7628 /* If xSemaphoreCreateMutex() is called before any tasks have been created
7629 * then pxCurrentTCB will be NULL. */
7632 ( pxTCB->uxMutexesHeld )++;
7635 traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB );
7640 #endif /* configUSE_MUTEXES */
7641 /*-----------------------------------------------------------*/
7643 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7645 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn,
7646 BaseType_t xClearCountOnExit,
7647 TickType_t xTicksToWait )
7650 BaseType_t xAlreadyYielded;
7652 traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait );
7654 configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7656 taskENTER_CRITICAL();
7658 /* Only block if the notification count is not already non-zero. */
7659 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0UL )
7661 /* Mark this task as waiting for a notification. */
7662 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7664 if( xTicksToWait > ( TickType_t ) 0 )
7666 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn );
7668 /* We MUST suspend the scheduler before exiting the critical
7669 * section (i.e. before enabling interrupts).
7671 * If we do not do so, a notification sent from an ISR, which
7672 * happens after exiting the critical section and before
7673 * suspending the scheduler, will get lost. The sequence of
7675 * 1. Exit critical section.
7676 * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7677 * task to the Ready list.
7678 * 3. Suspend scheduler.
7679 * 4. prvAddCurrentTaskToDelayedList moves the task to the
7680 * delayed or suspended list.
7681 * 5. Resume scheduler does not touch the task (because it is
7682 * not on the pendingReady list), effectively losing the
7683 * notification from the ISR.
7685 * The same does not happen when we suspend the scheduler before
7686 * exiting the critical section. The sequence of events in this
7688 * 1. Suspend scheduler.
7689 * 2. Exit critical section.
7690 * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7691 * task to the pendingReady list as the scheduler is
7693 * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or
7694 * suspended list. Note that this operation does not nullify
7695 * the add to pendingReady list done in the above step because
7696 * a different list item, namely xEventListItem, is used for
7697 * adding the task to the pendingReady list. In other words,
7698 * the task still remains on the pendingReady list.
7699 * 5. Resume scheduler moves the task from pendingReady list to
7704 taskEXIT_CRITICAL();
7706 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7708 xAlreadyYielded = xTaskResumeAll();
7710 if( xAlreadyYielded == pdFALSE )
7712 taskYIELD_WITHIN_API();
7716 mtCOVERAGE_TEST_MARKER();
7721 taskEXIT_CRITICAL();
7726 taskEXIT_CRITICAL();
7729 taskENTER_CRITICAL();
7731 traceTASK_NOTIFY_TAKE( uxIndexToWaitOn );
7732 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7734 if( ulReturn != 0UL )
7736 if( xClearCountOnExit != pdFALSE )
7738 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ( uint32_t ) 0UL;
7742 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1;
7747 mtCOVERAGE_TEST_MARKER();
7750 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7752 taskEXIT_CRITICAL();
7754 traceRETURN_ulTaskGenericNotifyTake( ulReturn );
7759 #endif /* configUSE_TASK_NOTIFICATIONS */
7760 /*-----------------------------------------------------------*/
7762 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7764 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn,
7765 uint32_t ulBitsToClearOnEntry,
7766 uint32_t ulBitsToClearOnExit,
7767 uint32_t * pulNotificationValue,
7768 TickType_t xTicksToWait )
7770 BaseType_t xReturn, xAlreadyYielded;
7772 traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait );
7774 configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7776 taskENTER_CRITICAL();
7778 /* Only block if a notification is not already pending. */
7779 if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7781 /* Clear bits in the task's notification value as bits may get
7782 * set by the notifying task or interrupt. This can be used to
7783 * clear the value to zero. */
7784 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry;
7786 /* Mark this task as waiting for a notification. */
7787 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7789 if( xTicksToWait > ( TickType_t ) 0 )
7791 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn );
7793 /* We MUST suspend the scheduler before exiting the critical
7794 * section (i.e. before enabling interrupts).
7796 * If we do not do so, a notification sent from an ISR, which
7797 * happens after exiting the critical section and before
7798 * suspending the scheduler, will get lost. The sequence of
7800 * 1. Exit critical section.
7801 * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7802 * task to the Ready list.
7803 * 3. Suspend scheduler.
7804 * 4. prvAddCurrentTaskToDelayedList moves the task to the
7805 * delayed or suspended list.
7806 * 5. Resume scheduler does not touch the task (because it is
7807 * not on the pendingReady list), effectively losing the
7808 * notification from the ISR.
7810 * The same does not happen when we suspend the scheduler before
7811 * exiting the critical section. The sequence of events in this
7813 * 1. Suspend scheduler.
7814 * 2. Exit critical section.
7815 * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7816 * task to the pendingReady list as the scheduler is
7818 * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or
7819 * suspended list. Note that this operation does not nullify
7820 * the add to pendingReady list done in the above step because
7821 * a different list item, namely xEventListItem, is used for
7822 * adding the task to the pendingReady list. In other words,
7823 * the task still remains on the pendingReady list.
7824 * 5. Resume scheduler moves the task from pendingReady list to
7829 taskEXIT_CRITICAL();
7831 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7833 xAlreadyYielded = xTaskResumeAll();
7835 if( xAlreadyYielded == pdFALSE )
7837 taskYIELD_WITHIN_API();
7841 mtCOVERAGE_TEST_MARKER();
7846 taskEXIT_CRITICAL();
7851 taskEXIT_CRITICAL();
7854 taskENTER_CRITICAL();
7856 traceTASK_NOTIFY_WAIT( uxIndexToWaitOn );
7858 if( pulNotificationValue != NULL )
7860 /* Output the current notification value, which may or may not
7862 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7865 /* If ucNotifyValue is set then either the task never entered the
7866 * blocked state (because a notification was already pending) or the
7867 * task unblocked because of a notification. Otherwise the task
7868 * unblocked because of a timeout. */
7869 if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7871 /* A notification was not received. */
7876 /* A notification was already pending or a notification was
7877 * received while the task was waiting. */
7878 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit;
7882 pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7884 taskEXIT_CRITICAL();
7886 traceRETURN_xTaskGenericNotifyWait( xReturn );
7891 #endif /* configUSE_TASK_NOTIFICATIONS */
7892 /*-----------------------------------------------------------*/
7894 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7896 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
7897 UBaseType_t uxIndexToNotify,
7899 eNotifyAction eAction,
7900 uint32_t * pulPreviousNotificationValue )
7903 BaseType_t xReturn = pdPASS;
7904 uint8_t ucOriginalNotifyState;
7906 traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue );
7908 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7909 configASSERT( xTaskToNotify );
7910 pxTCB = xTaskToNotify;
7912 taskENTER_CRITICAL();
7914 if( pulPreviousNotificationValue != NULL )
7916 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
7919 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
7921 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
7926 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
7930 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
7933 case eSetValueWithOverwrite:
7934 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7937 case eSetValueWithoutOverwrite:
7939 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
7941 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7945 /* The value could not be written to the task. */
7953 /* The task is being notified without its notify value being
7959 /* Should not get here if all enums are handled.
7960 * Artificially force an assert by testing a value the
7961 * compiler can't assume is const. */
7962 configASSERT( xTickCount == ( TickType_t ) 0 );
7967 traceTASK_NOTIFY( uxIndexToNotify );
7969 /* If the task is in the blocked state specifically to wait for a
7970 * notification then unblock it now. */
7971 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
7973 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
7974 prvAddTaskToReadyList( pxTCB );
7976 /* The task should not have been on an event list. */
7977 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
7979 #if ( configUSE_TICKLESS_IDLE != 0 )
7981 /* If a task is blocked waiting for a notification then
7982 * xNextTaskUnblockTime might be set to the blocked task's time
7983 * out time. If the task is unblocked for a reason other than
7984 * a timeout xNextTaskUnblockTime is normally left unchanged,
7985 * because it will automatically get reset to a new value when
7986 * the tick count equals xNextTaskUnblockTime. However if
7987 * tickless idling is used it might be more important to enter
7988 * sleep mode at the earliest possible time - so reset
7989 * xNextTaskUnblockTime here to ensure it is updated at the
7990 * earliest possible time. */
7991 prvResetNextTaskUnblockTime();
7995 /* Check if the notified task has a priority above the currently
7996 * executing task. */
7997 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
8001 mtCOVERAGE_TEST_MARKER();
8004 taskEXIT_CRITICAL();
8006 traceRETURN_xTaskGenericNotify( xReturn );
8011 #endif /* configUSE_TASK_NOTIFICATIONS */
8012 /*-----------------------------------------------------------*/
8014 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8016 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
8017 UBaseType_t uxIndexToNotify,
8019 eNotifyAction eAction,
8020 uint32_t * pulPreviousNotificationValue,
8021 BaseType_t * pxHigherPriorityTaskWoken )
8024 uint8_t ucOriginalNotifyState;
8025 BaseType_t xReturn = pdPASS;
8026 UBaseType_t uxSavedInterruptStatus;
8028 traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken );
8030 configASSERT( xTaskToNotify );
8031 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8033 /* RTOS ports that support interrupt nesting have the concept of a
8034 * maximum system call (or maximum API call) interrupt priority.
8035 * Interrupts that are above the maximum system call priority are keep
8036 * permanently enabled, even when the RTOS kernel is in a critical section,
8037 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
8038 * is defined in FreeRTOSConfig.h then
8039 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8040 * failure if a FreeRTOS API function is called from an interrupt that has
8041 * been assigned a priority above the configured maximum system call
8042 * priority. Only FreeRTOS functions that end in FromISR can be called
8043 * from interrupts that have been assigned a priority at or (logically)
8044 * below the maximum system call interrupt priority. FreeRTOS maintains a
8045 * separate interrupt safe API to ensure interrupt entry is as fast and as
8046 * simple as possible. More information (albeit Cortex-M specific) is
8047 * provided on the following link:
8048 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8049 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8051 pxTCB = xTaskToNotify;
8053 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
8055 if( pulPreviousNotificationValue != NULL )
8057 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
8060 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8061 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8066 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
8070 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8073 case eSetValueWithOverwrite:
8074 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8077 case eSetValueWithoutOverwrite:
8079 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
8081 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8085 /* The value could not be written to the task. */
8093 /* The task is being notified without its notify value being
8099 /* Should not get here if all enums are handled.
8100 * Artificially force an assert by testing a value the
8101 * compiler can't assume is const. */
8102 configASSERT( xTickCount == ( TickType_t ) 0 );
8106 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
8108 /* If the task is in the blocked state specifically to wait for a
8109 * notification then unblock it now. */
8110 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8112 /* The task should not have been on an event list. */
8113 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8115 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8117 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8118 prvAddTaskToReadyList( pxTCB );
8122 /* The delayed and ready lists cannot be accessed, so hold
8123 * this task pending until the scheduler is resumed. */
8124 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8127 #if ( configNUMBER_OF_CORES == 1 )
8129 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8131 /* The notified task has a priority above the currently
8132 * executing task so a yield is required. */
8133 if( pxHigherPriorityTaskWoken != NULL )
8135 *pxHigherPriorityTaskWoken = pdTRUE;
8138 /* Mark that a yield is pending in case the user is not
8139 * using the "xHigherPriorityTaskWoken" parameter to an ISR
8140 * safe FreeRTOS function. */
8141 xYieldPendings[ 0 ] = pdTRUE;
8145 mtCOVERAGE_TEST_MARKER();
8148 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8150 #if ( configUSE_PREEMPTION == 1 )
8152 prvYieldForTask( pxTCB );
8154 if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8156 if( pxHigherPriorityTaskWoken != NULL )
8158 *pxHigherPriorityTaskWoken = pdTRUE;
8162 #endif /* if ( configUSE_PREEMPTION == 1 ) */
8164 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8167 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8169 traceRETURN_xTaskGenericNotifyFromISR( xReturn );
8174 #endif /* configUSE_TASK_NOTIFICATIONS */
8175 /*-----------------------------------------------------------*/
8177 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8179 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
8180 UBaseType_t uxIndexToNotify,
8181 BaseType_t * pxHigherPriorityTaskWoken )
8184 uint8_t ucOriginalNotifyState;
8185 UBaseType_t uxSavedInterruptStatus;
8187 traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken );
8189 configASSERT( xTaskToNotify );
8190 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8192 /* RTOS ports that support interrupt nesting have the concept of a
8193 * maximum system call (or maximum API call) interrupt priority.
8194 * Interrupts that are above the maximum system call priority are keep
8195 * permanently enabled, even when the RTOS kernel is in a critical section,
8196 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
8197 * is defined in FreeRTOSConfig.h then
8198 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8199 * failure if a FreeRTOS API function is called from an interrupt that has
8200 * been assigned a priority above the configured maximum system call
8201 * priority. Only FreeRTOS functions that end in FromISR can be called
8202 * from interrupts that have been assigned a priority at or (logically)
8203 * below the maximum system call interrupt priority. FreeRTOS maintains a
8204 * separate interrupt safe API to ensure interrupt entry is as fast and as
8205 * simple as possible. More information (albeit Cortex-M specific) is
8206 * provided on the following link:
8207 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8208 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8210 pxTCB = xTaskToNotify;
8212 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
8214 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8215 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8217 /* 'Giving' is equivalent to incrementing a count in a counting
8219 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8221 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
8223 /* If the task is in the blocked state specifically to wait for a
8224 * notification then unblock it now. */
8225 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8227 /* The task should not have been on an event list. */
8228 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8230 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8232 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8233 prvAddTaskToReadyList( pxTCB );
8237 /* The delayed and ready lists cannot be accessed, so hold
8238 * this task pending until the scheduler is resumed. */
8239 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8242 #if ( configNUMBER_OF_CORES == 1 )
8244 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8246 /* The notified task has a priority above the currently
8247 * executing task so a yield is required. */
8248 if( pxHigherPriorityTaskWoken != NULL )
8250 *pxHigherPriorityTaskWoken = pdTRUE;
8253 /* Mark that a yield is pending in case the user is not
8254 * using the "xHigherPriorityTaskWoken" parameter in an ISR
8255 * safe FreeRTOS function. */
8256 xYieldPendings[ 0 ] = pdTRUE;
8260 mtCOVERAGE_TEST_MARKER();
8263 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8265 #if ( configUSE_PREEMPTION == 1 )
8267 prvYieldForTask( pxTCB );
8269 if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8271 if( pxHigherPriorityTaskWoken != NULL )
8273 *pxHigherPriorityTaskWoken = pdTRUE;
8277 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
8279 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8282 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8284 traceRETURN_vTaskGenericNotifyGiveFromISR();
8287 #endif /* configUSE_TASK_NOTIFICATIONS */
8288 /*-----------------------------------------------------------*/
8290 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8292 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
8293 UBaseType_t uxIndexToClear )
8298 traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear );
8300 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8302 /* If null is passed in here then it is the calling task that is having
8303 * its notification state cleared. */
8304 pxTCB = prvGetTCBFromHandle( xTask );
8306 taskENTER_CRITICAL();
8308 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
8310 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
8318 taskEXIT_CRITICAL();
8320 traceRETURN_xTaskGenericNotifyStateClear( xReturn );
8325 #endif /* configUSE_TASK_NOTIFICATIONS */
8326 /*-----------------------------------------------------------*/
8328 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8330 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
8331 UBaseType_t uxIndexToClear,
8332 uint32_t ulBitsToClear )
8337 traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear );
8339 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8341 /* If null is passed in here then it is the calling task that is having
8342 * its notification state cleared. */
8343 pxTCB = prvGetTCBFromHandle( xTask );
8345 taskENTER_CRITICAL();
8347 /* Return the notification as it was before the bits were cleared,
8348 * then clear the bit mask. */
8349 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
8350 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
8352 taskEXIT_CRITICAL();
8354 traceRETURN_ulTaskGenericNotifyValueClear( ulReturn );
8359 #endif /* configUSE_TASK_NOTIFICATIONS */
8360 /*-----------------------------------------------------------*/
8362 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8364 configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask )
8368 traceENTER_ulTaskGetRunTimeCounter( xTask );
8370 pxTCB = prvGetTCBFromHandle( xTask );
8372 traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter );
8374 return pxTCB->ulRunTimeCounter;
8377 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8378 /*-----------------------------------------------------------*/
8380 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8382 configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask )
8385 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8387 traceENTER_ulTaskGetRunTimePercent( xTask );
8389 ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
8391 /* For percentage calculations. */
8392 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8394 /* Avoid divide by zero errors. */
8395 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8397 pxTCB = prvGetTCBFromHandle( xTask );
8398 ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime;
8405 traceRETURN_ulTaskGetRunTimePercent( ulReturn );
8410 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8411 /*-----------------------------------------------------------*/
8413 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8415 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
8417 configRUN_TIME_COUNTER_TYPE ulReturn = 0;
8420 traceENTER_ulTaskGetIdleRunTimeCounter();
8422 for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8424 ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8427 traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn );
8432 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8433 /*-----------------------------------------------------------*/
8435 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8437 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
8439 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8440 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0;
8443 traceENTER_ulTaskGetIdleRunTimePercent();
8445 ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES;
8447 /* For percentage calculations. */
8448 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8450 /* Avoid divide by zero errors. */
8451 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8453 for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8455 ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8458 ulReturn = ulRunTimeCounter / ulTotalTime;
8465 traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn );
8470 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8471 /*-----------------------------------------------------------*/
8473 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
8474 const BaseType_t xCanBlockIndefinitely )
8476 TickType_t xTimeToWake;
8477 const TickType_t xConstTickCount = xTickCount;
8478 List_t * const pxDelayedList = pxDelayedTaskList;
8479 List_t * const pxOverflowDelayedList = pxOverflowDelayedTaskList;
8481 #if ( INCLUDE_xTaskAbortDelay == 1 )
8483 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
8484 * reset to pdFALSE so it can be detected as having been set to pdTRUE
8485 * when the task leaves the Blocked state. */
8486 pxCurrentTCB->ucDelayAborted = pdFALSE;
8490 /* Remove the task from the ready list before adding it to the blocked list
8491 * as the same list item is used for both lists. */
8492 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
8494 /* The current task must be in a ready list, so there is no need to
8495 * check, and the port reset macro can be called directly. */
8496 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
8500 mtCOVERAGE_TEST_MARKER();
8503 #if ( INCLUDE_vTaskSuspend == 1 )
8505 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
8507 /* Add the task to the suspended task list instead of a delayed task
8508 * list to ensure it is not woken by a timing event. It will block
8510 listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
8514 /* Calculate the time at which the task should be woken if the event
8515 * does not occur. This may overflow but this doesn't matter, the
8516 * kernel will manage it correctly. */
8517 xTimeToWake = xConstTickCount + xTicksToWait;
8519 /* The list item will be inserted in wake time order. */
8520 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8522 if( xTimeToWake < xConstTickCount )
8524 /* Wake time has overflowed. Place this item in the overflow
8526 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8527 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8531 /* The wake time has not overflowed, so the current block list
8533 traceMOVED_TASK_TO_DELAYED_LIST();
8534 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8536 /* If the task entering the blocked state was placed at the
8537 * head of the list of blocked tasks then xNextTaskUnblockTime
8538 * needs to be updated too. */
8539 if( xTimeToWake < xNextTaskUnblockTime )
8541 xNextTaskUnblockTime = xTimeToWake;
8545 mtCOVERAGE_TEST_MARKER();
8550 #else /* INCLUDE_vTaskSuspend */
8552 /* Calculate the time at which the task should be woken if the event
8553 * does not occur. This may overflow but this doesn't matter, the kernel
8554 * will manage it correctly. */
8555 xTimeToWake = xConstTickCount + xTicksToWait;
8557 /* The list item will be inserted in wake time order. */
8558 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8560 if( xTimeToWake < xConstTickCount )
8562 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8563 /* Wake time has overflowed. Place this item in the overflow list. */
8564 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8568 traceMOVED_TASK_TO_DELAYED_LIST();
8569 /* The wake time has not overflowed, so the current block list is used. */
8570 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8572 /* If the task entering the blocked state was placed at the head of the
8573 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
8575 if( xTimeToWake < xNextTaskUnblockTime )
8577 xNextTaskUnblockTime = xTimeToWake;
8581 mtCOVERAGE_TEST_MARKER();
8585 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
8586 ( void ) xCanBlockIndefinitely;
8588 #endif /* INCLUDE_vTaskSuspend */
8590 /*-----------------------------------------------------------*/
8592 #if ( portUSING_MPU_WRAPPERS == 1 )
8594 xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask )
8598 traceENTER_xTaskGetMPUSettings( xTask );
8600 pxTCB = prvGetTCBFromHandle( xTask );
8602 traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) );
8604 return &( pxTCB->xMPUSettings );
8607 #endif /* portUSING_MPU_WRAPPERS */
8608 /*-----------------------------------------------------------*/
8610 /* Code below here allows additional code to be inserted into this source file,
8611 * especially where access to file scope functions and data is needed (for example
8612 * when performing module tests). */
8614 #ifdef FREERTOS_MODULE_TEST
8615 #include "tasks_test_access_functions.h"
8619 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
8621 #include "freertos_tasks_c_additions.h"
8623 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
8624 static void freertos_tasks_c_additions_init( void )
8626 FREERTOS_TASKS_C_ADDITIONS_INIT();
8630 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
8631 /*-----------------------------------------------------------*/
8633 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8636 * This is the kernel provided implementation of vApplicationGetIdleTaskMemory()
8637 * to provide the memory that is used by the Idle task. It is used when
8638 * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8639 * it's own implementation of vApplicationGetIdleTaskMemory by setting
8640 * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8642 void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8643 StackType_t ** ppxIdleTaskStackBuffer,
8644 uint32_t * pulIdleTaskStackSize )
8646 static StaticTask_t xIdleTaskTCB;
8647 static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
8649 *ppxIdleTaskTCBBuffer = &( xIdleTaskTCB );
8650 *ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] );
8651 *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8654 #if ( configNUMBER_OF_CORES > 1 )
8656 void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8657 StackType_t ** ppxIdleTaskStackBuffer,
8658 uint32_t * pulIdleTaskStackSize,
8659 BaseType_t xPassiveIdleTaskIndex )
8661 static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ];
8662 static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ];
8664 *ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] );
8665 *ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] );
8666 *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8669 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
8671 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8672 /*-----------------------------------------------------------*/
8674 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8677 * This is the kernel provided implementation of vApplicationGetTimerTaskMemory()
8678 * to provide the memory that is used by the Timer service task. It is used when
8679 * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8680 * it's own implementation of vApplicationGetTimerTaskMemory by setting
8681 * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8683 void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
8684 StackType_t ** ppxTimerTaskStackBuffer,
8685 uint32_t * pulTimerTaskStackSize )
8687 static StaticTask_t xTimerTaskTCB;
8688 static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
8690 *ppxTimerTaskTCBBuffer = &( xTimerTaskTCB );
8691 *ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] );
8692 *pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
8695 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8696 /*-----------------------------------------------------------*/