2 * FreeRTOS Kernel V10.0.1
\r
3 * Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * http://www.FreeRTOS.org
\r
23 * http://aws.amazon.com/freertos
\r
25 * 1 tab == 4 spaces!
\r
28 /* Standard includes. */
\r
32 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
33 all the API functions to use the MPU wrappers. That should only be done when
\r
34 task.h is included from an application file. */
\r
35 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
37 /* FreeRTOS includes. */
\r
38 #include "FreeRTOS.h"
\r
41 #include "stack_macros.h"
\r
43 /* Lint e961 and e750 are suppressed as a MISRA exception justified because the
\r
44 MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
\r
45 header files above, but not in this file, in order to generate the correct
\r
46 privileged Vs unprivileged linkage and placement. */
\r
47 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
\r
49 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
50 functions but without including stdio.h here. */
\r
51 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
52 /* At the bottom of this file are two optional functions that can be used
\r
53 to generate human readable text from the raw data generated by the
\r
54 uxTaskGetSystemState() function. Note the formatting functions are provided
\r
55 for convenience only, and are NOT considered part of the kernel. */
\r
57 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
59 #if( configUSE_PREEMPTION == 0 )
\r
60 /* If the cooperative scheduler is being used then a yield should not be
\r
61 performed just because a higher priority task has been woken. */
\r
62 #define taskYIELD_IF_USING_PREEMPTION()
\r
64 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
67 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
68 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 )
\r
69 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
70 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
73 * The value used to fill the stack of a task when the task is created. This
\r
74 * is used purely for checking the high water mark for tasks.
\r
76 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
78 /* Sometimes the FreeRTOSConfig.h settings only allow a task to be created using
\r
79 dynamically allocated RAM, in which case when any task is deleted it is known
\r
80 that both the task's stack and TCB need to be freed. Sometimes the
\r
81 FreeRTOSConfig.h settings only allow a task to be created using statically
\r
82 allocated RAM, in which case when any task is deleted it is known that neither
\r
83 the task's stack or TCB should be freed. Sometimes the FreeRTOSConfig.h
\r
84 settings allow a task to be created using either statically or dynamically
\r
85 allocated RAM, in which case a member of the TCB is used to record whether the
\r
86 stack and/or TCB were allocated statically or dynamically, so when a task is
\r
87 deleted the RAM that was allocated dynamically is freed again and no attempt is
\r
88 made to free the RAM that was allocated statically.
\r
89 tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE is only true if it is possible for a
\r
90 task to be created using either statically or dynamically allocated RAM. Note
\r
91 that if portUSING_MPU_WRAPPERS is 1 then a protected task can be created with
\r
92 a statically allocated stack and a dynamically allocated TCB.
\r
93 !!!NOTE!!! If the definition of tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE is
\r
94 changed then the definition of StaticTask_t must also be updated. */
\r
95 #define tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
96 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
97 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
98 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
100 /* If any of the following are set then task stacks are filled with a known
\r
101 value so the high water mark can be determined. If none of the following are
\r
102 set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
103 #if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
\r
104 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
106 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
110 * Macros used by vListTask to indicate which state a task is in.
\r
112 #define tskRUNNING_CHAR ( 'X' )
\r
113 #define tskBLOCKED_CHAR ( 'B' )
\r
114 #define tskREADY_CHAR ( 'R' )
\r
115 #define tskDELETED_CHAR ( 'D' )
\r
116 #define tskSUSPENDED_CHAR ( 'S' )
\r
119 * Some kernel aware debuggers require the data the debugger needs access to be
\r
120 * global, rather than file scope.
\r
122 #ifdef portREMOVE_STATIC_QUALIFIER
\r
126 /* The name allocated to the Idle task. This can be overridden by defining
\r
127 configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
128 #ifndef configIDLE_TASK_NAME
\r
129 #define configIDLE_TASK_NAME "IDLE"
\r
132 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
134 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
135 performed in a generic way that is not optimised to any particular
\r
136 microcontroller architecture. */
\r
138 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
140 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
142 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
144 uxTopReadyPriority = ( uxPriority ); \
\r
146 } /* taskRECORD_READY_PRIORITY */
\r
148 /*-----------------------------------------------------------*/
\r
150 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
152 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
154 /* Find the highest priority queue that contains ready tasks. */ \
\r
155 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
157 configASSERT( uxTopPriority ); \
\r
161 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
162 the same priority get an equal share of the processor time. */ \
\r
163 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
164 uxTopReadyPriority = uxTopPriority; \
\r
165 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
167 /*-----------------------------------------------------------*/
\r
169 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
170 they are only required when a port optimised method of task selection is
\r
172 #define taskRESET_READY_PRIORITY( uxPriority )
\r
173 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
175 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
177 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
178 performed in a way that is tailored to the particular microcontroller
\r
179 architecture being used. */
\r
181 /* A port optimised version is provided. Call the port defined macros. */
\r
182 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
184 /*-----------------------------------------------------------*/
\r
186 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
188 UBaseType_t uxTopPriority; \
\r
190 /* Find the highest priority list that contains ready tasks. */ \
\r
191 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
192 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
193 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
194 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
196 /*-----------------------------------------------------------*/
\r
198 /* A port optimised version is provided, call it only if the TCB being reset
\r
199 is being referenced from a ready list. If it is referenced from a delayed
\r
200 or suspended list then it won't be in a ready list. */
\r
201 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
203 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
205 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
209 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
211 /*-----------------------------------------------------------*/
\r
213 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
214 count overflows. */
\r
215 #define taskSWITCH_DELAYED_LISTS() \
\r
219 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
220 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
222 pxTemp = pxDelayedTaskList; \
\r
223 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
224 pxOverflowDelayedTaskList = pxTemp; \
\r
225 xNumOfOverflows++; \
\r
226 prvResetNextTaskUnblockTime(); \
\r
229 /*-----------------------------------------------------------*/
\r
232 * Place the task represented by pxTCB into the appropriate ready list for
\r
233 * the task. It is inserted at the end of the list.
\r
235 #define prvAddTaskToReadyList( pxTCB ) \
\r
236 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
237 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
238 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
239 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
240 /*-----------------------------------------------------------*/
\r
243 * Several functions take an TaskHandle_t parameter that can optionally be NULL,
\r
244 * where NULL is used to indicate that the handle of the currently executing
\r
245 * task should be used in place of the parameter. This macro simply checks to
\r
246 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
248 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB : ( TCB_t * ) ( pxHandle ) )
\r
250 /* The item value of the event list item is normally used to hold the priority
\r
251 of the task to which it belongs (coded to allow it to be held in reverse
\r
252 priority order). However, it is occasionally borrowed for other purposes. It
\r
253 is important its value is not updated due to a task priority change while it is
\r
254 being used for another purpose. The following bit definition is used to inform
\r
255 the scheduler that the value should not be changed - in which case it is the
\r
256 responsibility of whichever module is using the value to ensure it gets set back
\r
257 to its original value when it is released. */
\r
258 #if( configUSE_16_BIT_TICKS == 1 )
\r
259 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
261 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
265 * Task control block. A task control block (TCB) is allocated for each task,
\r
266 * and stores task state information, including a pointer to the task's context
\r
267 * (the task's run time environment, including register values)
\r
269 typedef struct tskTaskControlBlock
\r
271 volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
273 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
274 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
277 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
278 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
279 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
280 StackType_t *pxStack; /*< Points to the start of the stack. */
\r
281 char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
283 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
284 StackType_t *pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
287 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
288 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
291 #if ( configUSE_TRACE_FACILITY == 1 )
\r
292 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
293 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
296 #if ( configUSE_MUTEXES == 1 )
\r
297 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
298 UBaseType_t uxMutexesHeld;
\r
301 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
302 TaskHookFunction_t pxTaskTag;
\r
305 #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
306 void *pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
309 #if( configGENERATE_RUN_TIME_STATS == 1 )
\r
310 uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
313 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
314 /* Allocate a Newlib reent structure that is specific to this task.
\r
315 Note Newlib support has been included by popular demand, but is not
\r
316 used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
317 responsible for resulting newlib operation. User must be familiar with
\r
318 newlib and must provide system-wide implementations of the necessary
\r
319 stubs. Be warned that (at the time of writing) the current newlib design
\r
320 implements a system-wide malloc() that must be provided with locks. */
\r
321 struct _reent xNewLib_reent;
\r
324 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
325 volatile uint32_t ulNotifiedValue;
\r
326 volatile uint8_t ucNotifyState;
\r
329 /* See the comments above the definition of
\r
330 tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
331 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 Macro has been consolidated for readability reasons. */
\r
332 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
335 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
336 uint8_t ucDelayAborted;
\r
341 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
342 below to enable the use of older kernel aware debuggers. */
\r
343 typedef tskTCB TCB_t;
\r
345 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
346 which static variables must be declared volatile. */
\r
348 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
350 /* Lists for ready and blocked tasks. --------------------*/
\r
351 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */
\r
352 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
353 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
354 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
355 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
356 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
358 #if( INCLUDE_vTaskDelete == 1 )
\r
360 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
361 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
365 #if ( INCLUDE_vTaskSuspend == 1 )
\r
367 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
371 /* Other file private variables. --------------------------------*/
\r
372 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
373 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
374 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
375 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
376 PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U;
\r
377 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
378 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
379 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
380 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
381 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
383 /* Context switches are held pending while the scheduler is suspended. Also,
\r
384 interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
385 lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
386 If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
387 moves the task's event list item into the xPendingReadyList, ready for the
\r
388 kernel to move the task from the pending ready list into the real ready list
\r
389 when the scheduler is unsuspended. The pending ready list itself can only be
\r
390 accessed from a critical section. */
\r
391 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
393 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
395 PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
396 PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
402 /*-----------------------------------------------------------*/
\r
404 /* Callback function prototypes. --------------------------*/
\r
405 #if( configCHECK_FOR_STACK_OVERFLOW > 0 )
\r
407 extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName );
\r
411 #if( configUSE_TICK_HOOK > 0 )
\r
413 extern void vApplicationTickHook( void );
\r
417 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
419 extern void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize );
\r
423 /* File private functions. --------------------------------*/
\r
426 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
427 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
428 * is in any other state.
\r
430 #if ( INCLUDE_vTaskSuspend == 1 )
\r
432 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
434 #endif /* INCLUDE_vTaskSuspend */
\r
437 * Utility to ready all the lists used by the scheduler. This is called
\r
438 * automatically upon the creation of the first task.
\r
440 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
443 * The idle task, which as all tasks is implemented as a never ending loop.
\r
444 * The idle task is automatically created and added to the ready lists upon
\r
445 * creation of the first user task.
\r
447 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
448 * language extensions. The equivalent prototype for this function is:
\r
450 * void prvIdleTask( void *pvParameters );
\r
453 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters );
\r
456 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
457 * including the stack pointed to by the TCB.
\r
459 * This does not free memory allocated by the task itself (i.e. memory
\r
460 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
462 #if ( INCLUDE_vTaskDelete == 1 )
\r
464 static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION;
\r
469 * Used only by the idle task. This checks to see if anything has been placed
\r
470 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
471 * and its TCB deleted.
\r
473 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
476 * The currently executing task is entering the Blocked state. Add the task to
\r
477 * either the current or the overflow delayed task list.
\r
479 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
482 * Fills an TaskStatus_t structure with information on each task that is
\r
483 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
484 * a suspended list, etc.).
\r
486 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
487 * NORMAL APPLICATION CODE.
\r
489 #if ( configUSE_TRACE_FACILITY == 1 )
\r
491 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION;
\r
496 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
497 * the task if it is found, or NULL if the task is not found.
\r
499 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
501 static TCB_t *prvSearchForNameWithinSingleList( List_t *pxList, const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
506 * When a task is created, the stack of the task is filled with a known value.
\r
507 * This function determines the 'high water mark' of the task stack by
\r
508 * determining how much of the stack remains at the original preset value.
\r
510 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
\r
512 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
517 * Return the amount of time, in ticks, that will pass before the kernel will
\r
518 * next move a task from the Blocked state to the Running state.
\r
520 * This conditional compilation should use inequality to 0, not equality to 1.
\r
521 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
522 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
523 * set to a value other than 1.
\r
525 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
527 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
532 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
533 * will exit the Blocked state.
\r
535 static void prvResetNextTaskUnblockTime( void );
\r
537 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
540 * Helper function used to pad task names with spaces when printing out
\r
541 * human readable tables of task information.
\r
543 static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName ) PRIVILEGED_FUNCTION;
\r
548 * Called after a Task_t structure has been allocated either statically or
\r
549 * dynamically to fill in the structure's members.
\r
551 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
552 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
553 const uint32_t ulStackDepth,
\r
554 void * const pvParameters,
\r
555 UBaseType_t uxPriority,
\r
556 TaskHandle_t * const pxCreatedTask,
\r
558 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
561 * Called after a new task has been created and initialised to place the task
\r
562 * under the control of the scheduler.
\r
564 static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB ) PRIVILEGED_FUNCTION;
\r
567 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
568 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
569 * called by the function.
\r
571 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
573 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
577 /*-----------------------------------------------------------*/
\r
579 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
581 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
582 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
583 const uint32_t ulStackDepth,
\r
584 void * const pvParameters,
\r
585 UBaseType_t uxPriority,
\r
586 StackType_t * const puxStackBuffer,
\r
587 StaticTask_t * const pxTaskBuffer )
\r
590 TaskHandle_t xReturn;
\r
592 configASSERT( puxStackBuffer != NULL );
\r
593 configASSERT( pxTaskBuffer != NULL );
\r
595 #if( configASSERT_DEFINED == 1 )
\r
597 /* Sanity check that the size of the structure used to declare a
\r
598 variable of type StaticTask_t equals the size of the real task
\r
600 volatile size_t xSize = sizeof( StaticTask_t );
\r
601 configASSERT( xSize == sizeof( TCB_t ) );
\r
603 #endif /* configASSERT_DEFINED */
\r
606 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
608 /* The memory used for the task's TCB and stack are passed into this
\r
609 function - use them. */
\r
610 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
611 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
613 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 Macro has been consolidated for readability reasons. */
\r
615 /* Tasks can be created statically or dynamically, so note this
\r
616 task was created statically in case the task is later deleted. */
\r
617 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
619 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
621 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
622 prvAddNewTaskToReadyList( pxNewTCB );
\r
632 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
633 /*-----------------------------------------------------------*/
\r
635 #if( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
637 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask )
\r
640 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
642 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
643 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
645 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
647 /* Allocate space for the TCB. Where the memory comes from depends
\r
648 on the implementation of the port malloc function and whether or
\r
649 not static allocation is being used. */
\r
650 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
652 /* Store the stack location in the TCB. */
\r
653 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
655 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
657 /* Tasks can be created statically or dynamically, so note this
\r
658 task was created statically in case the task is later deleted. */
\r
659 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
661 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
663 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
664 pxTaskDefinition->pcName,
\r
665 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
666 pxTaskDefinition->pvParameters,
\r
667 pxTaskDefinition->uxPriority,
\r
668 pxCreatedTask, pxNewTCB,
\r
669 pxTaskDefinition->xRegions );
\r
671 prvAddNewTaskToReadyList( pxNewTCB );
\r
678 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
679 /*-----------------------------------------------------------*/
\r
681 #if( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
683 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask )
\r
686 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
688 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
690 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
692 /* Allocate space for the TCB. Where the memory comes from depends
\r
693 on the implementation of the port malloc function and whether or
\r
694 not static allocation is being used. */
\r
695 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
697 if( pxNewTCB != NULL )
\r
699 /* Store the stack location in the TCB. */
\r
700 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
702 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
704 /* Tasks can be created statically or dynamically, so note
\r
705 this task had a statically allocated stack in case it is
\r
706 later deleted. The TCB was allocated dynamically. */
\r
707 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
711 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
712 pxTaskDefinition->pcName,
\r
713 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
714 pxTaskDefinition->pvParameters,
\r
715 pxTaskDefinition->uxPriority,
\r
716 pxCreatedTask, pxNewTCB,
\r
717 pxTaskDefinition->xRegions );
\r
719 prvAddNewTaskToReadyList( pxNewTCB );
\r
727 #endif /* portUSING_MPU_WRAPPERS */
\r
728 /*-----------------------------------------------------------*/
\r
730 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
732 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
733 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
734 const configSTACK_DEPTH_TYPE usStackDepth,
\r
735 void * const pvParameters,
\r
736 UBaseType_t uxPriority,
\r
737 TaskHandle_t * const pxCreatedTask )
\r
740 BaseType_t xReturn;
\r
742 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
743 does not grow into the TCB. Likewise if the stack grows up then allocate
\r
744 the TCB then the stack. */
\r
745 #if( portSTACK_GROWTH > 0 )
\r
747 /* Allocate space for the TCB. Where the memory comes from depends on
\r
748 the implementation of the port malloc function and whether or not static
\r
749 allocation is being used. */
\r
750 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
752 if( pxNewTCB != NULL )
\r
754 /* Allocate space for the stack used by the task being created.
\r
755 The base of the stack memory stored in the TCB so the task can
\r
756 be deleted later if required. */
\r
757 pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
759 if( pxNewTCB->pxStack == NULL )
\r
761 /* Could not allocate the stack. Delete the allocated TCB. */
\r
762 vPortFree( pxNewTCB );
\r
767 #else /* portSTACK_GROWTH */
\r
769 StackType_t *pxStack;
\r
771 /* Allocate space for the stack used by the task being created. */
\r
772 pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
774 if( pxStack != NULL )
\r
776 /* Allocate space for the TCB. */
\r
777 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e961 MISRA exception as the casts are only redundant for some paths. */
\r
779 if( pxNewTCB != NULL )
\r
781 /* Store the stack location in the TCB. */
\r
782 pxNewTCB->pxStack = pxStack;
\r
786 /* The stack cannot be used as the TCB was not created. Free
\r
788 vPortFree( pxStack );
\r
796 #endif /* portSTACK_GROWTH */
\r
798 if( pxNewTCB != NULL )
\r
800 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 Macro has been consolidated for readability reasons. */
\r
802 /* Tasks can be created statically or dynamically, so note this
\r
803 task was created dynamically in case it is later deleted. */
\r
804 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
806 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
808 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
809 prvAddNewTaskToReadyList( pxNewTCB );
\r
814 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
820 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
821 /*-----------------------------------------------------------*/
\r
823 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
824 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
825 const uint32_t ulStackDepth,
\r
826 void * const pvParameters,
\r
827 UBaseType_t uxPriority,
\r
828 TaskHandle_t * const pxCreatedTask,
\r
830 const MemoryRegion_t * const xRegions )
\r
832 StackType_t *pxTopOfStack;
\r
835 #if( portUSING_MPU_WRAPPERS == 1 )
\r
836 /* Should the task be created in privileged mode? */
\r
837 BaseType_t xRunPrivileged;
\r
838 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
840 xRunPrivileged = pdTRUE;
\r
844 xRunPrivileged = pdFALSE;
\r
846 uxPriority &= ~portPRIVILEGE_BIT;
\r
847 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
849 configASSERT( pcName );
\r
851 /* Avoid dependency on memset() if it is not required. */
\r
852 #if( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
854 /* Fill the stack with a known value to assist debugging. */
\r
855 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
857 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
859 /* Calculate the top of stack address. This depends on whether the stack
\r
860 grows from high memory to low (as per the 80x86) or vice versa.
\r
861 portSTACK_GROWTH is used to make the result positive or negative as required
\r
863 #if( portSTACK_GROWTH < 0 )
\r
865 pxTopOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
866 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */
\r
868 /* Check the alignment of the calculated top of stack is correct. */
\r
869 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
871 #if( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
873 /* Also record the stack's high address, which may assist
\r
875 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
877 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
879 #else /* portSTACK_GROWTH */
\r
881 pxTopOfStack = pxNewTCB->pxStack;
\r
883 /* Check the alignment of the stack buffer is correct. */
\r
884 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
886 /* The other extreme of the stack space is required if stack checking is
\r
888 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
890 #endif /* portSTACK_GROWTH */
\r
892 /* Store the task name in the TCB. */
\r
893 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
895 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
897 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
898 configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
899 string is not accessible (extremely unlikely). */
\r
900 if( pcName[ x ] == 0x00 )
\r
906 mtCOVERAGE_TEST_MARKER();
\r
910 /* Ensure the name string is terminated in the case that the string length
\r
911 was greater or equal to configMAX_TASK_NAME_LEN. */
\r
912 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
914 /* This is used as an array index so must ensure it's not too large. First
\r
915 remove the privilege bit if one is present. */
\r
916 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
918 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
922 mtCOVERAGE_TEST_MARKER();
\r
925 pxNewTCB->uxPriority = uxPriority;
\r
926 #if ( configUSE_MUTEXES == 1 )
\r
928 pxNewTCB->uxBasePriority = uxPriority;
\r
929 pxNewTCB->uxMutexesHeld = 0;
\r
931 #endif /* configUSE_MUTEXES */
\r
933 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
934 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
936 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
937 back to the containing TCB from a generic item in a list. */
\r
938 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
940 /* Event lists are always in priority order. */
\r
941 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
942 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
944 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
946 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
948 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
950 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
952 pxNewTCB->pxTaskTag = NULL;
\r
954 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
956 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
958 pxNewTCB->ulRunTimeCounter = 0UL;
\r
960 #endif /* configGENERATE_RUN_TIME_STATS */
\r
962 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
964 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
968 /* Avoid compiler warning about unreferenced parameter. */
\r
973 #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
975 for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
\r
977 pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL;
\r
982 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
984 pxNewTCB->ulNotifiedValue = 0;
\r
985 pxNewTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
989 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
991 /* Initialise this task's Newlib reent structure. */
\r
992 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
996 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
998 pxNewTCB->ucDelayAborted = pdFALSE;
\r
1002 /* Initialize the TCB stack to look as if the task was already running,
\r
1003 but had been interrupted by the scheduler. The return address is set
\r
1004 to the start of the task function. Once the stack has been initialised
\r
1005 the top of stack variable is updated. */
\r
1006 #if( portUSING_MPU_WRAPPERS == 1 )
\r
1008 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1010 #else /* portUSING_MPU_WRAPPERS */
\r
1012 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1014 #endif /* portUSING_MPU_WRAPPERS */
\r
1016 if( ( void * ) pxCreatedTask != NULL )
\r
1018 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1019 change the created task's priority, delete the created task, etc.*/
\r
1020 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1024 mtCOVERAGE_TEST_MARKER();
\r
1027 /*-----------------------------------------------------------*/
\r
1029 static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB )
\r
1031 /* Ensure interrupts don't access the task lists while the lists are being
\r
1033 taskENTER_CRITICAL();
\r
1035 uxCurrentNumberOfTasks++;
\r
1036 if( pxCurrentTCB == NULL )
\r
1038 /* There are no other tasks, or all the other tasks are in
\r
1039 the suspended state - make this the current task. */
\r
1040 pxCurrentTCB = pxNewTCB;
\r
1042 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1044 /* This is the first task to be created so do the preliminary
\r
1045 initialisation required. We will not recover if this call
\r
1046 fails, but we will report the failure. */
\r
1047 prvInitialiseTaskLists();
\r
1051 mtCOVERAGE_TEST_MARKER();
\r
1056 /* If the scheduler is not already running, make this task the
\r
1057 current task if it is the highest priority task to be created
\r
1059 if( xSchedulerRunning == pdFALSE )
\r
1061 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1063 pxCurrentTCB = pxNewTCB;
\r
1067 mtCOVERAGE_TEST_MARKER();
\r
1072 mtCOVERAGE_TEST_MARKER();
\r
1078 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1080 /* Add a counter into the TCB for tracing only. */
\r
1081 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1083 #endif /* configUSE_TRACE_FACILITY */
\r
1084 traceTASK_CREATE( pxNewTCB );
\r
1086 prvAddTaskToReadyList( pxNewTCB );
\r
1088 portSETUP_TCB( pxNewTCB );
\r
1090 taskEXIT_CRITICAL();
\r
1092 if( xSchedulerRunning != pdFALSE )
\r
1094 /* If the created task is of a higher priority than the current task
\r
1095 then it should run now. */
\r
1096 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1098 taskYIELD_IF_USING_PREEMPTION();
\r
1102 mtCOVERAGE_TEST_MARKER();
\r
1107 mtCOVERAGE_TEST_MARKER();
\r
1110 /*-----------------------------------------------------------*/
\r
1112 #if ( INCLUDE_vTaskDelete == 1 )
\r
1114 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1118 taskENTER_CRITICAL();
\r
1120 /* If null is passed in here then it is the calling task that is
\r
1122 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1124 /* Remove task from the ready list. */
\r
1125 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1127 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1131 mtCOVERAGE_TEST_MARKER();
\r
1134 /* Is the task waiting on an event also? */
\r
1135 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1137 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1141 mtCOVERAGE_TEST_MARKER();
\r
1144 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1145 detect that the task lists need re-generating. This is done before
\r
1146 portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1150 if( pxTCB == pxCurrentTCB )
\r
1152 /* A task is deleting itself. This cannot complete within the
\r
1153 task itself, as a context switch to another task is required.
\r
1154 Place the task in the termination list. The idle task will
\r
1155 check the termination list and free up any memory allocated by
\r
1156 the scheduler for the TCB and stack of the deleted task. */
\r
1157 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1159 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1160 there is a task that has been deleted and that it should therefore
\r
1161 check the xTasksWaitingTermination list. */
\r
1162 ++uxDeletedTasksWaitingCleanUp;
\r
1164 /* The pre-delete hook is primarily for the Windows simulator,
\r
1165 in which Windows specific clean up operations are performed,
\r
1166 after which it is not possible to yield away from this task -
\r
1167 hence xYieldPending is used to latch that a context switch is
\r
1169 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1173 --uxCurrentNumberOfTasks;
\r
1174 prvDeleteTCB( pxTCB );
\r
1176 /* Reset the next expected unblock time in case it referred to
\r
1177 the task that has just been deleted. */
\r
1178 prvResetNextTaskUnblockTime();
\r
1181 traceTASK_DELETE( pxTCB );
\r
1183 taskEXIT_CRITICAL();
\r
1185 /* Force a reschedule if it is the currently running task that has just
\r
1187 if( xSchedulerRunning != pdFALSE )
\r
1189 if( pxTCB == pxCurrentTCB )
\r
1191 configASSERT( uxSchedulerSuspended == 0 );
\r
1192 portYIELD_WITHIN_API();
\r
1196 mtCOVERAGE_TEST_MARKER();
\r
1201 #endif /* INCLUDE_vTaskDelete */
\r
1202 /*-----------------------------------------------------------*/
\r
1204 #if ( INCLUDE_vTaskDelayUntil == 1 )
\r
1206 void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement )
\r
1208 TickType_t xTimeToWake;
\r
1209 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1211 configASSERT( pxPreviousWakeTime );
\r
1212 configASSERT( ( xTimeIncrement > 0U ) );
\r
1213 configASSERT( uxSchedulerSuspended == 0 );
\r
1215 vTaskSuspendAll();
\r
1217 /* Minor optimisation. The tick count cannot change in this
\r
1219 const TickType_t xConstTickCount = xTickCount;
\r
1221 /* Generate the tick time at which the task wants to wake. */
\r
1222 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1224 if( xConstTickCount < *pxPreviousWakeTime )
\r
1226 /* The tick count has overflowed since this function was
\r
1227 lasted called. In this case the only time we should ever
\r
1228 actually delay is if the wake time has also overflowed,
\r
1229 and the wake time is greater than the tick time. When this
\r
1230 is the case it is as if neither time had overflowed. */
\r
1231 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1233 xShouldDelay = pdTRUE;
\r
1237 mtCOVERAGE_TEST_MARKER();
\r
1242 /* The tick time has not overflowed. In this case we will
\r
1243 delay if either the wake time has overflowed, and/or the
\r
1244 tick time is less than the wake time. */
\r
1245 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1247 xShouldDelay = pdTRUE;
\r
1251 mtCOVERAGE_TEST_MARKER();
\r
1255 /* Update the wake time ready for the next call. */
\r
1256 *pxPreviousWakeTime = xTimeToWake;
\r
1258 if( xShouldDelay != pdFALSE )
\r
1260 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1262 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1263 the time to wake, so subtract the current tick count. */
\r
1264 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1268 mtCOVERAGE_TEST_MARKER();
\r
1271 xAlreadyYielded = xTaskResumeAll();
\r
1273 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1274 have put ourselves to sleep. */
\r
1275 if( xAlreadyYielded == pdFALSE )
\r
1277 portYIELD_WITHIN_API();
\r
1281 mtCOVERAGE_TEST_MARKER();
\r
1285 #endif /* INCLUDE_vTaskDelayUntil */
\r
1286 /*-----------------------------------------------------------*/
\r
1288 #if ( INCLUDE_vTaskDelay == 1 )
\r
1290 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1292 BaseType_t xAlreadyYielded = pdFALSE;
\r
1294 /* A delay time of zero just forces a reschedule. */
\r
1295 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1297 configASSERT( uxSchedulerSuspended == 0 );
\r
1298 vTaskSuspendAll();
\r
1300 traceTASK_DELAY();
\r
1302 /* A task that is removed from the event list while the
\r
1303 scheduler is suspended will not get placed in the ready
\r
1304 list or removed from the blocked list until the scheduler
\r
1307 This task cannot be in an event list as it is the currently
\r
1308 executing task. */
\r
1309 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1311 xAlreadyYielded = xTaskResumeAll();
\r
1315 mtCOVERAGE_TEST_MARKER();
\r
1318 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1319 have put ourselves to sleep. */
\r
1320 if( xAlreadyYielded == pdFALSE )
\r
1322 portYIELD_WITHIN_API();
\r
1326 mtCOVERAGE_TEST_MARKER();
\r
1330 #endif /* INCLUDE_vTaskDelay */
\r
1331 /*-----------------------------------------------------------*/
\r
1333 #if( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) )
\r
1335 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1337 eTaskState eReturn;
\r
1338 List_t *pxStateList;
\r
1339 const TCB_t * const pxTCB = ( TCB_t * ) xTask;
\r
1341 configASSERT( pxTCB );
\r
1343 if( pxTCB == pxCurrentTCB )
\r
1345 /* The task calling this function is querying its own state. */
\r
1346 eReturn = eRunning;
\r
1350 taskENTER_CRITICAL();
\r
1352 pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1354 taskEXIT_CRITICAL();
\r
1356 if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) )
\r
1358 /* The task being queried is referenced from one of the Blocked
\r
1360 eReturn = eBlocked;
\r
1363 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1364 else if( pxStateList == &xSuspendedTaskList )
\r
1366 /* The task being queried is referenced from the suspended
\r
1367 list. Is it genuinely suspended or is it block
\r
1369 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1371 eReturn = eSuspended;
\r
1375 eReturn = eBlocked;
\r
1380 #if ( INCLUDE_vTaskDelete == 1 )
\r
1381 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1383 /* The task being queried is referenced from the deleted
\r
1384 tasks list, or it is not referenced from any lists at
\r
1386 eReturn = eDeleted;
\r
1390 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1392 /* If the task is not in any other state, it must be in the
\r
1393 Ready (including pending ready) state. */
\r
1399 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1401 #endif /* INCLUDE_eTaskGetState */
\r
1402 /*-----------------------------------------------------------*/
\r
1404 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1406 UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask )
\r
1409 UBaseType_t uxReturn;
\r
1411 taskENTER_CRITICAL();
\r
1413 /* If null is passed in here then it is the priority of the that
\r
1414 called uxTaskPriorityGet() that is being queried. */
\r
1415 pxTCB = prvGetTCBFromHandle( xTask );
\r
1416 uxReturn = pxTCB->uxPriority;
\r
1418 taskEXIT_CRITICAL();
\r
1423 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1424 /*-----------------------------------------------------------*/
\r
1426 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1428 UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask )
\r
1431 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1433 /* RTOS ports that support interrupt nesting have the concept of a
\r
1434 maximum system call (or maximum API call) interrupt priority.
\r
1435 Interrupts that are above the maximum system call priority are keep
\r
1436 permanently enabled, even when the RTOS kernel is in a critical section,
\r
1437 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1438 is defined in FreeRTOSConfig.h then
\r
1439 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1440 failure if a FreeRTOS API function is called from an interrupt that has
\r
1441 been assigned a priority above the configured maximum system call
\r
1442 priority. Only FreeRTOS functions that end in FromISR can be called
\r
1443 from interrupts that have been assigned a priority at or (logically)
\r
1444 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1445 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1446 simple as possible. More information (albeit Cortex-M specific) is
\r
1447 provided on the following link:
\r
1448 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1449 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1451 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1453 /* If null is passed in here then it is the priority of the calling
\r
1454 task that is being queried. */
\r
1455 pxTCB = prvGetTCBFromHandle( xTask );
\r
1456 uxReturn = pxTCB->uxPriority;
\r
1458 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1463 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1464 /*-----------------------------------------------------------*/
\r
1466 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1468 void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority )
\r
1471 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1472 BaseType_t xYieldRequired = pdFALSE;
\r
1474 configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
\r
1476 /* Ensure the new priority is valid. */
\r
1477 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1479 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1483 mtCOVERAGE_TEST_MARKER();
\r
1486 taskENTER_CRITICAL();
\r
1488 /* If null is passed in here then it is the priority of the calling
\r
1489 task that is being changed. */
\r
1490 pxTCB = prvGetTCBFromHandle( xTask );
\r
1492 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1494 #if ( configUSE_MUTEXES == 1 )
\r
1496 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1500 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1504 if( uxCurrentBasePriority != uxNewPriority )
\r
1506 /* The priority change may have readied a task of higher
\r
1507 priority than the calling task. */
\r
1508 if( uxNewPriority > uxCurrentBasePriority )
\r
1510 if( pxTCB != pxCurrentTCB )
\r
1512 /* The priority of a task other than the currently
\r
1513 running task is being raised. Is the priority being
\r
1514 raised above that of the running task? */
\r
1515 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1517 xYieldRequired = pdTRUE;
\r
1521 mtCOVERAGE_TEST_MARKER();
\r
1526 /* The priority of the running task is being raised,
\r
1527 but the running task must already be the highest
\r
1528 priority task able to run so no yield is required. */
\r
1531 else if( pxTCB == pxCurrentTCB )
\r
1533 /* Setting the priority of the running task down means
\r
1534 there may now be another task of higher priority that
\r
1535 is ready to execute. */
\r
1536 xYieldRequired = pdTRUE;
\r
1540 /* Setting the priority of any other task down does not
\r
1541 require a yield as the running task must be above the
\r
1542 new priority of the task being modified. */
\r
1545 /* Remember the ready list the task might be referenced from
\r
1546 before its uxPriority member is changed so the
\r
1547 taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1548 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1550 #if ( configUSE_MUTEXES == 1 )
\r
1552 /* Only change the priority being used if the task is not
\r
1553 currently using an inherited priority. */
\r
1554 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1556 pxTCB->uxPriority = uxNewPriority;
\r
1560 mtCOVERAGE_TEST_MARKER();
\r
1563 /* The base priority gets set whatever. */
\r
1564 pxTCB->uxBasePriority = uxNewPriority;
\r
1568 pxTCB->uxPriority = uxNewPriority;
\r
1572 /* Only reset the event list item value if the value is not
\r
1573 being used for anything else. */
\r
1574 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1576 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1580 mtCOVERAGE_TEST_MARKER();
\r
1583 /* If the task is in the blocked or suspended list we need do
\r
1584 nothing more than change its priority variable. However, if
\r
1585 the task is in a ready list it needs to be removed and placed
\r
1586 in the list appropriate to its new priority. */
\r
1587 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1589 /* The task is currently in its ready list - remove before
\r
1590 adding it to it's new ready list. As we are in a critical
\r
1591 section we can do this even if the scheduler is suspended. */
\r
1592 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1594 /* It is known that the task is in its ready list so
\r
1595 there is no need to check again and the port level
\r
1596 reset macro can be called directly. */
\r
1597 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1601 mtCOVERAGE_TEST_MARKER();
\r
1603 prvAddTaskToReadyList( pxTCB );
\r
1607 mtCOVERAGE_TEST_MARKER();
\r
1610 if( xYieldRequired != pdFALSE )
\r
1612 taskYIELD_IF_USING_PREEMPTION();
\r
1616 mtCOVERAGE_TEST_MARKER();
\r
1619 /* Remove compiler warning about unused variables when the port
\r
1620 optimised task selection is not being used. */
\r
1621 ( void ) uxPriorityUsedOnEntry;
\r
1624 taskEXIT_CRITICAL();
\r
1627 #endif /* INCLUDE_vTaskPrioritySet */
\r
1628 /*-----------------------------------------------------------*/
\r
1630 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1632 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1636 taskENTER_CRITICAL();
\r
1638 /* If null is passed in here then it is the running task that is
\r
1639 being suspended. */
\r
1640 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1642 traceTASK_SUSPEND( pxTCB );
\r
1644 /* Remove task from the ready/delayed list and place in the
\r
1645 suspended list. */
\r
1646 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1648 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1652 mtCOVERAGE_TEST_MARKER();
\r
1655 /* Is the task waiting on an event also? */
\r
1656 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1658 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1662 mtCOVERAGE_TEST_MARKER();
\r
1665 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1667 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1669 if( pxTCB->ucNotifyState == taskWAITING_NOTIFICATION )
\r
1671 /* The task was blocked to wait for a notification, but is
\r
1672 now suspended, so no notification was received. */
\r
1673 pxTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
1678 taskEXIT_CRITICAL();
\r
1680 if( xSchedulerRunning != pdFALSE )
\r
1682 /* Reset the next expected unblock time in case it referred to the
\r
1683 task that is now in the Suspended state. */
\r
1684 taskENTER_CRITICAL();
\r
1686 prvResetNextTaskUnblockTime();
\r
1688 taskEXIT_CRITICAL();
\r
1692 mtCOVERAGE_TEST_MARKER();
\r
1695 if( pxTCB == pxCurrentTCB )
\r
1697 if( xSchedulerRunning != pdFALSE )
\r
1699 /* The current task has just been suspended. */
\r
1700 configASSERT( uxSchedulerSuspended == 0 );
\r
1701 portYIELD_WITHIN_API();
\r
1705 /* The scheduler is not running, but the task that was pointed
\r
1706 to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1707 must be adjusted to point to a different task. */
\r
1708 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
\r
1710 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1711 NULL so when the next task is created pxCurrentTCB will
\r
1712 be set to point to it no matter what its relative priority
\r
1714 pxCurrentTCB = NULL;
\r
1718 vTaskSwitchContext();
\r
1724 mtCOVERAGE_TEST_MARKER();
\r
1728 #endif /* INCLUDE_vTaskSuspend */
\r
1729 /*-----------------------------------------------------------*/
\r
1731 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1733 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1735 BaseType_t xReturn = pdFALSE;
\r
1736 const TCB_t * const pxTCB = ( TCB_t * ) xTask;
\r
1738 /* Accesses xPendingReadyList so must be called from a critical
\r
1741 /* It does not make sense to check if the calling task is suspended. */
\r
1742 configASSERT( xTask );
\r
1744 /* Is the task being resumed actually in the suspended list? */
\r
1745 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1747 /* Has the task already been resumed from within an ISR? */
\r
1748 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1750 /* Is it in the suspended list because it is in the Suspended
\r
1751 state, or because is is blocked with no timeout? */
\r
1752 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1758 mtCOVERAGE_TEST_MARKER();
\r
1763 mtCOVERAGE_TEST_MARKER();
\r
1768 mtCOVERAGE_TEST_MARKER();
\r
1772 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1774 #endif /* INCLUDE_vTaskSuspend */
\r
1775 /*-----------------------------------------------------------*/
\r
1777 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1779 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1781 TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
\r
1783 /* It does not make sense to resume the calling task. */
\r
1784 configASSERT( xTaskToResume );
\r
1786 /* The parameter cannot be NULL as it is impossible to resume the
\r
1787 currently executing task. */
\r
1788 if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) )
\r
1790 taskENTER_CRITICAL();
\r
1792 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1794 traceTASK_RESUME( pxTCB );
\r
1796 /* The ready list can be accessed even if the scheduler is
\r
1797 suspended because this is inside a critical section. */
\r
1798 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1799 prvAddTaskToReadyList( pxTCB );
\r
1801 /* A higher priority task may have just been resumed. */
\r
1802 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1804 /* This yield may not cause the task just resumed to run,
\r
1805 but will leave the lists in the correct state for the
\r
1807 taskYIELD_IF_USING_PREEMPTION();
\r
1811 mtCOVERAGE_TEST_MARKER();
\r
1816 mtCOVERAGE_TEST_MARKER();
\r
1819 taskEXIT_CRITICAL();
\r
1823 mtCOVERAGE_TEST_MARKER();
\r
1827 #endif /* INCLUDE_vTaskSuspend */
\r
1829 /*-----------------------------------------------------------*/
\r
1831 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1833 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1835 BaseType_t xYieldRequired = pdFALSE;
\r
1836 TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
\r
1837 UBaseType_t uxSavedInterruptStatus;
\r
1839 configASSERT( xTaskToResume );
\r
1841 /* RTOS ports that support interrupt nesting have the concept of a
\r
1842 maximum system call (or maximum API call) interrupt priority.
\r
1843 Interrupts that are above the maximum system call priority are keep
\r
1844 permanently enabled, even when the RTOS kernel is in a critical section,
\r
1845 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1846 is defined in FreeRTOSConfig.h then
\r
1847 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1848 failure if a FreeRTOS API function is called from an interrupt that has
\r
1849 been assigned a priority above the configured maximum system call
\r
1850 priority. Only FreeRTOS functions that end in FromISR can be called
\r
1851 from interrupts that have been assigned a priority at or (logically)
\r
1852 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1853 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1854 simple as possible. More information (albeit Cortex-M specific) is
\r
1855 provided on the following link:
\r
1856 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1857 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1859 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1861 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1863 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1865 /* Check the ready lists can be accessed. */
\r
1866 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1868 /* Ready lists can be accessed so move the task from the
\r
1869 suspended list to the ready list directly. */
\r
1870 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1872 xYieldRequired = pdTRUE;
\r
1876 mtCOVERAGE_TEST_MARKER();
\r
1879 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1880 prvAddTaskToReadyList( pxTCB );
\r
1884 /* The delayed or ready lists cannot be accessed so the task
\r
1885 is held in the pending ready list until the scheduler is
\r
1887 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1892 mtCOVERAGE_TEST_MARKER();
\r
1895 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1897 return xYieldRequired;
\r
1900 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1901 /*-----------------------------------------------------------*/
\r
1903 void vTaskStartScheduler( void )
\r
1905 BaseType_t xReturn;
\r
1907 /* Add the idle task at the lowest priority. */
\r
1908 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1910 StaticTask_t *pxIdleTaskTCBBuffer = NULL;
\r
1911 StackType_t *pxIdleTaskStackBuffer = NULL;
\r
1912 uint32_t ulIdleTaskStackSize;
\r
1914 /* The Idle task is created using user provided RAM - obtain the
\r
1915 address of the RAM then create the idle task. */
\r
1916 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
1917 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
1918 configIDLE_TASK_NAME,
\r
1919 ulIdleTaskStackSize,
\r
1920 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
1921 ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ),
\r
1922 pxIdleTaskStackBuffer,
\r
1923 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
1925 if( xIdleTaskHandle != NULL )
\r
1936 /* The Idle task is being created using dynamically allocated RAM. */
\r
1937 xReturn = xTaskCreate( prvIdleTask,
\r
1938 configIDLE_TASK_NAME,
\r
1939 configMINIMAL_STACK_SIZE,
\r
1941 ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ),
\r
1942 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
1944 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
1946 #if ( configUSE_TIMERS == 1 )
\r
1948 if( xReturn == pdPASS )
\r
1950 xReturn = xTimerCreateTimerTask();
\r
1954 mtCOVERAGE_TEST_MARKER();
\r
1957 #endif /* configUSE_TIMERS */
\r
1959 if( xReturn == pdPASS )
\r
1961 /* freertos_tasks_c_additions_init() should only be called if the user
\r
1962 definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
1963 the only macro called by the function. */
\r
1964 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
1966 freertos_tasks_c_additions_init();
\r
1970 /* Interrupts are turned off here, to ensure a tick does not occur
\r
1971 before or during the call to xPortStartScheduler(). The stacks of
\r
1972 the created tasks contain a status word with interrupts switched on
\r
1973 so interrupts will automatically get re-enabled when the first task
\r
1975 portDISABLE_INTERRUPTS();
\r
1977 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
1979 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
1980 structure specific to the task that will run first. */
\r
1981 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
1983 #endif /* configUSE_NEWLIB_REENTRANT */
\r
1985 xNextTaskUnblockTime = portMAX_DELAY;
\r
1986 xSchedulerRunning = pdTRUE;
\r
1987 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
1989 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
1990 macro must be defined to configure the timer/counter used to generate
\r
1991 the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
1992 is set to 0 and the following line fails to build then ensure you do not
\r
1993 have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
1994 FreeRTOSConfig.h file. */
\r
1995 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
1997 traceTASK_SWITCHED_IN();
\r
1999 /* Setting up the timer tick is hardware specific and thus in the
\r
2000 portable interface. */
\r
2001 if( xPortStartScheduler() != pdFALSE )
\r
2003 /* Should not reach here as if the scheduler is running the
\r
2004 function will not return. */
\r
2008 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2013 /* This line will only be reached if the kernel could not be started,
\r
2014 because there was not enough FreeRTOS heap to create the idle task
\r
2015 or the timer task. */
\r
2016 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2019 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2020 meaning xIdleTaskHandle is not used anywhere else. */
\r
2021 ( void ) xIdleTaskHandle;
\r
2023 /*-----------------------------------------------------------*/
\r
2025 void vTaskEndScheduler( void )
\r
2027 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2028 routine so the original ISRs can be restored if necessary. The port
\r
2029 layer must ensure interrupts enable bit is left in the correct state. */
\r
2030 portDISABLE_INTERRUPTS();
\r
2031 xSchedulerRunning = pdFALSE;
\r
2032 vPortEndScheduler();
\r
2034 /*----------------------------------------------------------*/
\r
2036 void vTaskSuspendAll( void )
\r
2038 /* A critical section is not required as the variable is of type
\r
2039 BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2040 post in the FreeRTOS support forum before reporting this as a bug! -
\r
2041 http://goo.gl/wu4acr */
\r
2042 ++uxSchedulerSuspended;
\r
2044 /*----------------------------------------------------------*/
\r
2046 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2048 static TickType_t prvGetExpectedIdleTime( void )
\r
2050 TickType_t xReturn;
\r
2051 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2053 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2054 configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2055 task that are in the Ready state, even though the idle task is
\r
2057 #if( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2059 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2061 uxHigherPriorityReadyTasks = pdTRUE;
\r
2066 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2068 /* When port optimised task selection is used the uxTopReadyPriority
\r
2069 variable is used as a bit map. If bits other than the least
\r
2070 significant bit are set then there are tasks that have a priority
\r
2071 above the idle priority that are in the Ready state. This takes
\r
2072 care of the case where the co-operative scheduler is in use. */
\r
2073 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2075 uxHigherPriorityReadyTasks = pdTRUE;
\r
2080 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2084 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2086 /* There are other idle priority tasks in the ready state. If
\r
2087 time slicing is used then the very next tick interrupt must be
\r
2091 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2093 /* There are tasks in the Ready state that have a priority above the
\r
2094 idle priority. This path can only be reached if
\r
2095 configUSE_PREEMPTION is 0. */
\r
2100 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2106 #endif /* configUSE_TICKLESS_IDLE */
\r
2107 /*----------------------------------------------------------*/
\r
2109 BaseType_t xTaskResumeAll( void )
\r
2111 TCB_t *pxTCB = NULL;
\r
2112 BaseType_t xAlreadyYielded = pdFALSE;
\r
2114 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2115 previous call to vTaskSuspendAll(). */
\r
2116 configASSERT( uxSchedulerSuspended );
\r
2118 /* It is possible that an ISR caused a task to be removed from an event
\r
2119 list while the scheduler was suspended. If this was the case then the
\r
2120 removed task will have been added to the xPendingReadyList. Once the
\r
2121 scheduler has been resumed it is safe to move all the pending ready
\r
2122 tasks from this list into their appropriate ready list. */
\r
2123 taskENTER_CRITICAL();
\r
2125 --uxSchedulerSuspended;
\r
2127 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2129 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2131 /* Move any readied tasks from the pending list into the
\r
2132 appropriate ready list. */
\r
2133 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2135 pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
\r
2136 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2137 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2138 prvAddTaskToReadyList( pxTCB );
\r
2140 /* If the moved task has a priority higher than the current
\r
2141 task then a yield must be performed. */
\r
2142 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2144 xYieldPending = pdTRUE;
\r
2148 mtCOVERAGE_TEST_MARKER();
\r
2152 if( pxTCB != NULL )
\r
2154 /* A task was unblocked while the scheduler was suspended,
\r
2155 which may have prevented the next unblock time from being
\r
2156 re-calculated, in which case re-calculate it now. Mainly
\r
2157 important for low power tickless implementations, where
\r
2158 this can prevent an unnecessary exit from low power
\r
2160 prvResetNextTaskUnblockTime();
\r
2163 /* If any ticks occurred while the scheduler was suspended then
\r
2164 they should be processed now. This ensures the tick count does
\r
2165 not slip, and that any delayed tasks are resumed at the correct
\r
2168 UBaseType_t uxPendedCounts = uxPendedTicks; /* Non-volatile copy. */
\r
2170 if( uxPendedCounts > ( UBaseType_t ) 0U )
\r
2174 if( xTaskIncrementTick() != pdFALSE )
\r
2176 xYieldPending = pdTRUE;
\r
2180 mtCOVERAGE_TEST_MARKER();
\r
2183 } while( uxPendedCounts > ( UBaseType_t ) 0U );
\r
2185 uxPendedTicks = 0;
\r
2189 mtCOVERAGE_TEST_MARKER();
\r
2193 if( xYieldPending != pdFALSE )
\r
2195 #if( configUSE_PREEMPTION != 0 )
\r
2197 xAlreadyYielded = pdTRUE;
\r
2200 taskYIELD_IF_USING_PREEMPTION();
\r
2204 mtCOVERAGE_TEST_MARKER();
\r
2210 mtCOVERAGE_TEST_MARKER();
\r
2213 taskEXIT_CRITICAL();
\r
2215 return xAlreadyYielded;
\r
2217 /*-----------------------------------------------------------*/
\r
2219 TickType_t xTaskGetTickCount( void )
\r
2221 TickType_t xTicks;
\r
2223 /* Critical section required if running on a 16 bit processor. */
\r
2224 portTICK_TYPE_ENTER_CRITICAL();
\r
2226 xTicks = xTickCount;
\r
2228 portTICK_TYPE_EXIT_CRITICAL();
\r
2232 /*-----------------------------------------------------------*/
\r
2234 TickType_t xTaskGetTickCountFromISR( void )
\r
2236 TickType_t xReturn;
\r
2237 UBaseType_t uxSavedInterruptStatus;
\r
2239 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2240 system call (or maximum API call) interrupt priority. Interrupts that are
\r
2241 above the maximum system call priority are kept permanently enabled, even
\r
2242 when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2243 FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2244 then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2245 failure if a FreeRTOS API function is called from an interrupt that has been
\r
2246 assigned a priority above the configured maximum system call priority.
\r
2247 Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2248 that have been assigned a priority at or (logically) below the maximum
\r
2249 system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2250 safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2251 More information (albeit Cortex-M specific) is provided on the following
\r
2252 link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
2253 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2255 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2257 xReturn = xTickCount;
\r
2259 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2263 /*-----------------------------------------------------------*/
\r
2265 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2267 /* A critical section is not required because the variables are of type
\r
2269 return uxCurrentNumberOfTasks;
\r
2271 /*-----------------------------------------------------------*/
\r
2273 char *pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2277 /* If null is passed in here then the name of the calling task is being
\r
2279 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2280 configASSERT( pxTCB );
\r
2281 return &( pxTCB->pcTaskName[ 0 ] );
\r
2283 /*-----------------------------------------------------------*/
\r
2285 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2287 static TCB_t *prvSearchForNameWithinSingleList( List_t *pxList, const char pcNameToQuery[] )
\r
2289 TCB_t *pxNextTCB, *pxFirstTCB, *pxReturn = NULL;
\r
2293 /* This function is called with the scheduler suspended. */
\r
2295 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2297 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
\r
2301 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
\r
2303 /* Check each character in the name looking for a match or
\r
2305 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2307 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2309 if( cNextChar != pcNameToQuery[ x ] )
\r
2311 /* Characters didn't match. */
\r
2314 else if( cNextChar == 0x00 )
\r
2316 /* Both strings terminated, a match must have been
\r
2318 pxReturn = pxNextTCB;
\r
2323 mtCOVERAGE_TEST_MARKER();
\r
2327 if( pxReturn != NULL )
\r
2329 /* The handle has been found. */
\r
2333 } while( pxNextTCB != pxFirstTCB );
\r
2337 mtCOVERAGE_TEST_MARKER();
\r
2343 #endif /* INCLUDE_xTaskGetHandle */
\r
2344 /*-----------------------------------------------------------*/
\r
2346 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2348 TaskHandle_t xTaskGetHandle( const char *pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2350 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2353 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2354 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2356 vTaskSuspendAll();
\r
2358 /* Search the ready lists. */
\r
2362 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2364 if( pxTCB != NULL )
\r
2366 /* Found the handle. */
\r
2370 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2372 /* Search the delayed lists. */
\r
2373 if( pxTCB == NULL )
\r
2375 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2378 if( pxTCB == NULL )
\r
2380 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2383 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2385 if( pxTCB == NULL )
\r
2387 /* Search the suspended list. */
\r
2388 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2393 #if( INCLUDE_vTaskDelete == 1 )
\r
2395 if( pxTCB == NULL )
\r
2397 /* Search the deleted list. */
\r
2398 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2403 ( void ) xTaskResumeAll();
\r
2405 return ( TaskHandle_t ) pxTCB;
\r
2408 #endif /* INCLUDE_xTaskGetHandle */
\r
2409 /*-----------------------------------------------------------*/
\r
2411 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2413 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime )
\r
2415 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2417 vTaskSuspendAll();
\r
2419 /* Is there a space in the array for each task in the system? */
\r
2420 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2422 /* Fill in an TaskStatus_t structure with information on each
\r
2423 task in the Ready state. */
\r
2427 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2429 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2431 /* Fill in an TaskStatus_t structure with information on each
\r
2432 task in the Blocked state. */
\r
2433 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2434 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2436 #if( INCLUDE_vTaskDelete == 1 )
\r
2438 /* Fill in an TaskStatus_t structure with information on
\r
2439 each task that has been deleted but not yet cleaned up. */
\r
2440 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2444 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2446 /* Fill in an TaskStatus_t structure with information on
\r
2447 each task in the Suspended state. */
\r
2448 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2452 #if ( configGENERATE_RUN_TIME_STATS == 1)
\r
2454 if( pulTotalRunTime != NULL )
\r
2456 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2457 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2459 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2465 if( pulTotalRunTime != NULL )
\r
2467 *pulTotalRunTime = 0;
\r
2474 mtCOVERAGE_TEST_MARKER();
\r
2477 ( void ) xTaskResumeAll();
\r
2482 #endif /* configUSE_TRACE_FACILITY */
\r
2483 /*----------------------------------------------------------*/
\r
2485 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2487 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2489 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2490 started, then xIdleTaskHandle will be NULL. */
\r
2491 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2492 return xIdleTaskHandle;
\r
2495 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2496 /*----------------------------------------------------------*/
\r
2498 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2499 This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2500 implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2502 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2504 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2506 /* Correct the tick count value after a period during which the tick
\r
2507 was suppressed. Note this does *not* call the tick hook function for
\r
2508 each stepped tick. */
\r
2509 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2510 xTickCount += xTicksToJump;
\r
2511 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2514 #endif /* configUSE_TICKLESS_IDLE */
\r
2515 /*----------------------------------------------------------*/
\r
2517 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2519 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2521 TCB_t *pxTCB = ( TCB_t * ) xTask;
\r
2522 BaseType_t xReturn;
\r
2524 configASSERT( pxTCB );
\r
2526 vTaskSuspendAll();
\r
2528 /* A task can only be prematurely removed from the Blocked state if
\r
2529 it is actually in the Blocked state. */
\r
2530 if( eTaskGetState( xTask ) == eBlocked )
\r
2534 /* Remove the reference to the task from the blocked list. An
\r
2535 interrupt won't touch the xStateListItem because the
\r
2536 scheduler is suspended. */
\r
2537 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2539 /* Is the task waiting on an event also? If so remove it from
\r
2540 the event list too. Interrupts can touch the event list item,
\r
2541 even though the scheduler is suspended, so a critical section
\r
2543 taskENTER_CRITICAL();
\r
2545 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2547 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2548 pxTCB->ucDelayAborted = pdTRUE;
\r
2552 mtCOVERAGE_TEST_MARKER();
\r
2555 taskEXIT_CRITICAL();
\r
2557 /* Place the unblocked task into the appropriate ready list. */
\r
2558 prvAddTaskToReadyList( pxTCB );
\r
2560 /* A task being unblocked cannot cause an immediate context
\r
2561 switch if preemption is turned off. */
\r
2562 #if ( configUSE_PREEMPTION == 1 )
\r
2564 /* Preemption is on, but a context switch should only be
\r
2565 performed if the unblocked task has a priority that is
\r
2566 equal to or higher than the currently executing task. */
\r
2567 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2569 /* Pend the yield to be performed when the scheduler
\r
2570 is unsuspended. */
\r
2571 xYieldPending = pdTRUE;
\r
2575 mtCOVERAGE_TEST_MARKER();
\r
2578 #endif /* configUSE_PREEMPTION */
\r
2585 ( void ) xTaskResumeAll();
\r
2590 #endif /* INCLUDE_xTaskAbortDelay */
\r
2591 /*----------------------------------------------------------*/
\r
2593 BaseType_t xTaskIncrementTick( void )
\r
2596 TickType_t xItemValue;
\r
2597 BaseType_t xSwitchRequired = pdFALSE;
\r
2599 /* Called by the portable layer each time a tick interrupt occurs.
\r
2600 Increments the tick then checks to see if the new tick value will cause any
\r
2601 tasks to be unblocked. */
\r
2602 traceTASK_INCREMENT_TICK( xTickCount );
\r
2603 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2605 /* Minor optimisation. The tick count cannot change in this
\r
2607 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2609 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2610 delayed lists if it wraps to 0. */
\r
2611 xTickCount = xConstTickCount;
\r
2613 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2615 taskSWITCH_DELAYED_LISTS();
\r
2619 mtCOVERAGE_TEST_MARKER();
\r
2622 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2623 the queue in the order of their wake time - meaning once one task
\r
2624 has been found whose block time has not expired there is no need to
\r
2625 look any further down the list. */
\r
2626 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2630 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2632 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2633 to the maximum possible value so it is extremely
\r
2635 if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2636 next time through. */
\r
2637 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2642 /* The delayed list is not empty, get the value of the
\r
2643 item at the head of the delayed list. This is the time
\r
2644 at which the task at the head of the delayed list must
\r
2645 be removed from the Blocked state. */
\r
2646 pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
2647 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2649 if( xConstTickCount < xItemValue )
\r
2651 /* It is not time to unblock this item yet, but the
\r
2652 item value is the time at which the task at the head
\r
2653 of the blocked list must be removed from the Blocked
\r
2654 state - so record the item value in
\r
2655 xNextTaskUnblockTime. */
\r
2656 xNextTaskUnblockTime = xItemValue;
\r
2661 mtCOVERAGE_TEST_MARKER();
\r
2664 /* It is time to remove the item from the Blocked state. */
\r
2665 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2667 /* Is the task waiting on an event also? If so remove
\r
2668 it from the event list. */
\r
2669 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2671 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2675 mtCOVERAGE_TEST_MARKER();
\r
2678 /* Place the unblocked task into the appropriate ready
\r
2680 prvAddTaskToReadyList( pxTCB );
\r
2682 /* A task being unblocked cannot cause an immediate
\r
2683 context switch if preemption is turned off. */
\r
2684 #if ( configUSE_PREEMPTION == 1 )
\r
2686 /* Preemption is on, but a context switch should
\r
2687 only be performed if the unblocked task has a
\r
2688 priority that is equal to or higher than the
\r
2689 currently executing task. */
\r
2690 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2692 xSwitchRequired = pdTRUE;
\r
2696 mtCOVERAGE_TEST_MARKER();
\r
2699 #endif /* configUSE_PREEMPTION */
\r
2704 /* Tasks of equal priority to the currently running task will share
\r
2705 processing time (time slice) if preemption is on, and the application
\r
2706 writer has not explicitly turned time slicing off. */
\r
2707 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2709 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2711 xSwitchRequired = pdTRUE;
\r
2715 mtCOVERAGE_TEST_MARKER();
\r
2718 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2720 #if ( configUSE_TICK_HOOK == 1 )
\r
2722 /* Guard against the tick hook being called when the pended tick
\r
2723 count is being unwound (when the scheduler is being unlocked). */
\r
2724 if( uxPendedTicks == ( UBaseType_t ) 0U )
\r
2726 vApplicationTickHook();
\r
2730 mtCOVERAGE_TEST_MARKER();
\r
2733 #endif /* configUSE_TICK_HOOK */
\r
2739 /* The tick hook gets called at regular intervals, even if the
\r
2740 scheduler is locked. */
\r
2741 #if ( configUSE_TICK_HOOK == 1 )
\r
2743 vApplicationTickHook();
\r
2748 #if ( configUSE_PREEMPTION == 1 )
\r
2750 if( xYieldPending != pdFALSE )
\r
2752 xSwitchRequired = pdTRUE;
\r
2756 mtCOVERAGE_TEST_MARKER();
\r
2759 #endif /* configUSE_PREEMPTION */
\r
2761 return xSwitchRequired;
\r
2763 /*-----------------------------------------------------------*/
\r
2765 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2767 void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction )
\r
2771 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2773 if( xTask == NULL )
\r
2775 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2779 xTCB = ( TCB_t * ) xTask;
\r
2782 /* Save the hook function in the TCB. A critical section is required as
\r
2783 the value can be accessed from an interrupt. */
\r
2784 taskENTER_CRITICAL();
\r
2786 xTCB->pxTaskTag = pxHookFunction;
\r
2788 taskEXIT_CRITICAL();
\r
2791 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2792 /*-----------------------------------------------------------*/
\r
2794 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2796 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2799 TaskHookFunction_t xReturn;
\r
2801 /* If xTask is NULL then we are setting our own task hook. */
\r
2802 if( xTask == NULL )
\r
2804 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2808 xTCB = ( TCB_t * ) xTask;
\r
2811 /* Save the hook function in the TCB. A critical section is required as
\r
2812 the value can be accessed from an interrupt. */
\r
2813 taskENTER_CRITICAL();
\r
2815 xReturn = xTCB->pxTaskTag;
\r
2817 taskEXIT_CRITICAL();
\r
2822 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2823 /*-----------------------------------------------------------*/
\r
2825 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2827 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter )
\r
2830 BaseType_t xReturn;
\r
2832 /* If xTask is NULL then we are calling our own task hook. */
\r
2833 if( xTask == NULL )
\r
2835 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2839 xTCB = ( TCB_t * ) xTask;
\r
2842 if( xTCB->pxTaskTag != NULL )
\r
2844 xReturn = xTCB->pxTaskTag( pvParameter );
\r
2854 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2855 /*-----------------------------------------------------------*/
\r
2857 void vTaskSwitchContext( void )
\r
2859 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
2861 /* The scheduler is currently suspended - do not allow a context
\r
2863 xYieldPending = pdTRUE;
\r
2867 xYieldPending = pdFALSE;
\r
2868 traceTASK_SWITCHED_OUT();
\r
2870 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2872 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2873 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
2875 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2878 /* Add the amount of time the task has been running to the
\r
2879 accumulated time so far. The time the task started running was
\r
2880 stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
2881 protection here so count values are only valid until the timer
\r
2882 overflows. The guard against negative values is to protect
\r
2883 against suspect run time stat counter implementations - which
\r
2884 are provided by the application, not the kernel. */
\r
2885 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
2887 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
2891 mtCOVERAGE_TEST_MARKER();
\r
2893 ulTaskSwitchedInTime = ulTotalRunTime;
\r
2895 #endif /* configGENERATE_RUN_TIME_STATS */
\r
2897 /* Check for stack overflow, if configured. */
\r
2898 taskCHECK_FOR_STACK_OVERFLOW();
\r
2900 /* Select a new task to run using either the generic C or port
\r
2901 optimised asm code. */
\r
2902 taskSELECT_HIGHEST_PRIORITY_TASK();
\r
2903 traceTASK_SWITCHED_IN();
\r
2905 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2907 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2908 structure specific to this task. */
\r
2909 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2911 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2914 /*-----------------------------------------------------------*/
\r
2916 void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait )
\r
2918 configASSERT( pxEventList );
\r
2920 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
2921 SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
2923 /* Place the event list item of the TCB in the appropriate event list.
\r
2924 This is placed in the list in priority order so the highest priority task
\r
2925 is the first to be woken by the event. The queue that contains the event
\r
2926 list is locked, preventing simultaneous access from interrupts. */
\r
2927 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
2929 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
2931 /*-----------------------------------------------------------*/
\r
2933 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait )
\r
2935 configASSERT( pxEventList );
\r
2937 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
2938 the event groups implementation. */
\r
2939 configASSERT( uxSchedulerSuspended != 0 );
\r
2941 /* Store the item value in the event list item. It is safe to access the
\r
2942 event list item here as interrupts won't access the event list item of a
\r
2943 task that is not in the Blocked state. */
\r
2944 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
2946 /* Place the event list item of the TCB at the end of the appropriate event
\r
2947 list. It is safe to access the event list here because it is part of an
\r
2948 event group implementation - and interrupts don't access event groups
\r
2949 directly (instead they access them indirectly by pending function calls to
\r
2950 the task level). */
\r
2951 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
2953 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
2955 /*-----------------------------------------------------------*/
\r
2957 #if( configUSE_TIMERS == 1 )
\r
2959 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely )
\r
2961 configASSERT( pxEventList );
\r
2963 /* This function should not be called by application code hence the
\r
2964 'Restricted' in its name. It is not part of the public API. It is
\r
2965 designed for use by kernel code, and has special calling requirements -
\r
2966 it should be called with the scheduler suspended. */
\r
2969 /* Place the event list item of the TCB in the appropriate event list.
\r
2970 In this case it is assume that this is the only task that is going to
\r
2971 be waiting on this event list, so the faster vListInsertEnd() function
\r
2972 can be used in place of vListInsert. */
\r
2973 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
2975 /* If the task should block indefinitely then set the block time to a
\r
2976 value that will be recognised as an indefinite delay inside the
\r
2977 prvAddCurrentTaskToDelayedList() function. */
\r
2978 if( xWaitIndefinitely != pdFALSE )
\r
2980 xTicksToWait = portMAX_DELAY;
\r
2983 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
2984 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
2987 #endif /* configUSE_TIMERS */
\r
2988 /*-----------------------------------------------------------*/
\r
2990 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
2992 TCB_t *pxUnblockedTCB;
\r
2993 BaseType_t xReturn;
\r
2995 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
2996 called from a critical section within an ISR. */
\r
2998 /* The event list is sorted in priority order, so the first in the list can
\r
2999 be removed as it is known to be the highest priority. Remove the TCB from
\r
3000 the delayed list, and add it to the ready list.
\r
3002 If an event is for a queue that is locked then this function will never
\r
3003 get called - the lock count on the queue will get modified instead. This
\r
3004 means exclusive access to the event list is guaranteed here.
\r
3006 This function assumes that a check has already been made to ensure that
\r
3007 pxEventList is not empty. */
\r
3008 pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
\r
3009 configASSERT( pxUnblockedTCB );
\r
3010 ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
\r
3012 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3014 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3015 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3019 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3020 pending until the scheduler is resumed. */
\r
3021 vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3024 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3026 /* Return true if the task removed from the event list has a higher
\r
3027 priority than the calling task. This allows the calling task to know if
\r
3028 it should force a context switch now. */
\r
3031 /* Mark that a yield is pending in case the user is not using the
\r
3032 "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3033 xYieldPending = pdTRUE;
\r
3037 xReturn = pdFALSE;
\r
3040 #if( configUSE_TICKLESS_IDLE != 0 )
\r
3042 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3043 might be set to the blocked task's time out time. If the task is
\r
3044 unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3045 normally left unchanged, because it is automatically reset to a new
\r
3046 value when the tick count equals xNextTaskUnblockTime. However if
\r
3047 tickless idling is used it might be more important to enter sleep mode
\r
3048 at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3049 ensure it is updated at the earliest possible time. */
\r
3050 prvResetNextTaskUnblockTime();
\r
3056 /*-----------------------------------------------------------*/
\r
3058 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue )
\r
3060 TCB_t *pxUnblockedTCB;
\r
3062 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3063 the event flags implementation. */
\r
3064 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3066 /* Store the new item value in the event list. */
\r
3067 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3069 /* Remove the event list form the event flag. Interrupts do not access
\r
3071 pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem );
\r
3072 configASSERT( pxUnblockedTCB );
\r
3073 ( void ) uxListRemove( pxEventListItem );
\r
3075 /* Remove the task from the delayed list and add it to the ready list. The
\r
3076 scheduler is suspended so interrupts will not be accessing the ready
\r
3078 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3079 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3081 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3083 /* The unblocked task has a priority above that of the calling task, so
\r
3084 a context switch is required. This function is called with the
\r
3085 scheduler suspended so xYieldPending is set so the context switch
\r
3086 occurs immediately that the scheduler is resumed (unsuspended). */
\r
3087 xYieldPending = pdTRUE;
\r
3090 /*-----------------------------------------------------------*/
\r
3092 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3094 configASSERT( pxTimeOut );
\r
3095 taskENTER_CRITICAL();
\r
3097 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3098 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3100 taskEXIT_CRITICAL();
\r
3102 /*-----------------------------------------------------------*/
\r
3104 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3106 /* For internal use only as it does not use a critical section. */
\r
3107 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3108 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3110 /*-----------------------------------------------------------*/
\r
3112 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait )
\r
3114 BaseType_t xReturn;
\r
3116 configASSERT( pxTimeOut );
\r
3117 configASSERT( pxTicksToWait );
\r
3119 taskENTER_CRITICAL();
\r
3121 /* Minor optimisation. The tick count cannot change in this block. */
\r
3122 const TickType_t xConstTickCount = xTickCount;
\r
3123 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3125 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
3126 if( pxCurrentTCB->ucDelayAborted != pdFALSE )
\r
3128 /* The delay was aborted, which is not the same as a time out,
\r
3129 but has the same result. */
\r
3130 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3136 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3137 if( *pxTicksToWait == portMAX_DELAY )
\r
3139 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3140 specified is the maximum block time then the task should block
\r
3141 indefinitely, and therefore never time out. */
\r
3142 xReturn = pdFALSE;
\r
3147 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3149 /* The tick count is greater than the time at which
\r
3150 vTaskSetTimeout() was called, but has also overflowed since
\r
3151 vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3152 around and gone past again. This passed since vTaskSetTimeout()
\r
3156 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3158 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3159 *pxTicksToWait -= xElapsedTime;
\r
3160 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3161 xReturn = pdFALSE;
\r
3165 *pxTicksToWait = 0;
\r
3169 taskEXIT_CRITICAL();
\r
3173 /*-----------------------------------------------------------*/
\r
3175 void vTaskMissedYield( void )
\r
3177 xYieldPending = pdTRUE;
\r
3179 /*-----------------------------------------------------------*/
\r
3181 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3183 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3185 UBaseType_t uxReturn;
\r
3188 if( xTask != NULL )
\r
3190 pxTCB = ( TCB_t * ) xTask;
\r
3191 uxReturn = pxTCB->uxTaskNumber;
\r
3201 #endif /* configUSE_TRACE_FACILITY */
\r
3202 /*-----------------------------------------------------------*/
\r
3204 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3206 void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle )
\r
3210 if( xTask != NULL )
\r
3212 pxTCB = ( TCB_t * ) xTask;
\r
3213 pxTCB->uxTaskNumber = uxHandle;
\r
3217 #endif /* configUSE_TRACE_FACILITY */
\r
3220 * -----------------------------------------------------------
\r
3222 * ----------------------------------------------------------
\r
3224 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3225 * language extensions. The equivalent prototype for this function is:
\r
3227 * void prvIdleTask( void *pvParameters );
\r
3230 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3232 /* Stop warnings. */
\r
3233 ( void ) pvParameters;
\r
3235 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3236 SCHEDULER IS STARTED. **/
\r
3238 /* In case a task that has a secure context deletes itself, in which case
\r
3239 the idle task is responsible for deleting the task's secure context, if
\r
3241 portTASK_CALLS_SECURE_FUNCTIONS();
\r
3245 /* See if any tasks have deleted themselves - if so then the idle task
\r
3246 is responsible for freeing the deleted task's TCB and stack. */
\r
3247 prvCheckTasksWaitingTermination();
\r
3249 #if ( configUSE_PREEMPTION == 0 )
\r
3251 /* If we are not using preemption we keep forcing a task switch to
\r
3252 see if any other task has become available. If we are using
\r
3253 preemption we don't need to do this as any task becoming available
\r
3254 will automatically get the processor anyway. */
\r
3257 #endif /* configUSE_PREEMPTION */
\r
3259 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3261 /* When using preemption tasks of equal priority will be
\r
3262 timesliced. If a task that is sharing the idle priority is ready
\r
3263 to run then the idle task should yield before the end of the
\r
3266 A critical region is not required here as we are just reading from
\r
3267 the list, and an occasional incorrect value will not matter. If
\r
3268 the ready list at the idle priority contains more than one task
\r
3269 then a task other than the idle task is ready to execute. */
\r
3270 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3276 mtCOVERAGE_TEST_MARKER();
\r
3279 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3281 #if ( configUSE_IDLE_HOOK == 1 )
\r
3283 extern void vApplicationIdleHook( void );
\r
3285 /* Call the user defined function from within the idle task. This
\r
3286 allows the application designer to add background functionality
\r
3287 without the overhead of a separate task.
\r
3288 NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3289 CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3290 vApplicationIdleHook();
\r
3292 #endif /* configUSE_IDLE_HOOK */
\r
3294 /* This conditional compilation should use inequality to 0, not equality
\r
3295 to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3296 user defined low power mode implementations require
\r
3297 configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3298 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3300 TickType_t xExpectedIdleTime;
\r
3302 /* It is not desirable to suspend then resume the scheduler on
\r
3303 each iteration of the idle task. Therefore, a preliminary
\r
3304 test of the expected idle time is performed without the
\r
3305 scheduler suspended. The result here is not necessarily
\r
3307 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3309 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3311 vTaskSuspendAll();
\r
3313 /* Now the scheduler is suspended, the expected idle
\r
3314 time can be sampled again, and this time its value can
\r
3316 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3317 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3319 /* Define the following macro to set xExpectedIdleTime to 0
\r
3320 if the application does not want
\r
3321 portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3322 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3324 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3326 traceLOW_POWER_IDLE_BEGIN();
\r
3327 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3328 traceLOW_POWER_IDLE_END();
\r
3332 mtCOVERAGE_TEST_MARKER();
\r
3335 ( void ) xTaskResumeAll();
\r
3339 mtCOVERAGE_TEST_MARKER();
\r
3342 #endif /* configUSE_TICKLESS_IDLE */
\r
3345 /*-----------------------------------------------------------*/
\r
3347 #if( configUSE_TICKLESS_IDLE != 0 )
\r
3349 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3351 /* The idle task exists in addition to the application tasks. */
\r
3352 const UBaseType_t uxNonApplicationTasks = 1;
\r
3353 eSleepModeStatus eReturn = eStandardSleep;
\r
3355 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3357 /* A task was made ready while the scheduler was suspended. */
\r
3358 eReturn = eAbortSleep;
\r
3360 else if( xYieldPending != pdFALSE )
\r
3362 /* A yield was pended while the scheduler was suspended. */
\r
3363 eReturn = eAbortSleep;
\r
3367 /* If all the tasks are in the suspended list (which might mean they
\r
3368 have an infinite block time rather than actually being suspended)
\r
3369 then it is safe to turn all clocks off and just wait for external
\r
3371 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3373 eReturn = eNoTasksWaitingTimeout;
\r
3377 mtCOVERAGE_TEST_MARKER();
\r
3384 #endif /* configUSE_TICKLESS_IDLE */
\r
3385 /*-----------------------------------------------------------*/
\r
3387 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3389 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue )
\r
3393 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3395 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3396 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3400 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3401 /*-----------------------------------------------------------*/
\r
3403 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3405 void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex )
\r
3407 void *pvReturn = NULL;
\r
3410 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3412 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3413 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3423 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3424 /*-----------------------------------------------------------*/
\r
3426 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3428 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions )
\r
3432 /* If null is passed in here then we are modifying the MPU settings of
\r
3433 the calling task. */
\r
3434 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3436 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3439 #endif /* portUSING_MPU_WRAPPERS */
\r
3440 /*-----------------------------------------------------------*/
\r
3442 static void prvInitialiseTaskLists( void )
\r
3444 UBaseType_t uxPriority;
\r
3446 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3448 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3451 vListInitialise( &xDelayedTaskList1 );
\r
3452 vListInitialise( &xDelayedTaskList2 );
\r
3453 vListInitialise( &xPendingReadyList );
\r
3455 #if ( INCLUDE_vTaskDelete == 1 )
\r
3457 vListInitialise( &xTasksWaitingTermination );
\r
3459 #endif /* INCLUDE_vTaskDelete */
\r
3461 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3463 vListInitialise( &xSuspendedTaskList );
\r
3465 #endif /* INCLUDE_vTaskSuspend */
\r
3467 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3469 pxDelayedTaskList = &xDelayedTaskList1;
\r
3470 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3472 /*-----------------------------------------------------------*/
\r
3474 static void prvCheckTasksWaitingTermination( void )
\r
3477 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3479 #if ( INCLUDE_vTaskDelete == 1 )
\r
3483 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3484 being called too often in the idle task. */
\r
3485 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3487 taskENTER_CRITICAL();
\r
3489 pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
\r
3490 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3491 --uxCurrentNumberOfTasks;
\r
3492 --uxDeletedTasksWaitingCleanUp;
\r
3494 taskEXIT_CRITICAL();
\r
3496 prvDeleteTCB( pxTCB );
\r
3499 #endif /* INCLUDE_vTaskDelete */
\r
3501 /*-----------------------------------------------------------*/
\r
3503 #if( configUSE_TRACE_FACILITY == 1 )
\r
3505 void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState )
\r
3509 /* xTask is NULL then get the state of the calling task. */
\r
3510 pxTCB = prvGetTCBFromHandle( xTask );
\r
3512 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3513 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName [ 0 ] );
\r
3514 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3515 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3516 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3518 #if ( configUSE_MUTEXES == 1 )
\r
3520 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3524 pxTaskStatus->uxBasePriority = 0;
\r
3528 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3530 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3534 pxTaskStatus->ulRunTimeCounter = 0;
\r
3538 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3539 value of eState passed into this function is eInvalid - otherwise the
\r
3540 state is just set to whatever is passed in. */
\r
3541 if( eState != eInvalid )
\r
3543 if( pxTCB == pxCurrentTCB )
\r
3545 pxTaskStatus->eCurrentState = eRunning;
\r
3549 pxTaskStatus->eCurrentState = eState;
\r
3551 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3553 /* If the task is in the suspended list then there is a
\r
3554 chance it is actually just blocked indefinitely - so really
\r
3555 it should be reported as being in the Blocked state. */
\r
3556 if( eState == eSuspended )
\r
3558 vTaskSuspendAll();
\r
3560 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3562 pxTaskStatus->eCurrentState = eBlocked;
\r
3565 ( void ) xTaskResumeAll();
\r
3568 #endif /* INCLUDE_vTaskSuspend */
\r
3573 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3576 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3577 parameter is provided to allow it to be skipped. */
\r
3578 if( xGetFreeStackSpace != pdFALSE )
\r
3580 #if ( portSTACK_GROWTH > 0 )
\r
3582 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3586 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3592 pxTaskStatus->usStackHighWaterMark = 0;
\r
3596 #endif /* configUSE_TRACE_FACILITY */
\r
3597 /*-----------------------------------------------------------*/
\r
3599 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3601 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState )
\r
3603 configLIST_VOLATILE TCB_t *pxNextTCB, *pxFirstTCB;
\r
3604 UBaseType_t uxTask = 0;
\r
3606 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3608 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
\r
3610 /* Populate an TaskStatus_t structure within the
\r
3611 pxTaskStatusArray array for each task that is referenced from
\r
3612 pxList. See the definition of TaskStatus_t in task.h for the
\r
3613 meaning of each TaskStatus_t structure member. */
\r
3616 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
\r
3617 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3619 } while( pxNextTCB != pxFirstTCB );
\r
3623 mtCOVERAGE_TEST_MARKER();
\r
3629 #endif /* configUSE_TRACE_FACILITY */
\r
3630 /*-----------------------------------------------------------*/
\r
3632 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
\r
3634 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3636 uint32_t ulCount = 0U;
\r
3638 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3640 pucStackByte -= portSTACK_GROWTH;
\r
3644 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3646 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3649 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */
\r
3650 /*-----------------------------------------------------------*/
\r
3652 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3654 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3657 uint8_t *pucEndOfStack;
\r
3658 UBaseType_t uxReturn;
\r
3660 pxTCB = prvGetTCBFromHandle( xTask );
\r
3662 #if portSTACK_GROWTH < 0
\r
3664 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3668 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3672 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3677 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3678 /*-----------------------------------------------------------*/
\r
3680 #if ( INCLUDE_vTaskDelete == 1 )
\r
3682 static void prvDeleteTCB( TCB_t *pxTCB )
\r
3684 /* This call is required specifically for the TriCore port. It must be
\r
3685 above the vPortFree() calls. The call is also used by ports/demos that
\r
3686 want to allocate and clean RAM statically. */
\r
3687 portCLEAN_UP_TCB( pxTCB );
\r
3689 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3690 to the task to free any memory allocated at the application level. */
\r
3691 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3693 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3695 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3697 #if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3699 /* The task can only have been allocated dynamically - free both
\r
3700 the stack and TCB. */
\r
3701 vPortFree( pxTCB->pxStack );
\r
3702 vPortFree( pxTCB );
\r
3704 #elif( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 Macro has been consolidated for readability reasons. */
\r
3706 /* The task could have been allocated statically or dynamically, so
\r
3707 check what was statically allocated before trying to free the
\r
3709 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3711 /* Both the stack and TCB were allocated dynamically, so both
\r
3713 vPortFree( pxTCB->pxStack );
\r
3714 vPortFree( pxTCB );
\r
3716 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3718 /* Only the stack was statically allocated, so the TCB is the
\r
3719 only memory that must be freed. */
\r
3720 vPortFree( pxTCB );
\r
3724 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3725 nothing needs to be freed. */
\r
3726 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
3727 mtCOVERAGE_TEST_MARKER();
\r
3730 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3733 #endif /* INCLUDE_vTaskDelete */
\r
3734 /*-----------------------------------------------------------*/
\r
3736 static void prvResetNextTaskUnblockTime( void )
\r
3740 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
3742 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
3743 the maximum possible value so it is extremely unlikely that the
\r
3744 if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
3745 there is an item in the delayed list. */
\r
3746 xNextTaskUnblockTime = portMAX_DELAY;
\r
3750 /* The new current delayed list is not empty, get the value of
\r
3751 the item at the head of the delayed list. This is the time at
\r
3752 which the task at the head of the delayed list should be removed
\r
3753 from the Blocked state. */
\r
3754 ( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
3755 xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xStateListItem ) );
\r
3758 /*-----------------------------------------------------------*/
\r
3760 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
3762 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
3764 TaskHandle_t xReturn;
\r
3766 /* A critical section is not required as this is not called from
\r
3767 an interrupt and the current TCB will always be the same for any
\r
3768 individual execution thread. */
\r
3769 xReturn = pxCurrentTCB;
\r
3774 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
3775 /*-----------------------------------------------------------*/
\r
3777 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
3779 BaseType_t xTaskGetSchedulerState( void )
\r
3781 BaseType_t xReturn;
\r
3783 if( xSchedulerRunning == pdFALSE )
\r
3785 xReturn = taskSCHEDULER_NOT_STARTED;
\r
3789 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3791 xReturn = taskSCHEDULER_RUNNING;
\r
3795 xReturn = taskSCHEDULER_SUSPENDED;
\r
3802 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
3803 /*-----------------------------------------------------------*/
\r
3805 #if ( configUSE_MUTEXES == 1 )
\r
3807 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
3809 TCB_t * const pxMutexHolderTCB = ( TCB_t * ) pxMutexHolder;
\r
3810 BaseType_t xReturn = pdFALSE;
\r
3812 /* If the mutex was given back by an interrupt while the queue was
\r
3813 locked then the mutex holder might now be NULL. _RB_ Is this still
\r
3814 needed as interrupts can no longer use mutexes? */
\r
3815 if( pxMutexHolder != NULL )
\r
3817 /* If the holder of the mutex has a priority below the priority of
\r
3818 the task attempting to obtain the mutex then it will temporarily
\r
3819 inherit the priority of the task attempting to obtain the mutex. */
\r
3820 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
3822 /* Adjust the mutex holder state to account for its new
\r
3823 priority. Only reset the event list item value if the value is
\r
3824 not being used for anything else. */
\r
3825 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
3827 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
3831 mtCOVERAGE_TEST_MARKER();
\r
3834 /* If the task being modified is in the ready state it will need
\r
3835 to be moved into a new list. */
\r
3836 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
3838 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
3840 taskRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority );
\r
3844 mtCOVERAGE_TEST_MARKER();
\r
3847 /* Inherit the priority before being moved into the new list. */
\r
3848 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
3849 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
3853 /* Just inherit the priority. */
\r
3854 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
3857 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
3859 /* Inheritance occurred. */
\r
3864 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
3866 /* The base priority of the mutex holder is lower than the
\r
3867 priority of the task attempting to take the mutex, but the
\r
3868 current priority of the mutex holder is not lower than the
\r
3869 priority of the task attempting to take the mutex.
\r
3870 Therefore the mutex holder must have already inherited a
\r
3871 priority, but inheritance would have occurred if that had
\r
3872 not been the case. */
\r
3877 mtCOVERAGE_TEST_MARKER();
\r
3883 mtCOVERAGE_TEST_MARKER();
\r
3889 #endif /* configUSE_MUTEXES */
\r
3890 /*-----------------------------------------------------------*/
\r
3892 #if ( configUSE_MUTEXES == 1 )
\r
3894 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
3896 TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
\r
3897 BaseType_t xReturn = pdFALSE;
\r
3899 if( pxMutexHolder != NULL )
\r
3901 /* A task can only have an inherited priority if it holds the mutex.
\r
3902 If the mutex is held by a task then it cannot be given from an
\r
3903 interrupt, and if a mutex is given by the holding task then it must
\r
3904 be the running state task. */
\r
3905 configASSERT( pxTCB == pxCurrentTCB );
\r
3906 configASSERT( pxTCB->uxMutexesHeld );
\r
3907 ( pxTCB->uxMutexesHeld )--;
\r
3909 /* Has the holder of the mutex inherited the priority of another
\r
3911 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
3913 /* Only disinherit if no other mutexes are held. */
\r
3914 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
3916 /* A task can only have an inherited priority if it holds
\r
3917 the mutex. If the mutex is held by a task then it cannot be
\r
3918 given from an interrupt, and if a mutex is given by the
\r
3919 holding task then it must be the running state task. Remove
\r
3920 the holding task from the ready list. */
\r
3921 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
3923 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
3927 mtCOVERAGE_TEST_MARKER();
\r
3930 /* Disinherit the priority before adding the task into the
\r
3931 new ready list. */
\r
3932 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
3933 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
3935 /* Reset the event list item value. It cannot be in use for
\r
3936 any other purpose if this task is running, and it must be
\r
3937 running to give back the mutex. */
\r
3938 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
3939 prvAddTaskToReadyList( pxTCB );
\r
3941 /* Return true to indicate that a context switch is required.
\r
3942 This is only actually required in the corner case whereby
\r
3943 multiple mutexes were held and the mutexes were given back
\r
3944 in an order different to that in which they were taken.
\r
3945 If a context switch did not occur when the first mutex was
\r
3946 returned, even if a task was waiting on it, then a context
\r
3947 switch should occur when the last mutex is returned whether
\r
3948 a task is waiting on it or not. */
\r
3953 mtCOVERAGE_TEST_MARKER();
\r
3958 mtCOVERAGE_TEST_MARKER();
\r
3963 mtCOVERAGE_TEST_MARKER();
\r
3969 #endif /* configUSE_MUTEXES */
\r
3970 /*-----------------------------------------------------------*/
\r
3972 #if ( configUSE_MUTEXES == 1 )
\r
3974 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder, UBaseType_t uxHighestPriorityWaitingTask )
\r
3976 TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
\r
3977 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
3978 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
3980 if( pxMutexHolder != NULL )
\r
3982 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
3984 configASSERT( pxTCB->uxMutexesHeld );
\r
3986 /* Determine the priority to which the priority of the task that
\r
3987 holds the mutex should be set. This will be the greater of the
\r
3988 holding task's base priority and the priority of the highest
\r
3989 priority task that is waiting to obtain the mutex. */
\r
3990 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
3992 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
3996 uxPriorityToUse = pxTCB->uxBasePriority;
\r
3999 /* Does the priority need to change? */
\r
4000 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4002 /* Only disinherit if no other mutexes are held. This is a
\r
4003 simplification in the priority inheritance implementation. If
\r
4004 the task that holds the mutex is also holding other mutexes then
\r
4005 the other mutexes may have caused the priority inheritance. */
\r
4006 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4008 /* If a task has timed out because it already holds the
\r
4009 mutex it was trying to obtain then it cannot of inherited
\r
4010 its own priority. */
\r
4011 configASSERT( pxTCB != pxCurrentTCB );
\r
4013 /* Disinherit the priority, remembering the previous
\r
4014 priority to facilitate determining the subject task's
\r
4016 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4017 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4018 pxTCB->uxPriority = uxPriorityToUse;
\r
4020 /* Only reset the event list item value if the value is not
\r
4021 being used for anything else. */
\r
4022 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4024 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4028 mtCOVERAGE_TEST_MARKER();
\r
4031 /* If the running task is not the task that holds the mutex
\r
4032 then the task that holds the mutex could be in either the
\r
4033 Ready, Blocked or Suspended states. Only remove the task
\r
4034 from its current state list if it is in the Ready state as
\r
4035 the task's priority is going to change and there is one
\r
4036 Ready list per priority. */
\r
4037 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4039 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4041 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
4045 mtCOVERAGE_TEST_MARKER();
\r
4048 prvAddTaskToReadyList( pxTCB );
\r
4052 mtCOVERAGE_TEST_MARKER();
\r
4057 mtCOVERAGE_TEST_MARKER();
\r
4062 mtCOVERAGE_TEST_MARKER();
\r
4067 mtCOVERAGE_TEST_MARKER();
\r
4071 #endif /* configUSE_MUTEXES */
\r
4072 /*-----------------------------------------------------------*/
\r
4074 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4076 void vTaskEnterCritical( void )
\r
4078 portDISABLE_INTERRUPTS();
\r
4080 if( xSchedulerRunning != pdFALSE )
\r
4082 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4084 /* This is not the interrupt safe version of the enter critical
\r
4085 function so assert() if it is being called from an interrupt
\r
4086 context. Only API functions that end in "FromISR" can be used in an
\r
4087 interrupt. Only assert if the critical nesting count is 1 to
\r
4088 protect against recursive calls if the assert function also uses a
\r
4089 critical section. */
\r
4090 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4092 portASSERT_IF_IN_ISR();
\r
4097 mtCOVERAGE_TEST_MARKER();
\r
4101 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4102 /*-----------------------------------------------------------*/
\r
4104 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4106 void vTaskExitCritical( void )
\r
4108 if( xSchedulerRunning != pdFALSE )
\r
4110 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4112 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4114 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4116 portENABLE_INTERRUPTS();
\r
4120 mtCOVERAGE_TEST_MARKER();
\r
4125 mtCOVERAGE_TEST_MARKER();
\r
4130 mtCOVERAGE_TEST_MARKER();
\r
4134 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4135 /*-----------------------------------------------------------*/
\r
4137 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4139 static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName )
\r
4143 /* Start by copying the entire string. */
\r
4144 strcpy( pcBuffer, pcTaskName );
\r
4146 /* Pad the end of the string with spaces to ensure columns line up when
\r
4148 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4150 pcBuffer[ x ] = ' ';
\r
4154 pcBuffer[ x ] = 0x00;
\r
4156 /* Return the new end of string. */
\r
4157 return &( pcBuffer[ x ] );
\r
4160 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4161 /*-----------------------------------------------------------*/
\r
4163 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4165 void vTaskList( char * pcWriteBuffer )
\r
4167 TaskStatus_t *pxTaskStatusArray;
\r
4168 volatile UBaseType_t uxArraySize, x;
\r
4174 * This function is provided for convenience only, and is used by many
\r
4175 * of the demo applications. Do not consider it to be part of the
\r
4178 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4179 * uxTaskGetSystemState() output into a human readable table that
\r
4180 * displays task names, states and stack usage.
\r
4182 * vTaskList() has a dependency on the sprintf() C library function that
\r
4183 * might bloat the code size, use a lot of stack, and provide different
\r
4184 * results on different platforms. An alternative, tiny, third party,
\r
4185 * and limited functionality implementation of sprintf() is provided in
\r
4186 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4187 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4188 * snprintf() implementation!).
\r
4190 * It is recommended that production systems call uxTaskGetSystemState()
\r
4191 * directly to get access to raw stats data, rather than indirectly
\r
4192 * through a call to vTaskList().
\r
4196 /* Make sure the write buffer does not contain a string. */
\r
4197 *pcWriteBuffer = 0x00;
\r
4199 /* Take a snapshot of the number of tasks in case it changes while this
\r
4200 function is executing. */
\r
4201 uxArraySize = uxCurrentNumberOfTasks;
\r
4203 /* Allocate an array index for each task. NOTE! if
\r
4204 configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4205 equate to NULL. */
\r
4206 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
\r
4208 if( pxTaskStatusArray != NULL )
\r
4210 /* Generate the (binary) data. */
\r
4211 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4213 /* Create a human readable table from the binary data. */
\r
4214 for( x = 0; x < uxArraySize; x++ )
\r
4216 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4218 case eRunning: cStatus = tskRUNNING_CHAR;
\r
4221 case eReady: cStatus = tskREADY_CHAR;
\r
4224 case eBlocked: cStatus = tskBLOCKED_CHAR;
\r
4227 case eSuspended: cStatus = tskSUSPENDED_CHAR;
\r
4230 case eDeleted: cStatus = tskDELETED_CHAR;
\r
4233 default: /* Should not get here, but it is included
\r
4234 to prevent static checking errors. */
\r
4239 /* Write the task name to the string, padding with spaces so it
\r
4240 can be printed in tabular form more easily. */
\r
4241 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4243 /* Write the rest of the string. */
\r
4244 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
\r
4245 pcWriteBuffer += strlen( pcWriteBuffer );
\r
4248 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4249 is 0 then vPortFree() will be #defined to nothing. */
\r
4250 vPortFree( pxTaskStatusArray );
\r
4254 mtCOVERAGE_TEST_MARKER();
\r
4258 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4259 /*----------------------------------------------------------*/
\r
4261 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4263 void vTaskGetRunTimeStats( char *pcWriteBuffer )
\r
4265 TaskStatus_t *pxTaskStatusArray;
\r
4266 volatile UBaseType_t uxArraySize, x;
\r
4267 uint32_t ulTotalTime, ulStatsAsPercentage;
\r
4269 #if( configUSE_TRACE_FACILITY != 1 )
\r
4271 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4278 * This function is provided for convenience only, and is used by many
\r
4279 * of the demo applications. Do not consider it to be part of the
\r
4282 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4283 * of the uxTaskGetSystemState() output into a human readable table that
\r
4284 * displays the amount of time each task has spent in the Running state
\r
4285 * in both absolute and percentage terms.
\r
4287 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4288 * function that might bloat the code size, use a lot of stack, and
\r
4289 * provide different results on different platforms. An alternative,
\r
4290 * tiny, third party, and limited functionality implementation of
\r
4291 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4292 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4293 * a full snprintf() implementation!).
\r
4295 * It is recommended that production systems call uxTaskGetSystemState()
\r
4296 * directly to get access to raw stats data, rather than indirectly
\r
4297 * through a call to vTaskGetRunTimeStats().
\r
4300 /* Make sure the write buffer does not contain a string. */
\r
4301 *pcWriteBuffer = 0x00;
\r
4303 /* Take a snapshot of the number of tasks in case it changes while this
\r
4304 function is executing. */
\r
4305 uxArraySize = uxCurrentNumberOfTasks;
\r
4307 /* Allocate an array index for each task. NOTE! If
\r
4308 configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4309 equate to NULL. */
\r
4310 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
\r
4312 if( pxTaskStatusArray != NULL )
\r
4314 /* Generate the (binary) data. */
\r
4315 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4317 /* For percentage calculations. */
\r
4318 ulTotalTime /= 100UL;
\r
4320 /* Avoid divide by zero errors. */
\r
4321 if( ulTotalTime > 0 )
\r
4323 /* Create a human readable table from the binary data. */
\r
4324 for( x = 0; x < uxArraySize; x++ )
\r
4326 /* What percentage of the total run time has the task used?
\r
4327 This will always be rounded down to the nearest integer.
\r
4328 ulTotalRunTimeDiv100 has already been divided by 100. */
\r
4329 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4331 /* Write the task name to the string, padding with
\r
4332 spaces so it can be printed in tabular form more
\r
4334 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4336 if( ulStatsAsPercentage > 0UL )
\r
4338 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4340 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4344 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4345 printf() library can be used. */
\r
4346 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage );
\r
4352 /* If the percentage is zero here then the task has
\r
4353 consumed less than 1% of the total run time. */
\r
4354 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4356 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4360 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4361 printf() library can be used. */
\r
4362 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4367 pcWriteBuffer += strlen( pcWriteBuffer );
\r
4372 mtCOVERAGE_TEST_MARKER();
\r
4375 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4376 is 0 then vPortFree() will be #defined to nothing. */
\r
4377 vPortFree( pxTaskStatusArray );
\r
4381 mtCOVERAGE_TEST_MARKER();
\r
4385 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4386 /*-----------------------------------------------------------*/
\r
4388 TickType_t uxTaskResetEventItemValue( void )
\r
4390 TickType_t uxReturn;
\r
4392 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4394 /* Reset the event list item to its normal value - so it can be used with
\r
4395 queues and semaphores. */
\r
4396 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4400 /*-----------------------------------------------------------*/
\r
4402 #if ( configUSE_MUTEXES == 1 )
\r
4404 void *pvTaskIncrementMutexHeldCount( void )
\r
4406 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4407 then pxCurrentTCB will be NULL. */
\r
4408 if( pxCurrentTCB != NULL )
\r
4410 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4413 return pxCurrentTCB;
\r
4416 #endif /* configUSE_MUTEXES */
\r
4417 /*-----------------------------------------------------------*/
\r
4419 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4421 uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait )
\r
4423 uint32_t ulReturn;
\r
4425 taskENTER_CRITICAL();
\r
4427 /* Only block if the notification count is not already non-zero. */
\r
4428 if( pxCurrentTCB->ulNotifiedValue == 0UL )
\r
4430 /* Mark this task as waiting for a notification. */
\r
4431 pxCurrentTCB->ucNotifyState = taskWAITING_NOTIFICATION;
\r
4433 if( xTicksToWait > ( TickType_t ) 0 )
\r
4435 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4436 traceTASK_NOTIFY_TAKE_BLOCK();
\r
4438 /* All ports are written to allow a yield in a critical
\r
4439 section (some will yield immediately, others wait until the
\r
4440 critical section exits) - but it is not something that
\r
4441 application code should ever do. */
\r
4442 portYIELD_WITHIN_API();
\r
4446 mtCOVERAGE_TEST_MARKER();
\r
4451 mtCOVERAGE_TEST_MARKER();
\r
4454 taskEXIT_CRITICAL();
\r
4456 taskENTER_CRITICAL();
\r
4458 traceTASK_NOTIFY_TAKE();
\r
4459 ulReturn = pxCurrentTCB->ulNotifiedValue;
\r
4461 if( ulReturn != 0UL )
\r
4463 if( xClearCountOnExit != pdFALSE )
\r
4465 pxCurrentTCB->ulNotifiedValue = 0UL;
\r
4469 pxCurrentTCB->ulNotifiedValue = ulReturn - ( uint32_t ) 1;
\r
4474 mtCOVERAGE_TEST_MARKER();
\r
4477 pxCurrentTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
4479 taskEXIT_CRITICAL();
\r
4484 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4485 /*-----------------------------------------------------------*/
\r
4487 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4489 BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait )
\r
4491 BaseType_t xReturn;
\r
4493 taskENTER_CRITICAL();
\r
4495 /* Only block if a notification is not already pending. */
\r
4496 if( pxCurrentTCB->ucNotifyState != taskNOTIFICATION_RECEIVED )
\r
4498 /* Clear bits in the task's notification value as bits may get
\r
4499 set by the notifying task or interrupt. This can be used to
\r
4500 clear the value to zero. */
\r
4501 pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnEntry;
\r
4503 /* Mark this task as waiting for a notification. */
\r
4504 pxCurrentTCB->ucNotifyState = taskWAITING_NOTIFICATION;
\r
4506 if( xTicksToWait > ( TickType_t ) 0 )
\r
4508 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4509 traceTASK_NOTIFY_WAIT_BLOCK();
\r
4511 /* All ports are written to allow a yield in a critical
\r
4512 section (some will yield immediately, others wait until the
\r
4513 critical section exits) - but it is not something that
\r
4514 application code should ever do. */
\r
4515 portYIELD_WITHIN_API();
\r
4519 mtCOVERAGE_TEST_MARKER();
\r
4524 mtCOVERAGE_TEST_MARKER();
\r
4527 taskEXIT_CRITICAL();
\r
4529 taskENTER_CRITICAL();
\r
4531 traceTASK_NOTIFY_WAIT();
\r
4533 if( pulNotificationValue != NULL )
\r
4535 /* Output the current notification value, which may or may not
\r
4537 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue;
\r
4540 /* If ucNotifyValue is set then either the task never entered the
\r
4541 blocked state (because a notification was already pending) or the
\r
4542 task unblocked because of a notification. Otherwise the task
\r
4543 unblocked because of a timeout. */
\r
4544 if( pxCurrentTCB->ucNotifyState != taskNOTIFICATION_RECEIVED )
\r
4546 /* A notification was not received. */
\r
4547 xReturn = pdFALSE;
\r
4551 /* A notification was already pending or a notification was
\r
4552 received while the task was waiting. */
\r
4553 pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnExit;
\r
4557 pxCurrentTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
4559 taskEXIT_CRITICAL();
\r
4564 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4565 /*-----------------------------------------------------------*/
\r
4567 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4569 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue )
\r
4572 BaseType_t xReturn = pdPASS;
\r
4573 uint8_t ucOriginalNotifyState;
\r
4575 configASSERT( xTaskToNotify );
\r
4576 pxTCB = ( TCB_t * ) xTaskToNotify;
\r
4578 taskENTER_CRITICAL();
\r
4580 if( pulPreviousNotificationValue != NULL )
\r
4582 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue;
\r
4585 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
4587 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
4592 pxTCB->ulNotifiedValue |= ulValue;
\r
4596 ( pxTCB->ulNotifiedValue )++;
\r
4599 case eSetValueWithOverwrite :
\r
4600 pxTCB->ulNotifiedValue = ulValue;
\r
4603 case eSetValueWithoutOverwrite :
\r
4604 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4606 pxTCB->ulNotifiedValue = ulValue;
\r
4610 /* The value could not be written to the task. */
\r
4616 /* The task is being notified without its notify value being
\r
4621 traceTASK_NOTIFY();
\r
4623 /* If the task is in the blocked state specifically to wait for a
\r
4624 notification then unblock it now. */
\r
4625 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4627 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4628 prvAddTaskToReadyList( pxTCB );
\r
4630 /* The task should not have been on an event list. */
\r
4631 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4633 #if( configUSE_TICKLESS_IDLE != 0 )
\r
4635 /* If a task is blocked waiting for a notification then
\r
4636 xNextTaskUnblockTime might be set to the blocked task's time
\r
4637 out time. If the task is unblocked for a reason other than
\r
4638 a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4639 because it will automatically get reset to a new value when
\r
4640 the tick count equals xNextTaskUnblockTime. However if
\r
4641 tickless idling is used it might be more important to enter
\r
4642 sleep mode at the earliest possible time - so reset
\r
4643 xNextTaskUnblockTime here to ensure it is updated at the
\r
4644 earliest possible time. */
\r
4645 prvResetNextTaskUnblockTime();
\r
4649 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4651 /* The notified task has a priority above the currently
\r
4652 executing task so a yield is required. */
\r
4653 taskYIELD_IF_USING_PREEMPTION();
\r
4657 mtCOVERAGE_TEST_MARKER();
\r
4662 mtCOVERAGE_TEST_MARKER();
\r
4665 taskEXIT_CRITICAL();
\r
4670 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4671 /*-----------------------------------------------------------*/
\r
4673 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4675 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken )
\r
4678 uint8_t ucOriginalNotifyState;
\r
4679 BaseType_t xReturn = pdPASS;
\r
4680 UBaseType_t uxSavedInterruptStatus;
\r
4682 configASSERT( xTaskToNotify );
\r
4684 /* RTOS ports that support interrupt nesting have the concept of a
\r
4685 maximum system call (or maximum API call) interrupt priority.
\r
4686 Interrupts that are above the maximum system call priority are keep
\r
4687 permanently enabled, even when the RTOS kernel is in a critical section,
\r
4688 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4689 is defined in FreeRTOSConfig.h then
\r
4690 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4691 failure if a FreeRTOS API function is called from an interrupt that has
\r
4692 been assigned a priority above the configured maximum system call
\r
4693 priority. Only FreeRTOS functions that end in FromISR can be called
\r
4694 from interrupts that have been assigned a priority at or (logically)
\r
4695 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
4696 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
4697 simple as possible. More information (albeit Cortex-M specific) is
\r
4698 provided on the following link:
\r
4699 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
4700 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
4702 pxTCB = ( TCB_t * ) xTaskToNotify;
\r
4704 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
4706 if( pulPreviousNotificationValue != NULL )
\r
4708 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue;
\r
4711 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
4712 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
4717 pxTCB->ulNotifiedValue |= ulValue;
\r
4721 ( pxTCB->ulNotifiedValue )++;
\r
4724 case eSetValueWithOverwrite :
\r
4725 pxTCB->ulNotifiedValue = ulValue;
\r
4728 case eSetValueWithoutOverwrite :
\r
4729 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4731 pxTCB->ulNotifiedValue = ulValue;
\r
4735 /* The value could not be written to the task. */
\r
4741 /* The task is being notified without its notify value being
\r
4746 traceTASK_NOTIFY_FROM_ISR();
\r
4748 /* If the task is in the blocked state specifically to wait for a
\r
4749 notification then unblock it now. */
\r
4750 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4752 /* The task should not have been on an event list. */
\r
4753 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4755 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4757 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4758 prvAddTaskToReadyList( pxTCB );
\r
4762 /* The delayed and ready lists cannot be accessed, so hold
\r
4763 this task pending until the scheduler is resumed. */
\r
4764 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
4767 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4769 /* The notified task has a priority above the currently
\r
4770 executing task so a yield is required. */
\r
4771 if( pxHigherPriorityTaskWoken != NULL )
\r
4773 *pxHigherPriorityTaskWoken = pdTRUE;
\r
4777 /* Mark that a yield is pending in case the user is not
\r
4778 using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
4779 safe FreeRTOS function. */
\r
4780 xYieldPending = pdTRUE;
\r
4785 mtCOVERAGE_TEST_MARKER();
\r
4789 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
4794 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4795 /*-----------------------------------------------------------*/
\r
4797 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4799 void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken )
\r
4802 uint8_t ucOriginalNotifyState;
\r
4803 UBaseType_t uxSavedInterruptStatus;
\r
4805 configASSERT( xTaskToNotify );
\r
4807 /* RTOS ports that support interrupt nesting have the concept of a
\r
4808 maximum system call (or maximum API call) interrupt priority.
\r
4809 Interrupts that are above the maximum system call priority are keep
\r
4810 permanently enabled, even when the RTOS kernel is in a critical section,
\r
4811 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4812 is defined in FreeRTOSConfig.h then
\r
4813 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4814 failure if a FreeRTOS API function is called from an interrupt that has
\r
4815 been assigned a priority above the configured maximum system call
\r
4816 priority. Only FreeRTOS functions that end in FromISR can be called
\r
4817 from interrupts that have been assigned a priority at or (logically)
\r
4818 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
4819 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
4820 simple as possible. More information (albeit Cortex-M specific) is
\r
4821 provided on the following link:
\r
4822 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
4823 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
4825 pxTCB = ( TCB_t * ) xTaskToNotify;
\r
4827 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
4829 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
4830 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
4832 /* 'Giving' is equivalent to incrementing a count in a counting
\r
4834 ( pxTCB->ulNotifiedValue )++;
\r
4836 traceTASK_NOTIFY_GIVE_FROM_ISR();
\r
4838 /* If the task is in the blocked state specifically to wait for a
\r
4839 notification then unblock it now. */
\r
4840 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4842 /* The task should not have been on an event list. */
\r
4843 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4845 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4847 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4848 prvAddTaskToReadyList( pxTCB );
\r
4852 /* The delayed and ready lists cannot be accessed, so hold
\r
4853 this task pending until the scheduler is resumed. */
\r
4854 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
4857 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4859 /* The notified task has a priority above the currently
\r
4860 executing task so a yield is required. */
\r
4861 if( pxHigherPriorityTaskWoken != NULL )
\r
4863 *pxHigherPriorityTaskWoken = pdTRUE;
\r
4867 /* Mark that a yield is pending in case the user is not
\r
4868 using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
4869 safe FreeRTOS function. */
\r
4870 xYieldPending = pdTRUE;
\r
4875 mtCOVERAGE_TEST_MARKER();
\r
4879 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
4882 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4884 /*-----------------------------------------------------------*/
\r
4886 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4888 BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask )
\r
4891 BaseType_t xReturn;
\r
4893 /* If null is passed in here then it is the calling task that is having
\r
4894 its notification state cleared. */
\r
4895 pxTCB = prvGetTCBFromHandle( xTask );
\r
4897 taskENTER_CRITICAL();
\r
4899 if( pxTCB->ucNotifyState == taskNOTIFICATION_RECEIVED )
\r
4901 pxTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
4909 taskEXIT_CRITICAL();
\r
4914 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4915 /*-----------------------------------------------------------*/
\r
4918 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely )
\r
4920 TickType_t xTimeToWake;
\r
4921 const TickType_t xConstTickCount = xTickCount;
\r
4923 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
4925 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
4926 reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
4927 when the task leaves the Blocked state. */
\r
4928 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
4932 /* Remove the task from the ready list before adding it to the blocked list
\r
4933 as the same list item is used for both lists. */
\r
4934 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4936 /* The current task must be in a ready list, so there is no need to
\r
4937 check, and the port reset macro can be called directly. */
\r
4938 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
\r
4942 mtCOVERAGE_TEST_MARKER();
\r
4945 #if ( INCLUDE_vTaskSuspend == 1 )
\r
4947 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
4949 /* Add the task to the suspended task list instead of a delayed task
\r
4950 list to ensure it is not woken by a timing event. It will block
\r
4952 vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
4956 /* Calculate the time at which the task should be woken if the event
\r
4957 does not occur. This may overflow but this doesn't matter, the
\r
4958 kernel will manage it correctly. */
\r
4959 xTimeToWake = xConstTickCount + xTicksToWait;
\r
4961 /* The list item will be inserted in wake time order. */
\r
4962 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
4964 if( xTimeToWake < xConstTickCount )
\r
4966 /* Wake time has overflowed. Place this item in the overflow
\r
4968 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
4972 /* The wake time has not overflowed, so the current block list
\r
4974 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
4976 /* If the task entering the blocked state was placed at the
\r
4977 head of the list of blocked tasks then xNextTaskUnblockTime
\r
4978 needs to be updated too. */
\r
4979 if( xTimeToWake < xNextTaskUnblockTime )
\r
4981 xNextTaskUnblockTime = xTimeToWake;
\r
4985 mtCOVERAGE_TEST_MARKER();
\r
4990 #else /* INCLUDE_vTaskSuspend */
\r
4992 /* Calculate the time at which the task should be woken if the event
\r
4993 does not occur. This may overflow but this doesn't matter, the kernel
\r
4994 will manage it correctly. */
\r
4995 xTimeToWake = xConstTickCount + xTicksToWait;
\r
4997 /* The list item will be inserted in wake time order. */
\r
4998 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5000 if( xTimeToWake < xConstTickCount )
\r
5002 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5003 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5007 /* The wake time has not overflowed, so the current block list is used. */
\r
5008 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5010 /* If the task entering the blocked state was placed at the head of the
\r
5011 list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5013 if( xTimeToWake < xNextTaskUnblockTime )
\r
5015 xNextTaskUnblockTime = xTimeToWake;
\r
5019 mtCOVERAGE_TEST_MARKER();
\r
5023 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5024 ( void ) xCanBlockIndefinitely;
\r
5026 #endif /* INCLUDE_vTaskSuspend */
\r
5029 /* Code below here allows additional code to be inserted into this source file,
\r
5030 especially where access to file scope functions and data is needed (for example
\r
5031 when performing module tests). */
\r
5033 #ifdef FREERTOS_MODULE_TEST
\r
5034 #include "tasks_test_access_functions.h"
\r
5038 #if( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5040 #include "freertos_tasks_c_additions.h"
\r
5042 static void freertos_tasks_c_additions_init( void )
\r
5044 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5045 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r