]> begriffs open source - freertos/blob - tasks.c
Fix MacOS Posix port (#957)
[freertos] / tasks.c
1 /*
2  * FreeRTOS Kernel <DEVELOPMENT BRANCH>
3  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
4  *
5  * SPDX-License-Identifier: MIT
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in all
15  * copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * https://www.FreeRTOS.org
25  * https://github.com/FreeRTOS
26  *
27  */
28
29 /* Standard includes. */
30 #include <stdlib.h>
31 #include <string.h>
32
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
34  * all the API functions to use the MPU wrappers.  That should only be done when
35  * task.h is included from an application file. */
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
37
38 /* FreeRTOS includes. */
39 #include "FreeRTOS.h"
40 #include "task.h"
41 #include "timers.h"
42 #include "stack_macros.h"
43
44 /* The default definitions are only available for non-MPU ports. The
45  * reason is that the stack alignment requirements vary for different
46  * architectures.*/
47 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS != 0 ) )
48     #error configKERNEL_PROVIDED_STATIC_MEMORY cannot be set to 1 when using an MPU port. The vApplicationGet*TaskMemory() functions must be provided manually.
49 #endif
50
51 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
52  * for the header files above, but not in this file, in order to generate the
53  * correct privileged Vs unprivileged linkage and placement. */
54 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
55
56 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
57  * functions but without including stdio.h here. */
58 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
59
60 /* At the bottom of this file are two optional functions that can be used
61  * to generate human readable text from the raw data generated by the
62  * uxTaskGetSystemState() function.  Note the formatting functions are provided
63  * for convenience only, and are NOT considered part of the kernel. */
64     #include <stdio.h>
65 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
66
67 #if ( configUSE_PREEMPTION == 0 )
68
69 /* If the cooperative scheduler is being used then a yield should not be
70  * performed just because a higher priority task has been woken. */
71     #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )
72     #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )
73 #else
74
75     #if ( configNUMBER_OF_CORES == 1 )
76
77 /* This macro requests the running task pxTCB to yield. In single core
78  * scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API()
79  * can be used to request the task running on core 0 to yield. Therefore, pxTCB
80  * is not used in this macro. */
81         #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \
82     do {                                                         \
83         ( void ) ( pxTCB );                                      \
84         portYIELD_WITHIN_API();                                  \
85     } while( 0 )
86
87         #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \
88     do {                                                        \
89         if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority )  \
90         {                                                       \
91             portYIELD_WITHIN_API();                             \
92         }                                                       \
93         else                                                    \
94         {                                                       \
95             mtCOVERAGE_TEST_MARKER();                           \
96         }                                                       \
97     } while( 0 )
98
99     #else /* if ( configNUMBER_OF_CORES == 1 ) */
100
101 /* Yield the core on which this task is running. */
102         #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )    prvYieldCore( ( pxTCB )->xTaskRunState )
103
104 /* Yield for the task if a running task has priority lower than this task. */
105         #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )     prvYieldForTask( pxTCB )
106
107     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
108
109 #endif /* if ( configUSE_PREEMPTION == 0 ) */
110
111 /* Values that can be assigned to the ucNotifyState member of the TCB. */
112 #define taskNOT_WAITING_NOTIFICATION              ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
113 #define taskWAITING_NOTIFICATION                  ( ( uint8_t ) 1 )
114 #define taskNOTIFICATION_RECEIVED                 ( ( uint8_t ) 2 )
115
116 /*
117  * The value used to fill the stack of a task when the task is created.  This
118  * is used purely for checking the high water mark for tasks.
119  */
120 #define tskSTACK_FILL_BYTE                        ( 0xa5U )
121
122 /* Bits used to record how a task's stack and TCB were allocated. */
123 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB    ( ( uint8_t ) 0 )
124 #define tskSTATICALLY_ALLOCATED_STACK_ONLY        ( ( uint8_t ) 1 )
125 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB     ( ( uint8_t ) 2 )
126
127 /* If any of the following are set then task stacks are filled with a known
128  * value so the high water mark can be determined.  If none of the following are
129  * set then don't fill the stack so there is no unnecessary dependency on memset. */
130 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
131     #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    1
132 #else
133     #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    0
134 #endif
135
136 /*
137  * Macros used by vListTask to indicate which state a task is in.
138  */
139 #define tskRUNNING_CHAR      ( 'X' )
140 #define tskBLOCKED_CHAR      ( 'B' )
141 #define tskREADY_CHAR        ( 'R' )
142 #define tskDELETED_CHAR      ( 'D' )
143 #define tskSUSPENDED_CHAR    ( 'S' )
144
145 /*
146  * Some kernel aware debuggers require the data the debugger needs access to be
147  * global, rather than file scope.
148  */
149 #ifdef portREMOVE_STATIC_QUALIFIER
150     #define static
151 #endif
152
153 /* The name allocated to the Idle task.  This can be overridden by defining
154  * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
155 #ifndef configIDLE_TASK_NAME
156     #define configIDLE_TASK_NAME    "IDLE"
157 #endif
158
159 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
160
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
162  * performed in a generic way that is not optimised to any particular
163  * microcontroller architecture. */
164
165 /* uxTopReadyPriority holds the priority of the highest priority ready
166  * state task. */
167     #define taskRECORD_READY_PRIORITY( uxPriority ) \
168     do {                                            \
169         if( ( uxPriority ) > uxTopReadyPriority )   \
170         {                                           \
171             uxTopReadyPriority = ( uxPriority );    \
172         }                                           \
173     } while( 0 ) /* taskRECORD_READY_PRIORITY */
174
175 /*-----------------------------------------------------------*/
176
177     #if ( configNUMBER_OF_CORES == 1 )
178         #define taskSELECT_HIGHEST_PRIORITY_TASK()                            \
179     do {                                                                      \
180         UBaseType_t uxTopPriority = uxTopReadyPriority;                       \
181                                                                               \
182         /* Find the highest priority queue that contains ready tasks. */      \
183         while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
184         {                                                                     \
185             configASSERT( uxTopPriority );                                    \
186             --uxTopPriority;                                                  \
187         }                                                                     \
188                                                                               \
189         /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
190          * the  same priority get an equal share of the processor time. */                    \
191         listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
192         uxTopReadyPriority = uxTopPriority;                                                   \
193     } while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */
194     #else /* if ( configNUMBER_OF_CORES == 1 ) */
195
196         #define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID )    prvSelectHighestPriorityTask( xCoreID )
197
198     #endif /* if ( configNUMBER_OF_CORES == 1 ) */
199
200 /*-----------------------------------------------------------*/
201
202 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
203  * they are only required when a port optimised method of task selection is
204  * being used. */
205     #define taskRESET_READY_PRIORITY( uxPriority )
206     #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
207
208 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
209
210 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
211  * performed in a way that is tailored to the particular microcontroller
212  * architecture being used. */
213
214 /* A port optimised version is provided.  Call the port defined macros. */
215     #define taskRECORD_READY_PRIORITY( uxPriority )    portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
216
217 /*-----------------------------------------------------------*/
218
219     #define taskSELECT_HIGHEST_PRIORITY_TASK()                                                  \
220     do {                                                                                        \
221         UBaseType_t uxTopPriority;                                                              \
222                                                                                                 \
223         /* Find the highest priority list that contains ready tasks. */                         \
224         portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );                          \
225         configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
226         listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );   \
227     } while( 0 )
228
229 /*-----------------------------------------------------------*/
230
231 /* A port optimised version is provided, call it only if the TCB being reset
232  * is being referenced from a ready list.  If it is referenced from a delayed
233  * or suspended list then it won't be in a ready list. */
234     #define taskRESET_READY_PRIORITY( uxPriority )                                                     \
235     do {                                                                                               \
236         if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
237         {                                                                                              \
238             portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );                        \
239         }                                                                                              \
240     } while( 0 )
241
242 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
243
244 /*-----------------------------------------------------------*/
245
246 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
247  * count overflows. */
248 #define taskSWITCH_DELAYED_LISTS()                                                \
249     do {                                                                          \
250         List_t * pxTemp;                                                          \
251                                                                                   \
252         /* The delayed tasks list should be empty when the lists are switched. */ \
253         configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) );               \
254                                                                                   \
255         pxTemp = pxDelayedTaskList;                                               \
256         pxDelayedTaskList = pxOverflowDelayedTaskList;                            \
257         pxOverflowDelayedTaskList = pxTemp;                                       \
258         xNumOfOverflows++;                                                        \
259         prvResetNextTaskUnblockTime();                                            \
260     } while( 0 )
261
262 /*-----------------------------------------------------------*/
263
264 /*
265  * Place the task represented by pxTCB into the appropriate ready list for
266  * the task.  It is inserted at the end of the list.
267  */
268 #define prvAddTaskToReadyList( pxTCB )                                                                     \
269     do {                                                                                                   \
270         traceMOVED_TASK_TO_READY_STATE( pxTCB );                                                           \
271         taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );                                                \
272         listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
273         tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB );                                                      \
274     } while( 0 )
275 /*-----------------------------------------------------------*/
276
277 /*
278  * Several functions take a TaskHandle_t parameter that can optionally be NULL,
279  * where NULL is used to indicate that the handle of the currently executing
280  * task should be used in place of the parameter.  This macro simply checks to
281  * see if the parameter is NULL and returns a pointer to the appropriate TCB.
282  */
283 #define prvGetTCBFromHandle( pxHandle )    ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
284
285 /* The item value of the event list item is normally used to hold the priority
286  * of the task to which it belongs (coded to allow it to be held in reverse
287  * priority order).  However, it is occasionally borrowed for other purposes.  It
288  * is important its value is not updated due to a task priority change while it is
289  * being used for another purpose.  The following bit definition is used to inform
290  * the scheduler that the value should not be changed - in which case it is the
291  * responsibility of whichever module is using the value to ensure it gets set back
292  * to its original value when it is released. */
293 #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
294     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint16_t ) 0x8000U )
295 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
296     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint32_t ) 0x80000000UL )
297 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS )
298     #define taskEVENT_LIST_ITEM_VALUE_IN_USE    ( ( uint64_t ) 0x8000000000000000ULL )
299 #endif
300
301 /* Indicates that the task is not actively running on any core. */
302 #define taskTASK_NOT_RUNNING           ( ( BaseType_t ) ( -1 ) )
303
304 /* Indicates that the task is actively running but scheduled to yield. */
305 #define taskTASK_SCHEDULED_TO_YIELD    ( ( BaseType_t ) ( -2 ) )
306
307 /* Returns pdTRUE if the task is actively running and not scheduled to yield. */
308 #if ( configNUMBER_OF_CORES == 1 )
309     #define taskTASK_IS_RUNNING( pxTCB )                          ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
310     #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB )    ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
311 #else
312     #define taskTASK_IS_RUNNING( pxTCB )                          ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) )
313     #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB )    ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) )
314 #endif
315
316 /* Indicates that the task is an Idle task. */
317 #define taskATTRIBUTE_IS_IDLE    ( UBaseType_t ) ( 1UL << 0UL )
318
319 #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) )
320     #define portGET_CRITICAL_NESTING_COUNT()          ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting )
321     #define portSET_CRITICAL_NESTING_COUNT( x )       ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) )
322     #define portINCREMENT_CRITICAL_NESTING_COUNT()    ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ )
323     #define portDECREMENT_CRITICAL_NESTING_COUNT()    ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- )
324 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */
325
326 #define taskBITS_PER_BYTE    ( ( size_t ) 8 )
327
328 #if ( configNUMBER_OF_CORES > 1 )
329
330 /* Yields the given core. This must be called from a critical section and xCoreID
331  * must be valid. This macro is not required in single core since there is only
332  * one core to yield. */
333     #define prvYieldCore( xCoreID )                                                          \
334     do {                                                                                     \
335         if( ( xCoreID ) == ( BaseType_t ) portGET_CORE_ID() )                                \
336         {                                                                                    \
337             /* Pending a yield for this core since it is in the critical section. */         \
338             xYieldPendings[ ( xCoreID ) ] = pdTRUE;                                          \
339         }                                                                                    \
340         else                                                                                 \
341         {                                                                                    \
342             /* Request other core to yield if it is not requested before. */                 \
343             if( pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \
344             {                                                                                \
345                 portYIELD_CORE( xCoreID );                                                   \
346                 pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD;   \
347             }                                                                                \
348         }                                                                                    \
349     } while( 0 )
350 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
351 /*-----------------------------------------------------------*/
352
353 /*
354  * Task control block.  A task control block (TCB) is allocated for each task,
355  * and stores task state information, including a pointer to the task's context
356  * (the task's run time environment, including register values)
357  */
358 typedef struct tskTaskControlBlock       /* The old naming convention is used to prevent breaking kernel aware debuggers. */
359 {
360     volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack.  THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
361
362     #if ( portUSING_MPU_WRAPPERS == 1 )
363         xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer.  THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
364     #endif
365
366     #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
367         UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores.  UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */
368     #endif
369
370     ListItem_t xStateListItem;                  /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
371     ListItem_t xEventListItem;                  /**< Used to reference a task from an event list. */
372     UBaseType_t uxPriority;                     /**< The priority of the task.  0 is the lowest priority. */
373     StackType_t * pxStack;                      /**< Points to the start of the stack. */
374     #if ( configNUMBER_OF_CORES > 1 )
375         volatile BaseType_t xTaskRunState;      /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */
376         UBaseType_t uxTaskAttributes;           /**< Task's attributes - currently used to identify the idle tasks. */
377     #endif
378     char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created.  Facilitates debugging only. */
379
380     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
381         BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */
382     #endif
383
384     #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
385         StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */
386     #endif
387
388     #if ( portCRITICAL_NESTING_IN_TCB == 1 )
389         UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
390     #endif
391
392     #if ( configUSE_TRACE_FACILITY == 1 )
393         UBaseType_t uxTCBNumber;  /**< Stores a number that increments each time a TCB is created.  It allows debuggers to determine when a task has been deleted and then recreated. */
394         UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */
395     #endif
396
397     #if ( configUSE_MUTEXES == 1 )
398         UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */
399         UBaseType_t uxMutexesHeld;
400     #endif
401
402     #if ( configUSE_APPLICATION_TASK_TAG == 1 )
403         TaskHookFunction_t pxTaskTag;
404     #endif
405
406     #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
407         void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
408     #endif
409
410     #if ( configGENERATE_RUN_TIME_STATS == 1 )
411         configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */
412     #endif
413
414     #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
415         configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */
416     #endif
417
418     #if ( configUSE_TASK_NOTIFICATIONS == 1 )
419         volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
420         volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
421     #endif
422
423     /* See the comments in FreeRTOS.h with the definition of
424      * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
425     #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
426         uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
427     #endif
428
429     #if ( INCLUDE_xTaskAbortDelay == 1 )
430         uint8_t ucDelayAborted;
431     #endif
432
433     #if ( configUSE_POSIX_ERRNO == 1 )
434         int iTaskErrno;
435     #endif
436 } tskTCB;
437
438 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
439  * below to enable the use of older kernel aware debuggers. */
440 typedef tskTCB TCB_t;
441
442 #if ( configNUMBER_OF_CORES == 1 )
443     /* MISRA Ref 8.4.1 [Declaration shall be visible] */
444     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
445     /* coverity[misra_c_2012_rule_8_4_violation] */
446     portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
447 #else
448     /* MISRA Ref 8.4.1 [Declaration shall be visible] */
449     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
450     /* coverity[misra_c_2012_rule_8_4_violation] */
451     portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ];
452     #define pxCurrentTCB    xTaskGetCurrentTaskHandle()
453 #endif
454
455 /* Lists for ready and blocked tasks. --------------------
456  * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
457  * doing so breaks some kernel aware debuggers and debuggers that rely on removing
458  * the static qualifier. */
459 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */
460 PRIVILEGED_DATA static List_t xDelayedTaskList1;                         /**< Delayed tasks. */
461 PRIVILEGED_DATA static List_t xDelayedTaskList2;                         /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
462 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList;              /**< Points to the delayed task list currently being used. */
463 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList;      /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
464 PRIVILEGED_DATA static List_t xPendingReadyList;                         /**< Tasks that have been readied while the scheduler was suspended.  They will be moved to the ready list when the scheduler is resumed. */
465
466 #if ( INCLUDE_vTaskDelete == 1 )
467
468     PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */
469     PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
470
471 #endif
472
473 #if ( INCLUDE_vTaskSuspend == 1 )
474
475     PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */
476
477 #endif
478
479 /* Global POSIX errno. Its value is changed upon context switching to match
480  * the errno of the currently running task. */
481 #if ( configUSE_POSIX_ERRNO == 1 )
482     int FreeRTOS_errno = 0;
483 #endif
484
485 /* Other file private variables. --------------------------------*/
486 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
487 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
488 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
489 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
490 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
491 PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE };
492 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
493 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
494 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
495 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ];       /**< Holds the handles of the idle tasks.  The idle tasks are created automatically when the scheduler is started. */
496
497 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
498  * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
499  * to determine the number of priority lists to read back from the remote target. */
500 static const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
501
502 /* Context switches are held pending while the scheduler is suspended.  Also,
503  * interrupts must not manipulate the xStateListItem of a TCB, or any of the
504  * lists the xStateListItem can be referenced from, if the scheduler is suspended.
505  * If an interrupt needs to unblock a task while the scheduler is suspended then it
506  * moves the task's event list item into the xPendingReadyList, ready for the
507  * kernel to move the task from the pending ready list into the real ready list
508  * when the scheduler is unsuspended.  The pending ready list itself can only be
509  * accessed from a critical section.
510  *
511  * Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock
512  * and must not be done from an ISR. Reads must be protected by either lock and may be done
513  * from either an ISR or a task. */
514 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U;
515
516 #if ( configGENERATE_RUN_TIME_STATS == 1 )
517
518 /* Do not move these variables to function scope as doing so prevents the
519  * code working with debuggers that need to remove the static qualifier. */
520 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U };    /**< Holds the value of a timer/counter the last time a task was switched in. */
521 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */
522
523 #endif
524
525 /*-----------------------------------------------------------*/
526
527 /* File private functions. --------------------------------*/
528
529 /*
530  * Creates the idle tasks during scheduler start.
531  */
532 static BaseType_t prvCreateIdleTasks( void );
533
534 #if ( configNUMBER_OF_CORES > 1 )
535
536 /*
537  * Checks to see if another task moved the current task out of the ready
538  * list while it was waiting to enter a critical section and yields, if so.
539  */
540     static void prvCheckForRunStateChange( void );
541 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
542
543 #if ( configNUMBER_OF_CORES > 1 )
544
545 /*
546  * Yields a core, or cores if multiple priorities are not allowed to run
547  * simultaneously, to allow the task pxTCB to run.
548  */
549     static void prvYieldForTask( const TCB_t * pxTCB );
550 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
551
552 #if ( configNUMBER_OF_CORES > 1 )
553
554 /*
555  * Selects the highest priority available task for the given core.
556  */
557     static void prvSelectHighestPriorityTask( BaseType_t xCoreID );
558 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
559
560 /**
561  * Utility task that simply returns pdTRUE if the task referenced by xTask is
562  * currently in the Suspended state, or pdFALSE if the task referenced by xTask
563  * is in any other state.
564  */
565 #if ( INCLUDE_vTaskSuspend == 1 )
566
567     static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
568
569 #endif /* INCLUDE_vTaskSuspend */
570
571 /*
572  * Utility to ready all the lists used by the scheduler.  This is called
573  * automatically upon the creation of the first task.
574  */
575 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
576
577 /*
578  * The idle task, which as all tasks is implemented as a never ending loop.
579  * The idle task is automatically created and added to the ready lists upon
580  * creation of the first user task.
581  *
582  * In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also
583  * created to ensure that each core has an idle task to run when no other
584  * task is available to run.
585  *
586  * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
587  * language extensions.  The equivalent prototype for these functions are:
588  *
589  * void prvIdleTask( void *pvParameters );
590  * void prvPassiveIdleTask( void *pvParameters );
591  *
592  */
593 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
594 #if ( configNUMBER_OF_CORES > 1 )
595     static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
596 #endif
597
598 /*
599  * Utility to free all memory allocated by the scheduler to hold a TCB,
600  * including the stack pointed to by the TCB.
601  *
602  * This does not free memory allocated by the task itself (i.e. memory
603  * allocated by calls to pvPortMalloc from within the tasks application code).
604  */
605 #if ( INCLUDE_vTaskDelete == 1 )
606
607     static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
608
609 #endif
610
611 /*
612  * Used only by the idle task.  This checks to see if anything has been placed
613  * in the list of tasks waiting to be deleted.  If so the task is cleaned up
614  * and its TCB deleted.
615  */
616 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
617
618 /*
619  * The currently executing task is entering the Blocked state.  Add the task to
620  * either the current or the overflow delayed task list.
621  */
622 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
623                                             const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
624
625 /*
626  * Fills an TaskStatus_t structure with information on each task that is
627  * referenced from the pxList list (which may be a ready list, a delayed list,
628  * a suspended list, etc.).
629  *
630  * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
631  * NORMAL APPLICATION CODE.
632  */
633 #if ( configUSE_TRACE_FACILITY == 1 )
634
635     static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
636                                                      List_t * pxList,
637                                                      eTaskState eState ) PRIVILEGED_FUNCTION;
638
639 #endif
640
641 /*
642  * Searches pxList for a task with name pcNameToQuery - returning a handle to
643  * the task if it is found, or NULL if the task is not found.
644  */
645 #if ( INCLUDE_xTaskGetHandle == 1 )
646
647     static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
648                                                      const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
649
650 #endif
651
652 /*
653  * When a task is created, the stack of the task is filled with a known value.
654  * This function determines the 'high water mark' of the task stack by
655  * determining how much of the stack remains at the original preset value.
656  */
657 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
658
659     static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
660
661 #endif
662
663 /*
664  * Return the amount of time, in ticks, that will pass before the kernel will
665  * next move a task from the Blocked state to the Running state.
666  *
667  * This conditional compilation should use inequality to 0, not equality to 1.
668  * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
669  * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
670  * set to a value other than 1.
671  */
672 #if ( configUSE_TICKLESS_IDLE != 0 )
673
674     static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
675
676 #endif
677
678 /*
679  * Set xNextTaskUnblockTime to the time at which the next Blocked state task
680  * will exit the Blocked state.
681  */
682 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
683
684 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
685
686 /*
687  * Helper function used to pad task names with spaces when printing out
688  * human readable tables of task information.
689  */
690     static char * prvWriteNameToBuffer( char * pcBuffer,
691                                         const char * pcTaskName ) PRIVILEGED_FUNCTION;
692
693 #endif
694
695 /*
696  * Called after a Task_t structure has been allocated either statically or
697  * dynamically to fill in the structure's members.
698  */
699 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
700                                   const char * const pcName,
701                                   const configSTACK_DEPTH_TYPE uxStackDepth,
702                                   void * const pvParameters,
703                                   UBaseType_t uxPriority,
704                                   TaskHandle_t * const pxCreatedTask,
705                                   TCB_t * pxNewTCB,
706                                   const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
707
708 /*
709  * Called after a new task has been created and initialised to place the task
710  * under the control of the scheduler.
711  */
712 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
713
714 /*
715  * Create a task with static buffer for both TCB and stack. Returns a handle to
716  * the task if it is created successfully. Otherwise, returns NULL.
717  */
718 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
719     static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
720                                         const char * const pcName,
721                                         const configSTACK_DEPTH_TYPE uxStackDepth,
722                                         void * const pvParameters,
723                                         UBaseType_t uxPriority,
724                                         StackType_t * const puxStackBuffer,
725                                         StaticTask_t * const pxTaskBuffer,
726                                         TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
727 #endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
728
729 /*
730  * Create a restricted task with static buffer for both TCB and stack. Returns
731  * a handle to the task if it is created successfully. Otherwise, returns NULL.
732  */
733 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
734     static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
735                                                   TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
736 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
737
738 /*
739  * Create a restricted task with static buffer for task stack and allocated buffer
740  * for TCB. Returns a handle to the task if it is created successfully. Otherwise,
741  * returns NULL.
742  */
743 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
744     static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
745                                             TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
746 #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
747
748 /*
749  * Create a task with allocated buffer for both TCB and stack. Returns a handle to
750  * the task if it is created successfully. Otherwise, returns NULL.
751  */
752 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
753     static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
754                                   const char * const pcName,
755                                   const configSTACK_DEPTH_TYPE uxStackDepth,
756                                   void * const pvParameters,
757                                   UBaseType_t uxPriority,
758                                   TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
759 #endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */
760
761 /*
762  * freertos_tasks_c_additions_init() should only be called if the user definable
763  * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
764  * called by the function.
765  */
766 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
767
768     static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
769
770 #endif
771
772 #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
773     extern void vApplicationPassiveIdleHook( void );
774 #endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */
775
776 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
777
778 /*
779  * Convert the snprintf return value to the number of characters
780  * written. The following are the possible cases:
781  *
782  * 1. The buffer supplied to snprintf is large enough to hold the
783  *    generated string. The return value in this case is the number
784  *    of characters actually written, not counting the terminating
785  *    null character.
786  * 2. The buffer supplied to snprintf is NOT large enough to hold
787  *    the generated string. The return value in this case is the
788  *    number of characters that would have been written if the
789  *    buffer had been sufficiently large, not counting the
790  *    terminating null character.
791  * 3. Encoding error. The return value in this case is a negative
792  *    number.
793  *
794  * From 1 and 2 above ==> Only when the return value is non-negative
795  * and less than the supplied buffer length, the string has been
796  * completely written.
797  */
798     static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
799                                                         size_t n );
800
801 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
802 /*-----------------------------------------------------------*/
803
804 #if ( configNUMBER_OF_CORES > 1 )
805     static void prvCheckForRunStateChange( void )
806     {
807         UBaseType_t uxPrevCriticalNesting;
808         const TCB_t * pxThisTCB;
809
810         /* This must only be called from within a task. */
811         portASSERT_IF_IN_ISR();
812
813         /* This function is always called with interrupts disabled
814          * so this is safe. */
815         pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];
816
817         while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD )
818         {
819             /* We are only here if we just entered a critical section
820             * or if we just suspended the scheduler, and another task
821             * has requested that we yield.
822             *
823             * This is slightly complicated since we need to save and restore
824             * the suspension and critical nesting counts, as well as release
825             * and reacquire the correct locks. And then, do it all over again
826             * if our state changed again during the reacquisition. */
827             uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT();
828
829             if( uxPrevCriticalNesting > 0U )
830             {
831                 portSET_CRITICAL_NESTING_COUNT( 0U );
832                 portRELEASE_ISR_LOCK();
833             }
834             else
835             {
836                 /* The scheduler is suspended. uxSchedulerSuspended is updated
837                  * only when the task is not requested to yield. */
838                 mtCOVERAGE_TEST_MARKER();
839             }
840
841             portRELEASE_TASK_LOCK();
842             portMEMORY_BARRIER();
843             configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD );
844
845             portENABLE_INTERRUPTS();
846
847             /* Enabling interrupts should cause this core to immediately
848              * service the pending interrupt and yield. If the run state is still
849              * yielding here then that is a problem. */
850             configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD );
851
852             portDISABLE_INTERRUPTS();
853             portGET_TASK_LOCK();
854             portGET_ISR_LOCK();
855
856             portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting );
857
858             if( uxPrevCriticalNesting == 0U )
859             {
860                 portRELEASE_ISR_LOCK();
861             }
862         }
863     }
864 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
865
866 /*-----------------------------------------------------------*/
867
868 #if ( configNUMBER_OF_CORES > 1 )
869     static void prvYieldForTask( const TCB_t * pxTCB )
870     {
871         BaseType_t xLowestPriorityToPreempt;
872         BaseType_t xCurrentCoreTaskPriority;
873         BaseType_t xLowestPriorityCore = ( BaseType_t ) -1;
874         BaseType_t xCoreID;
875
876         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
877             BaseType_t xYieldCount = 0;
878         #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
879
880         /* This must be called from a critical section. */
881         configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
882
883         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
884
885             /* No task should yield for this one if it is a lower priority
886              * than priority level of currently ready tasks. */
887             if( pxTCB->uxPriority >= uxTopReadyPriority )
888         #else
889             /* Yield is not required for a task which is already running. */
890             if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
891         #endif
892         {
893             xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority;
894
895             /* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB
896              * is 0. This is ok as we will give system idle tasks a priority of -1 below. */
897             --xLowestPriorityToPreempt;
898
899             for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
900             {
901                 xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority;
902
903                 /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */
904                 if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
905                 {
906                     xCurrentCoreTaskPriority = xCurrentCoreTaskPriority - 1;
907                 }
908
909                 if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) )
910                 {
911                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
912                         if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
913                     #endif
914                     {
915                         if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt )
916                         {
917                             #if ( configUSE_CORE_AFFINITY == 1 )
918                                 if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
919                             #endif
920                             {
921                                 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
922                                     if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
923                                 #endif
924                                 {
925                                     xLowestPriorityToPreempt = xCurrentCoreTaskPriority;
926                                     xLowestPriorityCore = xCoreID;
927                                 }
928                             }
929                         }
930                         else
931                         {
932                             mtCOVERAGE_TEST_MARKER();
933                         }
934                     }
935
936                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
937                     {
938                         /* Yield all currently running non-idle tasks with a priority lower than
939                          * the task that needs to run. */
940                         if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) &&
941                             ( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
942                         {
943                             prvYieldCore( xCoreID );
944                             xYieldCount++;
945                         }
946                         else
947                         {
948                             mtCOVERAGE_TEST_MARKER();
949                         }
950                     }
951                     #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
952                 }
953                 else
954                 {
955                     mtCOVERAGE_TEST_MARKER();
956                 }
957             }
958
959             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
960                 if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) )
961             #else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
962                 if( xLowestPriorityCore >= 0 )
963             #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
964             {
965                 prvYieldCore( xLowestPriorityCore );
966             }
967
968             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
969                 /* Verify that the calling core always yields to higher priority tasks. */
970                 if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) &&
971                     ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
972                 {
973                     configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) ||
974                                   ( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) );
975                 }
976             #endif
977         }
978     }
979 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
980 /*-----------------------------------------------------------*/
981
982 #if ( configNUMBER_OF_CORES > 1 )
983     static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
984     {
985         UBaseType_t uxCurrentPriority = uxTopReadyPriority;
986         BaseType_t xTaskScheduled = pdFALSE;
987         BaseType_t xDecrementTopPriority = pdTRUE;
988
989         #if ( configUSE_CORE_AFFINITY == 1 )
990             const TCB_t * pxPreviousTCB = NULL;
991         #endif
992         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
993             BaseType_t xPriorityDropped = pdFALSE;
994         #endif
995
996         /* This function should be called when scheduler is running. */
997         configASSERT( xSchedulerRunning == pdTRUE );
998
999         /* A new task is created and a running task with the same priority yields
1000          * itself to run the new task. When a running task yields itself, it is still
1001          * in the ready list. This running task will be selected before the new task
1002          * since the new task is always added to the end of the ready list.
1003          * The other problem is that the running task still in the same position of
1004          * the ready list when it yields itself. It is possible that it will be selected
1005          * earlier then other tasks which waits longer than this task.
1006          *
1007          * To fix these problems, the running task should be put to the end of the
1008          * ready list before searching for the ready task in the ready list. */
1009         if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1010                                      &pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE )
1011         {
1012             ( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1013             vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
1014                             &pxCurrentTCBs[ xCoreID ]->xStateListItem );
1015         }
1016
1017         while( xTaskScheduled == pdFALSE )
1018         {
1019             #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1020             {
1021                 if( uxCurrentPriority < uxTopReadyPriority )
1022                 {
1023                     /* We can't schedule any tasks, other than idle, that have a
1024                      * priority lower than the priority of a task currently running
1025                      * on another core. */
1026                     uxCurrentPriority = tskIDLE_PRIORITY;
1027                 }
1028             }
1029             #endif
1030
1031             if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
1032             {
1033                 const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
1034                 const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList );
1035                 ListItem_t * pxIterator;
1036
1037                 /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
1038                  * must not be decremented any further. */
1039                 xDecrementTopPriority = pdFALSE;
1040
1041                 for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
1042                 {
1043                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
1044                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1045                     /* coverity[misra_c_2012_rule_11_5_violation] */
1046                     TCB_t * pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator );
1047
1048                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1049                     {
1050                         /* When falling back to the idle priority because only one priority
1051                          * level is allowed to run at a time, we should ONLY schedule the true
1052                          * idle tasks, not user tasks at the idle priority. */
1053                         if( uxCurrentPriority < uxTopReadyPriority )
1054                         {
1055                             if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U )
1056                             {
1057                                 continue;
1058                             }
1059                         }
1060                     }
1061                     #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1062
1063                     if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
1064                     {
1065                         #if ( configUSE_CORE_AFFINITY == 1 )
1066                             if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1067                         #endif
1068                         {
1069                             /* If the task is not being executed by any core swap it in. */
1070                             pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
1071                             #if ( configUSE_CORE_AFFINITY == 1 )
1072                                 pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
1073                             #endif
1074                             pxTCB->xTaskRunState = xCoreID;
1075                             pxCurrentTCBs[ xCoreID ] = pxTCB;
1076                             xTaskScheduled = pdTRUE;
1077                         }
1078                     }
1079                     else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
1080                     {
1081                         configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) );
1082
1083                         #if ( configUSE_CORE_AFFINITY == 1 )
1084                             if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1085                         #endif
1086                         {
1087                             /* The task is already running on this core, mark it as scheduled. */
1088                             pxTCB->xTaskRunState = xCoreID;
1089                             xTaskScheduled = pdTRUE;
1090                         }
1091                     }
1092                     else
1093                     {
1094                         /* This task is running on the core other than xCoreID. */
1095                         mtCOVERAGE_TEST_MARKER();
1096                     }
1097
1098                     if( xTaskScheduled != pdFALSE )
1099                     {
1100                         /* A task has been selected to run on this core. */
1101                         break;
1102                     }
1103                 }
1104             }
1105             else
1106             {
1107                 if( xDecrementTopPriority != pdFALSE )
1108                 {
1109                     uxTopReadyPriority--;
1110                     #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1111                     {
1112                         xPriorityDropped = pdTRUE;
1113                     }
1114                     #endif
1115                 }
1116             }
1117
1118             /* There are configNUMBER_OF_CORES Idle tasks created when scheduler started.
1119              * The scheduler should be able to select a task to run when uxCurrentPriority
1120              * is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow
1121              * tskIDLE_PRIORITY. */
1122             if( uxCurrentPriority > tskIDLE_PRIORITY )
1123             {
1124                 uxCurrentPriority--;
1125             }
1126             else
1127             {
1128                 /* This function is called when idle task is not created. Break the
1129                  * loop to prevent uxCurrentPriority overrun. */
1130                 break;
1131             }
1132         }
1133
1134         #if ( configRUN_MULTIPLE_PRIORITIES == 0 )
1135         {
1136             if( xTaskScheduled == pdTRUE )
1137             {
1138                 if( xPriorityDropped != pdFALSE )
1139                 {
1140                     /* There may be several ready tasks that were being prevented from running because there was
1141                      * a higher priority task running. Now that the last of the higher priority tasks is no longer
1142                      * running, make sure all the other idle tasks yield. */
1143                     BaseType_t x;
1144
1145                     for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ )
1146                     {
1147                         if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1148                         {
1149                             prvYieldCore( x );
1150                         }
1151                     }
1152                 }
1153             }
1154         }
1155         #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
1156
1157         #if ( configUSE_CORE_AFFINITY == 1 )
1158         {
1159             if( xTaskScheduled == pdTRUE )
1160             {
1161                 if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
1162                 {
1163                     /* A ready task was just evicted from this core. See if it can be
1164                      * scheduled on any other core. */
1165                     UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
1166                     BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority;
1167                     BaseType_t xLowestPriorityCore = -1;
1168                     BaseType_t x;
1169
1170                     if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1171                     {
1172                         xLowestPriority = xLowestPriority - 1;
1173                     }
1174
1175                     if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
1176                     {
1177                         /* pxPreviousTCB was removed from this core and this core is not excluded
1178                          * from it's core affinity mask.
1179                          *
1180                          * pxPreviousTCB is preempted by the new higher priority task
1181                          * pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB,
1182                          * we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ]
1183                          * is allowed to run. The reason is - when more than one cores are
1184                          * eligible for an incoming task, we preempt the core with the minimum
1185                          * priority task. Because this core (i.e. xCoreID) was preempted for
1186                          * pxCurrentTCBs[ xCoreID ], this means that all the others cores
1187                          * where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority
1188                          * no lower than pxPreviousTCB's priority. Therefore, the only cores where
1189                          * which can be preempted for pxPreviousTCB are the ones where
1190                          * pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously,
1191                          * pxPreviousTCB is allowed to run).
1192                          *
1193                          * This is an optimization which reduces the number of cores needed to be
1194                          * searched for pxPreviousTCB to run. */
1195                         uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
1196                     }
1197                     else
1198                     {
1199                         /* pxPreviousTCB's core affinity mask is changed and it is no longer
1200                          * allowed to run on this core. Searching all the cores in pxPreviousTCB's
1201                          * new core affinity mask to find a core on which it can run. */
1202                     }
1203
1204                     uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U );
1205
1206                     for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- )
1207                     {
1208                         UBaseType_t uxCore = ( UBaseType_t ) x;
1209                         BaseType_t xTaskPriority;
1210
1211                         if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U )
1212                         {
1213                             xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority;
1214
1215                             if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
1216                             {
1217                                 xTaskPriority = xTaskPriority - ( BaseType_t ) 1;
1218                             }
1219
1220                             uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore );
1221
1222                             if( ( xTaskPriority < xLowestPriority ) &&
1223                                 ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) &&
1224                                 ( xYieldPendings[ uxCore ] == pdFALSE ) )
1225                             {
1226                                 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
1227                                     if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
1228                                 #endif
1229                                 {
1230                                     xLowestPriority = xTaskPriority;
1231                                     xLowestPriorityCore = ( BaseType_t ) uxCore;
1232                                 }
1233                             }
1234                         }
1235                     }
1236
1237                     if( xLowestPriorityCore >= 0 )
1238                     {
1239                         prvYieldCore( xLowestPriorityCore );
1240                     }
1241                 }
1242             }
1243         }
1244         #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */
1245     }
1246
1247 #endif /* ( configNUMBER_OF_CORES > 1 ) */
1248
1249 /*-----------------------------------------------------------*/
1250
1251 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1252
1253     static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
1254                                         const char * const pcName,
1255                                         const configSTACK_DEPTH_TYPE uxStackDepth,
1256                                         void * const pvParameters,
1257                                         UBaseType_t uxPriority,
1258                                         StackType_t * const puxStackBuffer,
1259                                         StaticTask_t * const pxTaskBuffer,
1260                                         TaskHandle_t * const pxCreatedTask )
1261     {
1262         TCB_t * pxNewTCB;
1263
1264         configASSERT( puxStackBuffer != NULL );
1265         configASSERT( pxTaskBuffer != NULL );
1266
1267         #if ( configASSERT_DEFINED == 1 )
1268         {
1269             /* Sanity check that the size of the structure used to declare a
1270              * variable of type StaticTask_t equals the size of the real task
1271              * structure. */
1272             volatile size_t xSize = sizeof( StaticTask_t );
1273             configASSERT( xSize == sizeof( TCB_t ) );
1274             ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not used. */
1275         }
1276         #endif /* configASSERT_DEFINED */
1277
1278         if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
1279         {
1280             /* The memory used for the task's TCB and stack are passed into this
1281              * function - use them. */
1282             /* MISRA Ref 11.3.1 [Misaligned access] */
1283             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
1284             /* coverity[misra_c_2012_rule_11_3_violation] */
1285             pxNewTCB = ( TCB_t * ) pxTaskBuffer;
1286             ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1287             pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
1288
1289             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1290             {
1291                 /* Tasks can be created statically or dynamically, so note this
1292                  * task was created statically in case the task is later deleted. */
1293                 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1294             }
1295             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1296
1297             prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1298         }
1299         else
1300         {
1301             pxNewTCB = NULL;
1302         }
1303
1304         return pxNewTCB;
1305     }
1306 /*-----------------------------------------------------------*/
1307
1308     TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
1309                                     const char * const pcName,
1310                                     const configSTACK_DEPTH_TYPE uxStackDepth,
1311                                     void * const pvParameters,
1312                                     UBaseType_t uxPriority,
1313                                     StackType_t * const puxStackBuffer,
1314                                     StaticTask_t * const pxTaskBuffer )
1315     {
1316         TaskHandle_t xReturn = NULL;
1317         TCB_t * pxNewTCB;
1318
1319         traceENTER_xTaskCreateStatic( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
1320
1321         pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1322
1323         if( pxNewTCB != NULL )
1324         {
1325             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1326             {
1327                 /* Set the task's affinity before scheduling it. */
1328                 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1329             }
1330             #endif
1331
1332             prvAddNewTaskToReadyList( pxNewTCB );
1333         }
1334         else
1335         {
1336             mtCOVERAGE_TEST_MARKER();
1337         }
1338
1339         traceRETURN_xTaskCreateStatic( xReturn );
1340
1341         return xReturn;
1342     }
1343 /*-----------------------------------------------------------*/
1344
1345     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1346         TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
1347                                                    const char * const pcName,
1348                                                    const configSTACK_DEPTH_TYPE uxStackDepth,
1349                                                    void * const pvParameters,
1350                                                    UBaseType_t uxPriority,
1351                                                    StackType_t * const puxStackBuffer,
1352                                                    StaticTask_t * const pxTaskBuffer,
1353                                                    UBaseType_t uxCoreAffinityMask )
1354         {
1355             TaskHandle_t xReturn = NULL;
1356             TCB_t * pxNewTCB;
1357
1358             traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask );
1359
1360             pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
1361
1362             if( pxNewTCB != NULL )
1363             {
1364                 /* Set the task's affinity before scheduling it. */
1365                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1366
1367                 prvAddNewTaskToReadyList( pxNewTCB );
1368             }
1369             else
1370             {
1371                 mtCOVERAGE_TEST_MARKER();
1372             }
1373
1374             traceRETURN_xTaskCreateStaticAffinitySet( xReturn );
1375
1376             return xReturn;
1377         }
1378     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1379
1380 #endif /* SUPPORT_STATIC_ALLOCATION */
1381 /*-----------------------------------------------------------*/
1382
1383 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
1384     static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
1385                                                   TaskHandle_t * const pxCreatedTask )
1386     {
1387         TCB_t * pxNewTCB;
1388
1389         configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
1390         configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
1391
1392         if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
1393         {
1394             /* Allocate space for the TCB.  Where the memory comes from depends
1395              * on the implementation of the port malloc function and whether or
1396              * not static allocation is being used. */
1397             pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
1398             ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1399
1400             /* Store the stack location in the TCB. */
1401             pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1402
1403             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1404             {
1405                 /* Tasks can be created statically or dynamically, so note this
1406                  * task was created statically in case the task is later deleted. */
1407                 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
1408             }
1409             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1410
1411             prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1412                                   pxTaskDefinition->pcName,
1413                                   pxTaskDefinition->usStackDepth,
1414                                   pxTaskDefinition->pvParameters,
1415                                   pxTaskDefinition->uxPriority,
1416                                   pxCreatedTask, pxNewTCB,
1417                                   pxTaskDefinition->xRegions );
1418         }
1419         else
1420         {
1421             pxNewTCB = NULL;
1422         }
1423
1424         return pxNewTCB;
1425     }
1426 /*-----------------------------------------------------------*/
1427
1428     BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
1429                                             TaskHandle_t * pxCreatedTask )
1430     {
1431         TCB_t * pxNewTCB;
1432         BaseType_t xReturn;
1433
1434         traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask );
1435
1436         configASSERT( pxTaskDefinition != NULL );
1437
1438         pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1439
1440         if( pxNewTCB != NULL )
1441         {
1442             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1443             {
1444                 /* Set the task's affinity before scheduling it. */
1445                 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1446             }
1447             #endif
1448
1449             prvAddNewTaskToReadyList( pxNewTCB );
1450             xReturn = pdPASS;
1451         }
1452         else
1453         {
1454             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1455         }
1456
1457         traceRETURN_xTaskCreateRestrictedStatic( xReturn );
1458
1459         return xReturn;
1460     }
1461 /*-----------------------------------------------------------*/
1462
1463     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1464         BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1465                                                            UBaseType_t uxCoreAffinityMask,
1466                                                            TaskHandle_t * pxCreatedTask )
1467         {
1468             TCB_t * pxNewTCB;
1469             BaseType_t xReturn;
1470
1471             traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1472
1473             configASSERT( pxTaskDefinition != NULL );
1474
1475             pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
1476
1477             if( pxNewTCB != NULL )
1478             {
1479                 /* Set the task's affinity before scheduling it. */
1480                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1481
1482                 prvAddNewTaskToReadyList( pxNewTCB );
1483                 xReturn = pdPASS;
1484             }
1485             else
1486             {
1487                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1488             }
1489
1490             traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn );
1491
1492             return xReturn;
1493         }
1494     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1495
1496 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
1497 /*-----------------------------------------------------------*/
1498
1499 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
1500     static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
1501                                             TaskHandle_t * const pxCreatedTask )
1502     {
1503         TCB_t * pxNewTCB;
1504
1505         configASSERT( pxTaskDefinition->puxStackBuffer );
1506
1507         if( pxTaskDefinition->puxStackBuffer != NULL )
1508         {
1509             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1510             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1511             /* coverity[misra_c_2012_rule_11_5_violation] */
1512             pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1513
1514             if( pxNewTCB != NULL )
1515             {
1516                 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1517
1518                 /* Store the stack location in the TCB. */
1519                 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
1520
1521                 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1522                 {
1523                     /* Tasks can be created statically or dynamically, so note
1524                      * this task had a statically allocated stack in case it is
1525                      * later deleted.  The TCB was allocated dynamically. */
1526                     pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
1527                 }
1528                 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1529
1530                 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
1531                                       pxTaskDefinition->pcName,
1532                                       pxTaskDefinition->usStackDepth,
1533                                       pxTaskDefinition->pvParameters,
1534                                       pxTaskDefinition->uxPriority,
1535                                       pxCreatedTask, pxNewTCB,
1536                                       pxTaskDefinition->xRegions );
1537             }
1538         }
1539         else
1540         {
1541             pxNewTCB = NULL;
1542         }
1543
1544         return pxNewTCB;
1545     }
1546 /*-----------------------------------------------------------*/
1547
1548     BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
1549                                       TaskHandle_t * pxCreatedTask )
1550     {
1551         TCB_t * pxNewTCB;
1552         BaseType_t xReturn;
1553
1554         traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask );
1555
1556         pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1557
1558         if( pxNewTCB != NULL )
1559         {
1560             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1561             {
1562                 /* Set the task's affinity before scheduling it. */
1563                 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1564             }
1565             #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1566
1567             prvAddNewTaskToReadyList( pxNewTCB );
1568
1569             xReturn = pdPASS;
1570         }
1571         else
1572         {
1573             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1574         }
1575
1576         traceRETURN_xTaskCreateRestricted( xReturn );
1577
1578         return xReturn;
1579     }
1580 /*-----------------------------------------------------------*/
1581
1582     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1583         BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
1584                                                      UBaseType_t uxCoreAffinityMask,
1585                                                      TaskHandle_t * pxCreatedTask )
1586         {
1587             TCB_t * pxNewTCB;
1588             BaseType_t xReturn;
1589
1590             traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
1591
1592             pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
1593
1594             if( pxNewTCB != NULL )
1595             {
1596                 /* Set the task's affinity before scheduling it. */
1597                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1598
1599                 prvAddNewTaskToReadyList( pxNewTCB );
1600
1601                 xReturn = pdPASS;
1602             }
1603             else
1604             {
1605                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1606             }
1607
1608             traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn );
1609
1610             return xReturn;
1611         }
1612     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1613
1614
1615 #endif /* portUSING_MPU_WRAPPERS */
1616 /*-----------------------------------------------------------*/
1617
1618 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
1619     static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
1620                                   const char * const pcName,
1621                                   const configSTACK_DEPTH_TYPE uxStackDepth,
1622                                   void * const pvParameters,
1623                                   UBaseType_t uxPriority,
1624                                   TaskHandle_t * const pxCreatedTask )
1625     {
1626         TCB_t * pxNewTCB;
1627
1628         /* If the stack grows down then allocate the stack then the TCB so the stack
1629          * does not grow into the TCB.  Likewise if the stack grows up then allocate
1630          * the TCB then the stack. */
1631         #if ( portSTACK_GROWTH > 0 )
1632         {
1633             /* Allocate space for the TCB.  Where the memory comes from depends on
1634              * the implementation of the port malloc function and whether or not static
1635              * allocation is being used. */
1636             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1637             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1638             /* coverity[misra_c_2012_rule_11_5_violation] */
1639             pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1640
1641             if( pxNewTCB != NULL )
1642             {
1643                 ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1644
1645                 /* Allocate space for the stack used by the task being created.
1646                  * The base of the stack memory stored in the TCB so the task can
1647                  * be deleted later if required. */
1648                 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1649                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1650                 /* coverity[misra_c_2012_rule_11_5_violation] */
1651                 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
1652
1653                 if( pxNewTCB->pxStack == NULL )
1654                 {
1655                     /* Could not allocate the stack.  Delete the allocated TCB. */
1656                     vPortFree( pxNewTCB );
1657                     pxNewTCB = NULL;
1658                 }
1659             }
1660         }
1661         #else /* portSTACK_GROWTH */
1662         {
1663             StackType_t * pxStack;
1664
1665             /* Allocate space for the stack used by the task being created. */
1666             /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1667             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1668             /* coverity[misra_c_2012_rule_11_5_violation] */
1669             pxStack = pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
1670
1671             if( pxStack != NULL )
1672             {
1673                 /* Allocate space for the TCB. */
1674                 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
1675                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
1676                 /* coverity[misra_c_2012_rule_11_5_violation] */
1677                 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
1678
1679                 if( pxNewTCB != NULL )
1680                 {
1681                     ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
1682
1683                     /* Store the stack location in the TCB. */
1684                     pxNewTCB->pxStack = pxStack;
1685                 }
1686                 else
1687                 {
1688                     /* The stack cannot be used as the TCB was not created.  Free
1689                      * it again. */
1690                     vPortFreeStack( pxStack );
1691                 }
1692             }
1693             else
1694             {
1695                 pxNewTCB = NULL;
1696             }
1697         }
1698         #endif /* portSTACK_GROWTH */
1699
1700         if( pxNewTCB != NULL )
1701         {
1702             #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
1703             {
1704                 /* Tasks can be created statically or dynamically, so note this
1705                  * task was created dynamically in case it is later deleted. */
1706                 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
1707             }
1708             #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
1709
1710             prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
1711         }
1712
1713         return pxNewTCB;
1714     }
1715 /*-----------------------------------------------------------*/
1716
1717     BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
1718                             const char * const pcName,
1719                             const configSTACK_DEPTH_TYPE uxStackDepth,
1720                             void * const pvParameters,
1721                             UBaseType_t uxPriority,
1722                             TaskHandle_t * const pxCreatedTask )
1723     {
1724         TCB_t * pxNewTCB;
1725         BaseType_t xReturn;
1726
1727         traceENTER_xTaskCreate( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1728
1729         pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1730
1731         if( pxNewTCB != NULL )
1732         {
1733             #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1734             {
1735                 /* Set the task's affinity before scheduling it. */
1736                 pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
1737             }
1738             #endif
1739
1740             prvAddNewTaskToReadyList( pxNewTCB );
1741             xReturn = pdPASS;
1742         }
1743         else
1744         {
1745             xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1746         }
1747
1748         traceRETURN_xTaskCreate( xReturn );
1749
1750         return xReturn;
1751     }
1752 /*-----------------------------------------------------------*/
1753
1754     #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
1755         BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
1756                                            const char * const pcName,
1757                                            const configSTACK_DEPTH_TYPE uxStackDepth,
1758                                            void * const pvParameters,
1759                                            UBaseType_t uxPriority,
1760                                            UBaseType_t uxCoreAffinityMask,
1761                                            TaskHandle_t * const pxCreatedTask )
1762         {
1763             TCB_t * pxNewTCB;
1764             BaseType_t xReturn;
1765
1766             traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask );
1767
1768             pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
1769
1770             if( pxNewTCB != NULL )
1771             {
1772                 /* Set the task's affinity before scheduling it. */
1773                 pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
1774
1775                 prvAddNewTaskToReadyList( pxNewTCB );
1776                 xReturn = pdPASS;
1777             }
1778             else
1779             {
1780                 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
1781             }
1782
1783             traceRETURN_xTaskCreateAffinitySet( xReturn );
1784
1785             return xReturn;
1786         }
1787     #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
1788
1789 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
1790 /*-----------------------------------------------------------*/
1791
1792 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
1793                                   const char * const pcName,
1794                                   const configSTACK_DEPTH_TYPE uxStackDepth,
1795                                   void * const pvParameters,
1796                                   UBaseType_t uxPriority,
1797                                   TaskHandle_t * const pxCreatedTask,
1798                                   TCB_t * pxNewTCB,
1799                                   const MemoryRegion_t * const xRegions )
1800 {
1801     StackType_t * pxTopOfStack;
1802     UBaseType_t x;
1803
1804     #if ( portUSING_MPU_WRAPPERS == 1 )
1805         /* Should the task be created in privileged mode? */
1806         BaseType_t xRunPrivileged;
1807
1808         if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
1809         {
1810             xRunPrivileged = pdTRUE;
1811         }
1812         else
1813         {
1814             xRunPrivileged = pdFALSE;
1815         }
1816         uxPriority &= ~portPRIVILEGE_BIT;
1817     #endif /* portUSING_MPU_WRAPPERS == 1 */
1818
1819     /* Avoid dependency on memset() if it is not required. */
1820     #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
1821     {
1822         /* Fill the stack with a known value to assist debugging. */
1823         ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) uxStackDepth * sizeof( StackType_t ) );
1824     }
1825     #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
1826
1827     /* Calculate the top of stack address.  This depends on whether the stack
1828      * grows from high memory to low (as per the 80x86) or vice versa.
1829      * portSTACK_GROWTH is used to make the result positive or negative as required
1830      * by the port. */
1831     #if ( portSTACK_GROWTH < 0 )
1832     {
1833         pxTopOfStack = &( pxNewTCB->pxStack[ uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 ] );
1834         pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1835
1836         /* Check the alignment of the calculated top of stack is correct. */
1837         configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
1838
1839         #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
1840         {
1841             /* Also record the stack's high address, which may assist
1842              * debugging. */
1843             pxNewTCB->pxEndOfStack = pxTopOfStack;
1844         }
1845         #endif /* configRECORD_STACK_HIGH_ADDRESS */
1846     }
1847     #else /* portSTACK_GROWTH */
1848     {
1849         pxTopOfStack = pxNewTCB->pxStack;
1850         pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
1851
1852         /* Check the alignment of the calculated top of stack is correct. */
1853         configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
1854
1855         /* The other extreme of the stack space is required if stack checking is
1856          * performed. */
1857         pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 );
1858     }
1859     #endif /* portSTACK_GROWTH */
1860
1861     /* Store the task name in the TCB. */
1862     if( pcName != NULL )
1863     {
1864         for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
1865         {
1866             pxNewTCB->pcTaskName[ x ] = pcName[ x ];
1867
1868             /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
1869              * configMAX_TASK_NAME_LEN characters just in case the memory after the
1870              * string is not accessible (extremely unlikely). */
1871             if( pcName[ x ] == ( char ) 0x00 )
1872             {
1873                 break;
1874             }
1875             else
1876             {
1877                 mtCOVERAGE_TEST_MARKER();
1878             }
1879         }
1880
1881         /* Ensure the name string is terminated in the case that the string length
1882          * was greater or equal to configMAX_TASK_NAME_LEN. */
1883         pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1U ] = '\0';
1884     }
1885     else
1886     {
1887         mtCOVERAGE_TEST_MARKER();
1888     }
1889
1890     /* This is used as an array index so must ensure it's not too large. */
1891     configASSERT( uxPriority < configMAX_PRIORITIES );
1892
1893     if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
1894     {
1895         uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
1896     }
1897     else
1898     {
1899         mtCOVERAGE_TEST_MARKER();
1900     }
1901
1902     pxNewTCB->uxPriority = uxPriority;
1903     #if ( configUSE_MUTEXES == 1 )
1904     {
1905         pxNewTCB->uxBasePriority = uxPriority;
1906     }
1907     #endif /* configUSE_MUTEXES */
1908
1909     vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
1910     vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
1911
1912     /* Set the pxNewTCB as a link back from the ListItem_t.  This is so we can get
1913      * back to  the containing TCB from a generic item in a list. */
1914     listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
1915
1916     /* Event lists are always in priority order. */
1917     listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority );
1918     listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
1919
1920     #if ( portUSING_MPU_WRAPPERS == 1 )
1921     {
1922         vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, uxStackDepth );
1923     }
1924     #else
1925     {
1926         /* Avoid compiler warning about unreferenced parameter. */
1927         ( void ) xRegions;
1928     }
1929     #endif
1930
1931     #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
1932     {
1933         /* Allocate and initialize memory for the task's TLS Block. */
1934         configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack );
1935     }
1936     #endif
1937
1938     /* Initialize the TCB stack to look as if the task was already running,
1939      * but had been interrupted by the scheduler.  The return address is set
1940      * to the start of the task function. Once the stack has been initialised
1941      * the top of stack variable is updated. */
1942     #if ( portUSING_MPU_WRAPPERS == 1 )
1943     {
1944         /* If the port has capability to detect stack overflow,
1945          * pass the stack end address to the stack initialization
1946          * function as well. */
1947         #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1948         {
1949             #if ( portSTACK_GROWTH < 0 )
1950             {
1951                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1952             }
1953             #else /* portSTACK_GROWTH */
1954             {
1955                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1956             }
1957             #endif /* portSTACK_GROWTH */
1958         }
1959         #else /* portHAS_STACK_OVERFLOW_CHECKING */
1960         {
1961             pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
1962         }
1963         #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1964     }
1965     #else /* portUSING_MPU_WRAPPERS */
1966     {
1967         /* If the port has capability to detect stack overflow,
1968          * pass the stack end address to the stack initialization
1969          * function as well. */
1970         #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1971         {
1972             #if ( portSTACK_GROWTH < 0 )
1973             {
1974                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
1975             }
1976             #else /* portSTACK_GROWTH */
1977             {
1978                 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
1979             }
1980             #endif /* portSTACK_GROWTH */
1981         }
1982         #else /* portHAS_STACK_OVERFLOW_CHECKING */
1983         {
1984             pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
1985         }
1986         #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1987     }
1988     #endif /* portUSING_MPU_WRAPPERS */
1989
1990     /* Initialize task state and task attributes. */
1991     #if ( configNUMBER_OF_CORES > 1 )
1992     {
1993         pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;
1994
1995         /* Is this an idle task? */
1996         if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) )
1997         {
1998             pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE;
1999         }
2000     }
2001     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
2002
2003     if( pxCreatedTask != NULL )
2004     {
2005         /* Pass the handle out in an anonymous way.  The handle can be used to
2006          * change the created task's priority, delete the created task, etc.*/
2007         *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
2008     }
2009     else
2010     {
2011         mtCOVERAGE_TEST_MARKER();
2012     }
2013 }
2014 /*-----------------------------------------------------------*/
2015
2016 #if ( configNUMBER_OF_CORES == 1 )
2017
2018     static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2019     {
2020         /* Ensure interrupts don't access the task lists while the lists are being
2021          * updated. */
2022         taskENTER_CRITICAL();
2023         {
2024             uxCurrentNumberOfTasks++;
2025
2026             if( pxCurrentTCB == NULL )
2027             {
2028                 /* There are no other tasks, or all the other tasks are in
2029                  * the suspended state - make this the current task. */
2030                 pxCurrentTCB = pxNewTCB;
2031
2032                 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2033                 {
2034                     /* This is the first task to be created so do the preliminary
2035                      * initialisation required.  We will not recover if this call
2036                      * fails, but we will report the failure. */
2037                     prvInitialiseTaskLists();
2038                 }
2039                 else
2040                 {
2041                     mtCOVERAGE_TEST_MARKER();
2042                 }
2043             }
2044             else
2045             {
2046                 /* If the scheduler is not already running, make this task the
2047                  * current task if it is the highest priority task to be created
2048                  * so far. */
2049                 if( xSchedulerRunning == pdFALSE )
2050                 {
2051                     if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
2052                     {
2053                         pxCurrentTCB = pxNewTCB;
2054                     }
2055                     else
2056                     {
2057                         mtCOVERAGE_TEST_MARKER();
2058                     }
2059                 }
2060                 else
2061                 {
2062                     mtCOVERAGE_TEST_MARKER();
2063                 }
2064             }
2065
2066             uxTaskNumber++;
2067
2068             #if ( configUSE_TRACE_FACILITY == 1 )
2069             {
2070                 /* Add a counter into the TCB for tracing only. */
2071                 pxNewTCB->uxTCBNumber = uxTaskNumber;
2072             }
2073             #endif /* configUSE_TRACE_FACILITY */
2074             traceTASK_CREATE( pxNewTCB );
2075
2076             prvAddTaskToReadyList( pxNewTCB );
2077
2078             portSETUP_TCB( pxNewTCB );
2079         }
2080         taskEXIT_CRITICAL();
2081
2082         if( xSchedulerRunning != pdFALSE )
2083         {
2084             /* If the created task is of a higher priority than the current task
2085              * then it should run now. */
2086             taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2087         }
2088         else
2089         {
2090             mtCOVERAGE_TEST_MARKER();
2091         }
2092     }
2093
2094 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2095
2096     static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
2097     {
2098         /* Ensure interrupts don't access the task lists while the lists are being
2099          * updated. */
2100         taskENTER_CRITICAL();
2101         {
2102             uxCurrentNumberOfTasks++;
2103
2104             if( xSchedulerRunning == pdFALSE )
2105             {
2106                 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
2107                 {
2108                     /* This is the first task to be created so do the preliminary
2109                      * initialisation required.  We will not recover if this call
2110                      * fails, but we will report the failure. */
2111                     prvInitialiseTaskLists();
2112                 }
2113                 else
2114                 {
2115                     mtCOVERAGE_TEST_MARKER();
2116                 }
2117
2118                 /* All the cores start with idle tasks before the SMP scheduler
2119                  * is running. Idle tasks are assigned to cores when they are
2120                  * created in prvCreateIdleTasks(). */
2121             }
2122
2123             uxTaskNumber++;
2124
2125             #if ( configUSE_TRACE_FACILITY == 1 )
2126             {
2127                 /* Add a counter into the TCB for tracing only. */
2128                 pxNewTCB->uxTCBNumber = uxTaskNumber;
2129             }
2130             #endif /* configUSE_TRACE_FACILITY */
2131             traceTASK_CREATE( pxNewTCB );
2132
2133             prvAddTaskToReadyList( pxNewTCB );
2134
2135             portSETUP_TCB( pxNewTCB );
2136
2137             if( xSchedulerRunning != pdFALSE )
2138             {
2139                 /* If the created task is of a higher priority than another
2140                  * currently running task and preemption is on then it should
2141                  * run now. */
2142                 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
2143             }
2144             else
2145             {
2146                 mtCOVERAGE_TEST_MARKER();
2147             }
2148         }
2149         taskEXIT_CRITICAL();
2150     }
2151
2152 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2153 /*-----------------------------------------------------------*/
2154
2155 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
2156
2157     static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
2158                                                         size_t n )
2159     {
2160         size_t uxCharsWritten;
2161
2162         if( iSnprintfReturnValue < 0 )
2163         {
2164             /* Encoding error - Return 0 to indicate that nothing
2165              * was written to the buffer. */
2166             uxCharsWritten = 0;
2167         }
2168         else if( iSnprintfReturnValue >= ( int ) n )
2169         {
2170             /* This is the case when the supplied buffer is not
2171              * large to hold the generated string. Return the
2172              * number of characters actually written without
2173              * counting the terminating NULL character. */
2174             uxCharsWritten = n - 1U;
2175         }
2176         else
2177         {
2178             /* Complete string was written to the buffer. */
2179             uxCharsWritten = ( size_t ) iSnprintfReturnValue;
2180         }
2181
2182         return uxCharsWritten;
2183     }
2184
2185 #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
2186 /*-----------------------------------------------------------*/
2187
2188 #if ( INCLUDE_vTaskDelete == 1 )
2189
2190     void vTaskDelete( TaskHandle_t xTaskToDelete )
2191     {
2192         TCB_t * pxTCB;
2193         BaseType_t xDeleteTCBInIdleTask = pdFALSE;
2194
2195         traceENTER_vTaskDelete( xTaskToDelete );
2196
2197         taskENTER_CRITICAL();
2198         {
2199             /* If null is passed in here then it is the calling task that is
2200              * being deleted. */
2201             pxTCB = prvGetTCBFromHandle( xTaskToDelete );
2202
2203             /* Remove task from the ready/delayed list. */
2204             if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2205             {
2206                 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
2207             }
2208             else
2209             {
2210                 mtCOVERAGE_TEST_MARKER();
2211             }
2212
2213             /* Is the task waiting on an event also? */
2214             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
2215             {
2216                 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
2217             }
2218             else
2219             {
2220                 mtCOVERAGE_TEST_MARKER();
2221             }
2222
2223             /* Increment the uxTaskNumber also so kernel aware debuggers can
2224              * detect that the task lists need re-generating.  This is done before
2225              * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
2226              * not return. */
2227             uxTaskNumber++;
2228
2229             /* If the task is running (or yielding), we must add it to the
2230              * termination list so that an idle task can delete it when it is
2231              * no longer running. */
2232             if( taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) != pdFALSE )
2233             {
2234                 /* A running task or a task which is scheduled to yield is being
2235                  * deleted. This cannot complete when the task is still running
2236                  * on a core, as a context switch to another task is required.
2237                  * Place the task in the termination list. The idle task will check
2238                  * the termination list and free up any memory allocated by the
2239                  * scheduler for the TCB and stack of the deleted task. */
2240                 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
2241
2242                 /* Increment the ucTasksDeleted variable so the idle task knows
2243                  * there is a task that has been deleted and that it should therefore
2244                  * check the xTasksWaitingTermination list. */
2245                 ++uxDeletedTasksWaitingCleanUp;
2246
2247                 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
2248                  * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
2249                 traceTASK_DELETE( pxTCB );
2250
2251                 /* Delete the task TCB in idle task. */
2252                 xDeleteTCBInIdleTask = pdTRUE;
2253
2254                 /* The pre-delete hook is primarily for the Windows simulator,
2255                  * in which Windows specific clean up operations are performed,
2256                  * after which it is not possible to yield away from this task -
2257                  * hence xYieldPending is used to latch that a context switch is
2258                  * required. */
2259                 #if ( configNUMBER_OF_CORES == 1 )
2260                     portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) );
2261                 #else
2262                     portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) );
2263                 #endif
2264             }
2265             else
2266             {
2267                 --uxCurrentNumberOfTasks;
2268                 traceTASK_DELETE( pxTCB );
2269
2270                 /* Reset the next expected unblock time in case it referred to
2271                  * the task that has just been deleted. */
2272                 prvResetNextTaskUnblockTime();
2273             }
2274         }
2275         taskEXIT_CRITICAL();
2276
2277         /* If the task is not deleting itself, call prvDeleteTCB from outside of
2278          * critical section. If a task deletes itself, prvDeleteTCB is called
2279          * from prvCheckTasksWaitingTermination which is called from Idle task. */
2280         if( xDeleteTCBInIdleTask != pdTRUE )
2281         {
2282             prvDeleteTCB( pxTCB );
2283         }
2284
2285         /* Force a reschedule if it is the currently running task that has just
2286          * been deleted. */
2287         if( xSchedulerRunning != pdFALSE )
2288         {
2289             #if ( configNUMBER_OF_CORES == 1 )
2290             {
2291                 if( pxTCB == pxCurrentTCB )
2292                 {
2293                     configASSERT( uxSchedulerSuspended == 0 );
2294                     taskYIELD_WITHIN_API();
2295                 }
2296                 else
2297                 {
2298                     mtCOVERAGE_TEST_MARKER();
2299                 }
2300             }
2301             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2302             {
2303                 /* It is important to use critical section here because
2304                  * checking run state of a task must be done inside a
2305                  * critical section. */
2306                 taskENTER_CRITICAL();
2307                 {
2308                     if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2309                     {
2310                         if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
2311                         {
2312                             configASSERT( uxSchedulerSuspended == 0 );
2313                             taskYIELD_WITHIN_API();
2314                         }
2315                         else
2316                         {
2317                             prvYieldCore( pxTCB->xTaskRunState );
2318                         }
2319                     }
2320                 }
2321                 taskEXIT_CRITICAL();
2322             }
2323             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2324         }
2325
2326         traceRETURN_vTaskDelete();
2327     }
2328
2329 #endif /* INCLUDE_vTaskDelete */
2330 /*-----------------------------------------------------------*/
2331
2332 #if ( INCLUDE_xTaskDelayUntil == 1 )
2333
2334     BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
2335                                 const TickType_t xTimeIncrement )
2336     {
2337         TickType_t xTimeToWake;
2338         BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
2339
2340         traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
2341
2342         configASSERT( pxPreviousWakeTime );
2343         configASSERT( ( xTimeIncrement > 0U ) );
2344
2345         vTaskSuspendAll();
2346         {
2347             /* Minor optimisation.  The tick count cannot change in this
2348              * block. */
2349             const TickType_t xConstTickCount = xTickCount;
2350
2351             configASSERT( uxSchedulerSuspended == 1U );
2352
2353             /* Generate the tick time at which the task wants to wake. */
2354             xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
2355
2356             if( xConstTickCount < *pxPreviousWakeTime )
2357             {
2358                 /* The tick count has overflowed since this function was
2359                  * lasted called.  In this case the only time we should ever
2360                  * actually delay is if the wake time has also  overflowed,
2361                  * and the wake time is greater than the tick time.  When this
2362                  * is the case it is as if neither time had overflowed. */
2363                 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
2364                 {
2365                     xShouldDelay = pdTRUE;
2366                 }
2367                 else
2368                 {
2369                     mtCOVERAGE_TEST_MARKER();
2370                 }
2371             }
2372             else
2373             {
2374                 /* The tick time has not overflowed.  In this case we will
2375                  * delay if either the wake time has overflowed, and/or the
2376                  * tick time is less than the wake time. */
2377                 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
2378                 {
2379                     xShouldDelay = pdTRUE;
2380                 }
2381                 else
2382                 {
2383                     mtCOVERAGE_TEST_MARKER();
2384                 }
2385             }
2386
2387             /* Update the wake time ready for the next call. */
2388             *pxPreviousWakeTime = xTimeToWake;
2389
2390             if( xShouldDelay != pdFALSE )
2391             {
2392                 traceTASK_DELAY_UNTIL( xTimeToWake );
2393
2394                 /* prvAddCurrentTaskToDelayedList() needs the block time, not
2395                  * the time to wake, so subtract the current tick count. */
2396                 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
2397             }
2398             else
2399             {
2400                 mtCOVERAGE_TEST_MARKER();
2401             }
2402         }
2403         xAlreadyYielded = xTaskResumeAll();
2404
2405         /* Force a reschedule if xTaskResumeAll has not already done so, we may
2406          * have put ourselves to sleep. */
2407         if( xAlreadyYielded == pdFALSE )
2408         {
2409             taskYIELD_WITHIN_API();
2410         }
2411         else
2412         {
2413             mtCOVERAGE_TEST_MARKER();
2414         }
2415
2416         traceRETURN_xTaskDelayUntil( xShouldDelay );
2417
2418         return xShouldDelay;
2419     }
2420
2421 #endif /* INCLUDE_xTaskDelayUntil */
2422 /*-----------------------------------------------------------*/
2423
2424 #if ( INCLUDE_vTaskDelay == 1 )
2425
2426     void vTaskDelay( const TickType_t xTicksToDelay )
2427     {
2428         BaseType_t xAlreadyYielded = pdFALSE;
2429
2430         traceENTER_vTaskDelay( xTicksToDelay );
2431
2432         /* A delay time of zero just forces a reschedule. */
2433         if( xTicksToDelay > ( TickType_t ) 0U )
2434         {
2435             vTaskSuspendAll();
2436             {
2437                 configASSERT( uxSchedulerSuspended == 1U );
2438
2439                 traceTASK_DELAY();
2440
2441                 /* A task that is removed from the event list while the
2442                  * scheduler is suspended will not get placed in the ready
2443                  * list or removed from the blocked list until the scheduler
2444                  * is resumed.
2445                  *
2446                  * This task cannot be in an event list as it is the currently
2447                  * executing task. */
2448                 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
2449             }
2450             xAlreadyYielded = xTaskResumeAll();
2451         }
2452         else
2453         {
2454             mtCOVERAGE_TEST_MARKER();
2455         }
2456
2457         /* Force a reschedule if xTaskResumeAll has not already done so, we may
2458          * have put ourselves to sleep. */
2459         if( xAlreadyYielded == pdFALSE )
2460         {
2461             taskYIELD_WITHIN_API();
2462         }
2463         else
2464         {
2465             mtCOVERAGE_TEST_MARKER();
2466         }
2467
2468         traceRETURN_vTaskDelay();
2469     }
2470
2471 #endif /* INCLUDE_vTaskDelay */
2472 /*-----------------------------------------------------------*/
2473
2474 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
2475
2476     eTaskState eTaskGetState( TaskHandle_t xTask )
2477     {
2478         eTaskState eReturn;
2479         List_t const * pxStateList;
2480         List_t const * pxEventList;
2481         List_t const * pxDelayedList;
2482         List_t const * pxOverflowedDelayedList;
2483         const TCB_t * const pxTCB = xTask;
2484
2485         traceENTER_eTaskGetState( xTask );
2486
2487         configASSERT( pxTCB );
2488
2489         #if ( configNUMBER_OF_CORES == 1 )
2490             if( pxTCB == pxCurrentTCB )
2491             {
2492                 /* The task calling this function is querying its own state. */
2493                 eReturn = eRunning;
2494             }
2495             else
2496         #endif
2497         {
2498             taskENTER_CRITICAL();
2499             {
2500                 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
2501                 pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) );
2502                 pxDelayedList = pxDelayedTaskList;
2503                 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
2504             }
2505             taskEXIT_CRITICAL();
2506
2507             if( pxEventList == &xPendingReadyList )
2508             {
2509                 /* The task has been placed on the pending ready list, so its
2510                  * state is eReady regardless of what list the task's state list
2511                  * item is currently placed on. */
2512                 eReturn = eReady;
2513             }
2514             else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
2515             {
2516                 /* The task being queried is referenced from one of the Blocked
2517                  * lists. */
2518                 eReturn = eBlocked;
2519             }
2520
2521             #if ( INCLUDE_vTaskSuspend == 1 )
2522                 else if( pxStateList == &xSuspendedTaskList )
2523                 {
2524                     /* The task being queried is referenced from the suspended
2525                      * list.  Is it genuinely suspended or is it blocked
2526                      * indefinitely? */
2527                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
2528                     {
2529                         #if ( configUSE_TASK_NOTIFICATIONS == 1 )
2530                         {
2531                             BaseType_t x;
2532
2533                             /* The task does not appear on the event list item of
2534                              * and of the RTOS objects, but could still be in the
2535                              * blocked state if it is waiting on its notification
2536                              * rather than waiting on an object.  If not, is
2537                              * suspended. */
2538                             eReturn = eSuspended;
2539
2540                             for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
2541                             {
2542                                 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
2543                                 {
2544                                     eReturn = eBlocked;
2545                                     break;
2546                                 }
2547                             }
2548                         }
2549                         #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2550                         {
2551                             eReturn = eSuspended;
2552                         }
2553                         #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
2554                     }
2555                     else
2556                     {
2557                         eReturn = eBlocked;
2558                     }
2559                 }
2560             #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
2561
2562             #if ( INCLUDE_vTaskDelete == 1 )
2563                 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
2564                 {
2565                     /* The task being queried is referenced from the deleted
2566                      * tasks list, or it is not referenced from any lists at
2567                      * all. */
2568                     eReturn = eDeleted;
2569                 }
2570             #endif
2571
2572             else
2573             {
2574                 #if ( configNUMBER_OF_CORES == 1 )
2575                 {
2576                     /* If the task is not in any other state, it must be in the
2577                      * Ready (including pending ready) state. */
2578                     eReturn = eReady;
2579                 }
2580                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2581                 {
2582                     if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2583                     {
2584                         /* Is it actively running on a core? */
2585                         eReturn = eRunning;
2586                     }
2587                     else
2588                     {
2589                         /* If the task is not in any other state, it must be in the
2590                          * Ready (including pending ready) state. */
2591                         eReturn = eReady;
2592                     }
2593                 }
2594                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2595             }
2596         }
2597
2598         traceRETURN_eTaskGetState( eReturn );
2599
2600         return eReturn;
2601     }
2602
2603 #endif /* INCLUDE_eTaskGetState */
2604 /*-----------------------------------------------------------*/
2605
2606 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2607
2608     UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
2609     {
2610         TCB_t const * pxTCB;
2611         UBaseType_t uxReturn;
2612
2613         traceENTER_uxTaskPriorityGet( xTask );
2614
2615         taskENTER_CRITICAL();
2616         {
2617             /* If null is passed in here then it is the priority of the task
2618              * that called uxTaskPriorityGet() that is being queried. */
2619             pxTCB = prvGetTCBFromHandle( xTask );
2620             uxReturn = pxTCB->uxPriority;
2621         }
2622         taskEXIT_CRITICAL();
2623
2624         traceRETURN_uxTaskPriorityGet( uxReturn );
2625
2626         return uxReturn;
2627     }
2628
2629 #endif /* INCLUDE_uxTaskPriorityGet */
2630 /*-----------------------------------------------------------*/
2631
2632 #if ( INCLUDE_uxTaskPriorityGet == 1 )
2633
2634     UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
2635     {
2636         TCB_t const * pxTCB;
2637         UBaseType_t uxReturn;
2638         UBaseType_t uxSavedInterruptStatus;
2639
2640         traceENTER_uxTaskPriorityGetFromISR( xTask );
2641
2642         /* RTOS ports that support interrupt nesting have the concept of a
2643          * maximum  system call (or maximum API call) interrupt priority.
2644          * Interrupts that are  above the maximum system call priority are keep
2645          * permanently enabled, even when the RTOS kernel is in a critical section,
2646          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
2647          * is defined in FreeRTOSConfig.h then
2648          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2649          * failure if a FreeRTOS API function is called from an interrupt that has
2650          * been assigned a priority above the configured maximum system call
2651          * priority.  Only FreeRTOS functions that end in FromISR can be called
2652          * from interrupts  that have been assigned a priority at or (logically)
2653          * below the maximum system call interrupt priority.  FreeRTOS maintains a
2654          * separate interrupt safe API to ensure interrupt entry is as fast and as
2655          * simple as possible.  More information (albeit Cortex-M specific) is
2656          * provided on the following link:
2657          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2658         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2659
2660         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
2661         {
2662             /* If null is passed in here then it is the priority of the calling
2663              * task that is being queried. */
2664             pxTCB = prvGetTCBFromHandle( xTask );
2665             uxReturn = pxTCB->uxPriority;
2666         }
2667         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2668
2669         traceRETURN_uxTaskPriorityGetFromISR( uxReturn );
2670
2671         return uxReturn;
2672     }
2673
2674 #endif /* INCLUDE_uxTaskPriorityGet */
2675 /*-----------------------------------------------------------*/
2676
2677 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2678
2679     UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask )
2680     {
2681         TCB_t const * pxTCB;
2682         UBaseType_t uxReturn;
2683
2684         traceENTER_uxTaskBasePriorityGet( xTask );
2685
2686         taskENTER_CRITICAL();
2687         {
2688             /* If null is passed in here then it is the base priority of the task
2689              * that called uxTaskBasePriorityGet() that is being queried. */
2690             pxTCB = prvGetTCBFromHandle( xTask );
2691             uxReturn = pxTCB->uxBasePriority;
2692         }
2693         taskEXIT_CRITICAL();
2694
2695         traceRETURN_uxTaskBasePriorityGet( uxReturn );
2696
2697         return uxReturn;
2698     }
2699
2700 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2701 /*-----------------------------------------------------------*/
2702
2703 #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
2704
2705     UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask )
2706     {
2707         TCB_t const * pxTCB;
2708         UBaseType_t uxReturn;
2709         UBaseType_t uxSavedInterruptStatus;
2710
2711         traceENTER_uxTaskBasePriorityGetFromISR( xTask );
2712
2713         /* RTOS ports that support interrupt nesting have the concept of a
2714          * maximum  system call (or maximum API call) interrupt priority.
2715          * Interrupts that are  above the maximum system call priority are keep
2716          * permanently enabled, even when the RTOS kernel is in a critical section,
2717          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
2718          * is defined in FreeRTOSConfig.h then
2719          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2720          * failure if a FreeRTOS API function is called from an interrupt that has
2721          * been assigned a priority above the configured maximum system call
2722          * priority.  Only FreeRTOS functions that end in FromISR can be called
2723          * from interrupts  that have been assigned a priority at or (logically)
2724          * below the maximum system call interrupt priority.  FreeRTOS maintains a
2725          * separate interrupt safe API to ensure interrupt entry is as fast and as
2726          * simple as possible.  More information (albeit Cortex-M specific) is
2727          * provided on the following link:
2728          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2729         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2730
2731         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
2732         {
2733             /* If null is passed in here then it is the base priority of the calling
2734              * task that is being queried. */
2735             pxTCB = prvGetTCBFromHandle( xTask );
2736             uxReturn = pxTCB->uxBasePriority;
2737         }
2738         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2739
2740         traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn );
2741
2742         return uxReturn;
2743     }
2744
2745 #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
2746 /*-----------------------------------------------------------*/
2747
2748 #if ( INCLUDE_vTaskPrioritySet == 1 )
2749
2750     void vTaskPrioritySet( TaskHandle_t xTask,
2751                            UBaseType_t uxNewPriority )
2752     {
2753         TCB_t * pxTCB;
2754         UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
2755         BaseType_t xYieldRequired = pdFALSE;
2756
2757         #if ( configNUMBER_OF_CORES > 1 )
2758             BaseType_t xYieldForTask = pdFALSE;
2759         #endif
2760
2761         traceENTER_vTaskPrioritySet( xTask, uxNewPriority );
2762
2763         configASSERT( uxNewPriority < configMAX_PRIORITIES );
2764
2765         /* Ensure the new priority is valid. */
2766         if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
2767         {
2768             uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
2769         }
2770         else
2771         {
2772             mtCOVERAGE_TEST_MARKER();
2773         }
2774
2775         taskENTER_CRITICAL();
2776         {
2777             /* If null is passed in here then it is the priority of the calling
2778              * task that is being changed. */
2779             pxTCB = prvGetTCBFromHandle( xTask );
2780
2781             traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
2782
2783             #if ( configUSE_MUTEXES == 1 )
2784             {
2785                 uxCurrentBasePriority = pxTCB->uxBasePriority;
2786             }
2787             #else
2788             {
2789                 uxCurrentBasePriority = pxTCB->uxPriority;
2790             }
2791             #endif
2792
2793             if( uxCurrentBasePriority != uxNewPriority )
2794             {
2795                 /* The priority change may have readied a task of higher
2796                  * priority than a running task. */
2797                 if( uxNewPriority > uxCurrentBasePriority )
2798                 {
2799                     #if ( configNUMBER_OF_CORES == 1 )
2800                     {
2801                         if( pxTCB != pxCurrentTCB )
2802                         {
2803                             /* The priority of a task other than the currently
2804                              * running task is being raised.  Is the priority being
2805                              * raised above that of the running task? */
2806                             if( uxNewPriority > pxCurrentTCB->uxPriority )
2807                             {
2808                                 xYieldRequired = pdTRUE;
2809                             }
2810                             else
2811                             {
2812                                 mtCOVERAGE_TEST_MARKER();
2813                             }
2814                         }
2815                         else
2816                         {
2817                             /* The priority of the running task is being raised,
2818                              * but the running task must already be the highest
2819                              * priority task able to run so no yield is required. */
2820                         }
2821                     }
2822                     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
2823                     {
2824                         /* The priority of a task is being raised so
2825                          * perform a yield for this task later. */
2826                         xYieldForTask = pdTRUE;
2827                     }
2828                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
2829                 }
2830                 else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2831                 {
2832                     /* Setting the priority of a running task down means
2833                      * there may now be another task of higher priority that
2834                      * is ready to execute. */
2835                     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
2836                         if( pxTCB->xPreemptionDisable == pdFALSE )
2837                     #endif
2838                     {
2839                         xYieldRequired = pdTRUE;
2840                     }
2841                 }
2842                 else
2843                 {
2844                     /* Setting the priority of any other task down does not
2845                      * require a yield as the running task must be above the
2846                      * new priority of the task being modified. */
2847                 }
2848
2849                 /* Remember the ready list the task might be referenced from
2850                  * before its uxPriority member is changed so the
2851                  * taskRESET_READY_PRIORITY() macro can function correctly. */
2852                 uxPriorityUsedOnEntry = pxTCB->uxPriority;
2853
2854                 #if ( configUSE_MUTEXES == 1 )
2855                 {
2856                     /* Only change the priority being used if the task is not
2857                      * currently using an inherited priority or the new priority
2858                      * is bigger than the inherited priority. */
2859                     if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) )
2860                     {
2861                         pxTCB->uxPriority = uxNewPriority;
2862                     }
2863                     else
2864                     {
2865                         mtCOVERAGE_TEST_MARKER();
2866                     }
2867
2868                     /* The base priority gets set whatever. */
2869                     pxTCB->uxBasePriority = uxNewPriority;
2870                 }
2871                 #else /* if ( configUSE_MUTEXES == 1 ) */
2872                 {
2873                     pxTCB->uxPriority = uxNewPriority;
2874                 }
2875                 #endif /* if ( configUSE_MUTEXES == 1 ) */
2876
2877                 /* Only reset the event list item value if the value is not
2878                  * being used for anything else. */
2879                 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
2880                 {
2881                     listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) );
2882                 }
2883                 else
2884                 {
2885                     mtCOVERAGE_TEST_MARKER();
2886                 }
2887
2888                 /* If the task is in the blocked or suspended list we need do
2889                  * nothing more than change its priority variable. However, if
2890                  * the task is in a ready list it needs to be removed and placed
2891                  * in the list appropriate to its new priority. */
2892                 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
2893                 {
2894                     /* The task is currently in its ready list - remove before
2895                      * adding it to its new ready list.  As we are in a critical
2896                      * section we can do this even if the scheduler is suspended. */
2897                     if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
2898                     {
2899                         /* It is known that the task is in its ready list so
2900                          * there is no need to check again and the port level
2901                          * reset macro can be called directly. */
2902                         portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
2903                     }
2904                     else
2905                     {
2906                         mtCOVERAGE_TEST_MARKER();
2907                     }
2908
2909                     prvAddTaskToReadyList( pxTCB );
2910                 }
2911                 else
2912                 {
2913                     #if ( configNUMBER_OF_CORES == 1 )
2914                     {
2915                         mtCOVERAGE_TEST_MARKER();
2916                     }
2917                     #else
2918                     {
2919                         /* It's possible that xYieldForTask was already set to pdTRUE because
2920                          * its priority is being raised. However, since it is not in a ready list
2921                          * we don't actually need to yield for it. */
2922                         xYieldForTask = pdFALSE;
2923                     }
2924                     #endif
2925                 }
2926
2927                 if( xYieldRequired != pdFALSE )
2928                 {
2929                     /* The running task priority is set down. Request the task to yield. */
2930                     taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
2931                 }
2932                 else
2933                 {
2934                     #if ( configNUMBER_OF_CORES > 1 )
2935                         if( xYieldForTask != pdFALSE )
2936                         {
2937                             /* The priority of the task is being raised. If a running
2938                              * task has priority lower than this task, it should yield
2939                              * for this task. */
2940                             taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
2941                         }
2942                         else
2943                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
2944                     {
2945                         mtCOVERAGE_TEST_MARKER();
2946                     }
2947                 }
2948
2949                 /* Remove compiler warning about unused variables when the port
2950                  * optimised task selection is not being used. */
2951                 ( void ) uxPriorityUsedOnEntry;
2952             }
2953         }
2954         taskEXIT_CRITICAL();
2955
2956         traceRETURN_vTaskPrioritySet();
2957     }
2958
2959 #endif /* INCLUDE_vTaskPrioritySet */
2960 /*-----------------------------------------------------------*/
2961
2962 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
2963     void vTaskCoreAffinitySet( const TaskHandle_t xTask,
2964                                UBaseType_t uxCoreAffinityMask )
2965     {
2966         TCB_t * pxTCB;
2967         BaseType_t xCoreID;
2968         UBaseType_t uxPrevCoreAffinityMask;
2969
2970         #if ( configUSE_PREEMPTION == 1 )
2971             UBaseType_t uxPrevNotAllowedCores;
2972         #endif
2973
2974         traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask );
2975
2976         taskENTER_CRITICAL();
2977         {
2978             pxTCB = prvGetTCBFromHandle( xTask );
2979
2980             uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask;
2981             pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;
2982
2983             if( xSchedulerRunning != pdFALSE )
2984             {
2985                 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
2986                 {
2987                     xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
2988
2989                     /* If the task can no longer run on the core it was running,
2990                      * request the core to yield. */
2991                     if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U )
2992                     {
2993                         prvYieldCore( xCoreID );
2994                     }
2995                 }
2996                 else
2997                 {
2998                     #if ( configUSE_PREEMPTION == 1 )
2999                     {
3000                         /* Calculate the cores on which this task was not allowed to
3001                          * run previously. */
3002                         uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U );
3003
3004                         /* Does the new core mask enables this task to run on any of the
3005                          * previously not allowed cores? If yes, check if this task can be
3006                          * scheduled on any of those cores. */
3007                         if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U )
3008                         {
3009                             prvYieldForTask( pxTCB );
3010                         }
3011                     }
3012                     #else /* #if( configUSE_PREEMPTION == 1 ) */
3013                     {
3014                         mtCOVERAGE_TEST_MARKER();
3015                     }
3016                     #endif /* #if( configUSE_PREEMPTION == 1 ) */
3017                 }
3018             }
3019         }
3020         taskEXIT_CRITICAL();
3021
3022         traceRETURN_vTaskCoreAffinitySet();
3023     }
3024 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3025 /*-----------------------------------------------------------*/
3026
3027 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
3028     UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask )
3029     {
3030         const TCB_t * pxTCB;
3031         UBaseType_t uxCoreAffinityMask;
3032
3033         traceENTER_vTaskCoreAffinityGet( xTask );
3034
3035         taskENTER_CRITICAL();
3036         {
3037             pxTCB = prvGetTCBFromHandle( xTask );
3038             uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
3039         }
3040         taskEXIT_CRITICAL();
3041
3042         traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask );
3043
3044         return uxCoreAffinityMask;
3045     }
3046 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
3047
3048 /*-----------------------------------------------------------*/
3049
3050 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3051
3052     void vTaskPreemptionDisable( const TaskHandle_t xTask )
3053     {
3054         TCB_t * pxTCB;
3055
3056         traceENTER_vTaskPreemptionDisable( xTask );
3057
3058         taskENTER_CRITICAL();
3059         {
3060             pxTCB = prvGetTCBFromHandle( xTask );
3061
3062             pxTCB->xPreemptionDisable = pdTRUE;
3063         }
3064         taskEXIT_CRITICAL();
3065
3066         traceRETURN_vTaskPreemptionDisable();
3067     }
3068
3069 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3070 /*-----------------------------------------------------------*/
3071
3072 #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
3073
3074     void vTaskPreemptionEnable( const TaskHandle_t xTask )
3075     {
3076         TCB_t * pxTCB;
3077         BaseType_t xCoreID;
3078
3079         traceENTER_vTaskPreemptionEnable( xTask );
3080
3081         taskENTER_CRITICAL();
3082         {
3083             pxTCB = prvGetTCBFromHandle( xTask );
3084
3085             pxTCB->xPreemptionDisable = pdFALSE;
3086
3087             if( xSchedulerRunning != pdFALSE )
3088             {
3089                 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3090                 {
3091                     xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
3092                     prvYieldCore( xCoreID );
3093                 }
3094             }
3095         }
3096         taskEXIT_CRITICAL();
3097
3098         traceRETURN_vTaskPreemptionEnable();
3099     }
3100
3101 #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
3102 /*-----------------------------------------------------------*/
3103
3104 #if ( INCLUDE_vTaskSuspend == 1 )
3105
3106     void vTaskSuspend( TaskHandle_t xTaskToSuspend )
3107     {
3108         TCB_t * pxTCB;
3109
3110         traceENTER_vTaskSuspend( xTaskToSuspend );
3111
3112         taskENTER_CRITICAL();
3113         {
3114             /* If null is passed in here then it is the running task that is
3115              * being suspended. */
3116             pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
3117
3118             traceTASK_SUSPEND( pxTCB );
3119
3120             /* Remove task from the ready/delayed list and place in the
3121              * suspended list. */
3122             if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
3123             {
3124                 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
3125             }
3126             else
3127             {
3128                 mtCOVERAGE_TEST_MARKER();
3129             }
3130
3131             /* Is the task waiting on an event also? */
3132             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
3133             {
3134                 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
3135             }
3136             else
3137             {
3138                 mtCOVERAGE_TEST_MARKER();
3139             }
3140
3141             vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
3142
3143             #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3144             {
3145                 BaseType_t x;
3146
3147                 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3148                 {
3149                     if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3150                     {
3151                         /* The task was blocked to wait for a notification, but is
3152                          * now suspended, so no notification was received. */
3153                         pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
3154                     }
3155                 }
3156             }
3157             #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3158         }
3159         taskEXIT_CRITICAL();
3160
3161         if( xSchedulerRunning != pdFALSE )
3162         {
3163             /* Reset the next expected unblock time in case it referred to the
3164              * task that is now in the Suspended state. */
3165             taskENTER_CRITICAL();
3166             {
3167                 prvResetNextTaskUnblockTime();
3168             }
3169             taskEXIT_CRITICAL();
3170         }
3171         else
3172         {
3173             mtCOVERAGE_TEST_MARKER();
3174         }
3175
3176         #if ( configNUMBER_OF_CORES == 1 )
3177         {
3178             if( pxTCB == pxCurrentTCB )
3179             {
3180                 if( xSchedulerRunning != pdFALSE )
3181                 {
3182                     /* The current task has just been suspended. */
3183                     configASSERT( uxSchedulerSuspended == 0 );
3184                     portYIELD_WITHIN_API();
3185                 }
3186                 else
3187                 {
3188                     /* The scheduler is not running, but the task that was pointed
3189                      * to by pxCurrentTCB has just been suspended and pxCurrentTCB
3190                      * must be adjusted to point to a different task. */
3191                     if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
3192                     {
3193                         /* No other tasks are ready, so set pxCurrentTCB back to
3194                          * NULL so when the next task is created pxCurrentTCB will
3195                          * be set to point to it no matter what its relative priority
3196                          * is. */
3197                         pxCurrentTCB = NULL;
3198                     }
3199                     else
3200                     {
3201                         vTaskSwitchContext();
3202                     }
3203                 }
3204             }
3205             else
3206             {
3207                 mtCOVERAGE_TEST_MARKER();
3208             }
3209         }
3210         #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3211         {
3212             /* Enter critical section here to check run state of a task. */
3213             taskENTER_CRITICAL();
3214             {
3215                 if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
3216                 {
3217                     if( xSchedulerRunning != pdFALSE )
3218                     {
3219                         if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
3220                         {
3221                             /* The current task has just been suspended. */
3222                             configASSERT( uxSchedulerSuspended == 0 );
3223                             vTaskYieldWithinAPI();
3224                         }
3225                         else
3226                         {
3227                             prvYieldCore( pxTCB->xTaskRunState );
3228                         }
3229                     }
3230                     else
3231                     {
3232                         /* This code path is not possible because only Idle tasks are
3233                          * assigned a core before the scheduler is started ( i.e.
3234                          * taskTASK_IS_RUNNING is only true for idle tasks before
3235                          * the scheduler is started ) and idle tasks cannot be
3236                          * suspended. */
3237                         mtCOVERAGE_TEST_MARKER();
3238                     }
3239                 }
3240                 else
3241                 {
3242                     mtCOVERAGE_TEST_MARKER();
3243                 }
3244             }
3245             taskEXIT_CRITICAL();
3246         }
3247         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3248
3249         traceRETURN_vTaskSuspend();
3250     }
3251
3252 #endif /* INCLUDE_vTaskSuspend */
3253 /*-----------------------------------------------------------*/
3254
3255 #if ( INCLUDE_vTaskSuspend == 1 )
3256
3257     static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
3258     {
3259         BaseType_t xReturn = pdFALSE;
3260         const TCB_t * const pxTCB = xTask;
3261
3262         /* Accesses xPendingReadyList so must be called from a critical
3263          * section. */
3264
3265         /* It does not make sense to check if the calling task is suspended. */
3266         configASSERT( xTask );
3267
3268         /* Is the task being resumed actually in the suspended list? */
3269         if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
3270         {
3271             /* Has the task already been resumed from within an ISR? */
3272             if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
3273             {
3274                 /* Is it in the suspended list because it is in the Suspended
3275                  * state, or because it is blocked with no timeout? */
3276                 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
3277                 {
3278                     #if ( configUSE_TASK_NOTIFICATIONS == 1 )
3279                     {
3280                         BaseType_t x;
3281
3282                         /* The task does not appear on the event list item of
3283                          * and of the RTOS objects, but could still be in the
3284                          * blocked state if it is waiting on its notification
3285                          * rather than waiting on an object.  If not, is
3286                          * suspended. */
3287                         xReturn = pdTRUE;
3288
3289                         for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
3290                         {
3291                             if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
3292                             {
3293                                 xReturn = pdFALSE;
3294                                 break;
3295                             }
3296                         }
3297                     }
3298                     #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3299                     {
3300                         xReturn = pdTRUE;
3301                     }
3302                     #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
3303                 }
3304                 else
3305                 {
3306                     mtCOVERAGE_TEST_MARKER();
3307                 }
3308             }
3309             else
3310             {
3311                 mtCOVERAGE_TEST_MARKER();
3312             }
3313         }
3314         else
3315         {
3316             mtCOVERAGE_TEST_MARKER();
3317         }
3318
3319         return xReturn;
3320     }
3321
3322 #endif /* INCLUDE_vTaskSuspend */
3323 /*-----------------------------------------------------------*/
3324
3325 #if ( INCLUDE_vTaskSuspend == 1 )
3326
3327     void vTaskResume( TaskHandle_t xTaskToResume )
3328     {
3329         TCB_t * const pxTCB = xTaskToResume;
3330
3331         traceENTER_vTaskResume( xTaskToResume );
3332
3333         /* It does not make sense to resume the calling task. */
3334         configASSERT( xTaskToResume );
3335
3336         #if ( configNUMBER_OF_CORES == 1 )
3337
3338             /* The parameter cannot be NULL as it is impossible to resume the
3339              * currently executing task. */
3340             if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
3341         #else
3342
3343             /* The parameter cannot be NULL as it is impossible to resume the
3344              * currently executing task. It is also impossible to resume a task
3345              * that is actively running on another core but it is not safe
3346              * to check their run state here. Therefore, we get into a critical
3347              * section and check if the task is actually suspended or not. */
3348             if( pxTCB != NULL )
3349         #endif
3350         {
3351             taskENTER_CRITICAL();
3352             {
3353                 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3354                 {
3355                     traceTASK_RESUME( pxTCB );
3356
3357                     /* The ready list can be accessed even if the scheduler is
3358                      * suspended because this is inside a critical section. */
3359                     ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3360                     prvAddTaskToReadyList( pxTCB );
3361
3362                     /* This yield may not cause the task just resumed to run,
3363                      * but will leave the lists in the correct state for the
3364                      * next yield. */
3365                     taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
3366                 }
3367                 else
3368                 {
3369                     mtCOVERAGE_TEST_MARKER();
3370                 }
3371             }
3372             taskEXIT_CRITICAL();
3373         }
3374         else
3375         {
3376             mtCOVERAGE_TEST_MARKER();
3377         }
3378
3379         traceRETURN_vTaskResume();
3380     }
3381
3382 #endif /* INCLUDE_vTaskSuspend */
3383
3384 /*-----------------------------------------------------------*/
3385
3386 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
3387
3388     BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
3389     {
3390         BaseType_t xYieldRequired = pdFALSE;
3391         TCB_t * const pxTCB = xTaskToResume;
3392         UBaseType_t uxSavedInterruptStatus;
3393
3394         traceENTER_xTaskResumeFromISR( xTaskToResume );
3395
3396         configASSERT( xTaskToResume );
3397
3398         /* RTOS ports that support interrupt nesting have the concept of a
3399          * maximum  system call (or maximum API call) interrupt priority.
3400          * Interrupts that are  above the maximum system call priority are keep
3401          * permanently enabled, even when the RTOS kernel is in a critical section,
3402          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
3403          * is defined in FreeRTOSConfig.h then
3404          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
3405          * failure if a FreeRTOS API function is called from an interrupt that has
3406          * been assigned a priority above the configured maximum system call
3407          * priority.  Only FreeRTOS functions that end in FromISR can be called
3408          * from interrupts  that have been assigned a priority at or (logically)
3409          * below the maximum system call interrupt priority.  FreeRTOS maintains a
3410          * separate interrupt safe API to ensure interrupt entry is as fast and as
3411          * simple as possible.  More information (albeit Cortex-M specific) is
3412          * provided on the following link:
3413          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
3414         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
3415
3416         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
3417         {
3418             if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
3419             {
3420                 traceTASK_RESUME_FROM_ISR( pxTCB );
3421
3422                 /* Check the ready lists can be accessed. */
3423                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3424                 {
3425                     #if ( configNUMBER_OF_CORES == 1 )
3426                     {
3427                         /* Ready lists can be accessed so move the task from the
3428                          * suspended list to the ready list directly. */
3429                         if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3430                         {
3431                             xYieldRequired = pdTRUE;
3432
3433                             /* Mark that a yield is pending in case the user is not
3434                              * using the return value to initiate a context switch
3435                              * from the ISR using the port specific portYIELD_FROM_ISR(). */
3436                             xYieldPendings[ 0 ] = pdTRUE;
3437                         }
3438                         else
3439                         {
3440                             mtCOVERAGE_TEST_MARKER();
3441                         }
3442                     }
3443                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3444
3445                     ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
3446                     prvAddTaskToReadyList( pxTCB );
3447                 }
3448                 else
3449                 {
3450                     /* The delayed or ready lists cannot be accessed so the task
3451                      * is held in the pending ready list until the scheduler is
3452                      * unsuspended. */
3453                     vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
3454                 }
3455
3456                 #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) )
3457                 {
3458                     prvYieldForTask( pxTCB );
3459
3460                     if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
3461                     {
3462                         xYieldRequired = pdTRUE;
3463                     }
3464                 }
3465                 #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */
3466             }
3467             else
3468             {
3469                 mtCOVERAGE_TEST_MARKER();
3470             }
3471         }
3472         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
3473
3474         traceRETURN_xTaskResumeFromISR( xYieldRequired );
3475
3476         return xYieldRequired;
3477     }
3478
3479 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
3480 /*-----------------------------------------------------------*/
3481
3482 static BaseType_t prvCreateIdleTasks( void )
3483 {
3484     BaseType_t xReturn = pdPASS;
3485     BaseType_t xCoreID;
3486     char cIdleName[ configMAX_TASK_NAME_LEN ];
3487     TaskFunction_t pxIdleTaskFunction = NULL;
3488     BaseType_t xIdleTaskNameIndex;
3489
3490     for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ )
3491     {
3492         cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ];
3493
3494         /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
3495          * configMAX_TASK_NAME_LEN characters just in case the memory after the
3496          * string is not accessible (extremely unlikely). */
3497         if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 )
3498         {
3499             break;
3500         }
3501         else
3502         {
3503             mtCOVERAGE_TEST_MARKER();
3504         }
3505     }
3506
3507     /* Add each idle task at the lowest priority. */
3508     for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
3509     {
3510         #if ( configNUMBER_OF_CORES == 1 )
3511         {
3512             pxIdleTaskFunction = prvIdleTask;
3513         }
3514         #else /* #if (  configNUMBER_OF_CORES == 1 ) */
3515         {
3516             /* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks
3517              * are also created to ensure that each core has an idle task to
3518              * run when no other task is available to run. */
3519             if( xCoreID == 0 )
3520             {
3521                 pxIdleTaskFunction = prvIdleTask;
3522             }
3523             else
3524             {
3525                 pxIdleTaskFunction = prvPassiveIdleTask;
3526             }
3527         }
3528         #endif /* #if (  configNUMBER_OF_CORES == 1 ) */
3529
3530         /* Update the idle task name with suffix to differentiate the idle tasks.
3531          * This function is not required in single core FreeRTOS since there is
3532          * only one idle task. */
3533         #if ( configNUMBER_OF_CORES > 1 )
3534         {
3535             /* Append the idle task number to the end of the name if there is space. */
3536             if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3537             {
3538                 cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' );
3539
3540                 /* And append a null character if there is space. */
3541                 if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN )
3542                 {
3543                     cIdleName[ xIdleTaskNameIndex + 1 ] = '\0';
3544                 }
3545                 else
3546                 {
3547                     mtCOVERAGE_TEST_MARKER();
3548                 }
3549             }
3550             else
3551             {
3552                 mtCOVERAGE_TEST_MARKER();
3553             }
3554         }
3555         #endif /* if ( configNUMBER_OF_CORES > 1 ) */
3556
3557         #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
3558         {
3559             StaticTask_t * pxIdleTaskTCBBuffer = NULL;
3560             StackType_t * pxIdleTaskStackBuffer = NULL;
3561             configSTACK_DEPTH_TYPE uxIdleTaskStackSize;
3562
3563             /* The Idle task is created using user provided RAM - obtain the
3564              * address of the RAM then create the idle task. */
3565             #if ( configNUMBER_OF_CORES == 1 )
3566             {
3567                 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
3568             }
3569             #else
3570             {
3571                 if( xCoreID == 0 )
3572                 {
3573                     vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
3574                 }
3575                 else
3576                 {
3577                     vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize, xCoreID - 1 );
3578                 }
3579             }
3580             #endif /* if ( configNUMBER_OF_CORES == 1 ) */
3581             xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction,
3582                                                              cIdleName,
3583                                                              uxIdleTaskStackSize,
3584                                                              ( void * ) NULL,
3585                                                              portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3586                                                              pxIdleTaskStackBuffer,
3587                                                              pxIdleTaskTCBBuffer );
3588
3589             if( xIdleTaskHandles[ xCoreID ] != NULL )
3590             {
3591                 xReturn = pdPASS;
3592             }
3593             else
3594             {
3595                 xReturn = pdFAIL;
3596             }
3597         }
3598         #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
3599         {
3600             /* The Idle task is being created using dynamically allocated RAM. */
3601             xReturn = xTaskCreate( pxIdleTaskFunction,
3602                                    cIdleName,
3603                                    configMINIMAL_STACK_SIZE,
3604                                    ( void * ) NULL,
3605                                    portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
3606                                    &xIdleTaskHandles[ xCoreID ] );
3607         }
3608         #endif /* configSUPPORT_STATIC_ALLOCATION */
3609
3610         /* Break the loop if any of the idle task is failed to be created. */
3611         if( xReturn == pdFAIL )
3612         {
3613             break;
3614         }
3615         else
3616         {
3617             #if ( configNUMBER_OF_CORES == 1 )
3618             {
3619                 mtCOVERAGE_TEST_MARKER();
3620             }
3621             #else
3622             {
3623                 /* Assign idle task to each core before SMP scheduler is running. */
3624                 xIdleTaskHandles[ xCoreID ]->xTaskRunState = xCoreID;
3625                 pxCurrentTCBs[ xCoreID ] = xIdleTaskHandles[ xCoreID ];
3626             }
3627             #endif
3628         }
3629     }
3630
3631     return xReturn;
3632 }
3633
3634 /*-----------------------------------------------------------*/
3635
3636 void vTaskStartScheduler( void )
3637 {
3638     BaseType_t xReturn;
3639
3640     traceENTER_vTaskStartScheduler();
3641
3642     #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
3643     {
3644         /* Sanity check that the UBaseType_t must have greater than or equal to
3645          * the number of bits as confNUMBER_OF_CORES. */
3646         configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES );
3647     }
3648     #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
3649
3650     xReturn = prvCreateIdleTasks();
3651
3652     #if ( configUSE_TIMERS == 1 )
3653     {
3654         if( xReturn == pdPASS )
3655         {
3656             xReturn = xTimerCreateTimerTask();
3657         }
3658         else
3659         {
3660             mtCOVERAGE_TEST_MARKER();
3661         }
3662     }
3663     #endif /* configUSE_TIMERS */
3664
3665     if( xReturn == pdPASS )
3666     {
3667         /* freertos_tasks_c_additions_init() should only be called if the user
3668          * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
3669          * the only macro called by the function. */
3670         #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
3671         {
3672             freertos_tasks_c_additions_init();
3673         }
3674         #endif
3675
3676         /* Interrupts are turned off here, to ensure a tick does not occur
3677          * before or during the call to xPortStartScheduler().  The stacks of
3678          * the created tasks contain a status word with interrupts switched on
3679          * so interrupts will automatically get re-enabled when the first task
3680          * starts to run. */
3681         portDISABLE_INTERRUPTS();
3682
3683         #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
3684         {
3685             /* Switch C-Runtime's TLS Block to point to the TLS
3686              * block specific to the task that will run first. */
3687             configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
3688         }
3689         #endif
3690
3691         xNextTaskUnblockTime = portMAX_DELAY;
3692         xSchedulerRunning = pdTRUE;
3693         xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
3694
3695         /* If configGENERATE_RUN_TIME_STATS is defined then the following
3696          * macro must be defined to configure the timer/counter used to generate
3697          * the run time counter time base.   NOTE:  If configGENERATE_RUN_TIME_STATS
3698          * is set to 0 and the following line fails to build then ensure you do not
3699          * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
3700          * FreeRTOSConfig.h file. */
3701         portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
3702
3703         traceTASK_SWITCHED_IN();
3704
3705         /* Setting up the timer tick is hardware specific and thus in the
3706          * portable interface. */
3707
3708         /* The return value for xPortStartScheduler is not required
3709          * hence using a void datatype. */
3710         ( void ) xPortStartScheduler();
3711
3712         /* In most cases, xPortStartScheduler() will not return. If it
3713          * returns pdTRUE then there was not enough heap memory available
3714          * to create either the Idle or the Timer task. If it returned
3715          * pdFALSE, then the application called xTaskEndScheduler().
3716          * Most ports don't implement xTaskEndScheduler() as there is
3717          * nothing to return to. */
3718     }
3719     else
3720     {
3721         /* This line will only be reached if the kernel could not be started,
3722          * because there was not enough FreeRTOS heap to create the idle task
3723          * or the timer task. */
3724         configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
3725     }
3726
3727     /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
3728      * meaning xIdleTaskHandles are not used anywhere else. */
3729     ( void ) xIdleTaskHandles;
3730
3731     /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
3732      * from getting optimized out as it is no longer used by the kernel. */
3733     ( void ) uxTopUsedPriority;
3734
3735     traceRETURN_vTaskStartScheduler();
3736 }
3737 /*-----------------------------------------------------------*/
3738
3739 void vTaskEndScheduler( void )
3740 {
3741     traceENTER_vTaskEndScheduler();
3742
3743     /* Stop the scheduler interrupts and call the portable scheduler end
3744      * routine so the original ISRs can be restored if necessary.  The port
3745      * layer must ensure interrupts enable  bit is left in the correct state. */
3746     portDISABLE_INTERRUPTS();
3747     xSchedulerRunning = pdFALSE;
3748     vPortEndScheduler();
3749
3750     traceRETURN_vTaskEndScheduler();
3751 }
3752 /*----------------------------------------------------------*/
3753
3754 void vTaskSuspendAll( void )
3755 {
3756     traceENTER_vTaskSuspendAll();
3757
3758     #if ( configNUMBER_OF_CORES == 1 )
3759     {
3760         /* A critical section is not required as the variable is of type
3761          * BaseType_t.  Please read Richard Barry's reply in the following link to a
3762          * post in the FreeRTOS support forum before reporting this as a bug! -
3763          * https://goo.gl/wu4acr */
3764
3765         /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
3766          * do not otherwise exhibit real time behaviour. */
3767         portSOFTWARE_BARRIER();
3768
3769         /* The scheduler is suspended if uxSchedulerSuspended is non-zero.  An increment
3770          * is used to allow calls to vTaskSuspendAll() to nest. */
3771         ++uxSchedulerSuspended;
3772
3773         /* Enforces ordering for ports and optimised compilers that may otherwise place
3774          * the above increment elsewhere. */
3775         portMEMORY_BARRIER();
3776     }
3777     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3778     {
3779         UBaseType_t ulState;
3780
3781         /* This must only be called from within a task. */
3782         portASSERT_IF_IN_ISR();
3783
3784         if( xSchedulerRunning != pdFALSE )
3785         {
3786             /* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks.
3787              * We must disable interrupts before we grab the locks in the event that this task is
3788              * interrupted and switches context before incrementing uxSchedulerSuspended.
3789              * It is safe to re-enable interrupts after releasing the ISR lock and incrementing
3790              * uxSchedulerSuspended since that will prevent context switches. */
3791             ulState = portSET_INTERRUPT_MASK();
3792
3793             /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
3794              * do not otherwise exhibit real time behaviour. */
3795             portSOFTWARE_BARRIER();
3796
3797             portGET_TASK_LOCK();
3798
3799             /* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The
3800              * purpose is to prevent altering the variable when fromISR APIs are readying
3801              * it. */
3802             if( uxSchedulerSuspended == 0U )
3803             {
3804                 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
3805                 {
3806                     prvCheckForRunStateChange();
3807                 }
3808                 else
3809                 {
3810                     mtCOVERAGE_TEST_MARKER();
3811                 }
3812             }
3813             else
3814             {
3815                 mtCOVERAGE_TEST_MARKER();
3816             }
3817
3818             portGET_ISR_LOCK();
3819
3820             /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
3821              * is used to allow calls to vTaskSuspendAll() to nest. */
3822             ++uxSchedulerSuspended;
3823             portRELEASE_ISR_LOCK();
3824
3825             portCLEAR_INTERRUPT_MASK( ulState );
3826         }
3827         else
3828         {
3829             mtCOVERAGE_TEST_MARKER();
3830         }
3831     }
3832     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3833
3834     traceRETURN_vTaskSuspendAll();
3835 }
3836
3837 /*----------------------------------------------------------*/
3838
3839 #if ( configUSE_TICKLESS_IDLE != 0 )
3840
3841     static TickType_t prvGetExpectedIdleTime( void )
3842     {
3843         TickType_t xReturn;
3844         UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
3845
3846         /* uxHigherPriorityReadyTasks takes care of the case where
3847          * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
3848          * task that are in the Ready state, even though the idle task is
3849          * running. */
3850         #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
3851         {
3852             if( uxTopReadyPriority > tskIDLE_PRIORITY )
3853             {
3854                 uxHigherPriorityReadyTasks = pdTRUE;
3855             }
3856         }
3857         #else
3858         {
3859             const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
3860
3861             /* When port optimised task selection is used the uxTopReadyPriority
3862              * variable is used as a bit map.  If bits other than the least
3863              * significant bit are set then there are tasks that have a priority
3864              * above the idle priority that are in the Ready state.  This takes
3865              * care of the case where the co-operative scheduler is in use. */
3866             if( uxTopReadyPriority > uxLeastSignificantBit )
3867             {
3868                 uxHigherPriorityReadyTasks = pdTRUE;
3869             }
3870         }
3871         #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
3872
3873         if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
3874         {
3875             xReturn = 0;
3876         }
3877         else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1U )
3878         {
3879             /* There are other idle priority tasks in the ready state.  If
3880              * time slicing is used then the very next tick interrupt must be
3881              * processed. */
3882             xReturn = 0;
3883         }
3884         else if( uxHigherPriorityReadyTasks != pdFALSE )
3885         {
3886             /* There are tasks in the Ready state that have a priority above the
3887              * idle priority.  This path can only be reached if
3888              * configUSE_PREEMPTION is 0. */
3889             xReturn = 0;
3890         }
3891         else
3892         {
3893             xReturn = xNextTaskUnblockTime;
3894             xReturn -= xTickCount;
3895         }
3896
3897         return xReturn;
3898     }
3899
3900 #endif /* configUSE_TICKLESS_IDLE */
3901 /*----------------------------------------------------------*/
3902
3903 BaseType_t xTaskResumeAll( void )
3904 {
3905     TCB_t * pxTCB = NULL;
3906     BaseType_t xAlreadyYielded = pdFALSE;
3907
3908     traceENTER_xTaskResumeAll();
3909
3910     #if ( configNUMBER_OF_CORES > 1 )
3911         if( xSchedulerRunning != pdFALSE )
3912     #endif
3913     {
3914         /* It is possible that an ISR caused a task to be removed from an event
3915          * list while the scheduler was suspended.  If this was the case then the
3916          * removed task will have been added to the xPendingReadyList.  Once the
3917          * scheduler has been resumed it is safe to move all the pending ready
3918          * tasks from this list into their appropriate ready list. */
3919         taskENTER_CRITICAL();
3920         {
3921             BaseType_t xCoreID;
3922             xCoreID = ( BaseType_t ) portGET_CORE_ID();
3923
3924             /* If uxSchedulerSuspended is zero then this function does not match a
3925              * previous call to vTaskSuspendAll(). */
3926             configASSERT( uxSchedulerSuspended != 0U );
3927
3928             --uxSchedulerSuspended;
3929             portRELEASE_TASK_LOCK();
3930
3931             if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
3932             {
3933                 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
3934                 {
3935                     /* Move any readied tasks from the pending list into the
3936                      * appropriate ready list. */
3937                     while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
3938                     {
3939                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
3940                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
3941                         /* coverity[misra_c_2012_rule_11_5_violation] */
3942                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
3943                         listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
3944                         portMEMORY_BARRIER();
3945                         listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
3946                         prvAddTaskToReadyList( pxTCB );
3947
3948                         #if ( configNUMBER_OF_CORES == 1 )
3949                         {
3950                             /* If the moved task has a priority higher than the current
3951                              * task then a yield must be performed. */
3952                             if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
3953                             {
3954                                 xYieldPendings[ xCoreID ] = pdTRUE;
3955                             }
3956                             else
3957                             {
3958                                 mtCOVERAGE_TEST_MARKER();
3959                             }
3960                         }
3961                         #else /* #if ( configNUMBER_OF_CORES == 1 ) */
3962                         {
3963                             /* All appropriate tasks yield at the moment a task is added to xPendingReadyList.
3964                              * If the current core yielded then vTaskSwitchContext() has already been called
3965                              * which sets xYieldPendings for the current core to pdTRUE. */
3966                         }
3967                         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
3968                     }
3969
3970                     if( pxTCB != NULL )
3971                     {
3972                         /* A task was unblocked while the scheduler was suspended,
3973                          * which may have prevented the next unblock time from being
3974                          * re-calculated, in which case re-calculate it now.  Mainly
3975                          * important for low power tickless implementations, where
3976                          * this can prevent an unnecessary exit from low power
3977                          * state. */
3978                         prvResetNextTaskUnblockTime();
3979                     }
3980
3981                     /* If any ticks occurred while the scheduler was suspended then
3982                      * they should be processed now.  This ensures the tick count does
3983                      * not  slip, and that any delayed tasks are resumed at the correct
3984                      * time.
3985                      *
3986                      * It should be safe to call xTaskIncrementTick here from any core
3987                      * since we are in a critical section and xTaskIncrementTick itself
3988                      * protects itself within a critical section. Suspending the scheduler
3989                      * from any core causes xTaskIncrementTick to increment uxPendedCounts. */
3990                     {
3991                         TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
3992
3993                         if( xPendedCounts > ( TickType_t ) 0U )
3994                         {
3995                             do
3996                             {
3997                                 if( xTaskIncrementTick() != pdFALSE )
3998                                 {
3999                                     /* Other cores are interrupted from
4000                                      * within xTaskIncrementTick(). */
4001                                     xYieldPendings[ xCoreID ] = pdTRUE;
4002                                 }
4003                                 else
4004                                 {
4005                                     mtCOVERAGE_TEST_MARKER();
4006                                 }
4007
4008                                 --xPendedCounts;
4009                             } while( xPendedCounts > ( TickType_t ) 0U );
4010
4011                             xPendedTicks = 0;
4012                         }
4013                         else
4014                         {
4015                             mtCOVERAGE_TEST_MARKER();
4016                         }
4017                     }
4018
4019                     if( xYieldPendings[ xCoreID ] != pdFALSE )
4020                     {
4021                         #if ( configUSE_PREEMPTION != 0 )
4022                         {
4023                             xAlreadyYielded = pdTRUE;
4024                         }
4025                         #endif /* #if ( configUSE_PREEMPTION != 0 ) */
4026
4027                         #if ( configNUMBER_OF_CORES == 1 )
4028                         {
4029                             taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB );
4030                         }
4031                         #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4032                     }
4033                     else
4034                     {
4035                         mtCOVERAGE_TEST_MARKER();
4036                     }
4037                 }
4038             }
4039             else
4040             {
4041                 mtCOVERAGE_TEST_MARKER();
4042             }
4043         }
4044         taskEXIT_CRITICAL();
4045     }
4046
4047     traceRETURN_xTaskResumeAll( xAlreadyYielded );
4048
4049     return xAlreadyYielded;
4050 }
4051 /*-----------------------------------------------------------*/
4052
4053 TickType_t xTaskGetTickCount( void )
4054 {
4055     TickType_t xTicks;
4056
4057     traceENTER_xTaskGetTickCount();
4058
4059     /* Critical section required if running on a 16 bit processor. */
4060     portTICK_TYPE_ENTER_CRITICAL();
4061     {
4062         xTicks = xTickCount;
4063     }
4064     portTICK_TYPE_EXIT_CRITICAL();
4065
4066     traceRETURN_xTaskGetTickCount( xTicks );
4067
4068     return xTicks;
4069 }
4070 /*-----------------------------------------------------------*/
4071
4072 TickType_t xTaskGetTickCountFromISR( void )
4073 {
4074     TickType_t xReturn;
4075     UBaseType_t uxSavedInterruptStatus;
4076
4077     traceENTER_xTaskGetTickCountFromISR();
4078
4079     /* RTOS ports that support interrupt nesting have the concept of a maximum
4080      * system call (or maximum API call) interrupt priority.  Interrupts that are
4081      * above the maximum system call priority are kept permanently enabled, even
4082      * when the RTOS kernel is in a critical section, but cannot make any calls to
4083      * FreeRTOS API functions.  If configASSERT() is defined in FreeRTOSConfig.h
4084      * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
4085      * failure if a FreeRTOS API function is called from an interrupt that has been
4086      * assigned a priority above the configured maximum system call priority.
4087      * Only FreeRTOS functions that end in FromISR can be called from interrupts
4088      * that have been assigned a priority at or (logically) below the maximum
4089      * system call  interrupt priority.  FreeRTOS maintains a separate interrupt
4090      * safe API to ensure interrupt entry is as fast and as simple as possible.
4091      * More information (albeit Cortex-M specific) is provided on the following
4092      * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
4093     portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
4094
4095     uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
4096     {
4097         xReturn = xTickCount;
4098     }
4099     portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
4100
4101     traceRETURN_xTaskGetTickCountFromISR( xReturn );
4102
4103     return xReturn;
4104 }
4105 /*-----------------------------------------------------------*/
4106
4107 UBaseType_t uxTaskGetNumberOfTasks( void )
4108 {
4109     traceENTER_uxTaskGetNumberOfTasks();
4110
4111     /* A critical section is not required because the variables are of type
4112      * BaseType_t. */
4113     traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks );
4114
4115     return uxCurrentNumberOfTasks;
4116 }
4117 /*-----------------------------------------------------------*/
4118
4119 char * pcTaskGetName( TaskHandle_t xTaskToQuery )
4120 {
4121     TCB_t * pxTCB;
4122
4123     traceENTER_pcTaskGetName( xTaskToQuery );
4124
4125     /* If null is passed in here then the name of the calling task is being
4126      * queried. */
4127     pxTCB = prvGetTCBFromHandle( xTaskToQuery );
4128     configASSERT( pxTCB );
4129
4130     traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) );
4131
4132     return &( pxTCB->pcTaskName[ 0 ] );
4133 }
4134 /*-----------------------------------------------------------*/
4135
4136 #if ( INCLUDE_xTaskGetHandle == 1 )
4137
4138     #if ( configNUMBER_OF_CORES == 1 )
4139         static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4140                                                          const char pcNameToQuery[] )
4141         {
4142             TCB_t * pxNextTCB;
4143             TCB_t * pxFirstTCB;
4144             TCB_t * pxReturn = NULL;
4145             UBaseType_t x;
4146             char cNextChar;
4147             BaseType_t xBreakLoop;
4148
4149             /* This function is called with the scheduler suspended. */
4150
4151             if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4152             {
4153                 /* MISRA Ref 11.5.3 [Void pointer assignment] */
4154                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4155                 /* coverity[misra_c_2012_rule_11_5_violation] */
4156                 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
4157
4158                 do
4159                 {
4160                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
4161                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4162                     /* coverity[misra_c_2012_rule_11_5_violation] */
4163                     listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
4164
4165                     /* Check each character in the name looking for a match or
4166                      * mismatch. */
4167                     xBreakLoop = pdFALSE;
4168
4169                     for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4170                     {
4171                         cNextChar = pxNextTCB->pcTaskName[ x ];
4172
4173                         if( cNextChar != pcNameToQuery[ x ] )
4174                         {
4175                             /* Characters didn't match. */
4176                             xBreakLoop = pdTRUE;
4177                         }
4178                         else if( cNextChar == ( char ) 0x00 )
4179                         {
4180                             /* Both strings terminated, a match must have been
4181                              * found. */
4182                             pxReturn = pxNextTCB;
4183                             xBreakLoop = pdTRUE;
4184                         }
4185                         else
4186                         {
4187                             mtCOVERAGE_TEST_MARKER();
4188                         }
4189
4190                         if( xBreakLoop != pdFALSE )
4191                         {
4192                             break;
4193                         }
4194                     }
4195
4196                     if( pxReturn != NULL )
4197                     {
4198                         /* The handle has been found. */
4199                         break;
4200                     }
4201                 } while( pxNextTCB != pxFirstTCB );
4202             }
4203             else
4204             {
4205                 mtCOVERAGE_TEST_MARKER();
4206             }
4207
4208             return pxReturn;
4209         }
4210     #else /* if ( configNUMBER_OF_CORES == 1 ) */
4211         static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
4212                                                          const char pcNameToQuery[] )
4213         {
4214             TCB_t * pxReturn = NULL;
4215             UBaseType_t x;
4216             char cNextChar;
4217             BaseType_t xBreakLoop;
4218             const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
4219             ListItem_t * pxIterator;
4220
4221             /* This function is called with the scheduler suspended. */
4222
4223             if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
4224             {
4225                 for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
4226                 {
4227                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
4228                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4229                     /* coverity[misra_c_2012_rule_11_5_violation] */
4230                     TCB_t * pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
4231
4232                     /* Check each character in the name looking for a match or
4233                      * mismatch. */
4234                     xBreakLoop = pdFALSE;
4235
4236                     for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
4237                     {
4238                         cNextChar = pxTCB->pcTaskName[ x ];
4239
4240                         if( cNextChar != pcNameToQuery[ x ] )
4241                         {
4242                             /* Characters didn't match. */
4243                             xBreakLoop = pdTRUE;
4244                         }
4245                         else if( cNextChar == ( char ) 0x00 )
4246                         {
4247                             /* Both strings terminated, a match must have been
4248                              * found. */
4249                             pxReturn = pxTCB;
4250                             xBreakLoop = pdTRUE;
4251                         }
4252                         else
4253                         {
4254                             mtCOVERAGE_TEST_MARKER();
4255                         }
4256
4257                         if( xBreakLoop != pdFALSE )
4258                         {
4259                             break;
4260                         }
4261                     }
4262
4263                     if( pxReturn != NULL )
4264                     {
4265                         /* The handle has been found. */
4266                         break;
4267                     }
4268                 }
4269             }
4270             else
4271             {
4272                 mtCOVERAGE_TEST_MARKER();
4273             }
4274
4275             return pxReturn;
4276         }
4277     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4278
4279 #endif /* INCLUDE_xTaskGetHandle */
4280 /*-----------------------------------------------------------*/
4281
4282 #if ( INCLUDE_xTaskGetHandle == 1 )
4283
4284     TaskHandle_t xTaskGetHandle( const char * pcNameToQuery )
4285     {
4286         UBaseType_t uxQueue = configMAX_PRIORITIES;
4287         TCB_t * pxTCB;
4288
4289         traceENTER_xTaskGetHandle( pcNameToQuery );
4290
4291         /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
4292         configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
4293
4294         vTaskSuspendAll();
4295         {
4296             /* Search the ready lists. */
4297             do
4298             {
4299                 uxQueue--;
4300                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
4301
4302                 if( pxTCB != NULL )
4303                 {
4304                     /* Found the handle. */
4305                     break;
4306                 }
4307             } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4308
4309             /* Search the delayed lists. */
4310             if( pxTCB == NULL )
4311             {
4312                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
4313             }
4314
4315             if( pxTCB == NULL )
4316             {
4317                 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
4318             }
4319
4320             #if ( INCLUDE_vTaskSuspend == 1 )
4321             {
4322                 if( pxTCB == NULL )
4323                 {
4324                     /* Search the suspended list. */
4325                     pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
4326                 }
4327             }
4328             #endif
4329
4330             #if ( INCLUDE_vTaskDelete == 1 )
4331             {
4332                 if( pxTCB == NULL )
4333                 {
4334                     /* Search the deleted list. */
4335                     pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
4336                 }
4337             }
4338             #endif
4339         }
4340         ( void ) xTaskResumeAll();
4341
4342         traceRETURN_xTaskGetHandle( pxTCB );
4343
4344         return pxTCB;
4345     }
4346
4347 #endif /* INCLUDE_xTaskGetHandle */
4348 /*-----------------------------------------------------------*/
4349
4350 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
4351
4352     BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
4353                                       StackType_t ** ppuxStackBuffer,
4354                                       StaticTask_t ** ppxTaskBuffer )
4355     {
4356         BaseType_t xReturn;
4357         TCB_t * pxTCB;
4358
4359         traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer );
4360
4361         configASSERT( ppuxStackBuffer != NULL );
4362         configASSERT( ppxTaskBuffer != NULL );
4363
4364         pxTCB = prvGetTCBFromHandle( xTask );
4365
4366         #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
4367         {
4368             if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
4369             {
4370                 *ppuxStackBuffer = pxTCB->pxStack;
4371                 /* MISRA Ref 11.3.1 [Misaligned access] */
4372                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
4373                 /* coverity[misra_c_2012_rule_11_3_violation] */
4374                 *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4375                 xReturn = pdTRUE;
4376             }
4377             else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
4378             {
4379                 *ppuxStackBuffer = pxTCB->pxStack;
4380                 *ppxTaskBuffer = NULL;
4381                 xReturn = pdTRUE;
4382             }
4383             else
4384             {
4385                 xReturn = pdFALSE;
4386             }
4387         }
4388         #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4389         {
4390             *ppuxStackBuffer = pxTCB->pxStack;
4391             *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
4392             xReturn = pdTRUE;
4393         }
4394         #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
4395
4396         traceRETURN_xTaskGetStaticBuffers( xReturn );
4397
4398         return xReturn;
4399     }
4400
4401 #endif /* configSUPPORT_STATIC_ALLOCATION */
4402 /*-----------------------------------------------------------*/
4403
4404 #if ( configUSE_TRACE_FACILITY == 1 )
4405
4406     UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
4407                                       const UBaseType_t uxArraySize,
4408                                       configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
4409     {
4410         UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
4411
4412         traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime );
4413
4414         vTaskSuspendAll();
4415         {
4416             /* Is there a space in the array for each task in the system? */
4417             if( uxArraySize >= uxCurrentNumberOfTasks )
4418             {
4419                 /* Fill in an TaskStatus_t structure with information on each
4420                  * task in the Ready state. */
4421                 do
4422                 {
4423                     uxQueue--;
4424                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) );
4425                 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
4426
4427                 /* Fill in an TaskStatus_t structure with information on each
4428                  * task in the Blocked state. */
4429                 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) );
4430                 uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) );
4431
4432                 #if ( INCLUDE_vTaskDelete == 1 )
4433                 {
4434                     /* Fill in an TaskStatus_t structure with information on
4435                      * each task that has been deleted but not yet cleaned up. */
4436                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) );
4437                 }
4438                 #endif
4439
4440                 #if ( INCLUDE_vTaskSuspend == 1 )
4441                 {
4442                     /* Fill in an TaskStatus_t structure with information on
4443                      * each task in the Suspended state. */
4444                     uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) );
4445                 }
4446                 #endif
4447
4448                 #if ( configGENERATE_RUN_TIME_STATS == 1 )
4449                 {
4450                     if( pulTotalRunTime != NULL )
4451                     {
4452                         #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
4453                             portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
4454                         #else
4455                             *pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
4456                         #endif
4457                     }
4458                 }
4459                 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4460                 {
4461                     if( pulTotalRunTime != NULL )
4462                     {
4463                         *pulTotalRunTime = 0;
4464                     }
4465                 }
4466                 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
4467             }
4468             else
4469             {
4470                 mtCOVERAGE_TEST_MARKER();
4471             }
4472         }
4473         ( void ) xTaskResumeAll();
4474
4475         traceRETURN_uxTaskGetSystemState( uxTask );
4476
4477         return uxTask;
4478     }
4479
4480 #endif /* configUSE_TRACE_FACILITY */
4481 /*----------------------------------------------------------*/
4482
4483 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
4484
4485     #if ( configNUMBER_OF_CORES == 1 )
4486         TaskHandle_t xTaskGetIdleTaskHandle( void )
4487         {
4488             traceENTER_xTaskGetIdleTaskHandle();
4489
4490             /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4491              * started, then xIdleTaskHandles will be NULL. */
4492             configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) );
4493
4494             traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] );
4495
4496             return xIdleTaskHandles[ 0 ];
4497         }
4498     #endif /* if ( configNUMBER_OF_CORES == 1 ) */
4499
4500     TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID )
4501     {
4502         traceENTER_xTaskGetIdleTaskHandleForCore( xCoreID );
4503
4504         /* Ensure the core ID is valid. */
4505         configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
4506
4507         /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
4508          * started, then xIdleTaskHandles will be NULL. */
4509         configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) );
4510
4511         traceRETURN_xTaskGetIdleTaskHandleForCore( xIdleTaskHandles[ xCoreID ] );
4512
4513         return xIdleTaskHandles[ xCoreID ];
4514     }
4515
4516 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
4517 /*----------------------------------------------------------*/
4518
4519 /* This conditional compilation should use inequality to 0, not equality to 1.
4520  * This is to ensure vTaskStepTick() is available when user defined low power mode
4521  * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
4522  * 1. */
4523 #if ( configUSE_TICKLESS_IDLE != 0 )
4524
4525     void vTaskStepTick( TickType_t xTicksToJump )
4526     {
4527         TickType_t xUpdatedTickCount;
4528
4529         traceENTER_vTaskStepTick( xTicksToJump );
4530
4531         /* Correct the tick count value after a period during which the tick
4532          * was suppressed.  Note this does *not* call the tick hook function for
4533          * each stepped tick. */
4534         xUpdatedTickCount = xTickCount + xTicksToJump;
4535         configASSERT( xUpdatedTickCount <= xNextTaskUnblockTime );
4536
4537         if( xUpdatedTickCount == xNextTaskUnblockTime )
4538         {
4539             /* Arrange for xTickCount to reach xNextTaskUnblockTime in
4540              * xTaskIncrementTick() when the scheduler resumes.  This ensures
4541              * that any delayed tasks are resumed at the correct time. */
4542             configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
4543             configASSERT( xTicksToJump != ( TickType_t ) 0 );
4544
4545             /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4546             taskENTER_CRITICAL();
4547             {
4548                 xPendedTicks++;
4549             }
4550             taskEXIT_CRITICAL();
4551             xTicksToJump--;
4552         }
4553         else
4554         {
4555             mtCOVERAGE_TEST_MARKER();
4556         }
4557
4558         xTickCount += xTicksToJump;
4559
4560         traceINCREASE_TICK_COUNT( xTicksToJump );
4561         traceRETURN_vTaskStepTick();
4562     }
4563
4564 #endif /* configUSE_TICKLESS_IDLE */
4565 /*----------------------------------------------------------*/
4566
4567 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
4568 {
4569     BaseType_t xYieldOccurred;
4570
4571     traceENTER_xTaskCatchUpTicks( xTicksToCatchUp );
4572
4573     /* Must not be called with the scheduler suspended as the implementation
4574      * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
4575     configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U );
4576
4577     /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
4578      * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
4579     vTaskSuspendAll();
4580
4581     /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
4582     taskENTER_CRITICAL();
4583     {
4584         xPendedTicks += xTicksToCatchUp;
4585     }
4586     taskEXIT_CRITICAL();
4587     xYieldOccurred = xTaskResumeAll();
4588
4589     traceRETURN_xTaskCatchUpTicks( xYieldOccurred );
4590
4591     return xYieldOccurred;
4592 }
4593 /*----------------------------------------------------------*/
4594
4595 #if ( INCLUDE_xTaskAbortDelay == 1 )
4596
4597     BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
4598     {
4599         TCB_t * pxTCB = xTask;
4600         BaseType_t xReturn;
4601
4602         traceENTER_xTaskAbortDelay( xTask );
4603
4604         configASSERT( pxTCB );
4605
4606         vTaskSuspendAll();
4607         {
4608             /* A task can only be prematurely removed from the Blocked state if
4609              * it is actually in the Blocked state. */
4610             if( eTaskGetState( xTask ) == eBlocked )
4611             {
4612                 xReturn = pdPASS;
4613
4614                 /* Remove the reference to the task from the blocked list.  An
4615                  * interrupt won't touch the xStateListItem because the
4616                  * scheduler is suspended. */
4617                 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
4618
4619                 /* Is the task waiting on an event also?  If so remove it from
4620                  * the event list too.  Interrupts can touch the event list item,
4621                  * even though the scheduler is suspended, so a critical section
4622                  * is used. */
4623                 taskENTER_CRITICAL();
4624                 {
4625                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4626                     {
4627                         ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
4628
4629                         /* This lets the task know it was forcibly removed from the
4630                          * blocked state so it should not re-evaluate its block time and
4631                          * then block again. */
4632                         pxTCB->ucDelayAborted = pdTRUE;
4633                     }
4634                     else
4635                     {
4636                         mtCOVERAGE_TEST_MARKER();
4637                     }
4638                 }
4639                 taskEXIT_CRITICAL();
4640
4641                 /* Place the unblocked task into the appropriate ready list. */
4642                 prvAddTaskToReadyList( pxTCB );
4643
4644                 /* A task being unblocked cannot cause an immediate context
4645                  * switch if preemption is turned off. */
4646                 #if ( configUSE_PREEMPTION == 1 )
4647                 {
4648                     #if ( configNUMBER_OF_CORES == 1 )
4649                     {
4650                         /* Preemption is on, but a context switch should only be
4651                          * performed if the unblocked task has a priority that is
4652                          * higher than the currently executing task. */
4653                         if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4654                         {
4655                             /* Pend the yield to be performed when the scheduler
4656                              * is unsuspended. */
4657                             xYieldPendings[ 0 ] = pdTRUE;
4658                         }
4659                         else
4660                         {
4661                             mtCOVERAGE_TEST_MARKER();
4662                         }
4663                     }
4664                     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4665                     {
4666                         taskENTER_CRITICAL();
4667                         {
4668                             prvYieldForTask( pxTCB );
4669                         }
4670                         taskEXIT_CRITICAL();
4671                     }
4672                     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4673                 }
4674                 #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4675             }
4676             else
4677             {
4678                 xReturn = pdFAIL;
4679             }
4680         }
4681         ( void ) xTaskResumeAll();
4682
4683         traceRETURN_xTaskAbortDelay( xReturn );
4684
4685         return xReturn;
4686     }
4687
4688 #endif /* INCLUDE_xTaskAbortDelay */
4689 /*----------------------------------------------------------*/
4690
4691 BaseType_t xTaskIncrementTick( void )
4692 {
4693     TCB_t * pxTCB;
4694     TickType_t xItemValue;
4695     BaseType_t xSwitchRequired = pdFALSE;
4696
4697     #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 )
4698     BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE };
4699     #endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
4700
4701     traceENTER_xTaskIncrementTick();
4702
4703     /* Called by the portable layer each time a tick interrupt occurs.
4704      * Increments the tick then checks to see if the new tick value will cause any
4705      * tasks to be unblocked. */
4706     traceTASK_INCREMENT_TICK( xTickCount );
4707
4708     /* Tick increment should occur on every kernel timer event. Core 0 has the
4709      * responsibility to increment the tick, or increment the pended ticks if the
4710      * scheduler is suspended.  If pended ticks is greater than zero, the core that
4711      * calls xTaskResumeAll has the responsibility to increment the tick. */
4712     if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
4713     {
4714         /* Minor optimisation.  The tick count cannot change in this
4715          * block. */
4716         const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
4717
4718         /* Increment the RTOS tick, switching the delayed and overflowed
4719          * delayed lists if it wraps to 0. */
4720         xTickCount = xConstTickCount;
4721
4722         if( xConstTickCount == ( TickType_t ) 0U )
4723         {
4724             taskSWITCH_DELAYED_LISTS();
4725         }
4726         else
4727         {
4728             mtCOVERAGE_TEST_MARKER();
4729         }
4730
4731         /* See if this tick has made a timeout expire.  Tasks are stored in
4732          * the  queue in the order of their wake time - meaning once one task
4733          * has been found whose block time has not expired there is no need to
4734          * look any further down the list. */
4735         if( xConstTickCount >= xNextTaskUnblockTime )
4736         {
4737             for( ; ; )
4738             {
4739                 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
4740                 {
4741                     /* The delayed list is empty.  Set xNextTaskUnblockTime
4742                      * to the maximum possible value so it is extremely
4743                      * unlikely that the
4744                      * if( xTickCount >= xNextTaskUnblockTime ) test will pass
4745                      * next time through. */
4746                     xNextTaskUnblockTime = portMAX_DELAY;
4747                     break;
4748                 }
4749                 else
4750                 {
4751                     /* The delayed list is not empty, get the value of the
4752                      * item at the head of the delayed list.  This is the time
4753                      * at which the task at the head of the delayed list must
4754                      * be removed from the Blocked state. */
4755                     /* MISRA Ref 11.5.3 [Void pointer assignment] */
4756                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
4757                     /* coverity[misra_c_2012_rule_11_5_violation] */
4758                     pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
4759                     xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
4760
4761                     if( xConstTickCount < xItemValue )
4762                     {
4763                         /* It is not time to unblock this item yet, but the
4764                          * item value is the time at which the task at the head
4765                          * of the blocked list must be removed from the Blocked
4766                          * state -  so record the item value in
4767                          * xNextTaskUnblockTime. */
4768                         xNextTaskUnblockTime = xItemValue;
4769                         break;
4770                     }
4771                     else
4772                     {
4773                         mtCOVERAGE_TEST_MARKER();
4774                     }
4775
4776                     /* It is time to remove the item from the Blocked state. */
4777                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
4778
4779                     /* Is the task waiting on an event also?  If so remove
4780                      * it from the event list. */
4781                     if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
4782                     {
4783                         listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
4784                     }
4785                     else
4786                     {
4787                         mtCOVERAGE_TEST_MARKER();
4788                     }
4789
4790                     /* Place the unblocked task into the appropriate ready
4791                      * list. */
4792                     prvAddTaskToReadyList( pxTCB );
4793
4794                     /* A task being unblocked cannot cause an immediate
4795                      * context switch if preemption is turned off. */
4796                     #if ( configUSE_PREEMPTION == 1 )
4797                     {
4798                         #if ( configNUMBER_OF_CORES == 1 )
4799                         {
4800                             /* Preemption is on, but a context switch should
4801                              * only be performed if the unblocked task's
4802                              * priority is higher than the currently executing
4803                              * task.
4804                              * The case of equal priority tasks sharing
4805                              * processing time (which happens when both
4806                              * preemption and time slicing are on) is
4807                              * handled below.*/
4808                             if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
4809                             {
4810                                 xSwitchRequired = pdTRUE;
4811                             }
4812                             else
4813                             {
4814                                 mtCOVERAGE_TEST_MARKER();
4815                             }
4816                         }
4817                         #else /* #if( configNUMBER_OF_CORES == 1 ) */
4818                         {
4819                             prvYieldForTask( pxTCB );
4820                         }
4821                         #endif /* #if( configNUMBER_OF_CORES == 1 ) */
4822                     }
4823                     #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4824                 }
4825             }
4826         }
4827
4828         /* Tasks of equal priority to the currently running task will share
4829          * processing time (time slice) if preemption is on, and the application
4830          * writer has not explicitly turned time slicing off. */
4831         #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
4832         {
4833             #if ( configNUMBER_OF_CORES == 1 )
4834             {
4835                 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > 1U )
4836                 {
4837                     xSwitchRequired = pdTRUE;
4838                 }
4839                 else
4840                 {
4841                     mtCOVERAGE_TEST_MARKER();
4842                 }
4843             }
4844             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4845             {
4846                 BaseType_t xCoreID;
4847
4848                 for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ )
4849                 {
4850                     if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1U )
4851                     {
4852                         xYieldRequiredForCore[ xCoreID ] = pdTRUE;
4853                     }
4854                     else
4855                     {
4856                         mtCOVERAGE_TEST_MARKER();
4857                     }
4858                 }
4859             }
4860             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4861         }
4862         #endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
4863
4864         #if ( configUSE_TICK_HOOK == 1 )
4865         {
4866             /* Guard against the tick hook being called when the pended tick
4867              * count is being unwound (when the scheduler is being unlocked). */
4868             if( xPendedTicks == ( TickType_t ) 0 )
4869             {
4870                 vApplicationTickHook();
4871             }
4872             else
4873             {
4874                 mtCOVERAGE_TEST_MARKER();
4875             }
4876         }
4877         #endif /* configUSE_TICK_HOOK */
4878
4879         #if ( configUSE_PREEMPTION == 1 )
4880         {
4881             #if ( configNUMBER_OF_CORES == 1 )
4882             {
4883                 /* For single core the core ID is always 0. */
4884                 if( xYieldPendings[ 0 ] != pdFALSE )
4885                 {
4886                     xSwitchRequired = pdTRUE;
4887                 }
4888                 else
4889                 {
4890                     mtCOVERAGE_TEST_MARKER();
4891                 }
4892             }
4893             #else /* #if ( configNUMBER_OF_CORES == 1 ) */
4894             {
4895                 BaseType_t xCoreID, xCurrentCoreID;
4896                 xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID();
4897
4898                 for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
4899                 {
4900                     #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
4901                         if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
4902                     #endif
4903                     {
4904                         if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) )
4905                         {
4906                             if( xCoreID == xCurrentCoreID )
4907                             {
4908                                 xSwitchRequired = pdTRUE;
4909                             }
4910                             else
4911                             {
4912                                 prvYieldCore( xCoreID );
4913                             }
4914                         }
4915                         else
4916                         {
4917                             mtCOVERAGE_TEST_MARKER();
4918                         }
4919                     }
4920                 }
4921             }
4922             #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
4923         }
4924         #endif /* #if ( configUSE_PREEMPTION == 1 ) */
4925     }
4926     else
4927     {
4928         ++xPendedTicks;
4929
4930         /* The tick hook gets called at regular intervals, even if the
4931          * scheduler is locked. */
4932         #if ( configUSE_TICK_HOOK == 1 )
4933         {
4934             vApplicationTickHook();
4935         }
4936         #endif
4937     }
4938
4939     traceRETURN_xTaskIncrementTick( xSwitchRequired );
4940
4941     return xSwitchRequired;
4942 }
4943 /*-----------------------------------------------------------*/
4944
4945 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4946
4947     void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
4948                                      TaskHookFunction_t pxHookFunction )
4949     {
4950         TCB_t * xTCB;
4951
4952         traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction );
4953
4954         /* If xTask is NULL then it is the task hook of the calling task that is
4955          * getting set. */
4956         if( xTask == NULL )
4957         {
4958             xTCB = ( TCB_t * ) pxCurrentTCB;
4959         }
4960         else
4961         {
4962             xTCB = xTask;
4963         }
4964
4965         /* Save the hook function in the TCB.  A critical section is required as
4966          * the value can be accessed from an interrupt. */
4967         taskENTER_CRITICAL();
4968         {
4969             xTCB->pxTaskTag = pxHookFunction;
4970         }
4971         taskEXIT_CRITICAL();
4972
4973         traceRETURN_vTaskSetApplicationTaskTag();
4974     }
4975
4976 #endif /* configUSE_APPLICATION_TASK_TAG */
4977 /*-----------------------------------------------------------*/
4978
4979 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
4980
4981     TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
4982     {
4983         TCB_t * pxTCB;
4984         TaskHookFunction_t xReturn;
4985
4986         traceENTER_xTaskGetApplicationTaskTag( xTask );
4987
4988         /* If xTask is NULL then set the calling task's hook. */
4989         pxTCB = prvGetTCBFromHandle( xTask );
4990
4991         /* Save the hook function in the TCB.  A critical section is required as
4992          * the value can be accessed from an interrupt. */
4993         taskENTER_CRITICAL();
4994         {
4995             xReturn = pxTCB->pxTaskTag;
4996         }
4997         taskEXIT_CRITICAL();
4998
4999         traceRETURN_xTaskGetApplicationTaskTag( xReturn );
5000
5001         return xReturn;
5002     }
5003
5004 #endif /* configUSE_APPLICATION_TASK_TAG */
5005 /*-----------------------------------------------------------*/
5006
5007 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5008
5009     TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
5010     {
5011         TCB_t * pxTCB;
5012         TaskHookFunction_t xReturn;
5013         UBaseType_t uxSavedInterruptStatus;
5014
5015         traceENTER_xTaskGetApplicationTaskTagFromISR( xTask );
5016
5017         /* If xTask is NULL then set the calling task's hook. */
5018         pxTCB = prvGetTCBFromHandle( xTask );
5019
5020         /* Save the hook function in the TCB.  A critical section is required as
5021          * the value can be accessed from an interrupt. */
5022         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
5023         {
5024             xReturn = pxTCB->pxTaskTag;
5025         }
5026         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
5027
5028         traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn );
5029
5030         return xReturn;
5031     }
5032
5033 #endif /* configUSE_APPLICATION_TASK_TAG */
5034 /*-----------------------------------------------------------*/
5035
5036 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
5037
5038     BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
5039                                              void * pvParameter )
5040     {
5041         TCB_t * xTCB;
5042         BaseType_t xReturn;
5043
5044         traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter );
5045
5046         /* If xTask is NULL then we are calling our own task hook. */
5047         if( xTask == NULL )
5048         {
5049             xTCB = pxCurrentTCB;
5050         }
5051         else
5052         {
5053             xTCB = xTask;
5054         }
5055
5056         if( xTCB->pxTaskTag != NULL )
5057         {
5058             xReturn = xTCB->pxTaskTag( pvParameter );
5059         }
5060         else
5061         {
5062             xReturn = pdFAIL;
5063         }
5064
5065         traceRETURN_xTaskCallApplicationTaskHook( xReturn );
5066
5067         return xReturn;
5068     }
5069
5070 #endif /* configUSE_APPLICATION_TASK_TAG */
5071 /*-----------------------------------------------------------*/
5072
5073 #if ( configNUMBER_OF_CORES == 1 )
5074     void vTaskSwitchContext( void )
5075     {
5076         traceENTER_vTaskSwitchContext();
5077
5078         if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5079         {
5080             /* The scheduler is currently suspended - do not allow a context
5081              * switch. */
5082             xYieldPendings[ 0 ] = pdTRUE;
5083         }
5084         else
5085         {
5086             xYieldPendings[ 0 ] = pdFALSE;
5087             traceTASK_SWITCHED_OUT();
5088
5089             #if ( configGENERATE_RUN_TIME_STATS == 1 )
5090             {
5091                 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5092                     portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] );
5093                 #else
5094                     ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE();
5095                 #endif
5096
5097                 /* Add the amount of time the task has been running to the
5098                  * accumulated time so far.  The time the task started running was
5099                  * stored in ulTaskSwitchedInTime.  Note that there is no overflow
5100                  * protection here so count values are only valid until the timer
5101                  * overflows.  The guard against negative values is to protect
5102                  * against suspect run time stat counter implementations - which
5103                  * are provided by the application, not the kernel. */
5104                 if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] )
5105                 {
5106                     pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] );
5107                 }
5108                 else
5109                 {
5110                     mtCOVERAGE_TEST_MARKER();
5111                 }
5112
5113                 ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ];
5114             }
5115             #endif /* configGENERATE_RUN_TIME_STATS */
5116
5117             /* Check for stack overflow, if configured. */
5118             taskCHECK_FOR_STACK_OVERFLOW();
5119
5120             /* Before the currently running task is switched out, save its errno. */
5121             #if ( configUSE_POSIX_ERRNO == 1 )
5122             {
5123                 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
5124             }
5125             #endif
5126
5127             /* Select a new task to run using either the generic C or port
5128              * optimised asm code. */
5129             /* MISRA Ref 11.5.3 [Void pointer assignment] */
5130             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5131             /* coverity[misra_c_2012_rule_11_5_violation] */
5132             taskSELECT_HIGHEST_PRIORITY_TASK();
5133             traceTASK_SWITCHED_IN();
5134
5135             /* Macro to inject port specific behaviour immediately after
5136              * switching tasks, such as setting an end of stack watchpoint
5137              * or reconfiguring the MPU. */
5138             portTASK_SWITCH_HOOK( pxCurrentTCB );
5139
5140             /* After the new task is switched in, update the global errno. */
5141             #if ( configUSE_POSIX_ERRNO == 1 )
5142             {
5143                 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
5144             }
5145             #endif
5146
5147             #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5148             {
5149                 /* Switch C-Runtime's TLS Block to point to the TLS
5150                  * Block specific to this task. */
5151                 configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
5152             }
5153             #endif
5154         }
5155
5156         traceRETURN_vTaskSwitchContext();
5157     }
5158 #else /* if ( configNUMBER_OF_CORES == 1 ) */
5159     void vTaskSwitchContext( BaseType_t xCoreID )
5160     {
5161         traceENTER_vTaskSwitchContext();
5162
5163         /* Acquire both locks:
5164          * - The ISR lock protects the ready list from simultaneous access by
5165          *   both other ISRs and tasks.
5166          * - We also take the task lock to pause here in case another core has
5167          *   suspended the scheduler. We don't want to simply set xYieldPending
5168          *   and move on if another core suspended the scheduler. We should only
5169          *   do that if the current core has suspended the scheduler. */
5170
5171         portGET_TASK_LOCK(); /* Must always acquire the task lock first. */
5172         portGET_ISR_LOCK();
5173         {
5174             /* vTaskSwitchContext() must never be called from within a critical section.
5175              * This is not necessarily true for single core FreeRTOS, but it is for this
5176              * SMP port. */
5177             configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
5178
5179             if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
5180             {
5181                 /* The scheduler is currently suspended - do not allow a context
5182                  * switch. */
5183                 xYieldPendings[ xCoreID ] = pdTRUE;
5184             }
5185             else
5186             {
5187                 xYieldPendings[ xCoreID ] = pdFALSE;
5188                 traceTASK_SWITCHED_OUT();
5189
5190                 #if ( configGENERATE_RUN_TIME_STATS == 1 )
5191                 {
5192                     #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
5193                         portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] );
5194                     #else
5195                         ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE();
5196                     #endif
5197
5198                     /* Add the amount of time the task has been running to the
5199                      * accumulated time so far.  The time the task started running was
5200                      * stored in ulTaskSwitchedInTime.  Note that there is no overflow
5201                      * protection here so count values are only valid until the timer
5202                      * overflows.  The guard against negative values is to protect
5203                      * against suspect run time stat counter implementations - which
5204                      * are provided by the application, not the kernel. */
5205                     if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] )
5206                     {
5207                         pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] );
5208                     }
5209                     else
5210                     {
5211                         mtCOVERAGE_TEST_MARKER();
5212                     }
5213
5214                     ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ];
5215                 }
5216                 #endif /* configGENERATE_RUN_TIME_STATS */
5217
5218                 /* Check for stack overflow, if configured. */
5219                 taskCHECK_FOR_STACK_OVERFLOW();
5220
5221                 /* Before the currently running task is switched out, save its errno. */
5222                 #if ( configUSE_POSIX_ERRNO == 1 )
5223                 {
5224                     pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno;
5225                 }
5226                 #endif
5227
5228                 /* Select a new task to run. */
5229                 taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID );
5230                 traceTASK_SWITCHED_IN();
5231
5232                 /* Macro to inject port specific behaviour immediately after
5233                  * switching tasks, such as setting an end of stack watchpoint
5234                  * or reconfiguring the MPU. */
5235                 portTASK_SWITCH_HOOK( pxCurrentTCBs[ portGET_CORE_ID() ] );
5236
5237                 /* After the new task is switched in, update the global errno. */
5238                 #if ( configUSE_POSIX_ERRNO == 1 )
5239                 {
5240                     FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno;
5241                 }
5242                 #endif
5243
5244                 #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
5245                 {
5246                     /* Switch C-Runtime's TLS Block to point to the TLS
5247                      * Block specific to this task. */
5248                     configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock );
5249                 }
5250                 #endif
5251             }
5252         }
5253         portRELEASE_ISR_LOCK();
5254         portRELEASE_TASK_LOCK();
5255
5256         traceRETURN_vTaskSwitchContext();
5257     }
5258 #endif /* if ( configNUMBER_OF_CORES > 1 ) */
5259 /*-----------------------------------------------------------*/
5260
5261 void vTaskPlaceOnEventList( List_t * const pxEventList,
5262                             const TickType_t xTicksToWait )
5263 {
5264     traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait );
5265
5266     configASSERT( pxEventList );
5267
5268     /* THIS FUNCTION MUST BE CALLED WITH THE
5269      * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
5270
5271     /* Place the event list item of the TCB in the appropriate event list.
5272      * This is placed in the list in priority order so the highest priority task
5273      * is the first to be woken by the event.
5274      *
5275      * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
5276      * Normally, the xItemValue of a TCB's ListItem_t members is:
5277      *      xItemValue = ( configMAX_PRIORITIES - uxPriority )
5278      * Therefore, the event list is sorted in descending priority order.
5279      *
5280      * The queue that contains the event list is locked, preventing
5281      * simultaneous access from interrupts. */
5282     vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5283
5284     prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5285
5286     traceRETURN_vTaskPlaceOnEventList();
5287 }
5288 /*-----------------------------------------------------------*/
5289
5290 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
5291                                      const TickType_t xItemValue,
5292                                      const TickType_t xTicksToWait )
5293 {
5294     traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait );
5295
5296     configASSERT( pxEventList );
5297
5298     /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
5299      * the event groups implementation. */
5300     configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5301
5302     /* Store the item value in the event list item.  It is safe to access the
5303      * event list item here as interrupts won't access the event list item of a
5304      * task that is not in the Blocked state. */
5305     listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5306
5307     /* Place the event list item of the TCB at the end of the appropriate event
5308      * list.  It is safe to access the event list here because it is part of an
5309      * event group implementation - and interrupts don't access event groups
5310      * directly (instead they access them indirectly by pending function calls to
5311      * the task level). */
5312     listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5313
5314     prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
5315
5316     traceRETURN_vTaskPlaceOnUnorderedEventList();
5317 }
5318 /*-----------------------------------------------------------*/
5319
5320 #if ( configUSE_TIMERS == 1 )
5321
5322     void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
5323                                           TickType_t xTicksToWait,
5324                                           const BaseType_t xWaitIndefinitely )
5325     {
5326         traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely );
5327
5328         configASSERT( pxEventList );
5329
5330         /* This function should not be called by application code hence the
5331          * 'Restricted' in its name.  It is not part of the public API.  It is
5332          * designed for use by kernel code, and has special calling requirements -
5333          * it should be called with the scheduler suspended. */
5334
5335
5336         /* Place the event list item of the TCB in the appropriate event list.
5337          * In this case it is assume that this is the only task that is going to
5338          * be waiting on this event list, so the faster vListInsertEnd() function
5339          * can be used in place of vListInsert. */
5340         listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
5341
5342         /* If the task should block indefinitely then set the block time to a
5343          * value that will be recognised as an indefinite delay inside the
5344          * prvAddCurrentTaskToDelayedList() function. */
5345         if( xWaitIndefinitely != pdFALSE )
5346         {
5347             xTicksToWait = portMAX_DELAY;
5348         }
5349
5350         traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
5351         prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
5352
5353         traceRETURN_vTaskPlaceOnEventListRestricted();
5354     }
5355
5356 #endif /* configUSE_TIMERS */
5357 /*-----------------------------------------------------------*/
5358
5359 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
5360 {
5361     TCB_t * pxUnblockedTCB;
5362     BaseType_t xReturn;
5363
5364     traceENTER_xTaskRemoveFromEventList( pxEventList );
5365
5366     /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION.  It can also be
5367      * called from a critical section within an ISR. */
5368
5369     /* The event list is sorted in priority order, so the first in the list can
5370      * be removed as it is known to be the highest priority.  Remove the TCB from
5371      * the delayed list, and add it to the ready list.
5372      *
5373      * If an event is for a queue that is locked then this function will never
5374      * get called - the lock count on the queue will get modified instead.  This
5375      * means exclusive access to the event list is guaranteed here.
5376      *
5377      * This function assumes that a check has already been made to ensure that
5378      * pxEventList is not empty. */
5379     /* MISRA Ref 11.5.3 [Void pointer assignment] */
5380     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5381     /* coverity[misra_c_2012_rule_11_5_violation] */
5382     pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
5383     configASSERT( pxUnblockedTCB );
5384     listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
5385
5386     if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
5387     {
5388         listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5389         prvAddTaskToReadyList( pxUnblockedTCB );
5390
5391         #if ( configUSE_TICKLESS_IDLE != 0 )
5392         {
5393             /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5394              * might be set to the blocked task's time out time.  If the task is
5395              * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5396              * normally left unchanged, because it is automatically reset to a new
5397              * value when the tick count equals xNextTaskUnblockTime.  However if
5398              * tickless idling is used it might be more important to enter sleep mode
5399              * at the earliest possible time - so reset xNextTaskUnblockTime here to
5400              * ensure it is updated at the earliest possible time. */
5401             prvResetNextTaskUnblockTime();
5402         }
5403         #endif
5404     }
5405     else
5406     {
5407         /* The delayed and ready lists cannot be accessed, so hold this task
5408          * pending until the scheduler is resumed. */
5409         listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
5410     }
5411
5412     #if ( configNUMBER_OF_CORES == 1 )
5413     {
5414         if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5415         {
5416             /* Return true if the task removed from the event list has a higher
5417              * priority than the calling task.  This allows the calling task to know if
5418              * it should force a context switch now. */
5419             xReturn = pdTRUE;
5420
5421             /* Mark that a yield is pending in case the user is not using the
5422              * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
5423             xYieldPendings[ 0 ] = pdTRUE;
5424         }
5425         else
5426         {
5427             xReturn = pdFALSE;
5428         }
5429     }
5430     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5431     {
5432         xReturn = pdFALSE;
5433
5434         #if ( configUSE_PREEMPTION == 1 )
5435         {
5436             prvYieldForTask( pxUnblockedTCB );
5437
5438             if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5439             {
5440                 xReturn = pdTRUE;
5441             }
5442         }
5443         #endif /* #if ( configUSE_PREEMPTION == 1 ) */
5444     }
5445     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5446
5447     traceRETURN_xTaskRemoveFromEventList( xReturn );
5448     return xReturn;
5449 }
5450 /*-----------------------------------------------------------*/
5451
5452 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
5453                                         const TickType_t xItemValue )
5454 {
5455     TCB_t * pxUnblockedTCB;
5456
5457     traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue );
5458
5459     /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
5460      * the event flags implementation. */
5461     configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
5462
5463     /* Store the new item value in the event list. */
5464     listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
5465
5466     /* Remove the event list form the event flag.  Interrupts do not access
5467      * event flags. */
5468     /* MISRA Ref 11.5.3 [Void pointer assignment] */
5469     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
5470     /* coverity[misra_c_2012_rule_11_5_violation] */
5471     pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem );
5472     configASSERT( pxUnblockedTCB );
5473     listREMOVE_ITEM( pxEventListItem );
5474
5475     #if ( configUSE_TICKLESS_IDLE != 0 )
5476     {
5477         /* If a task is blocked on a kernel object then xNextTaskUnblockTime
5478          * might be set to the blocked task's time out time.  If the task is
5479          * unblocked for a reason other than a timeout xNextTaskUnblockTime is
5480          * normally left unchanged, because it is automatically reset to a new
5481          * value when the tick count equals xNextTaskUnblockTime.  However if
5482          * tickless idling is used it might be more important to enter sleep mode
5483          * at the earliest possible time - so reset xNextTaskUnblockTime here to
5484          * ensure it is updated at the earliest possible time. */
5485         prvResetNextTaskUnblockTime();
5486     }
5487     #endif
5488
5489     /* Remove the task from the delayed list and add it to the ready list.  The
5490      * scheduler is suspended so interrupts will not be accessing the ready
5491      * lists. */
5492     listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
5493     prvAddTaskToReadyList( pxUnblockedTCB );
5494
5495     #if ( configNUMBER_OF_CORES == 1 )
5496     {
5497         if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
5498         {
5499             /* The unblocked task has a priority above that of the calling task, so
5500              * a context switch is required.  This function is called with the
5501              * scheduler suspended so xYieldPending is set so the context switch
5502              * occurs immediately that the scheduler is resumed (unsuspended). */
5503             xYieldPendings[ 0 ] = pdTRUE;
5504         }
5505     }
5506     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
5507     {
5508         #if ( configUSE_PREEMPTION == 1 )
5509         {
5510             taskENTER_CRITICAL();
5511             {
5512                 prvYieldForTask( pxUnblockedTCB );
5513             }
5514             taskEXIT_CRITICAL();
5515         }
5516         #endif
5517     }
5518     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
5519
5520     traceRETURN_vTaskRemoveFromUnorderedEventList();
5521 }
5522 /*-----------------------------------------------------------*/
5523
5524 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
5525 {
5526     traceENTER_vTaskSetTimeOutState( pxTimeOut );
5527
5528     configASSERT( pxTimeOut );
5529     taskENTER_CRITICAL();
5530     {
5531         pxTimeOut->xOverflowCount = xNumOfOverflows;
5532         pxTimeOut->xTimeOnEntering = xTickCount;
5533     }
5534     taskEXIT_CRITICAL();
5535
5536     traceRETURN_vTaskSetTimeOutState();
5537 }
5538 /*-----------------------------------------------------------*/
5539
5540 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
5541 {
5542     traceENTER_vTaskInternalSetTimeOutState( pxTimeOut );
5543
5544     /* For internal use only as it does not use a critical section. */
5545     pxTimeOut->xOverflowCount = xNumOfOverflows;
5546     pxTimeOut->xTimeOnEntering = xTickCount;
5547
5548     traceRETURN_vTaskInternalSetTimeOutState();
5549 }
5550 /*-----------------------------------------------------------*/
5551
5552 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
5553                                  TickType_t * const pxTicksToWait )
5554 {
5555     BaseType_t xReturn;
5556
5557     traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait );
5558
5559     configASSERT( pxTimeOut );
5560     configASSERT( pxTicksToWait );
5561
5562     taskENTER_CRITICAL();
5563     {
5564         /* Minor optimisation.  The tick count cannot change in this block. */
5565         const TickType_t xConstTickCount = xTickCount;
5566         const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
5567
5568         #if ( INCLUDE_xTaskAbortDelay == 1 )
5569             if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
5570             {
5571                 /* The delay was aborted, which is not the same as a time out,
5572                  * but has the same result. */
5573                 pxCurrentTCB->ucDelayAborted = pdFALSE;
5574                 xReturn = pdTRUE;
5575             }
5576             else
5577         #endif
5578
5579         #if ( INCLUDE_vTaskSuspend == 1 )
5580             if( *pxTicksToWait == portMAX_DELAY )
5581             {
5582                 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
5583                  * specified is the maximum block time then the task should block
5584                  * indefinitely, and therefore never time out. */
5585                 xReturn = pdFALSE;
5586             }
5587             else
5588         #endif
5589
5590         if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) )
5591         {
5592             /* The tick count is greater than the time at which
5593              * vTaskSetTimeout() was called, but has also overflowed since
5594              * vTaskSetTimeOut() was called.  It must have wrapped all the way
5595              * around and gone past again. This passed since vTaskSetTimeout()
5596              * was called. */
5597             xReturn = pdTRUE;
5598             *pxTicksToWait = ( TickType_t ) 0;
5599         }
5600         else if( xElapsedTime < *pxTicksToWait )
5601         {
5602             /* Not a genuine timeout. Adjust parameters for time remaining. */
5603             *pxTicksToWait -= xElapsedTime;
5604             vTaskInternalSetTimeOutState( pxTimeOut );
5605             xReturn = pdFALSE;
5606         }
5607         else
5608         {
5609             *pxTicksToWait = ( TickType_t ) 0;
5610             xReturn = pdTRUE;
5611         }
5612     }
5613     taskEXIT_CRITICAL();
5614
5615     traceRETURN_xTaskCheckForTimeOut( xReturn );
5616
5617     return xReturn;
5618 }
5619 /*-----------------------------------------------------------*/
5620
5621 void vTaskMissedYield( void )
5622 {
5623     traceENTER_vTaskMissedYield();
5624
5625     /* Must be called from within a critical section. */
5626     xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
5627
5628     traceRETURN_vTaskMissedYield();
5629 }
5630 /*-----------------------------------------------------------*/
5631
5632 #if ( configUSE_TRACE_FACILITY == 1 )
5633
5634     UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
5635     {
5636         UBaseType_t uxReturn;
5637         TCB_t const * pxTCB;
5638
5639         traceENTER_uxTaskGetTaskNumber( xTask );
5640
5641         if( xTask != NULL )
5642         {
5643             pxTCB = xTask;
5644             uxReturn = pxTCB->uxTaskNumber;
5645         }
5646         else
5647         {
5648             uxReturn = 0U;
5649         }
5650
5651         traceRETURN_uxTaskGetTaskNumber( uxReturn );
5652
5653         return uxReturn;
5654     }
5655
5656 #endif /* configUSE_TRACE_FACILITY */
5657 /*-----------------------------------------------------------*/
5658
5659 #if ( configUSE_TRACE_FACILITY == 1 )
5660
5661     void vTaskSetTaskNumber( TaskHandle_t xTask,
5662                              const UBaseType_t uxHandle )
5663     {
5664         TCB_t * pxTCB;
5665
5666         traceENTER_vTaskSetTaskNumber( xTask, uxHandle );
5667
5668         if( xTask != NULL )
5669         {
5670             pxTCB = xTask;
5671             pxTCB->uxTaskNumber = uxHandle;
5672         }
5673
5674         traceRETURN_vTaskSetTaskNumber();
5675     }
5676
5677 #endif /* configUSE_TRACE_FACILITY */
5678 /*-----------------------------------------------------------*/
5679
5680 /*
5681  * -----------------------------------------------------------
5682  * The passive idle task.
5683  * ----------------------------------------------------------
5684  *
5685  * The passive idle task is used for all the additional cores in a SMP
5686  * system. There must be only 1 active idle task and the rest are passive
5687  * idle tasks.
5688  *
5689  * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5690  * language extensions.  The equivalent prototype for this function is:
5691  *
5692  * void prvPassiveIdleTask( void *pvParameters );
5693  */
5694
5695 #if ( configNUMBER_OF_CORES > 1 )
5696     static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters )
5697     {
5698         ( void ) pvParameters;
5699
5700         taskYIELD();
5701
5702         for( ; configCONTROL_INFINITE_LOOP(); )
5703         {
5704             #if ( configUSE_PREEMPTION == 0 )
5705             {
5706                 /* If we are not using preemption we keep forcing a task switch to
5707                  * see if any other task has become available.  If we are using
5708                  * preemption we don't need to do this as any task becoming available
5709                  * will automatically get the processor anyway. */
5710                 taskYIELD();
5711             }
5712             #endif /* configUSE_PREEMPTION */
5713
5714             #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5715             {
5716                 /* When using preemption tasks of equal priority will be
5717                  * timesliced.  If a task that is sharing the idle priority is ready
5718                  * to run then the idle task should yield before the end of the
5719                  * timeslice.
5720                  *
5721                  * A critical region is not required here as we are just reading from
5722                  * the list, and an occasional incorrect value will not matter.  If
5723                  * the ready list at the idle priority contains one more task than the
5724                  * number of idle tasks, which is equal to the configured numbers of cores
5725                  * then a task other than the idle task is ready to execute. */
5726                 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5727                 {
5728                     taskYIELD();
5729                 }
5730                 else
5731                 {
5732                     mtCOVERAGE_TEST_MARKER();
5733                 }
5734             }
5735             #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5736
5737             #if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
5738             {
5739                 /* Call the user defined function from within the idle task.  This
5740                  * allows the application designer to add background functionality
5741                  * without the overhead of a separate task.
5742                  *
5743                  * This hook is intended to manage core activity such as disabling cores that go idle.
5744                  *
5745                  * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5746                  * CALL A FUNCTION THAT MIGHT BLOCK. */
5747                 vApplicationPassiveIdleHook();
5748             }
5749             #endif /* configUSE_PASSIVE_IDLE_HOOK */
5750         }
5751     }
5752 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5753
5754 /*
5755  * -----------------------------------------------------------
5756  * The idle task.
5757  * ----------------------------------------------------------
5758  *
5759  * The portTASK_FUNCTION() macro is used to allow port/compiler specific
5760  * language extensions.  The equivalent prototype for this function is:
5761  *
5762  * void prvIdleTask( void *pvParameters );
5763  *
5764  */
5765
5766 static portTASK_FUNCTION( prvIdleTask, pvParameters )
5767 {
5768     /* Stop warnings. */
5769     ( void ) pvParameters;
5770
5771     /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
5772      * SCHEDULER IS STARTED. **/
5773
5774     /* In case a task that has a secure context deletes itself, in which case
5775      * the idle task is responsible for deleting the task's secure context, if
5776      * any. */
5777     portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
5778
5779     #if ( configNUMBER_OF_CORES > 1 )
5780     {
5781         /* SMP all cores start up in the idle task. This initial yield gets the application
5782          * tasks started. */
5783         taskYIELD();
5784     }
5785     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
5786
5787     for( ; configCONTROL_INFINITE_LOOP(); )
5788     {
5789         /* See if any tasks have deleted themselves - if so then the idle task
5790          * is responsible for freeing the deleted task's TCB and stack. */
5791         prvCheckTasksWaitingTermination();
5792
5793         #if ( configUSE_PREEMPTION == 0 )
5794         {
5795             /* If we are not using preemption we keep forcing a task switch to
5796              * see if any other task has become available.  If we are using
5797              * preemption we don't need to do this as any task becoming available
5798              * will automatically get the processor anyway. */
5799             taskYIELD();
5800         }
5801         #endif /* configUSE_PREEMPTION */
5802
5803         #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
5804         {
5805             /* When using preemption tasks of equal priority will be
5806              * timesliced.  If a task that is sharing the idle priority is ready
5807              * to run then the idle task should yield before the end of the
5808              * timeslice.
5809              *
5810              * A critical region is not required here as we are just reading from
5811              * the list, and an occasional incorrect value will not matter.  If
5812              * the ready list at the idle priority contains one more task than the
5813              * number of idle tasks, which is equal to the configured numbers of cores
5814              * then a task other than the idle task is ready to execute. */
5815             if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
5816             {
5817                 taskYIELD();
5818             }
5819             else
5820             {
5821                 mtCOVERAGE_TEST_MARKER();
5822             }
5823         }
5824         #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
5825
5826         #if ( configUSE_IDLE_HOOK == 1 )
5827         {
5828             /* Call the user defined function from within the idle task. */
5829             vApplicationIdleHook();
5830         }
5831         #endif /* configUSE_IDLE_HOOK */
5832
5833         /* This conditional compilation should use inequality to 0, not equality
5834          * to 1.  This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
5835          * user defined low power mode  implementations require
5836          * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
5837         #if ( configUSE_TICKLESS_IDLE != 0 )
5838         {
5839             TickType_t xExpectedIdleTime;
5840
5841             /* It is not desirable to suspend then resume the scheduler on
5842              * each iteration of the idle task.  Therefore, a preliminary
5843              * test of the expected idle time is performed without the
5844              * scheduler suspended.  The result here is not necessarily
5845              * valid. */
5846             xExpectedIdleTime = prvGetExpectedIdleTime();
5847
5848             if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5849             {
5850                 vTaskSuspendAll();
5851                 {
5852                     /* Now the scheduler is suspended, the expected idle
5853                      * time can be sampled again, and this time its value can
5854                      * be used. */
5855                     configASSERT( xNextTaskUnblockTime >= xTickCount );
5856                     xExpectedIdleTime = prvGetExpectedIdleTime();
5857
5858                     /* Define the following macro to set xExpectedIdleTime to 0
5859                      * if the application does not want
5860                      * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
5861                     configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
5862
5863                     if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
5864                     {
5865                         traceLOW_POWER_IDLE_BEGIN();
5866                         portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
5867                         traceLOW_POWER_IDLE_END();
5868                     }
5869                     else
5870                     {
5871                         mtCOVERAGE_TEST_MARKER();
5872                     }
5873                 }
5874                 ( void ) xTaskResumeAll();
5875             }
5876             else
5877             {
5878                 mtCOVERAGE_TEST_MARKER();
5879             }
5880         }
5881         #endif /* configUSE_TICKLESS_IDLE */
5882
5883         #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) )
5884         {
5885             /* Call the user defined function from within the idle task.  This
5886              * allows the application designer to add background functionality
5887              * without the overhead of a separate task.
5888              *
5889              * This hook is intended to manage core activity such as disabling cores that go idle.
5890              *
5891              * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
5892              * CALL A FUNCTION THAT MIGHT BLOCK. */
5893             vApplicationPassiveIdleHook();
5894         }
5895         #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */
5896     }
5897 }
5898 /*-----------------------------------------------------------*/
5899
5900 #if ( configUSE_TICKLESS_IDLE != 0 )
5901
5902     eSleepModeStatus eTaskConfirmSleepModeStatus( void )
5903     {
5904         #if ( INCLUDE_vTaskSuspend == 1 )
5905             /* The idle task exists in addition to the application tasks. */
5906             const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES;
5907         #endif /* INCLUDE_vTaskSuspend */
5908
5909         eSleepModeStatus eReturn = eStandardSleep;
5910
5911         traceENTER_eTaskConfirmSleepModeStatus();
5912
5913         /* This function must be called from a critical section. */
5914
5915         if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0U )
5916         {
5917             /* A task was made ready while the scheduler was suspended. */
5918             eReturn = eAbortSleep;
5919         }
5920         else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
5921         {
5922             /* A yield was pended while the scheduler was suspended. */
5923             eReturn = eAbortSleep;
5924         }
5925         else if( xPendedTicks != 0U )
5926         {
5927             /* A tick interrupt has already occurred but was held pending
5928              * because the scheduler is suspended. */
5929             eReturn = eAbortSleep;
5930         }
5931
5932         #if ( INCLUDE_vTaskSuspend == 1 )
5933             else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
5934             {
5935                 /* If all the tasks are in the suspended list (which might mean they
5936                  * have an infinite block time rather than actually being suspended)
5937                  * then it is safe to turn all clocks off and just wait for external
5938                  * interrupts. */
5939                 eReturn = eNoTasksWaitingTimeout;
5940             }
5941         #endif /* INCLUDE_vTaskSuspend */
5942         else
5943         {
5944             mtCOVERAGE_TEST_MARKER();
5945         }
5946
5947         traceRETURN_eTaskConfirmSleepModeStatus( eReturn );
5948
5949         return eReturn;
5950     }
5951
5952 #endif /* configUSE_TICKLESS_IDLE */
5953 /*-----------------------------------------------------------*/
5954
5955 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5956
5957     void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
5958                                             BaseType_t xIndex,
5959                                             void * pvValue )
5960     {
5961         TCB_t * pxTCB;
5962
5963         traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue );
5964
5965         if( ( xIndex >= 0 ) &&
5966             ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
5967         {
5968             pxTCB = prvGetTCBFromHandle( xTaskToSet );
5969             configASSERT( pxTCB != NULL );
5970             pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
5971         }
5972
5973         traceRETURN_vTaskSetThreadLocalStoragePointer();
5974     }
5975
5976 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
5977 /*-----------------------------------------------------------*/
5978
5979 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
5980
5981     void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
5982                                                BaseType_t xIndex )
5983     {
5984         void * pvReturn = NULL;
5985         TCB_t * pxTCB;
5986
5987         traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex );
5988
5989         if( ( xIndex >= 0 ) &&
5990             ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
5991         {
5992             pxTCB = prvGetTCBFromHandle( xTaskToQuery );
5993             pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
5994         }
5995         else
5996         {
5997             pvReturn = NULL;
5998         }
5999
6000         traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn );
6001
6002         return pvReturn;
6003     }
6004
6005 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
6006 /*-----------------------------------------------------------*/
6007
6008 #if ( portUSING_MPU_WRAPPERS == 1 )
6009
6010     void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
6011                                   const MemoryRegion_t * const pxRegions )
6012     {
6013         TCB_t * pxTCB;
6014
6015         traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions );
6016
6017         /* If null is passed in here then we are modifying the MPU settings of
6018          * the calling task. */
6019         pxTCB = prvGetTCBFromHandle( xTaskToModify );
6020
6021         vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 );
6022
6023         traceRETURN_vTaskAllocateMPURegions();
6024     }
6025
6026 #endif /* portUSING_MPU_WRAPPERS */
6027 /*-----------------------------------------------------------*/
6028
6029 static void prvInitialiseTaskLists( void )
6030 {
6031     UBaseType_t uxPriority;
6032
6033     for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
6034     {
6035         vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
6036     }
6037
6038     vListInitialise( &xDelayedTaskList1 );
6039     vListInitialise( &xDelayedTaskList2 );
6040     vListInitialise( &xPendingReadyList );
6041
6042     #if ( INCLUDE_vTaskDelete == 1 )
6043     {
6044         vListInitialise( &xTasksWaitingTermination );
6045     }
6046     #endif /* INCLUDE_vTaskDelete */
6047
6048     #if ( INCLUDE_vTaskSuspend == 1 )
6049     {
6050         vListInitialise( &xSuspendedTaskList );
6051     }
6052     #endif /* INCLUDE_vTaskSuspend */
6053
6054     /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
6055      * using list2. */
6056     pxDelayedTaskList = &xDelayedTaskList1;
6057     pxOverflowDelayedTaskList = &xDelayedTaskList2;
6058 }
6059 /*-----------------------------------------------------------*/
6060
6061 static void prvCheckTasksWaitingTermination( void )
6062 {
6063     /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
6064
6065     #if ( INCLUDE_vTaskDelete == 1 )
6066     {
6067         TCB_t * pxTCB;
6068
6069         /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
6070          * being called too often in the idle task. */
6071         while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6072         {
6073             #if ( configNUMBER_OF_CORES == 1 )
6074             {
6075                 taskENTER_CRITICAL();
6076                 {
6077                     {
6078                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
6079                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6080                         /* coverity[misra_c_2012_rule_11_5_violation] */
6081                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6082                         ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6083                         --uxCurrentNumberOfTasks;
6084                         --uxDeletedTasksWaitingCleanUp;
6085                     }
6086                 }
6087                 taskEXIT_CRITICAL();
6088
6089                 prvDeleteTCB( pxTCB );
6090             }
6091             #else /* #if( configNUMBER_OF_CORES == 1 ) */
6092             {
6093                 pxTCB = NULL;
6094
6095                 taskENTER_CRITICAL();
6096                 {
6097                     /* For SMP, multiple idles can be running simultaneously
6098                      * and we need to check that other idles did not cleanup while we were
6099                      * waiting to enter the critical section. */
6100                     if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
6101                     {
6102                         /* MISRA Ref 11.5.3 [Void pointer assignment] */
6103                         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6104                         /* coverity[misra_c_2012_rule_11_5_violation] */
6105                         pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
6106
6107                         if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
6108                         {
6109                             ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
6110                             --uxCurrentNumberOfTasks;
6111                             --uxDeletedTasksWaitingCleanUp;
6112                         }
6113                         else
6114                         {
6115                             /* The TCB to be deleted still has not yet been switched out
6116                              * by the scheduler, so we will just exit this loop early and
6117                              * try again next time. */
6118                             taskEXIT_CRITICAL();
6119                             break;
6120                         }
6121                     }
6122                 }
6123                 taskEXIT_CRITICAL();
6124
6125                 if( pxTCB != NULL )
6126                 {
6127                     prvDeleteTCB( pxTCB );
6128                 }
6129             }
6130             #endif /* #if( configNUMBER_OF_CORES == 1 ) */
6131         }
6132     }
6133     #endif /* INCLUDE_vTaskDelete */
6134 }
6135 /*-----------------------------------------------------------*/
6136
6137 #if ( configUSE_TRACE_FACILITY == 1 )
6138
6139     void vTaskGetInfo( TaskHandle_t xTask,
6140                        TaskStatus_t * pxTaskStatus,
6141                        BaseType_t xGetFreeStackSpace,
6142                        eTaskState eState )
6143     {
6144         TCB_t * pxTCB;
6145
6146         traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState );
6147
6148         /* xTask is NULL then get the state of the calling task. */
6149         pxTCB = prvGetTCBFromHandle( xTask );
6150
6151         pxTaskStatus->xHandle = pxTCB;
6152         pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
6153         pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
6154         pxTaskStatus->pxStackBase = pxTCB->pxStack;
6155         #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
6156             pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack;
6157             pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
6158         #endif
6159         pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
6160
6161         #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
6162         {
6163             pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
6164         }
6165         #endif
6166
6167         #if ( configUSE_MUTEXES == 1 )
6168         {
6169             pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
6170         }
6171         #else
6172         {
6173             pxTaskStatus->uxBasePriority = 0;
6174         }
6175         #endif
6176
6177         #if ( configGENERATE_RUN_TIME_STATS == 1 )
6178         {
6179             pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
6180         }
6181         #else
6182         {
6183             pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
6184         }
6185         #endif
6186
6187         /* Obtaining the task state is a little fiddly, so is only done if the
6188          * value of eState passed into this function is eInvalid - otherwise the
6189          * state is just set to whatever is passed in. */
6190         if( eState != eInvalid )
6191         {
6192             if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6193             {
6194                 pxTaskStatus->eCurrentState = eRunning;
6195             }
6196             else
6197             {
6198                 pxTaskStatus->eCurrentState = eState;
6199
6200                 #if ( INCLUDE_vTaskSuspend == 1 )
6201                 {
6202                     /* If the task is in the suspended list then there is a
6203                      *  chance it is actually just blocked indefinitely - so really
6204                      *  it should be reported as being in the Blocked state. */
6205                     if( eState == eSuspended )
6206                     {
6207                         vTaskSuspendAll();
6208                         {
6209                             if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
6210                             {
6211                                 pxTaskStatus->eCurrentState = eBlocked;
6212                             }
6213                             else
6214                             {
6215                                 BaseType_t x;
6216
6217                                 /* The task does not appear on the event list item of
6218                                  * and of the RTOS objects, but could still be in the
6219                                  * blocked state if it is waiting on its notification
6220                                  * rather than waiting on an object.  If not, is
6221                                  * suspended. */
6222                                 for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
6223                                 {
6224                                     if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
6225                                     {
6226                                         pxTaskStatus->eCurrentState = eBlocked;
6227                                         break;
6228                                     }
6229                                 }
6230                             }
6231                         }
6232                         ( void ) xTaskResumeAll();
6233                     }
6234                 }
6235                 #endif /* INCLUDE_vTaskSuspend */
6236
6237                 /* Tasks can be in pending ready list and other state list at the
6238                  * same time. These tasks are in ready state no matter what state
6239                  * list the task is in. */
6240                 taskENTER_CRITICAL();
6241                 {
6242                     if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE )
6243                     {
6244                         pxTaskStatus->eCurrentState = eReady;
6245                     }
6246                 }
6247                 taskEXIT_CRITICAL();
6248             }
6249         }
6250         else
6251         {
6252             pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
6253         }
6254
6255         /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
6256          * parameter is provided to allow it to be skipped. */
6257         if( xGetFreeStackSpace != pdFALSE )
6258         {
6259             #if ( portSTACK_GROWTH > 0 )
6260             {
6261                 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
6262             }
6263             #else
6264             {
6265                 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
6266             }
6267             #endif
6268         }
6269         else
6270         {
6271             pxTaskStatus->usStackHighWaterMark = 0;
6272         }
6273
6274         traceRETURN_vTaskGetInfo();
6275     }
6276
6277 #endif /* configUSE_TRACE_FACILITY */
6278 /*-----------------------------------------------------------*/
6279
6280 #if ( configUSE_TRACE_FACILITY == 1 )
6281
6282     static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
6283                                                      List_t * pxList,
6284                                                      eTaskState eState )
6285     {
6286         configLIST_VOLATILE TCB_t * pxNextTCB;
6287         configLIST_VOLATILE TCB_t * pxFirstTCB;
6288         UBaseType_t uxTask = 0;
6289
6290         if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
6291         {
6292             /* MISRA Ref 11.5.3 [Void pointer assignment] */
6293             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6294             /* coverity[misra_c_2012_rule_11_5_violation] */
6295             listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
6296
6297             /* Populate an TaskStatus_t structure within the
6298              * pxTaskStatusArray array for each task that is referenced from
6299              * pxList.  See the definition of TaskStatus_t in task.h for the
6300              * meaning of each TaskStatus_t structure member. */
6301             do
6302             {
6303                 /* MISRA Ref 11.5.3 [Void pointer assignment] */
6304                 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
6305                 /* coverity[misra_c_2012_rule_11_5_violation] */
6306                 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
6307                 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
6308                 uxTask++;
6309             } while( pxNextTCB != pxFirstTCB );
6310         }
6311         else
6312         {
6313             mtCOVERAGE_TEST_MARKER();
6314         }
6315
6316         return uxTask;
6317     }
6318
6319 #endif /* configUSE_TRACE_FACILITY */
6320 /*-----------------------------------------------------------*/
6321
6322 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
6323
6324     static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
6325     {
6326         configSTACK_DEPTH_TYPE uxCount = 0U;
6327
6328         while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
6329         {
6330             pucStackByte -= portSTACK_GROWTH;
6331             uxCount++;
6332         }
6333
6334         uxCount /= ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t );
6335
6336         return uxCount;
6337     }
6338
6339 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
6340 /*-----------------------------------------------------------*/
6341
6342 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
6343
6344 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
6345  * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
6346  * user to determine the return type.  It gets around the problem of the value
6347  * overflowing on 8-bit types without breaking backward compatibility for
6348  * applications that expect an 8-bit return type. */
6349     configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
6350     {
6351         TCB_t * pxTCB;
6352         uint8_t * pucEndOfStack;
6353         configSTACK_DEPTH_TYPE uxReturn;
6354
6355         traceENTER_uxTaskGetStackHighWaterMark2( xTask );
6356
6357         /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
6358          * the same except for their return type.  Using configSTACK_DEPTH_TYPE
6359          * allows the user to determine the return type.  It gets around the
6360          * problem of the value overflowing on 8-bit types without breaking
6361          * backward compatibility for applications that expect an 8-bit return
6362          * type. */
6363
6364         pxTCB = prvGetTCBFromHandle( xTask );
6365
6366         #if portSTACK_GROWTH < 0
6367         {
6368             pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6369         }
6370         #else
6371         {
6372             pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6373         }
6374         #endif
6375
6376         uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
6377
6378         traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn );
6379
6380         return uxReturn;
6381     }
6382
6383 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
6384 /*-----------------------------------------------------------*/
6385
6386 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
6387
6388     UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
6389     {
6390         TCB_t * pxTCB;
6391         uint8_t * pucEndOfStack;
6392         UBaseType_t uxReturn;
6393
6394         traceENTER_uxTaskGetStackHighWaterMark( xTask );
6395
6396         pxTCB = prvGetTCBFromHandle( xTask );
6397
6398         #if portSTACK_GROWTH < 0
6399         {
6400             pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
6401         }
6402         #else
6403         {
6404             pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
6405         }
6406         #endif
6407
6408         uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
6409
6410         traceRETURN_uxTaskGetStackHighWaterMark( uxReturn );
6411
6412         return uxReturn;
6413     }
6414
6415 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
6416 /*-----------------------------------------------------------*/
6417
6418 #if ( INCLUDE_vTaskDelete == 1 )
6419
6420     static void prvDeleteTCB( TCB_t * pxTCB )
6421     {
6422         /* This call is required specifically for the TriCore port.  It must be
6423          * above the vPortFree() calls.  The call is also used by ports/demos that
6424          * want to allocate and clean RAM statically. */
6425         portCLEAN_UP_TCB( pxTCB );
6426
6427         #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
6428         {
6429             /* Free up the memory allocated for the task's TLS Block. */
6430             configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock );
6431         }
6432         #endif
6433
6434         #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
6435         {
6436             /* The task can only have been allocated dynamically - free both
6437              * the stack and TCB. */
6438             vPortFreeStack( pxTCB->pxStack );
6439             vPortFree( pxTCB );
6440         }
6441         #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
6442         {
6443             /* The task could have been allocated statically or dynamically, so
6444              * check what was statically allocated before trying to free the
6445              * memory. */
6446             if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
6447             {
6448                 /* Both the stack and TCB were allocated dynamically, so both
6449                  * must be freed. */
6450                 vPortFreeStack( pxTCB->pxStack );
6451                 vPortFree( pxTCB );
6452             }
6453             else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
6454             {
6455                 /* Only the stack was statically allocated, so the TCB is the
6456                  * only memory that must be freed. */
6457                 vPortFree( pxTCB );
6458             }
6459             else
6460             {
6461                 /* Neither the stack nor the TCB were allocated dynamically, so
6462                  * nothing needs to be freed. */
6463                 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
6464                 mtCOVERAGE_TEST_MARKER();
6465             }
6466         }
6467         #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
6468     }
6469
6470 #endif /* INCLUDE_vTaskDelete */
6471 /*-----------------------------------------------------------*/
6472
6473 static void prvResetNextTaskUnblockTime( void )
6474 {
6475     if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
6476     {
6477         /* The new current delayed list is empty.  Set xNextTaskUnblockTime to
6478          * the maximum possible value so it is  extremely unlikely that the
6479          * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
6480          * there is an item in the delayed list. */
6481         xNextTaskUnblockTime = portMAX_DELAY;
6482     }
6483     else
6484     {
6485         /* The new current delayed list is not empty, get the value of
6486          * the item at the head of the delayed list.  This is the time at
6487          * which the task at the head of the delayed list should be removed
6488          * from the Blocked state. */
6489         xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
6490     }
6491 }
6492 /*-----------------------------------------------------------*/
6493
6494 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 )
6495
6496     #if ( configNUMBER_OF_CORES == 1 )
6497         TaskHandle_t xTaskGetCurrentTaskHandle( void )
6498         {
6499             TaskHandle_t xReturn;
6500
6501             traceENTER_xTaskGetCurrentTaskHandle();
6502
6503             /* A critical section is not required as this is not called from
6504              * an interrupt and the current TCB will always be the same for any
6505              * individual execution thread. */
6506             xReturn = pxCurrentTCB;
6507
6508             traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6509
6510             return xReturn;
6511         }
6512     #else /* #if ( configNUMBER_OF_CORES == 1 ) */
6513         TaskHandle_t xTaskGetCurrentTaskHandle( void )
6514         {
6515             TaskHandle_t xReturn;
6516             UBaseType_t uxSavedInterruptStatus;
6517
6518             traceENTER_xTaskGetCurrentTaskHandle();
6519
6520             uxSavedInterruptStatus = portSET_INTERRUPT_MASK();
6521             {
6522                 xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
6523             }
6524             portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus );
6525
6526             traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
6527
6528             return xReturn;
6529         }
6530
6531         TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID )
6532         {
6533             TaskHandle_t xReturn = NULL;
6534
6535             traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID );
6536
6537             if( taskVALID_CORE_ID( xCoreID ) != pdFALSE )
6538             {
6539                 xReturn = pxCurrentTCBs[ xCoreID ];
6540             }
6541
6542             traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn );
6543
6544             return xReturn;
6545         }
6546     #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
6547
6548 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
6549 /*-----------------------------------------------------------*/
6550
6551 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
6552
6553     BaseType_t xTaskGetSchedulerState( void )
6554     {
6555         BaseType_t xReturn;
6556
6557         traceENTER_xTaskGetSchedulerState();
6558
6559         if( xSchedulerRunning == pdFALSE )
6560         {
6561             xReturn = taskSCHEDULER_NOT_STARTED;
6562         }
6563         else
6564         {
6565             #if ( configNUMBER_OF_CORES > 1 )
6566                 taskENTER_CRITICAL();
6567             #endif
6568             {
6569                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
6570                 {
6571                     xReturn = taskSCHEDULER_RUNNING;
6572                 }
6573                 else
6574                 {
6575                     xReturn = taskSCHEDULER_SUSPENDED;
6576                 }
6577             }
6578             #if ( configNUMBER_OF_CORES > 1 )
6579                 taskEXIT_CRITICAL();
6580             #endif
6581         }
6582
6583         traceRETURN_xTaskGetSchedulerState( xReturn );
6584
6585         return xReturn;
6586     }
6587
6588 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
6589 /*-----------------------------------------------------------*/
6590
6591 #if ( configUSE_MUTEXES == 1 )
6592
6593     BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
6594     {
6595         TCB_t * const pxMutexHolderTCB = pxMutexHolder;
6596         BaseType_t xReturn = pdFALSE;
6597
6598         traceENTER_xTaskPriorityInherit( pxMutexHolder );
6599
6600         /* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority
6601          * inheritance is not applied in this scenario. */
6602         if( pxMutexHolder != NULL )
6603         {
6604             /* If the holder of the mutex has a priority below the priority of
6605              * the task attempting to obtain the mutex then it will temporarily
6606              * inherit the priority of the task attempting to obtain the mutex. */
6607             if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
6608             {
6609                 /* Adjust the mutex holder state to account for its new
6610                  * priority.  Only reset the event list item value if the value is
6611                  * not being used for anything else. */
6612                 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
6613                 {
6614                     listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority );
6615                 }
6616                 else
6617                 {
6618                     mtCOVERAGE_TEST_MARKER();
6619                 }
6620
6621                 /* If the task being modified is in the ready state it will need
6622                  * to be moved into a new list. */
6623                 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
6624                 {
6625                     if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6626                     {
6627                         /* It is known that the task is in its ready list so
6628                          * there is no need to check again and the port level
6629                          * reset macro can be called directly. */
6630                         portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
6631                     }
6632                     else
6633                     {
6634                         mtCOVERAGE_TEST_MARKER();
6635                     }
6636
6637                     /* Inherit the priority before being moved into the new list. */
6638                     pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6639                     prvAddTaskToReadyList( pxMutexHolderTCB );
6640                     #if ( configNUMBER_OF_CORES > 1 )
6641                     {
6642                         /* The priority of the task is raised. Yield for this task
6643                          * if it is not running. */
6644                         if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE )
6645                         {
6646                             prvYieldForTask( pxMutexHolderTCB );
6647                         }
6648                     }
6649                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6650                 }
6651                 else
6652                 {
6653                     /* Just inherit the priority. */
6654                     pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
6655                 }
6656
6657                 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
6658
6659                 /* Inheritance occurred. */
6660                 xReturn = pdTRUE;
6661             }
6662             else
6663             {
6664                 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
6665                 {
6666                     /* The base priority of the mutex holder is lower than the
6667                      * priority of the task attempting to take the mutex, but the
6668                      * current priority of the mutex holder is not lower than the
6669                      * priority of the task attempting to take the mutex.
6670                      * Therefore the mutex holder must have already inherited a
6671                      * priority, but inheritance would have occurred if that had
6672                      * not been the case. */
6673                     xReturn = pdTRUE;
6674                 }
6675                 else
6676                 {
6677                     mtCOVERAGE_TEST_MARKER();
6678                 }
6679             }
6680         }
6681         else
6682         {
6683             mtCOVERAGE_TEST_MARKER();
6684         }
6685
6686         traceRETURN_xTaskPriorityInherit( xReturn );
6687
6688         return xReturn;
6689     }
6690
6691 #endif /* configUSE_MUTEXES */
6692 /*-----------------------------------------------------------*/
6693
6694 #if ( configUSE_MUTEXES == 1 )
6695
6696     BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
6697     {
6698         TCB_t * const pxTCB = pxMutexHolder;
6699         BaseType_t xReturn = pdFALSE;
6700
6701         traceENTER_xTaskPriorityDisinherit( pxMutexHolder );
6702
6703         if( pxMutexHolder != NULL )
6704         {
6705             /* A task can only have an inherited priority if it holds the mutex.
6706              * If the mutex is held by a task then it cannot be given from an
6707              * interrupt, and if a mutex is given by the holding task then it must
6708              * be the running state task. */
6709             configASSERT( pxTCB == pxCurrentTCB );
6710             configASSERT( pxTCB->uxMutexesHeld );
6711             ( pxTCB->uxMutexesHeld )--;
6712
6713             /* Has the holder of the mutex inherited the priority of another
6714              * task? */
6715             if( pxTCB->uxPriority != pxTCB->uxBasePriority )
6716             {
6717                 /* Only disinherit if no other mutexes are held. */
6718                 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
6719                 {
6720                     /* A task can only have an inherited priority if it holds
6721                      * the mutex.  If the mutex is held by a task then it cannot be
6722                      * given from an interrupt, and if a mutex is given by the
6723                      * holding task then it must be the running state task.  Remove
6724                      * the holding task from the ready list. */
6725                     if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6726                     {
6727                         portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6728                     }
6729                     else
6730                     {
6731                         mtCOVERAGE_TEST_MARKER();
6732                     }
6733
6734                     /* Disinherit the priority before adding the task into the
6735                      * new  ready list. */
6736                     traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
6737                     pxTCB->uxPriority = pxTCB->uxBasePriority;
6738
6739                     /* Reset the event list item value.  It cannot be in use for
6740                      * any other purpose if this task is running, and it must be
6741                      * running to give back the mutex. */
6742                     listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority );
6743                     prvAddTaskToReadyList( pxTCB );
6744                     #if ( configNUMBER_OF_CORES > 1 )
6745                     {
6746                         /* The priority of the task is dropped. Yield the core on
6747                          * which the task is running. */
6748                         if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6749                         {
6750                             prvYieldCore( pxTCB->xTaskRunState );
6751                         }
6752                     }
6753                     #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6754
6755                     /* Return true to indicate that a context switch is required.
6756                      * This is only actually required in the corner case whereby
6757                      * multiple mutexes were held and the mutexes were given back
6758                      * in an order different to that in which they were taken.
6759                      * If a context switch did not occur when the first mutex was
6760                      * returned, even if a task was waiting on it, then a context
6761                      * switch should occur when the last mutex is returned whether
6762                      * a task is waiting on it or not. */
6763                     xReturn = pdTRUE;
6764                 }
6765                 else
6766                 {
6767                     mtCOVERAGE_TEST_MARKER();
6768                 }
6769             }
6770             else
6771             {
6772                 mtCOVERAGE_TEST_MARKER();
6773             }
6774         }
6775         else
6776         {
6777             mtCOVERAGE_TEST_MARKER();
6778         }
6779
6780         traceRETURN_xTaskPriorityDisinherit( xReturn );
6781
6782         return xReturn;
6783     }
6784
6785 #endif /* configUSE_MUTEXES */
6786 /*-----------------------------------------------------------*/
6787
6788 #if ( configUSE_MUTEXES == 1 )
6789
6790     void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
6791                                               UBaseType_t uxHighestPriorityWaitingTask )
6792     {
6793         TCB_t * const pxTCB = pxMutexHolder;
6794         UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
6795         const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
6796
6797         traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask );
6798
6799         if( pxMutexHolder != NULL )
6800         {
6801             /* If pxMutexHolder is not NULL then the holder must hold at least
6802              * one mutex. */
6803             configASSERT( pxTCB->uxMutexesHeld );
6804
6805             /* Determine the priority to which the priority of the task that
6806              * holds the mutex should be set.  This will be the greater of the
6807              * holding task's base priority and the priority of the highest
6808              * priority task that is waiting to obtain the mutex. */
6809             if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
6810             {
6811                 uxPriorityToUse = uxHighestPriorityWaitingTask;
6812             }
6813             else
6814             {
6815                 uxPriorityToUse = pxTCB->uxBasePriority;
6816             }
6817
6818             /* Does the priority need to change? */
6819             if( pxTCB->uxPriority != uxPriorityToUse )
6820             {
6821                 /* Only disinherit if no other mutexes are held.  This is a
6822                  * simplification in the priority inheritance implementation.  If
6823                  * the task that holds the mutex is also holding other mutexes then
6824                  * the other mutexes may have caused the priority inheritance. */
6825                 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
6826                 {
6827                     /* If a task has timed out because it already holds the
6828                      * mutex it was trying to obtain then it cannot of inherited
6829                      * its own priority. */
6830                     configASSERT( pxTCB != pxCurrentTCB );
6831
6832                     /* Disinherit the priority, remembering the previous
6833                      * priority to facilitate determining the subject task's
6834                      * state. */
6835                     traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
6836                     uxPriorityUsedOnEntry = pxTCB->uxPriority;
6837                     pxTCB->uxPriority = uxPriorityToUse;
6838
6839                     /* Only reset the event list item value if the value is not
6840                      * being used for anything else. */
6841                     if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) )
6842                     {
6843                         listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse );
6844                     }
6845                     else
6846                     {
6847                         mtCOVERAGE_TEST_MARKER();
6848                     }
6849
6850                     /* If the running task is not the task that holds the mutex
6851                      * then the task that holds the mutex could be in either the
6852                      * Ready, Blocked or Suspended states.  Only remove the task
6853                      * from its current state list if it is in the Ready state as
6854                      * the task's priority is going to change and there is one
6855                      * Ready list per priority. */
6856                     if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
6857                     {
6858                         if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
6859                         {
6860                             /* It is known that the task is in its ready list so
6861                              * there is no need to check again and the port level
6862                              * reset macro can be called directly. */
6863                             portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
6864                         }
6865                         else
6866                         {
6867                             mtCOVERAGE_TEST_MARKER();
6868                         }
6869
6870                         prvAddTaskToReadyList( pxTCB );
6871                         #if ( configNUMBER_OF_CORES > 1 )
6872                         {
6873                             /* The priority of the task is dropped. Yield the core on
6874                              * which the task is running. */
6875                             if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
6876                             {
6877                                 prvYieldCore( pxTCB->xTaskRunState );
6878                             }
6879                         }
6880                         #endif /* if ( configNUMBER_OF_CORES > 1 ) */
6881                     }
6882                     else
6883                     {
6884                         mtCOVERAGE_TEST_MARKER();
6885                     }
6886                 }
6887                 else
6888                 {
6889                     mtCOVERAGE_TEST_MARKER();
6890                 }
6891             }
6892             else
6893             {
6894                 mtCOVERAGE_TEST_MARKER();
6895             }
6896         }
6897         else
6898         {
6899             mtCOVERAGE_TEST_MARKER();
6900         }
6901
6902         traceRETURN_vTaskPriorityDisinheritAfterTimeout();
6903     }
6904
6905 #endif /* configUSE_MUTEXES */
6906 /*-----------------------------------------------------------*/
6907
6908 #if ( configNUMBER_OF_CORES > 1 )
6909
6910 /* If not in a critical section then yield immediately.
6911  * Otherwise set xYieldPendings to true to wait to
6912  * yield until exiting the critical section.
6913  */
6914     void vTaskYieldWithinAPI( void )
6915     {
6916         traceENTER_vTaskYieldWithinAPI();
6917
6918         if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6919         {
6920             portYIELD();
6921         }
6922         else
6923         {
6924             xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
6925         }
6926
6927         traceRETURN_vTaskYieldWithinAPI();
6928     }
6929 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
6930
6931 /*-----------------------------------------------------------*/
6932
6933 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
6934
6935     void vTaskEnterCritical( void )
6936     {
6937         traceENTER_vTaskEnterCritical();
6938
6939         portDISABLE_INTERRUPTS();
6940
6941         if( xSchedulerRunning != pdFALSE )
6942         {
6943             ( pxCurrentTCB->uxCriticalNesting )++;
6944
6945             /* This is not the interrupt safe version of the enter critical
6946              * function so  assert() if it is being called from an interrupt
6947              * context.  Only API functions that end in "FromISR" can be used in an
6948              * interrupt.  Only assert if the critical nesting count is 1 to
6949              * protect against recursive calls if the assert function also uses a
6950              * critical section. */
6951             if( pxCurrentTCB->uxCriticalNesting == 1U )
6952             {
6953                 portASSERT_IF_IN_ISR();
6954             }
6955         }
6956         else
6957         {
6958             mtCOVERAGE_TEST_MARKER();
6959         }
6960
6961         traceRETURN_vTaskEnterCritical();
6962     }
6963
6964 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
6965 /*-----------------------------------------------------------*/
6966
6967 #if ( configNUMBER_OF_CORES > 1 )
6968
6969     void vTaskEnterCritical( void )
6970     {
6971         traceENTER_vTaskEnterCritical();
6972
6973         portDISABLE_INTERRUPTS();
6974
6975         if( xSchedulerRunning != pdFALSE )
6976         {
6977             if( portGET_CRITICAL_NESTING_COUNT() == 0U )
6978             {
6979                 portGET_TASK_LOCK();
6980                 portGET_ISR_LOCK();
6981             }
6982
6983             portINCREMENT_CRITICAL_NESTING_COUNT();
6984
6985             /* This is not the interrupt safe version of the enter critical
6986              * function so  assert() if it is being called from an interrupt
6987              * context.  Only API functions that end in "FromISR" can be used in an
6988              * interrupt.  Only assert if the critical nesting count is 1 to
6989              * protect against recursive calls if the assert function also uses a
6990              * critical section. */
6991             if( portGET_CRITICAL_NESTING_COUNT() == 1U )
6992             {
6993                 portASSERT_IF_IN_ISR();
6994
6995                 if( uxSchedulerSuspended == 0U )
6996                 {
6997                     /* The only time there would be a problem is if this is called
6998                      * before a context switch and vTaskExitCritical() is called
6999                      * after pxCurrentTCB changes. Therefore this should not be
7000                      * used within vTaskSwitchContext(). */
7001                     prvCheckForRunStateChange();
7002                 }
7003             }
7004         }
7005         else
7006         {
7007             mtCOVERAGE_TEST_MARKER();
7008         }
7009
7010         traceRETURN_vTaskEnterCritical();
7011     }
7012
7013 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7014
7015 /*-----------------------------------------------------------*/
7016
7017 #if ( configNUMBER_OF_CORES > 1 )
7018
7019     UBaseType_t vTaskEnterCriticalFromISR( void )
7020     {
7021         UBaseType_t uxSavedInterruptStatus = 0;
7022
7023         traceENTER_vTaskEnterCriticalFromISR();
7024
7025         if( xSchedulerRunning != pdFALSE )
7026         {
7027             uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
7028
7029             if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7030             {
7031                 portGET_ISR_LOCK();
7032             }
7033
7034             portINCREMENT_CRITICAL_NESTING_COUNT();
7035         }
7036         else
7037         {
7038             mtCOVERAGE_TEST_MARKER();
7039         }
7040
7041         traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus );
7042
7043         return uxSavedInterruptStatus;
7044     }
7045
7046 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7047 /*-----------------------------------------------------------*/
7048
7049 #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
7050
7051     void vTaskExitCritical( void )
7052     {
7053         traceENTER_vTaskExitCritical();
7054
7055         if( xSchedulerRunning != pdFALSE )
7056         {
7057             /* If pxCurrentTCB->uxCriticalNesting is zero then this function
7058              * does not match a previous call to vTaskEnterCritical(). */
7059             configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );
7060
7061             /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7062              * to exit critical section from ISR. */
7063             portASSERT_IF_IN_ISR();
7064
7065             if( pxCurrentTCB->uxCriticalNesting > 0U )
7066             {
7067                 ( pxCurrentTCB->uxCriticalNesting )--;
7068
7069                 if( pxCurrentTCB->uxCriticalNesting == 0U )
7070                 {
7071                     portENABLE_INTERRUPTS();
7072                 }
7073                 else
7074                 {
7075                     mtCOVERAGE_TEST_MARKER();
7076                 }
7077             }
7078             else
7079             {
7080                 mtCOVERAGE_TEST_MARKER();
7081             }
7082         }
7083         else
7084         {
7085             mtCOVERAGE_TEST_MARKER();
7086         }
7087
7088         traceRETURN_vTaskExitCritical();
7089     }
7090
7091 #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
7092 /*-----------------------------------------------------------*/
7093
7094 #if ( configNUMBER_OF_CORES > 1 )
7095
7096     void vTaskExitCritical( void )
7097     {
7098         traceENTER_vTaskExitCritical();
7099
7100         if( xSchedulerRunning != pdFALSE )
7101         {
7102             /* If critical nesting count is zero then this function
7103              * does not match a previous call to vTaskEnterCritical(). */
7104             configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7105
7106             /* This function should not be called in ISR. Use vTaskExitCriticalFromISR
7107              * to exit critical section from ISR. */
7108             portASSERT_IF_IN_ISR();
7109
7110             if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7111             {
7112                 portDECREMENT_CRITICAL_NESTING_COUNT();
7113
7114                 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7115                 {
7116                     BaseType_t xYieldCurrentTask;
7117
7118                     /* Get the xYieldPending stats inside the critical section. */
7119                     xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ];
7120
7121                     portRELEASE_ISR_LOCK();
7122                     portRELEASE_TASK_LOCK();
7123                     portENABLE_INTERRUPTS();
7124
7125                     /* When a task yields in a critical section it just sets
7126                      * xYieldPending to true. So now that we have exited the
7127                      * critical section check if xYieldPending is true, and
7128                      * if so yield. */
7129                     if( xYieldCurrentTask != pdFALSE )
7130                     {
7131                         portYIELD();
7132                     }
7133                 }
7134                 else
7135                 {
7136                     mtCOVERAGE_TEST_MARKER();
7137                 }
7138             }
7139             else
7140             {
7141                 mtCOVERAGE_TEST_MARKER();
7142             }
7143         }
7144         else
7145         {
7146             mtCOVERAGE_TEST_MARKER();
7147         }
7148
7149         traceRETURN_vTaskExitCritical();
7150     }
7151
7152 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7153 /*-----------------------------------------------------------*/
7154
7155 #if ( configNUMBER_OF_CORES > 1 )
7156
7157     void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus )
7158     {
7159         traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus );
7160
7161         if( xSchedulerRunning != pdFALSE )
7162         {
7163             /* If critical nesting count is zero then this function
7164              * does not match a previous call to vTaskEnterCritical(). */
7165             configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
7166
7167             if( portGET_CRITICAL_NESTING_COUNT() > 0U )
7168             {
7169                 portDECREMENT_CRITICAL_NESTING_COUNT();
7170
7171                 if( portGET_CRITICAL_NESTING_COUNT() == 0U )
7172                 {
7173                     portRELEASE_ISR_LOCK();
7174                     portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
7175                 }
7176                 else
7177                 {
7178                     mtCOVERAGE_TEST_MARKER();
7179                 }
7180             }
7181             else
7182             {
7183                 mtCOVERAGE_TEST_MARKER();
7184             }
7185         }
7186         else
7187         {
7188             mtCOVERAGE_TEST_MARKER();
7189         }
7190
7191         traceRETURN_vTaskExitCriticalFromISR();
7192     }
7193
7194 #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
7195 /*-----------------------------------------------------------*/
7196
7197 #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
7198
7199     static char * prvWriteNameToBuffer( char * pcBuffer,
7200                                         const char * pcTaskName )
7201     {
7202         size_t x;
7203
7204         /* Start by copying the entire string. */
7205         ( void ) strcpy( pcBuffer, pcTaskName );
7206
7207         /* Pad the end of the string with spaces to ensure columns line up when
7208          * printed out. */
7209         for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ )
7210         {
7211             pcBuffer[ x ] = ' ';
7212         }
7213
7214         /* Terminate. */
7215         pcBuffer[ x ] = ( char ) 0x00;
7216
7217         /* Return the new end of string. */
7218         return &( pcBuffer[ x ] );
7219     }
7220
7221 #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
7222 /*-----------------------------------------------------------*/
7223
7224 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
7225
7226     void vTaskListTasks( char * pcWriteBuffer,
7227                          size_t uxBufferLength )
7228     {
7229         TaskStatus_t * pxTaskStatusArray;
7230         size_t uxConsumedBufferLength = 0;
7231         size_t uxCharsWrittenBySnprintf;
7232         int iSnprintfReturnValue;
7233         BaseType_t xOutputBufferFull = pdFALSE;
7234         UBaseType_t uxArraySize, x;
7235         char cStatus;
7236
7237         traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength );
7238
7239         /*
7240          * PLEASE NOTE:
7241          *
7242          * This function is provided for convenience only, and is used by many
7243          * of the demo applications.  Do not consider it to be part of the
7244          * scheduler.
7245          *
7246          * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the
7247          * uxTaskGetSystemState() output into a human readable table that
7248          * displays task: names, states, priority, stack usage and task number.
7249          * Stack usage specified as the number of unused StackType_t words stack can hold
7250          * on top of stack - not the number of bytes.
7251          *
7252          * vTaskListTasks() has a dependency on the snprintf() C library function that
7253          * might bloat the code size, use a lot of stack, and provide different
7254          * results on different platforms.  An alternative, tiny, third party,
7255          * and limited functionality implementation of snprintf() is provided in
7256          * many of the FreeRTOS/Demo sub-directories in a file called
7257          * printf-stdarg.c (note printf-stdarg.c does not provide a full
7258          * snprintf() implementation!).
7259          *
7260          * It is recommended that production systems call uxTaskGetSystemState()
7261          * directly to get access to raw stats data, rather than indirectly
7262          * through a call to vTaskListTasks().
7263          */
7264
7265
7266         /* Make sure the write buffer does not contain a string. */
7267         *pcWriteBuffer = ( char ) 0x00;
7268
7269         /* Take a snapshot of the number of tasks in case it changes while this
7270          * function is executing. */
7271         uxArraySize = uxCurrentNumberOfTasks;
7272
7273         /* Allocate an array index for each task.  NOTE!  if
7274          * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7275          * equate to NULL. */
7276         /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7277         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7278         /* coverity[misra_c_2012_rule_11_5_violation] */
7279         pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7280
7281         if( pxTaskStatusArray != NULL )
7282         {
7283             /* Generate the (binary) data. */
7284             uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
7285
7286             /* Create a human readable table from the binary data. */
7287             for( x = 0; x < uxArraySize; x++ )
7288             {
7289                 switch( pxTaskStatusArray[ x ].eCurrentState )
7290                 {
7291                     case eRunning:
7292                         cStatus = tskRUNNING_CHAR;
7293                         break;
7294
7295                     case eReady:
7296                         cStatus = tskREADY_CHAR;
7297                         break;
7298
7299                     case eBlocked:
7300                         cStatus = tskBLOCKED_CHAR;
7301                         break;
7302
7303                     case eSuspended:
7304                         cStatus = tskSUSPENDED_CHAR;
7305                         break;
7306
7307                     case eDeleted:
7308                         cStatus = tskDELETED_CHAR;
7309                         break;
7310
7311                     case eInvalid: /* Fall through. */
7312                     default:       /* Should not get here, but it is included
7313                                     * to prevent static checking errors. */
7314                         cStatus = ( char ) 0x00;
7315                         break;
7316                 }
7317
7318                 /* Is there enough space in the buffer to hold task name? */
7319                 if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7320                 {
7321                     /* Write the task name to the string, padding with spaces so it
7322                      * can be printed in tabular form more easily. */
7323                     pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7324                     /* Do not count the terminating null character. */
7325                     uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7326
7327                     /* Is there space left in the buffer? -1 is done because snprintf
7328                      * writes a terminating null character. So we are essentially
7329                      * checking if the buffer has space to write at least one non-null
7330                      * character. */
7331                     if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7332                     {
7333                         /* Write the rest of the string. */
7334                         #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
7335                             /* MISRA Ref 21.6.1 [snprintf for utility] */
7336                             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7337                             /* coverity[misra_c_2012_rule_21_6_violation] */
7338                             iSnprintfReturnValue = snprintf( pcWriteBuffer,
7339                                                              uxBufferLength - uxConsumedBufferLength,
7340                                                              "\t%c\t%u\t%u\t%u\t0x%x\r\n",
7341                                                              cStatus,
7342                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7343                                                              ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7344                                                              ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber,
7345                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask );
7346                         #else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7347                             /* MISRA Ref 21.6.1 [snprintf for utility] */
7348                             /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7349                             /* coverity[misra_c_2012_rule_21_6_violation] */
7350                             iSnprintfReturnValue = snprintf( pcWriteBuffer,
7351                                                              uxBufferLength - uxConsumedBufferLength,
7352                                                              "\t%c\t%u\t%u\t%u\r\n",
7353                                                              cStatus,
7354                                                              ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
7355                                                              ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
7356                                                              ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
7357                         #endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
7358                         uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7359
7360                         uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7361                         pcWriteBuffer += uxCharsWrittenBySnprintf;
7362                     }
7363                     else
7364                     {
7365                         xOutputBufferFull = pdTRUE;
7366                     }
7367                 }
7368                 else
7369                 {
7370                     xOutputBufferFull = pdTRUE;
7371                 }
7372
7373                 if( xOutputBufferFull == pdTRUE )
7374                 {
7375                     break;
7376                 }
7377             }
7378
7379             /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
7380              * is 0 then vPortFree() will be #defined to nothing. */
7381             vPortFree( pxTaskStatusArray );
7382         }
7383         else
7384         {
7385             mtCOVERAGE_TEST_MARKER();
7386         }
7387
7388         traceRETURN_vTaskListTasks();
7389     }
7390
7391 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7392 /*----------------------------------------------------------*/
7393
7394 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
7395
7396     void vTaskGetRunTimeStatistics( char * pcWriteBuffer,
7397                                     size_t uxBufferLength )
7398     {
7399         TaskStatus_t * pxTaskStatusArray;
7400         size_t uxConsumedBufferLength = 0;
7401         size_t uxCharsWrittenBySnprintf;
7402         int iSnprintfReturnValue;
7403         BaseType_t xOutputBufferFull = pdFALSE;
7404         UBaseType_t uxArraySize, x;
7405         configRUN_TIME_COUNTER_TYPE ulTotalTime = 0;
7406         configRUN_TIME_COUNTER_TYPE ulStatsAsPercentage;
7407
7408         traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength );
7409
7410         /*
7411          * PLEASE NOTE:
7412          *
7413          * This function is provided for convenience only, and is used by many
7414          * of the demo applications.  Do not consider it to be part of the
7415          * scheduler.
7416          *
7417          * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part
7418          * of the uxTaskGetSystemState() output into a human readable table that
7419          * displays the amount of time each task has spent in the Running state
7420          * in both absolute and percentage terms.
7421          *
7422          * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library
7423          * function that might bloat the code size, use a lot of stack, and
7424          * provide different results on different platforms.  An alternative,
7425          * tiny, third party, and limited functionality implementation of
7426          * snprintf() is provided in many of the FreeRTOS/Demo sub-directories in
7427          * a file called printf-stdarg.c (note printf-stdarg.c does not provide
7428          * a full snprintf() implementation!).
7429          *
7430          * It is recommended that production systems call uxTaskGetSystemState()
7431          * directly to get access to raw stats data, rather than indirectly
7432          * through a call to vTaskGetRunTimeStatistics().
7433          */
7434
7435         /* Make sure the write buffer does not contain a string. */
7436         *pcWriteBuffer = ( char ) 0x00;
7437
7438         /* Take a snapshot of the number of tasks in case it changes while this
7439          * function is executing. */
7440         uxArraySize = uxCurrentNumberOfTasks;
7441
7442         /* Allocate an array index for each task.  NOTE!  If
7443          * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
7444          * equate to NULL. */
7445         /* MISRA Ref 11.5.1 [Malloc memory assignment] */
7446         /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
7447         /* coverity[misra_c_2012_rule_11_5_violation] */
7448         pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
7449
7450         if( pxTaskStatusArray != NULL )
7451         {
7452             /* Generate the (binary) data. */
7453             uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
7454
7455             /* For percentage calculations. */
7456             ulTotalTime /= ( ( configRUN_TIME_COUNTER_TYPE ) 100UL );
7457
7458             /* Avoid divide by zero errors. */
7459             if( ulTotalTime > 0UL )
7460             {
7461                 /* Create a human readable table from the binary data. */
7462                 for( x = 0; x < uxArraySize; x++ )
7463                 {
7464                     /* What percentage of the total run time has the task used?
7465                      * This will always be rounded down to the nearest integer.
7466                      * ulTotalRunTime has already been divided by 100. */
7467                     ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
7468
7469                     /* Is there enough space in the buffer to hold task name? */
7470                     if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
7471                     {
7472                         /* Write the task name to the string, padding with
7473                          * spaces so it can be printed in tabular form more
7474                          * easily. */
7475                         pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
7476                         /* Do not count the terminating null character. */
7477                         uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
7478
7479                         /* Is there space left in the buffer? -1 is done because snprintf
7480                          * writes a terminating null character. So we are essentially
7481                          * checking if the buffer has space to write at least one non-null
7482                          * character. */
7483                         if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
7484                         {
7485                             if( ulStatsAsPercentage > 0UL )
7486                             {
7487                                 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7488                                 {
7489                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7490                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7491                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7492                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7493                                                                      uxBufferLength - uxConsumedBufferLength,
7494                                                                      "\t%lu\t\t%lu%%\r\n",
7495                                                                      pxTaskStatusArray[ x ].ulRunTimeCounter,
7496                                                                      ulStatsAsPercentage );
7497                                 }
7498                                 #else /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7499                                 {
7500                                     /* sizeof( int ) == sizeof( long ) so a smaller
7501                                      * printf() library can be used. */
7502                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7503                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7504                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7505                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7506                                                                      uxBufferLength - uxConsumedBufferLength,
7507                                                                      "\t%u\t\t%u%%\r\n",
7508                                                                      ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter,
7509                                                                      ( unsigned int ) ulStatsAsPercentage );
7510                                 }
7511                                 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7512                             }
7513                             else
7514                             {
7515                                 /* If the percentage is zero here then the task has
7516                                  * consumed less than 1% of the total run time. */
7517                                 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
7518                                 {
7519                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7520                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7521                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7522                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7523                                                                      uxBufferLength - uxConsumedBufferLength,
7524                                                                      "\t%lu\t\t<1%%\r\n",
7525                                                                      pxTaskStatusArray[ x ].ulRunTimeCounter );
7526                                 }
7527                                 #else
7528                                 {
7529                                     /* sizeof( int ) == sizeof( long ) so a smaller
7530                                      * printf() library can be used. */
7531                                     /* MISRA Ref 21.6.1 [snprintf for utility] */
7532                                     /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
7533                                     /* coverity[misra_c_2012_rule_21_6_violation] */
7534                                     iSnprintfReturnValue = snprintf( pcWriteBuffer,
7535                                                                      uxBufferLength - uxConsumedBufferLength,
7536                                                                      "\t%u\t\t<1%%\r\n",
7537                                                                      ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
7538                                 }
7539                                 #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
7540                             }
7541
7542                             uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
7543                             uxConsumedBufferLength += uxCharsWrittenBySnprintf;
7544                             pcWriteBuffer += uxCharsWrittenBySnprintf;
7545                         }
7546                         else
7547                         {
7548                             xOutputBufferFull = pdTRUE;
7549                         }
7550                     }
7551                     else
7552                     {
7553                         xOutputBufferFull = pdTRUE;
7554                     }
7555
7556                     if( xOutputBufferFull == pdTRUE )
7557                     {
7558                         break;
7559                     }
7560                 }
7561             }
7562             else
7563             {
7564                 mtCOVERAGE_TEST_MARKER();
7565             }
7566
7567             /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
7568              * is 0 then vPortFree() will be #defined to nothing. */
7569             vPortFree( pxTaskStatusArray );
7570         }
7571         else
7572         {
7573             mtCOVERAGE_TEST_MARKER();
7574         }
7575
7576         traceRETURN_vTaskGetRunTimeStatistics();
7577     }
7578
7579 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
7580 /*-----------------------------------------------------------*/
7581
7582 TickType_t uxTaskResetEventItemValue( void )
7583 {
7584     TickType_t uxReturn;
7585
7586     traceENTER_uxTaskResetEventItemValue();
7587
7588     uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
7589
7590     /* Reset the event list item to its normal value - so it can be used with
7591      * queues and semaphores. */
7592     listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) );
7593
7594     traceRETURN_uxTaskResetEventItemValue( uxReturn );
7595
7596     return uxReturn;
7597 }
7598 /*-----------------------------------------------------------*/
7599
7600 #if ( configUSE_MUTEXES == 1 )
7601
7602     TaskHandle_t pvTaskIncrementMutexHeldCount( void )
7603     {
7604         TCB_t * pxTCB;
7605
7606         traceENTER_pvTaskIncrementMutexHeldCount();
7607
7608         pxTCB = pxCurrentTCB;
7609
7610         /* If xSemaphoreCreateMutex() is called before any tasks have been created
7611          * then pxCurrentTCB will be NULL. */
7612         if( pxTCB != NULL )
7613         {
7614             ( pxTCB->uxMutexesHeld )++;
7615         }
7616
7617         traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB );
7618
7619         return pxTCB;
7620     }
7621
7622 #endif /* configUSE_MUTEXES */
7623 /*-----------------------------------------------------------*/
7624
7625 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7626
7627     uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn,
7628                                       BaseType_t xClearCountOnExit,
7629                                       TickType_t xTicksToWait )
7630     {
7631         uint32_t ulReturn;
7632         BaseType_t xAlreadyYielded;
7633
7634         traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait );
7635
7636         configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7637
7638         taskENTER_CRITICAL();
7639
7640         /* Only block if the notification count is not already non-zero. */
7641         if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0UL )
7642         {
7643             /* Mark this task as waiting for a notification. */
7644             pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7645
7646             if( xTicksToWait > ( TickType_t ) 0 )
7647             {
7648                 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn );
7649
7650                 /* We MUST suspend the scheduler before exiting the critical
7651                  * section (i.e. before enabling interrupts).
7652                  *
7653                  * If we do not do so, a notification sent from an ISR, which
7654                  * happens after exiting the critical section and before
7655                  * suspending the scheduler, will get lost. The sequence of
7656                  * events will be:
7657                  * 1. Exit critical section.
7658                  * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7659                  *    task to the Ready list.
7660                  * 3. Suspend scheduler.
7661                  * 4. prvAddCurrentTaskToDelayedList moves the task to the
7662                  *    delayed or suspended list.
7663                  * 5. Resume scheduler does not touch the task (because it is
7664                  *    not on the pendingReady list), effectively losing the
7665                  *    notification from the ISR.
7666                  *
7667                  * The same does not happen when we suspend the scheduler before
7668                  * exiting the critical section. The sequence of events in this
7669                  * case will be:
7670                  * 1. Suspend scheduler.
7671                  * 2. Exit critical section.
7672                  * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7673                  *    task to the pendingReady list as the scheduler is
7674                  *    suspended.
7675                  * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or
7676                  *    suspended list. Note that this operation does not nullify
7677                  *    the add to pendingReady list done in the above step because
7678                  *    a different list item, namely xEventListItem, is used for
7679                  *    adding the task to the pendingReady list. In other words,
7680                  *    the task still remains on the pendingReady list.
7681                  * 5. Resume scheduler moves the task from pendingReady list to
7682                  *    the Ready list.
7683                  */
7684                 vTaskSuspendAll();
7685                 {
7686                     taskEXIT_CRITICAL();
7687
7688                     prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7689                 }
7690                 xAlreadyYielded = xTaskResumeAll();
7691
7692                 if( xAlreadyYielded == pdFALSE )
7693                 {
7694                     taskYIELD_WITHIN_API();
7695                 }
7696                 else
7697                 {
7698                     mtCOVERAGE_TEST_MARKER();
7699                 }
7700             }
7701             else
7702             {
7703                 taskEXIT_CRITICAL();
7704             }
7705         }
7706         else
7707         {
7708             taskEXIT_CRITICAL();
7709         }
7710
7711         taskENTER_CRITICAL();
7712         {
7713             traceTASK_NOTIFY_TAKE( uxIndexToWaitOn );
7714             ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7715
7716             if( ulReturn != 0UL )
7717             {
7718                 if( xClearCountOnExit != pdFALSE )
7719                 {
7720                     pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ( uint32_t ) 0UL;
7721                 }
7722                 else
7723                 {
7724                     pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1;
7725                 }
7726             }
7727             else
7728             {
7729                 mtCOVERAGE_TEST_MARKER();
7730             }
7731
7732             pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7733         }
7734         taskEXIT_CRITICAL();
7735
7736         traceRETURN_ulTaskGenericNotifyTake( ulReturn );
7737
7738         return ulReturn;
7739     }
7740
7741 #endif /* configUSE_TASK_NOTIFICATIONS */
7742 /*-----------------------------------------------------------*/
7743
7744 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7745
7746     BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn,
7747                                        uint32_t ulBitsToClearOnEntry,
7748                                        uint32_t ulBitsToClearOnExit,
7749                                        uint32_t * pulNotificationValue,
7750                                        TickType_t xTicksToWait )
7751     {
7752         BaseType_t xReturn, xAlreadyYielded;
7753
7754         traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait );
7755
7756         configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7757
7758         taskENTER_CRITICAL();
7759
7760         /* Only block if a notification is not already pending. */
7761         if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7762         {
7763             /* Clear bits in the task's notification value as bits may get
7764              * set  by the notifying task or interrupt.  This can be used to
7765              * clear the value to zero. */
7766             pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry;
7767
7768             /* Mark this task as waiting for a notification. */
7769             pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
7770
7771             if( xTicksToWait > ( TickType_t ) 0 )
7772             {
7773                 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn );
7774
7775                 /* We MUST suspend the scheduler before exiting the critical
7776                  * section (i.e. before enabling interrupts).
7777                  *
7778                  * If we do not do so, a notification sent from an ISR, which
7779                  * happens after exiting the critical section and before
7780                  * suspending the scheduler, will get lost. The sequence of
7781                  * events will be:
7782                  * 1. Exit critical section.
7783                  * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7784                  *    task to the Ready list.
7785                  * 3. Suspend scheduler.
7786                  * 4. prvAddCurrentTaskToDelayedList moves the task to the
7787                  *    delayed or suspended list.
7788                  * 5. Resume scheduler does not touch the task (because it is
7789                  *    not on the pendingReady list), effectively losing the
7790                  *    notification from the ISR.
7791                  *
7792                  * The same does not happen when we suspend the scheduler before
7793                  * exiting the critical section. The sequence of events in this
7794                  * case will be:
7795                  * 1. Suspend scheduler.
7796                  * 2. Exit critical section.
7797                  * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the
7798                  *    task to the pendingReady list as the scheduler is
7799                  *    suspended.
7800                  * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or
7801                  *    suspended list. Note that this operation does not nullify
7802                  *    the add to pendingReady list done in the above step because
7803                  *    a different list item, namely xEventListItem, is used for
7804                  *    adding the task to the pendingReady list. In other words,
7805                  *    the task still remains on the pendingReady list.
7806                  * 5. Resume scheduler moves the task from pendingReady list to
7807                  *    the Ready list.
7808                  */
7809                 vTaskSuspendAll();
7810                 {
7811                     taskEXIT_CRITICAL();
7812
7813                     prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
7814                 }
7815                 xAlreadyYielded = xTaskResumeAll();
7816
7817                 if( xAlreadyYielded == pdFALSE )
7818                 {
7819                     taskYIELD_WITHIN_API();
7820                 }
7821                 else
7822                 {
7823                     mtCOVERAGE_TEST_MARKER();
7824                 }
7825             }
7826             else
7827             {
7828                 taskEXIT_CRITICAL();
7829             }
7830         }
7831         else
7832         {
7833             taskEXIT_CRITICAL();
7834         }
7835
7836         taskENTER_CRITICAL();
7837         {
7838             traceTASK_NOTIFY_WAIT( uxIndexToWaitOn );
7839
7840             if( pulNotificationValue != NULL )
7841             {
7842                 /* Output the current notification value, which may or may not
7843                  * have changed. */
7844                 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
7845             }
7846
7847             /* If ucNotifyValue is set then either the task never entered the
7848              * blocked state (because a notification was already pending) or the
7849              * task unblocked because of a notification.  Otherwise the task
7850              * unblocked because of a timeout. */
7851             if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
7852             {
7853                 /* A notification was not received. */
7854                 xReturn = pdFALSE;
7855             }
7856             else
7857             {
7858                 /* A notification was already pending or a notification was
7859                  * received while the task was waiting. */
7860                 pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit;
7861                 xReturn = pdTRUE;
7862             }
7863
7864             pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
7865         }
7866         taskEXIT_CRITICAL();
7867
7868         traceRETURN_xTaskGenericNotifyWait( xReturn );
7869
7870         return xReturn;
7871     }
7872
7873 #endif /* configUSE_TASK_NOTIFICATIONS */
7874 /*-----------------------------------------------------------*/
7875
7876 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7877
7878     BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
7879                                    UBaseType_t uxIndexToNotify,
7880                                    uint32_t ulValue,
7881                                    eNotifyAction eAction,
7882                                    uint32_t * pulPreviousNotificationValue )
7883     {
7884         TCB_t * pxTCB;
7885         BaseType_t xReturn = pdPASS;
7886         uint8_t ucOriginalNotifyState;
7887
7888         traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue );
7889
7890         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
7891         configASSERT( xTaskToNotify );
7892         pxTCB = xTaskToNotify;
7893
7894         taskENTER_CRITICAL();
7895         {
7896             if( pulPreviousNotificationValue != NULL )
7897             {
7898                 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
7899             }
7900
7901             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
7902
7903             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
7904
7905             switch( eAction )
7906             {
7907                 case eSetBits:
7908                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
7909                     break;
7910
7911                 case eIncrement:
7912                     ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
7913                     break;
7914
7915                 case eSetValueWithOverwrite:
7916                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7917                     break;
7918
7919                 case eSetValueWithoutOverwrite:
7920
7921                     if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
7922                     {
7923                         pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
7924                     }
7925                     else
7926                     {
7927                         /* The value could not be written to the task. */
7928                         xReturn = pdFAIL;
7929                     }
7930
7931                     break;
7932
7933                 case eNoAction:
7934
7935                     /* The task is being notified without its notify value being
7936                      * updated. */
7937                     break;
7938
7939                 default:
7940
7941                     /* Should not get here if all enums are handled.
7942                      * Artificially force an assert by testing a value the
7943                      * compiler can't assume is const. */
7944                     configASSERT( xTickCount == ( TickType_t ) 0 );
7945
7946                     break;
7947             }
7948
7949             traceTASK_NOTIFY( uxIndexToNotify );
7950
7951             /* If the task is in the blocked state specifically to wait for a
7952              * notification then unblock it now. */
7953             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
7954             {
7955                 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
7956                 prvAddTaskToReadyList( pxTCB );
7957
7958                 /* The task should not have been on an event list. */
7959                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
7960
7961                 #if ( configUSE_TICKLESS_IDLE != 0 )
7962                 {
7963                     /* If a task is blocked waiting for a notification then
7964                      * xNextTaskUnblockTime might be set to the blocked task's time
7965                      * out time.  If the task is unblocked for a reason other than
7966                      * a timeout xNextTaskUnblockTime is normally left unchanged,
7967                      * because it will automatically get reset to a new value when
7968                      * the tick count equals xNextTaskUnblockTime.  However if
7969                      * tickless idling is used it might be more important to enter
7970                      * sleep mode at the earliest possible time - so reset
7971                      * xNextTaskUnblockTime here to ensure it is updated at the
7972                      * earliest possible time. */
7973                     prvResetNextTaskUnblockTime();
7974                 }
7975                 #endif
7976
7977                 /* Check if the notified task has a priority above the currently
7978                  * executing task. */
7979                 taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
7980             }
7981             else
7982             {
7983                 mtCOVERAGE_TEST_MARKER();
7984             }
7985         }
7986         taskEXIT_CRITICAL();
7987
7988         traceRETURN_xTaskGenericNotify( xReturn );
7989
7990         return xReturn;
7991     }
7992
7993 #endif /* configUSE_TASK_NOTIFICATIONS */
7994 /*-----------------------------------------------------------*/
7995
7996 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
7997
7998     BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
7999                                           UBaseType_t uxIndexToNotify,
8000                                           uint32_t ulValue,
8001                                           eNotifyAction eAction,
8002                                           uint32_t * pulPreviousNotificationValue,
8003                                           BaseType_t * pxHigherPriorityTaskWoken )
8004     {
8005         TCB_t * pxTCB;
8006         uint8_t ucOriginalNotifyState;
8007         BaseType_t xReturn = pdPASS;
8008         UBaseType_t uxSavedInterruptStatus;
8009
8010         traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken );
8011
8012         configASSERT( xTaskToNotify );
8013         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8014
8015         /* RTOS ports that support interrupt nesting have the concept of a
8016          * maximum  system call (or maximum API call) interrupt priority.
8017          * Interrupts that are  above the maximum system call priority are keep
8018          * permanently enabled, even when the RTOS kernel is in a critical section,
8019          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
8020          * is defined in FreeRTOSConfig.h then
8021          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8022          * failure if a FreeRTOS API function is called from an interrupt that has
8023          * been assigned a priority above the configured maximum system call
8024          * priority.  Only FreeRTOS functions that end in FromISR can be called
8025          * from interrupts  that have been assigned a priority at or (logically)
8026          * below the maximum system call interrupt priority.  FreeRTOS maintains a
8027          * separate interrupt safe API to ensure interrupt entry is as fast and as
8028          * simple as possible.  More information (albeit Cortex-M specific) is
8029          * provided on the following link:
8030          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8031         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8032
8033         pxTCB = xTaskToNotify;
8034
8035         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
8036         {
8037             if( pulPreviousNotificationValue != NULL )
8038             {
8039                 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
8040             }
8041
8042             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8043             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8044
8045             switch( eAction )
8046             {
8047                 case eSetBits:
8048                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
8049                     break;
8050
8051                 case eIncrement:
8052                     ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8053                     break;
8054
8055                 case eSetValueWithOverwrite:
8056                     pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8057                     break;
8058
8059                 case eSetValueWithoutOverwrite:
8060
8061                     if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
8062                     {
8063                         pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
8064                     }
8065                     else
8066                     {
8067                         /* The value could not be written to the task. */
8068                         xReturn = pdFAIL;
8069                     }
8070
8071                     break;
8072
8073                 case eNoAction:
8074
8075                     /* The task is being notified without its notify value being
8076                      * updated. */
8077                     break;
8078
8079                 default:
8080
8081                     /* Should not get here if all enums are handled.
8082                      * Artificially force an assert by testing a value the
8083                      * compiler can't assume is const. */
8084                     configASSERT( xTickCount == ( TickType_t ) 0 );
8085                     break;
8086             }
8087
8088             traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
8089
8090             /* If the task is in the blocked state specifically to wait for a
8091              * notification then unblock it now. */
8092             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8093             {
8094                 /* The task should not have been on an event list. */
8095                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8096
8097                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8098                 {
8099                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8100                     prvAddTaskToReadyList( pxTCB );
8101                 }
8102                 else
8103                 {
8104                     /* The delayed and ready lists cannot be accessed, so hold
8105                      * this task pending until the scheduler is resumed. */
8106                     listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8107                 }
8108
8109                 #if ( configNUMBER_OF_CORES == 1 )
8110                 {
8111                     if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8112                     {
8113                         /* The notified task has a priority above the currently
8114                          * executing task so a yield is required. */
8115                         if( pxHigherPriorityTaskWoken != NULL )
8116                         {
8117                             *pxHigherPriorityTaskWoken = pdTRUE;
8118                         }
8119
8120                         /* Mark that a yield is pending in case the user is not
8121                          * using the "xHigherPriorityTaskWoken" parameter to an ISR
8122                          * safe FreeRTOS function. */
8123                         xYieldPendings[ 0 ] = pdTRUE;
8124                     }
8125                     else
8126                     {
8127                         mtCOVERAGE_TEST_MARKER();
8128                     }
8129                 }
8130                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8131                 {
8132                     #if ( configUSE_PREEMPTION == 1 )
8133                     {
8134                         prvYieldForTask( pxTCB );
8135
8136                         if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8137                         {
8138                             if( pxHigherPriorityTaskWoken != NULL )
8139                             {
8140                                 *pxHigherPriorityTaskWoken = pdTRUE;
8141                             }
8142                         }
8143                     }
8144                     #endif /* if ( configUSE_PREEMPTION == 1 ) */
8145                 }
8146                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8147             }
8148         }
8149         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8150
8151         traceRETURN_xTaskGenericNotifyFromISR( xReturn );
8152
8153         return xReturn;
8154     }
8155
8156 #endif /* configUSE_TASK_NOTIFICATIONS */
8157 /*-----------------------------------------------------------*/
8158
8159 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8160
8161     void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
8162                                         UBaseType_t uxIndexToNotify,
8163                                         BaseType_t * pxHigherPriorityTaskWoken )
8164     {
8165         TCB_t * pxTCB;
8166         uint8_t ucOriginalNotifyState;
8167         UBaseType_t uxSavedInterruptStatus;
8168
8169         traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken );
8170
8171         configASSERT( xTaskToNotify );
8172         configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8173
8174         /* RTOS ports that support interrupt nesting have the concept of a
8175          * maximum  system call (or maximum API call) interrupt priority.
8176          * Interrupts that are  above the maximum system call priority are keep
8177          * permanently enabled, even when the RTOS kernel is in a critical section,
8178          * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
8179          * is defined in FreeRTOSConfig.h then
8180          * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
8181          * failure if a FreeRTOS API function is called from an interrupt that has
8182          * been assigned a priority above the configured maximum system call
8183          * priority.  Only FreeRTOS functions that end in FromISR can be called
8184          * from interrupts  that have been assigned a priority at or (logically)
8185          * below the maximum system call interrupt priority.  FreeRTOS maintains a
8186          * separate interrupt safe API to ensure interrupt entry is as fast and as
8187          * simple as possible.  More information (albeit Cortex-M specific) is
8188          * provided on the following link:
8189          * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
8190         portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
8191
8192         pxTCB = xTaskToNotify;
8193
8194         uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
8195         {
8196             ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
8197             pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
8198
8199             /* 'Giving' is equivalent to incrementing a count in a counting
8200              * semaphore. */
8201             ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
8202
8203             traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
8204
8205             /* If the task is in the blocked state specifically to wait for a
8206              * notification then unblock it now. */
8207             if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
8208             {
8209                 /* The task should not have been on an event list. */
8210                 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
8211
8212                 if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
8213                 {
8214                     listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
8215                     prvAddTaskToReadyList( pxTCB );
8216                 }
8217                 else
8218                 {
8219                     /* The delayed and ready lists cannot be accessed, so hold
8220                      * this task pending until the scheduler is resumed. */
8221                     listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
8222                 }
8223
8224                 #if ( configNUMBER_OF_CORES == 1 )
8225                 {
8226                     if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
8227                     {
8228                         /* The notified task has a priority above the currently
8229                          * executing task so a yield is required. */
8230                         if( pxHigherPriorityTaskWoken != NULL )
8231                         {
8232                             *pxHigherPriorityTaskWoken = pdTRUE;
8233                         }
8234
8235                         /* Mark that a yield is pending in case the user is not
8236                          * using the "xHigherPriorityTaskWoken" parameter in an ISR
8237                          * safe FreeRTOS function. */
8238                         xYieldPendings[ 0 ] = pdTRUE;
8239                     }
8240                     else
8241                     {
8242                         mtCOVERAGE_TEST_MARKER();
8243                     }
8244                 }
8245                 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
8246                 {
8247                     #if ( configUSE_PREEMPTION == 1 )
8248                     {
8249                         prvYieldForTask( pxTCB );
8250
8251                         if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
8252                         {
8253                             if( pxHigherPriorityTaskWoken != NULL )
8254                             {
8255                                 *pxHigherPriorityTaskWoken = pdTRUE;
8256                             }
8257                         }
8258                     }
8259                     #endif /* #if ( configUSE_PREEMPTION == 1 ) */
8260                 }
8261                 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
8262             }
8263         }
8264         taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
8265
8266         traceRETURN_vTaskGenericNotifyGiveFromISR();
8267     }
8268
8269 #endif /* configUSE_TASK_NOTIFICATIONS */
8270 /*-----------------------------------------------------------*/
8271
8272 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8273
8274     BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
8275                                              UBaseType_t uxIndexToClear )
8276     {
8277         TCB_t * pxTCB;
8278         BaseType_t xReturn;
8279
8280         traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear );
8281
8282         configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8283
8284         /* If null is passed in here then it is the calling task that is having
8285          * its notification state cleared. */
8286         pxTCB = prvGetTCBFromHandle( xTask );
8287
8288         taskENTER_CRITICAL();
8289         {
8290             if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
8291             {
8292                 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
8293                 xReturn = pdPASS;
8294             }
8295             else
8296             {
8297                 xReturn = pdFAIL;
8298             }
8299         }
8300         taskEXIT_CRITICAL();
8301
8302         traceRETURN_xTaskGenericNotifyStateClear( xReturn );
8303
8304         return xReturn;
8305     }
8306
8307 #endif /* configUSE_TASK_NOTIFICATIONS */
8308 /*-----------------------------------------------------------*/
8309
8310 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
8311
8312     uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
8313                                             UBaseType_t uxIndexToClear,
8314                                             uint32_t ulBitsToClear )
8315     {
8316         TCB_t * pxTCB;
8317         uint32_t ulReturn;
8318
8319         traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear );
8320
8321         configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
8322
8323         /* If null is passed in here then it is the calling task that is having
8324          * its notification state cleared. */
8325         pxTCB = prvGetTCBFromHandle( xTask );
8326
8327         taskENTER_CRITICAL();
8328         {
8329             /* Return the notification as it was before the bits were cleared,
8330              * then clear the bit mask. */
8331             ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
8332             pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
8333         }
8334         taskEXIT_CRITICAL();
8335
8336         traceRETURN_ulTaskGenericNotifyValueClear( ulReturn );
8337
8338         return ulReturn;
8339     }
8340
8341 #endif /* configUSE_TASK_NOTIFICATIONS */
8342 /*-----------------------------------------------------------*/
8343
8344 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8345
8346     configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask )
8347     {
8348         TCB_t * pxTCB;
8349
8350         traceENTER_ulTaskGetRunTimeCounter( xTask );
8351
8352         pxTCB = prvGetTCBFromHandle( xTask );
8353
8354         traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter );
8355
8356         return pxTCB->ulRunTimeCounter;
8357     }
8358
8359 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8360 /*-----------------------------------------------------------*/
8361
8362 #if ( configGENERATE_RUN_TIME_STATS == 1 )
8363
8364     configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask )
8365     {
8366         TCB_t * pxTCB;
8367         configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8368
8369         traceENTER_ulTaskGetRunTimePercent( xTask );
8370
8371         ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
8372
8373         /* For percentage calculations. */
8374         ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8375
8376         /* Avoid divide by zero errors. */
8377         if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8378         {
8379             pxTCB = prvGetTCBFromHandle( xTask );
8380             ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime;
8381         }
8382         else
8383         {
8384             ulReturn = 0;
8385         }
8386
8387         traceRETURN_ulTaskGetRunTimePercent( ulReturn );
8388
8389         return ulReturn;
8390     }
8391
8392 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
8393 /*-----------------------------------------------------------*/
8394
8395 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8396
8397     configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
8398     {
8399         configRUN_TIME_COUNTER_TYPE ulReturn = 0;
8400         BaseType_t i;
8401
8402         traceENTER_ulTaskGetIdleRunTimeCounter();
8403
8404         for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8405         {
8406             ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8407         }
8408
8409         traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn );
8410
8411         return ulReturn;
8412     }
8413
8414 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8415 /*-----------------------------------------------------------*/
8416
8417 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
8418
8419     configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
8420     {
8421         configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
8422         configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0;
8423         BaseType_t i;
8424
8425         traceENTER_ulTaskGetIdleRunTimePercent();
8426
8427         ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES;
8428
8429         /* For percentage calculations. */
8430         ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
8431
8432         /* Avoid divide by zero errors. */
8433         if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
8434         {
8435             for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
8436             {
8437                 ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter;
8438             }
8439
8440             ulReturn = ulRunTimeCounter / ulTotalTime;
8441         }
8442         else
8443         {
8444             ulReturn = 0;
8445         }
8446
8447         traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn );
8448
8449         return ulReturn;
8450     }
8451
8452 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
8453 /*-----------------------------------------------------------*/
8454
8455 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
8456                                             const BaseType_t xCanBlockIndefinitely )
8457 {
8458     TickType_t xTimeToWake;
8459     const TickType_t xConstTickCount = xTickCount;
8460     List_t * const pxDelayedList = pxDelayedTaskList;
8461     List_t * const pxOverflowDelayedList = pxOverflowDelayedTaskList;
8462
8463     #if ( INCLUDE_xTaskAbortDelay == 1 )
8464     {
8465         /* About to enter a delayed list, so ensure the ucDelayAborted flag is
8466          * reset to pdFALSE so it can be detected as having been set to pdTRUE
8467          * when the task leaves the Blocked state. */
8468         pxCurrentTCB->ucDelayAborted = pdFALSE;
8469     }
8470     #endif
8471
8472     /* Remove the task from the ready list before adding it to the blocked list
8473      * as the same list item is used for both lists. */
8474     if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
8475     {
8476         /* The current task must be in a ready list, so there is no need to
8477          * check, and the port reset macro can be called directly. */
8478         portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
8479     }
8480     else
8481     {
8482         mtCOVERAGE_TEST_MARKER();
8483     }
8484
8485     #if ( INCLUDE_vTaskSuspend == 1 )
8486     {
8487         if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
8488         {
8489             /* Add the task to the suspended task list instead of a delayed task
8490              * list to ensure it is not woken by a timing event.  It will block
8491              * indefinitely. */
8492             listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
8493         }
8494         else
8495         {
8496             /* Calculate the time at which the task should be woken if the event
8497              * does not occur.  This may overflow but this doesn't matter, the
8498              * kernel will manage it correctly. */
8499             xTimeToWake = xConstTickCount + xTicksToWait;
8500
8501             /* The list item will be inserted in wake time order. */
8502             listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8503
8504             if( xTimeToWake < xConstTickCount )
8505             {
8506                 /* Wake time has overflowed.  Place this item in the overflow
8507                  * list. */
8508                 traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8509                 vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8510             }
8511             else
8512             {
8513                 /* The wake time has not overflowed, so the current block list
8514                  * is used. */
8515                 traceMOVED_TASK_TO_DELAYED_LIST();
8516                 vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8517
8518                 /* If the task entering the blocked state was placed at the
8519                  * head of the list of blocked tasks then xNextTaskUnblockTime
8520                  * needs to be updated too. */
8521                 if( xTimeToWake < xNextTaskUnblockTime )
8522                 {
8523                     xNextTaskUnblockTime = xTimeToWake;
8524                 }
8525                 else
8526                 {
8527                     mtCOVERAGE_TEST_MARKER();
8528                 }
8529             }
8530         }
8531     }
8532     #else /* INCLUDE_vTaskSuspend */
8533     {
8534         /* Calculate the time at which the task should be woken if the event
8535          * does not occur.  This may overflow but this doesn't matter, the kernel
8536          * will manage it correctly. */
8537         xTimeToWake = xConstTickCount + xTicksToWait;
8538
8539         /* The list item will be inserted in wake time order. */
8540         listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
8541
8542         if( xTimeToWake < xConstTickCount )
8543         {
8544             traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
8545             /* Wake time has overflowed.  Place this item in the overflow list. */
8546             vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
8547         }
8548         else
8549         {
8550             traceMOVED_TASK_TO_DELAYED_LIST();
8551             /* The wake time has not overflowed, so the current block list is used. */
8552             vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
8553
8554             /* If the task entering the blocked state was placed at the head of the
8555              * list of blocked tasks then xNextTaskUnblockTime needs to be updated
8556              * too. */
8557             if( xTimeToWake < xNextTaskUnblockTime )
8558             {
8559                 xNextTaskUnblockTime = xTimeToWake;
8560             }
8561             else
8562             {
8563                 mtCOVERAGE_TEST_MARKER();
8564             }
8565         }
8566
8567         /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
8568         ( void ) xCanBlockIndefinitely;
8569     }
8570     #endif /* INCLUDE_vTaskSuspend */
8571 }
8572 /*-----------------------------------------------------------*/
8573
8574 #if ( portUSING_MPU_WRAPPERS == 1 )
8575
8576     xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask )
8577     {
8578         TCB_t * pxTCB;
8579
8580         traceENTER_xTaskGetMPUSettings( xTask );
8581
8582         pxTCB = prvGetTCBFromHandle( xTask );
8583
8584         traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) );
8585
8586         return &( pxTCB->xMPUSettings );
8587     }
8588
8589 #endif /* portUSING_MPU_WRAPPERS */
8590 /*-----------------------------------------------------------*/
8591
8592 /* Code below here allows additional code to be inserted into this source file,
8593  * especially where access to file scope functions and data is needed (for example
8594  * when performing module tests). */
8595
8596 #ifdef FREERTOS_MODULE_TEST
8597     #include "tasks_test_access_functions.h"
8598 #endif
8599
8600
8601 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
8602
8603     #include "freertos_tasks_c_additions.h"
8604
8605     #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
8606         static void freertos_tasks_c_additions_init( void )
8607         {
8608             FREERTOS_TASKS_C_ADDITIONS_INIT();
8609         }
8610     #endif
8611
8612 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
8613 /*-----------------------------------------------------------*/
8614
8615 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8616
8617 /*
8618  * This is the kernel provided implementation of vApplicationGetIdleTaskMemory()
8619  * to provide the memory that is used by the Idle task. It is used when
8620  * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8621  * it's own implementation of vApplicationGetIdleTaskMemory by setting
8622  * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8623  */
8624     void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8625                                         StackType_t ** ppxIdleTaskStackBuffer,
8626                                         configSTACK_DEPTH_TYPE * puxIdleTaskStackSize )
8627     {
8628         static StaticTask_t xIdleTaskTCB;
8629         static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
8630
8631         *ppxIdleTaskTCBBuffer = &( xIdleTaskTCB );
8632         *ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] );
8633         *puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8634     }
8635
8636     #if ( configNUMBER_OF_CORES > 1 )
8637
8638         void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
8639                                                    StackType_t ** ppxIdleTaskStackBuffer,
8640                                                    configSTACK_DEPTH_TYPE * puxIdleTaskStackSize,
8641                                                    BaseType_t xPassiveIdleTaskIndex )
8642         {
8643             static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ];
8644             static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ];
8645
8646             *ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] );
8647             *ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] );
8648             *puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
8649         }
8650
8651     #endif /* #if ( configNUMBER_OF_CORES > 1 ) */
8652
8653 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8654 /*-----------------------------------------------------------*/
8655
8656 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
8657
8658 /*
8659  * This is the kernel provided implementation of vApplicationGetTimerTaskMemory()
8660  * to provide the memory that is used by the Timer service task. It is used when
8661  * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
8662  * it's own implementation of vApplicationGetTimerTaskMemory by setting
8663  * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
8664  */
8665     void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
8666                                          StackType_t ** ppxTimerTaskStackBuffer,
8667                                          configSTACK_DEPTH_TYPE * puxTimerTaskStackSize )
8668     {
8669         static StaticTask_t xTimerTaskTCB;
8670         static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
8671
8672         *ppxTimerTaskTCBBuffer = &( xTimerTaskTCB );
8673         *ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] );
8674         *puxTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
8675     }
8676
8677 #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
8678 /*-----------------------------------------------------------*/