2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 * SPDX-License-Identifier: MIT
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
32 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
33 * all the API functions to use the MPU wrappers. That should only be done when
34 * task.h is included from an application file. */
35 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
41 #if ( configUSE_CO_ROUTINES == 1 )
45 /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
46 * for the header files above, but not in this file, in order to generate the
47 * correct privileged Vs unprivileged linkage and placement. */
48 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
51 /* Constants used with the cRxLock and cTxLock structure members. */
52 #define queueUNLOCKED ( ( int8_t ) -1 )
53 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
54 #define queueINT8_MAX ( ( int8_t ) 127 )
56 /* When the Queue_t structure is used to represent a base queue its pcHead and
57 * pcTail members are used as pointers into the queue storage area. When the
58 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
59 * not necessary, and the pcHead pointer is set to NULL to indicate that the
60 * structure instead holds a pointer to the mutex holder (if any). Map alternative
61 * names to the pcHead and structure member to ensure the readability of the code
62 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
63 * a union as their usage is mutually exclusive dependent on what the queue is
65 #define uxQueueType pcHead
66 #define queueQUEUE_IS_MUTEX NULL
68 typedef struct QueuePointers
70 int8_t * pcTail; /**< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
71 int8_t * pcReadFrom; /**< Points to the last place that a queued item was read from when the structure is used as a queue. */
74 typedef struct SemaphoreData
76 TaskHandle_t xMutexHolder; /**< The handle of the task that holds the mutex. */
77 UBaseType_t uxRecursiveCallCount; /**< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
80 /* Semaphores do not actually store or copy data, so have an item size of
82 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
83 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
85 #if ( configUSE_PREEMPTION == 0 )
87 /* If the cooperative scheduler is being used then a yield should not be
88 * performed just because a higher priority task has been woken. */
89 #define queueYIELD_IF_USING_PREEMPTION()
91 #if ( configNUMBER_OF_CORES == 1 )
92 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
93 #else /* #if ( configNUMBER_OF_CORES == 1 ) */
94 #define queueYIELD_IF_USING_PREEMPTION() vTaskYieldWithinAPI()
95 #endif /* #if ( configNUMBER_OF_CORES == 1 ) */
99 * Definition of the queue used by the scheduler.
100 * Items are queued by copy, not reference. See the following link for the
101 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
103 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
105 int8_t * pcHead; /**< Points to the beginning of the queue storage area. */
106 int8_t * pcWriteTo; /**< Points to the free next place in the storage area. */
110 QueuePointers_t xQueue; /**< Data required exclusively when this structure is used as a queue. */
111 SemaphoreData_t xSemaphore; /**< Data required exclusively when this structure is used as a semaphore. */
114 List_t xTasksWaitingToSend; /**< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
115 List_t xTasksWaitingToReceive; /**< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
117 volatile UBaseType_t uxMessagesWaiting; /**< The number of items currently in the queue. */
118 UBaseType_t uxLength; /**< The length of the queue defined as the number of items it will hold, not the number of bytes. */
119 UBaseType_t uxItemSize; /**< The size of each items that the queue will hold. */
121 volatile int8_t cRxLock; /**< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
122 volatile int8_t cTxLock; /**< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
124 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
125 uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
128 #if ( configUSE_QUEUE_SETS == 1 )
129 struct QueueDefinition * pxQueueSetContainer;
132 #if ( configUSE_TRACE_FACILITY == 1 )
133 UBaseType_t uxQueueNumber;
138 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
139 * name below to enable the use of older kernel aware debuggers. */
140 typedef xQUEUE Queue_t;
142 /*-----------------------------------------------------------*/
145 * The queue registry is just a means for kernel aware debuggers to locate
146 * queue structures. It has no other purpose so is an optional component.
148 #if ( configQUEUE_REGISTRY_SIZE > 0 )
150 /* The type stored within the queue registry array. This allows a name
151 * to be assigned to each queue making kernel aware debugging a little
152 * more user friendly. */
153 typedef struct QUEUE_REGISTRY_ITEM
155 const char * pcQueueName;
156 QueueHandle_t xHandle;
157 } xQueueRegistryItem;
159 /* The old xQueueRegistryItem name is maintained above then typedefed to the
160 * new xQueueRegistryItem name below to enable the use of older kernel aware
162 typedef xQueueRegistryItem QueueRegistryItem_t;
164 /* The queue registry is simply an array of QueueRegistryItem_t structures.
165 * The pcQueueName member of a structure being NULL is indicative of the
166 * array position being vacant. */
168 /* MISRA Ref 8.4.2 [Declaration shall be visible] */
169 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
170 /* coverity[misra_c_2012_rule_8_4_violation] */
171 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
173 #endif /* configQUEUE_REGISTRY_SIZE */
176 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
177 * prevent an ISR from adding or removing items to the queue, but does prevent
178 * an ISR from removing tasks from the queue event lists. If an ISR finds a
179 * queue is locked it will instead increment the appropriate queue lock count
180 * to indicate that a task may require unblocking. When the queue in unlocked
181 * these lock counts are inspected, and the appropriate action taken.
183 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
186 * Uses a critical section to determine if there is any data in a queue.
188 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
190 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
193 * Uses a critical section to determine if there is any space in a queue.
195 * @return pdTRUE if there is no space, otherwise pdFALSE;
197 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
200 * Copies an item into the queue, either at the front of the queue or the
203 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
204 const void * pvItemToQueue,
205 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
208 * Copies an item out of a queue.
210 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
211 void * const pvBuffer ) PRIVILEGED_FUNCTION;
213 #if ( configUSE_QUEUE_SETS == 1 )
216 * Checks to see if a queue is a member of a queue set, and if so, notifies
217 * the queue set that the queue contains data.
219 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
223 * Called after a Queue_t structure has been allocated either statically or
224 * dynamically to fill in the structure's members.
226 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
227 const UBaseType_t uxItemSize,
228 uint8_t * pucQueueStorage,
229 const uint8_t ucQueueType,
230 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
233 * Mutexes are a special type of queue. When a mutex is created, first the
234 * queue is created, then prvInitialiseMutex() is called to configure the queue
237 #if ( configUSE_MUTEXES == 1 )
238 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
241 #if ( configUSE_MUTEXES == 1 )
244 * If a task waiting for a mutex causes the mutex holder to inherit a
245 * priority, but the waiting task times out, then the holder should
246 * disinherit the priority - but only down to the highest priority of any
247 * other tasks that are waiting for the same mutex. This function returns
250 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
252 /*-----------------------------------------------------------*/
255 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
256 * accessing the queue event lists.
258 #define prvLockQueue( pxQueue ) \
259 taskENTER_CRITICAL(); \
261 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
263 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
265 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
267 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
273 * Macro to increment cTxLock member of the queue data structure. It is
274 * capped at the number of tasks in the system as we cannot unblock more
275 * tasks than the number of tasks in the system.
277 #define prvIncrementQueueTxLock( pxQueue, cTxLock ) \
279 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
280 if( ( UBaseType_t ) ( cTxLock ) < uxNumberOfTasks ) \
282 configASSERT( ( cTxLock ) != queueINT8_MAX ); \
283 ( pxQueue )->cTxLock = ( int8_t ) ( ( cTxLock ) + ( int8_t ) 1 ); \
288 * Macro to increment cRxLock member of the queue data structure. It is
289 * capped at the number of tasks in the system as we cannot unblock more
290 * tasks than the number of tasks in the system.
292 #define prvIncrementQueueRxLock( pxQueue, cRxLock ) \
294 const UBaseType_t uxNumberOfTasks = uxTaskGetNumberOfTasks(); \
295 if( ( UBaseType_t ) ( cRxLock ) < uxNumberOfTasks ) \
297 configASSERT( ( cRxLock ) != queueINT8_MAX ); \
298 ( pxQueue )->cRxLock = ( int8_t ) ( ( cRxLock ) + ( int8_t ) 1 ); \
301 /*-----------------------------------------------------------*/
303 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
304 BaseType_t xNewQueue )
306 BaseType_t xReturn = pdPASS;
307 Queue_t * const pxQueue = xQueue;
309 traceENTER_xQueueGenericReset( xQueue, xNewQueue );
311 configASSERT( pxQueue );
313 if( ( pxQueue != NULL ) &&
314 ( pxQueue->uxLength >= 1U ) &&
315 /* Check for multiplication overflow. */
316 ( ( SIZE_MAX / pxQueue->uxLength ) >= pxQueue->uxItemSize ) )
318 taskENTER_CRITICAL();
320 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize );
321 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
322 pxQueue->pcWriteTo = pxQueue->pcHead;
323 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize );
324 pxQueue->cRxLock = queueUNLOCKED;
325 pxQueue->cTxLock = queueUNLOCKED;
327 if( xNewQueue == pdFALSE )
329 /* If there are tasks blocked waiting to read from the queue, then
330 * the tasks will remain blocked as after this function exits the queue
331 * will still be empty. If there are tasks blocked waiting to write to
332 * the queue, then one should be unblocked as after this function exits
333 * it will be possible to write to it. */
334 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
336 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
338 queueYIELD_IF_USING_PREEMPTION();
342 mtCOVERAGE_TEST_MARKER();
347 mtCOVERAGE_TEST_MARKER();
352 /* Ensure the event queues start in the correct state. */
353 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
354 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
364 configASSERT( xReturn != pdFAIL );
366 /* A value is returned for calling semantic consistency with previous
368 traceRETURN_xQueueGenericReset( xReturn );
372 /*-----------------------------------------------------------*/
374 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
376 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
377 const UBaseType_t uxItemSize,
378 uint8_t * pucQueueStorage,
379 StaticQueue_t * pxStaticQueue,
380 const uint8_t ucQueueType )
382 Queue_t * pxNewQueue = NULL;
384 traceENTER_xQueueGenericCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxStaticQueue, ucQueueType );
386 /* The StaticQueue_t structure and the queue storage area must be
388 configASSERT( pxStaticQueue );
390 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
391 ( pxStaticQueue != NULL ) &&
393 /* A queue storage area should be provided if the item size is not 0, and
394 * should not be provided if the item size is 0. */
395 ( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0U ) ) ) &&
396 ( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0U ) ) ) )
398 #if ( configASSERT_DEFINED == 1 )
400 /* Sanity check that the size of the structure used to declare a
401 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
402 * the real queue and semaphore structures. */
403 volatile size_t xSize = sizeof( StaticQueue_t );
405 /* This assertion cannot be branch covered in unit tests */
406 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
407 ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not defined. */
409 #endif /* configASSERT_DEFINED */
411 /* The address of a statically allocated queue was passed in, use it.
412 * The address of a statically allocated storage area was also passed in
413 * but is already set. */
414 /* MISRA Ref 11.3.1 [Misaligned access] */
415 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
416 /* coverity[misra_c_2012_rule_11_3_violation] */
417 pxNewQueue = ( Queue_t * ) pxStaticQueue;
419 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
421 /* Queues can be allocated wither statically or dynamically, so
422 * note this queue was allocated statically in case the queue is
424 pxNewQueue->ucStaticallyAllocated = pdTRUE;
426 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
428 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
432 configASSERT( pxNewQueue );
433 mtCOVERAGE_TEST_MARKER();
436 traceRETURN_xQueueGenericCreateStatic( pxNewQueue );
441 #endif /* configSUPPORT_STATIC_ALLOCATION */
442 /*-----------------------------------------------------------*/
444 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
446 BaseType_t xQueueGenericGetStaticBuffers( QueueHandle_t xQueue,
447 uint8_t ** ppucQueueStorage,
448 StaticQueue_t ** ppxStaticQueue )
451 Queue_t * const pxQueue = xQueue;
453 traceENTER_xQueueGenericGetStaticBuffers( xQueue, ppucQueueStorage, ppxStaticQueue );
455 configASSERT( pxQueue );
456 configASSERT( ppxStaticQueue );
458 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
460 /* Check if the queue was statically allocated. */
461 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdTRUE )
463 if( ppucQueueStorage != NULL )
465 *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead;
468 /* MISRA Ref 11.3.1 [Misaligned access] */
469 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
470 /* coverity[misra_c_2012_rule_11_3_violation] */
471 *ppxStaticQueue = ( StaticQueue_t * ) pxQueue;
479 #else /* configSUPPORT_DYNAMIC_ALLOCATION */
481 /* Queue must have been statically allocated. */
482 if( ppucQueueStorage != NULL )
484 *ppucQueueStorage = ( uint8_t * ) pxQueue->pcHead;
487 *ppxStaticQueue = ( StaticQueue_t * ) pxQueue;
490 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
492 traceRETURN_xQueueGenericGetStaticBuffers( xReturn );
497 #endif /* configSUPPORT_STATIC_ALLOCATION */
498 /*-----------------------------------------------------------*/
500 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
502 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
503 const UBaseType_t uxItemSize,
504 const uint8_t ucQueueType )
506 Queue_t * pxNewQueue = NULL;
507 size_t xQueueSizeInBytes;
508 uint8_t * pucQueueStorage;
510 traceENTER_xQueueGenericCreate( uxQueueLength, uxItemSize, ucQueueType );
512 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
513 /* Check for multiplication overflow. */
514 ( ( SIZE_MAX / uxQueueLength ) >= uxItemSize ) &&
515 /* Check for addition overflow. */
516 ( ( UBaseType_t ) ( SIZE_MAX - sizeof( Queue_t ) ) >= ( uxQueueLength * uxItemSize ) ) )
518 /* Allocate enough space to hold the maximum number of items that
519 * can be in the queue at any time. It is valid for uxItemSize to be
520 * zero in the case the queue is used as a semaphore. */
521 xQueueSizeInBytes = ( size_t ) ( ( size_t ) uxQueueLength * ( size_t ) uxItemSize );
523 /* MISRA Ref 11.5.1 [Malloc memory assignment] */
524 /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
525 /* coverity[misra_c_2012_rule_11_5_violation] */
526 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes );
528 if( pxNewQueue != NULL )
530 /* Jump past the queue structure to find the location of the queue
532 pucQueueStorage = ( uint8_t * ) pxNewQueue;
533 pucQueueStorage += sizeof( Queue_t );
535 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
537 /* Queues can be created either statically or dynamically, so
538 * note this task was created dynamically in case it is later
540 pxNewQueue->ucStaticallyAllocated = pdFALSE;
542 #endif /* configSUPPORT_STATIC_ALLOCATION */
544 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
548 traceQUEUE_CREATE_FAILED( ucQueueType );
549 mtCOVERAGE_TEST_MARKER();
554 configASSERT( pxNewQueue );
555 mtCOVERAGE_TEST_MARKER();
558 traceRETURN_xQueueGenericCreate( pxNewQueue );
563 #endif /* configSUPPORT_STATIC_ALLOCATION */
564 /*-----------------------------------------------------------*/
566 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
567 const UBaseType_t uxItemSize,
568 uint8_t * pucQueueStorage,
569 const uint8_t ucQueueType,
570 Queue_t * pxNewQueue )
572 /* Remove compiler warnings about unused parameters should
573 * configUSE_TRACE_FACILITY not be set to 1. */
574 ( void ) ucQueueType;
576 if( uxItemSize == ( UBaseType_t ) 0 )
578 /* No RAM was allocated for the queue storage area, but PC head cannot
579 * be set to NULL because NULL is used as a key to say the queue is used as
580 * a mutex. Therefore just set pcHead to point to the queue as a benign
581 * value that is known to be within the memory map. */
582 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
586 /* Set the head to the start of the queue storage area. */
587 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
590 /* Initialise the queue members as described where the queue type is
592 pxNewQueue->uxLength = uxQueueLength;
593 pxNewQueue->uxItemSize = uxItemSize;
594 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
596 #if ( configUSE_TRACE_FACILITY == 1 )
598 pxNewQueue->ucQueueType = ucQueueType;
600 #endif /* configUSE_TRACE_FACILITY */
602 #if ( configUSE_QUEUE_SETS == 1 )
604 pxNewQueue->pxQueueSetContainer = NULL;
606 #endif /* configUSE_QUEUE_SETS */
608 traceQUEUE_CREATE( pxNewQueue );
610 /*-----------------------------------------------------------*/
612 #if ( configUSE_MUTEXES == 1 )
614 static void prvInitialiseMutex( Queue_t * pxNewQueue )
616 if( pxNewQueue != NULL )
618 /* The queue create function will set all the queue structure members
619 * correctly for a generic queue, but this function is creating a
620 * mutex. Overwrite those members that need to be set differently -
621 * in particular the information required for priority inheritance. */
622 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
623 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
625 /* In case this is a recursive mutex. */
626 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
628 traceCREATE_MUTEX( pxNewQueue );
630 /* Start with the semaphore in the expected state. */
631 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
635 traceCREATE_MUTEX_FAILED();
639 #endif /* configUSE_MUTEXES */
640 /*-----------------------------------------------------------*/
642 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
644 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
646 QueueHandle_t xNewQueue;
647 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
649 traceENTER_xQueueCreateMutex( ucQueueType );
651 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
652 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
654 traceRETURN_xQueueCreateMutex( xNewQueue );
659 #endif /* configUSE_MUTEXES */
660 /*-----------------------------------------------------------*/
662 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
664 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
665 StaticQueue_t * pxStaticQueue )
667 QueueHandle_t xNewQueue;
668 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
670 traceENTER_xQueueCreateMutexStatic( ucQueueType, pxStaticQueue );
672 /* Prevent compiler warnings about unused parameters if
673 * configUSE_TRACE_FACILITY does not equal 1. */
674 ( void ) ucQueueType;
676 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
677 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
679 traceRETURN_xQueueCreateMutexStatic( xNewQueue );
684 #endif /* configUSE_MUTEXES */
685 /*-----------------------------------------------------------*/
687 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
689 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
691 TaskHandle_t pxReturn;
692 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
694 traceENTER_xQueueGetMutexHolder( xSemaphore );
696 configASSERT( xSemaphore );
698 /* This function is called by xSemaphoreGetMutexHolder(), and should not
699 * be called directly. Note: This is a good way of determining if the
700 * calling task is the mutex holder, but not a good way of determining the
701 * identity of the mutex holder, as the holder may change between the
702 * following critical section exiting and the function returning. */
703 taskENTER_CRITICAL();
705 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
707 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
716 traceRETURN_xQueueGetMutexHolder( pxReturn );
721 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
722 /*-----------------------------------------------------------*/
724 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
726 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
728 TaskHandle_t pxReturn;
730 traceENTER_xQueueGetMutexHolderFromISR( xSemaphore );
732 configASSERT( xSemaphore );
734 /* Mutexes cannot be used in interrupt service routines, so the mutex
735 * holder should not change in an ISR, and therefore a critical section is
736 * not required here. */
737 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
739 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
746 traceRETURN_xQueueGetMutexHolderFromISR( pxReturn );
751 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
752 /*-----------------------------------------------------------*/
754 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
756 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
759 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
761 traceENTER_xQueueGiveMutexRecursive( xMutex );
763 configASSERT( pxMutex );
765 /* If this is the task that holds the mutex then xMutexHolder will not
766 * change outside of this task. If this task does not hold the mutex then
767 * pxMutexHolder can never coincidentally equal the tasks handle, and as
768 * this is the only condition we are interested in it does not matter if
769 * pxMutexHolder is accessed simultaneously by another task. Therefore no
770 * mutual exclusion is required to test the pxMutexHolder variable. */
771 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
773 traceGIVE_MUTEX_RECURSIVE( pxMutex );
775 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
776 * the task handle, therefore no underflow check is required. Also,
777 * uxRecursiveCallCount is only modified by the mutex holder, and as
778 * there can only be one, no mutual exclusion is required to modify the
779 * uxRecursiveCallCount member. */
780 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
782 /* Has the recursive call count unwound to 0? */
783 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
785 /* Return the mutex. This will automatically unblock any other
786 * task that might be waiting to access the mutex. */
787 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
791 mtCOVERAGE_TEST_MARKER();
798 /* The mutex cannot be given because the calling task is not the
802 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
805 traceRETURN_xQueueGiveMutexRecursive( xReturn );
810 #endif /* configUSE_RECURSIVE_MUTEXES */
811 /*-----------------------------------------------------------*/
813 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
815 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
816 TickType_t xTicksToWait )
819 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
821 traceENTER_xQueueTakeMutexRecursive( xMutex, xTicksToWait );
823 configASSERT( pxMutex );
825 /* Comments regarding mutual exclusion as per those within
826 * xQueueGiveMutexRecursive(). */
828 traceTAKE_MUTEX_RECURSIVE( pxMutex );
830 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
832 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
837 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
839 /* pdPASS will only be returned if the mutex was successfully
840 * obtained. The calling task may have entered the Blocked state
841 * before reaching here. */
842 if( xReturn != pdFAIL )
844 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
848 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
852 traceRETURN_xQueueTakeMutexRecursive( xReturn );
857 #endif /* configUSE_RECURSIVE_MUTEXES */
858 /*-----------------------------------------------------------*/
860 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
862 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
863 const UBaseType_t uxInitialCount,
864 StaticQueue_t * pxStaticQueue )
866 QueueHandle_t xHandle = NULL;
868 traceENTER_xQueueCreateCountingSemaphoreStatic( uxMaxCount, uxInitialCount, pxStaticQueue );
870 if( ( uxMaxCount != 0U ) &&
871 ( uxInitialCount <= uxMaxCount ) )
873 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
875 if( xHandle != NULL )
877 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
879 traceCREATE_COUNTING_SEMAPHORE();
883 traceCREATE_COUNTING_SEMAPHORE_FAILED();
888 configASSERT( xHandle );
889 mtCOVERAGE_TEST_MARKER();
892 traceRETURN_xQueueCreateCountingSemaphoreStatic( xHandle );
897 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
898 /*-----------------------------------------------------------*/
900 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
902 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
903 const UBaseType_t uxInitialCount )
905 QueueHandle_t xHandle = NULL;
907 traceENTER_xQueueCreateCountingSemaphore( uxMaxCount, uxInitialCount );
909 if( ( uxMaxCount != 0U ) &&
910 ( uxInitialCount <= uxMaxCount ) )
912 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
914 if( xHandle != NULL )
916 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
918 traceCREATE_COUNTING_SEMAPHORE();
922 traceCREATE_COUNTING_SEMAPHORE_FAILED();
927 configASSERT( xHandle );
928 mtCOVERAGE_TEST_MARKER();
931 traceRETURN_xQueueCreateCountingSemaphore( xHandle );
936 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
937 /*-----------------------------------------------------------*/
939 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
940 const void * const pvItemToQueue,
941 TickType_t xTicksToWait,
942 const BaseType_t xCopyPosition )
944 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
946 Queue_t * const pxQueue = xQueue;
948 traceENTER_xQueueGenericSend( xQueue, pvItemToQueue, xTicksToWait, xCopyPosition );
950 configASSERT( pxQueue );
951 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
952 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
953 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
955 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
961 taskENTER_CRITICAL();
963 /* Is there room on the queue now? The running task must be the
964 * highest priority task wanting to access the queue. If the head item
965 * in the queue is to be overwritten then it does not matter if the
967 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
969 traceQUEUE_SEND( pxQueue );
971 #if ( configUSE_QUEUE_SETS == 1 )
973 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
975 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
977 if( pxQueue->pxQueueSetContainer != NULL )
979 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
981 /* Do not notify the queue set as an existing item
982 * was overwritten in the queue so the number of items
983 * in the queue has not changed. */
984 mtCOVERAGE_TEST_MARKER();
986 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
988 /* The queue is a member of a queue set, and posting
989 * to the queue set caused a higher priority task to
990 * unblock. A context switch is required. */
991 queueYIELD_IF_USING_PREEMPTION();
995 mtCOVERAGE_TEST_MARKER();
1000 /* If there was a task waiting for data to arrive on the
1001 * queue then unblock it now. */
1002 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1004 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1006 /* The unblocked task has a priority higher than
1007 * our own so yield immediately. Yes it is ok to
1008 * do this from within the critical section - the
1009 * kernel takes care of that. */
1010 queueYIELD_IF_USING_PREEMPTION();
1014 mtCOVERAGE_TEST_MARKER();
1017 else if( xYieldRequired != pdFALSE )
1019 /* This path is a special case that will only get
1020 * executed if the task was holding multiple mutexes
1021 * and the mutexes were given back in an order that is
1022 * different to that in which they were taken. */
1023 queueYIELD_IF_USING_PREEMPTION();
1027 mtCOVERAGE_TEST_MARKER();
1031 #else /* configUSE_QUEUE_SETS */
1033 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
1035 /* If there was a task waiting for data to arrive on the
1036 * queue then unblock it now. */
1037 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1039 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1041 /* The unblocked task has a priority higher than
1042 * our own so yield immediately. Yes it is ok to do
1043 * this from within the critical section - the kernel
1044 * takes care of that. */
1045 queueYIELD_IF_USING_PREEMPTION();
1049 mtCOVERAGE_TEST_MARKER();
1052 else if( xYieldRequired != pdFALSE )
1054 /* This path is a special case that will only get
1055 * executed if the task was holding multiple mutexes and
1056 * the mutexes were given back in an order that is
1057 * different to that in which they were taken. */
1058 queueYIELD_IF_USING_PREEMPTION();
1062 mtCOVERAGE_TEST_MARKER();
1065 #endif /* configUSE_QUEUE_SETS */
1067 taskEXIT_CRITICAL();
1069 traceRETURN_xQueueGenericSend( pdPASS );
1075 if( xTicksToWait == ( TickType_t ) 0 )
1077 /* The queue was full and no block time is specified (or
1078 * the block time has expired) so leave now. */
1079 taskEXIT_CRITICAL();
1081 /* Return to the original privilege level before exiting
1083 traceQUEUE_SEND_FAILED( pxQueue );
1084 traceRETURN_xQueueGenericSend( errQUEUE_FULL );
1086 return errQUEUE_FULL;
1088 else if( xEntryTimeSet == pdFALSE )
1090 /* The queue was full and a block time was specified so
1091 * configure the timeout structure. */
1092 vTaskInternalSetTimeOutState( &xTimeOut );
1093 xEntryTimeSet = pdTRUE;
1097 /* Entry time was already set. */
1098 mtCOVERAGE_TEST_MARKER();
1102 taskEXIT_CRITICAL();
1104 /* Interrupts and other tasks can send to and receive from the queue
1105 * now the critical section has been exited. */
1108 prvLockQueue( pxQueue );
1110 /* Update the timeout state to see if it has expired yet. */
1111 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1113 if( prvIsQueueFull( pxQueue ) != pdFALSE )
1115 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
1116 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
1118 /* Unlocking the queue means queue events can effect the
1119 * event list. It is possible that interrupts occurring now
1120 * remove this task from the event list again - but as the
1121 * scheduler is suspended the task will go onto the pending
1122 * ready list instead of the actual ready list. */
1123 prvUnlockQueue( pxQueue );
1125 /* Resuming the scheduler will move tasks from the pending
1126 * ready list into the ready list - so it is feasible that this
1127 * task is already in the ready list before it yields - in which
1128 * case the yield will not cause a context switch unless there
1129 * is also a higher priority task in the pending ready list. */
1130 if( xTaskResumeAll() == pdFALSE )
1132 taskYIELD_WITHIN_API();
1138 prvUnlockQueue( pxQueue );
1139 ( void ) xTaskResumeAll();
1144 /* The timeout has expired. */
1145 prvUnlockQueue( pxQueue );
1146 ( void ) xTaskResumeAll();
1148 traceQUEUE_SEND_FAILED( pxQueue );
1149 traceRETURN_xQueueGenericSend( errQUEUE_FULL );
1151 return errQUEUE_FULL;
1155 /*-----------------------------------------------------------*/
1157 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
1158 const void * const pvItemToQueue,
1159 BaseType_t * const pxHigherPriorityTaskWoken,
1160 const BaseType_t xCopyPosition )
1163 UBaseType_t uxSavedInterruptStatus;
1164 Queue_t * const pxQueue = xQueue;
1166 traceENTER_xQueueGenericSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken, xCopyPosition );
1168 configASSERT( pxQueue );
1169 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
1170 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
1172 /* RTOS ports that support interrupt nesting have the concept of a maximum
1173 * system call (or maximum API call) interrupt priority. Interrupts that are
1174 * above the maximum system call priority are kept permanently enabled, even
1175 * when the RTOS kernel is in a critical section, but cannot make any calls to
1176 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1177 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1178 * failure if a FreeRTOS API function is called from an interrupt that has been
1179 * assigned a priority above the configured maximum system call priority.
1180 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1181 * that have been assigned a priority at or (logically) below the maximum
1182 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1183 * safe API to ensure interrupt entry is as fast and as simple as possible.
1184 * More information (albeit Cortex-M specific) is provided on the following
1185 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1186 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1188 /* Similar to xQueueGenericSend, except without blocking if there is no room
1189 * in the queue. Also don't directly wake a task that was blocked on a queue
1190 * read, instead return a flag to say whether a context switch is required or
1191 * not (i.e. has a task with a higher priority than us been woken by this
1193 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
1195 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
1197 const int8_t cTxLock = pxQueue->cTxLock;
1198 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
1200 traceQUEUE_SEND_FROM_ISR( pxQueue );
1202 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
1203 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
1204 * in a task disinheriting a priority and prvCopyDataToQueue() can be
1205 * called here even though the disinherit function does not check if
1206 * the scheduler is suspended before accessing the ready lists. */
1207 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
1209 /* The event list is not altered if the queue is locked. This will
1210 * be done when the queue is unlocked later. */
1211 if( cTxLock == queueUNLOCKED )
1213 #if ( configUSE_QUEUE_SETS == 1 )
1215 if( pxQueue->pxQueueSetContainer != NULL )
1217 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
1219 /* Do not notify the queue set as an existing item
1220 * was overwritten in the queue so the number of items
1221 * in the queue has not changed. */
1222 mtCOVERAGE_TEST_MARKER();
1224 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
1226 /* The queue is a member of a queue set, and posting
1227 * to the queue set caused a higher priority task to
1228 * unblock. A context switch is required. */
1229 if( pxHigherPriorityTaskWoken != NULL )
1231 *pxHigherPriorityTaskWoken = pdTRUE;
1235 mtCOVERAGE_TEST_MARKER();
1240 mtCOVERAGE_TEST_MARKER();
1245 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1247 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1249 /* The task waiting has a higher priority so
1250 * record that a context switch is required. */
1251 if( pxHigherPriorityTaskWoken != NULL )
1253 *pxHigherPriorityTaskWoken = pdTRUE;
1257 mtCOVERAGE_TEST_MARKER();
1262 mtCOVERAGE_TEST_MARKER();
1267 mtCOVERAGE_TEST_MARKER();
1271 #else /* configUSE_QUEUE_SETS */
1273 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1275 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1277 /* The task waiting has a higher priority so record that a
1278 * context switch is required. */
1279 if( pxHigherPriorityTaskWoken != NULL )
1281 *pxHigherPriorityTaskWoken = pdTRUE;
1285 mtCOVERAGE_TEST_MARKER();
1290 mtCOVERAGE_TEST_MARKER();
1295 mtCOVERAGE_TEST_MARKER();
1298 /* Not used in this path. */
1299 ( void ) uxPreviousMessagesWaiting;
1301 #endif /* configUSE_QUEUE_SETS */
1305 /* Increment the lock count so the task that unlocks the queue
1306 * knows that data was posted while it was locked. */
1307 prvIncrementQueueTxLock( pxQueue, cTxLock );
1314 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1315 xReturn = errQUEUE_FULL;
1318 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
1320 traceRETURN_xQueueGenericSendFromISR( xReturn );
1324 /*-----------------------------------------------------------*/
1326 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
1327 BaseType_t * const pxHigherPriorityTaskWoken )
1330 UBaseType_t uxSavedInterruptStatus;
1331 Queue_t * const pxQueue = xQueue;
1333 traceENTER_xQueueGiveFromISR( xQueue, pxHigherPriorityTaskWoken );
1335 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
1336 * item size is 0. Don't directly wake a task that was blocked on a queue
1337 * read, instead return a flag to say whether a context switch is required or
1338 * not (i.e. has a task with a higher priority than us been woken by this
1341 configASSERT( pxQueue );
1343 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
1344 * if the item size is not 0. */
1345 configASSERT( pxQueue->uxItemSize == 0 );
1347 /* Normally a mutex would not be given from an interrupt, especially if
1348 * there is a mutex holder, as priority inheritance makes no sense for an
1349 * interrupts, only tasks. */
1350 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
1352 /* RTOS ports that support interrupt nesting have the concept of a maximum
1353 * system call (or maximum API call) interrupt priority. Interrupts that are
1354 * above the maximum system call priority are kept permanently enabled, even
1355 * when the RTOS kernel is in a critical section, but cannot make any calls to
1356 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1357 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1358 * failure if a FreeRTOS API function is called from an interrupt that has been
1359 * assigned a priority above the configured maximum system call priority.
1360 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1361 * that have been assigned a priority at or (logically) below the maximum
1362 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1363 * safe API to ensure interrupt entry is as fast and as simple as possible.
1364 * More information (albeit Cortex-M specific) is provided on the following
1365 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1366 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1368 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
1370 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1372 /* When the queue is used to implement a semaphore no data is ever
1373 * moved through the queue but it is still valid to see if the queue 'has
1375 if( uxMessagesWaiting < pxQueue->uxLength )
1377 const int8_t cTxLock = pxQueue->cTxLock;
1379 traceQUEUE_SEND_FROM_ISR( pxQueue );
1381 /* A task can only have an inherited priority if it is a mutex
1382 * holder - and if there is a mutex holder then the mutex cannot be
1383 * given from an ISR. As this is the ISR version of the function it
1384 * can be assumed there is no mutex holder and no need to determine if
1385 * priority disinheritance is needed. Simply increase the count of
1386 * messages (semaphores) available. */
1387 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting + ( UBaseType_t ) 1 );
1389 /* The event list is not altered if the queue is locked. This will
1390 * be done when the queue is unlocked later. */
1391 if( cTxLock == queueUNLOCKED )
1393 #if ( configUSE_QUEUE_SETS == 1 )
1395 if( pxQueue->pxQueueSetContainer != NULL )
1397 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
1399 /* The semaphore is a member of a queue set, and
1400 * posting to the queue set caused a higher priority
1401 * task to unblock. A context switch is required. */
1402 if( pxHigherPriorityTaskWoken != NULL )
1404 *pxHigherPriorityTaskWoken = pdTRUE;
1408 mtCOVERAGE_TEST_MARKER();
1413 mtCOVERAGE_TEST_MARKER();
1418 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1420 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1422 /* The task waiting has a higher priority so
1423 * record that a context switch is required. */
1424 if( pxHigherPriorityTaskWoken != NULL )
1426 *pxHigherPriorityTaskWoken = pdTRUE;
1430 mtCOVERAGE_TEST_MARKER();
1435 mtCOVERAGE_TEST_MARKER();
1440 mtCOVERAGE_TEST_MARKER();
1444 #else /* configUSE_QUEUE_SETS */
1446 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1448 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1450 /* The task waiting has a higher priority so record that a
1451 * context switch is required. */
1452 if( pxHigherPriorityTaskWoken != NULL )
1454 *pxHigherPriorityTaskWoken = pdTRUE;
1458 mtCOVERAGE_TEST_MARKER();
1463 mtCOVERAGE_TEST_MARKER();
1468 mtCOVERAGE_TEST_MARKER();
1471 #endif /* configUSE_QUEUE_SETS */
1475 /* Increment the lock count so the task that unlocks the queue
1476 * knows that data was posted while it was locked. */
1477 prvIncrementQueueTxLock( pxQueue, cTxLock );
1484 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1485 xReturn = errQUEUE_FULL;
1488 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
1490 traceRETURN_xQueueGiveFromISR( xReturn );
1494 /*-----------------------------------------------------------*/
1496 BaseType_t xQueueReceive( QueueHandle_t xQueue,
1497 void * const pvBuffer,
1498 TickType_t xTicksToWait )
1500 BaseType_t xEntryTimeSet = pdFALSE;
1502 Queue_t * const pxQueue = xQueue;
1504 traceENTER_xQueueReceive( xQueue, pvBuffer, xTicksToWait );
1506 /* Check the pointer is not NULL. */
1507 configASSERT( ( pxQueue ) );
1509 /* The buffer into which data is received can only be NULL if the data size
1510 * is zero (so no data is copied into the buffer). */
1511 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1513 /* Cannot block if the scheduler is suspended. */
1514 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1516 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1522 taskENTER_CRITICAL();
1524 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1526 /* Is there data in the queue now? To be running the calling task
1527 * must be the highest priority task wanting to access the queue. */
1528 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1530 /* Data available, remove one item. */
1531 prvCopyDataFromQueue( pxQueue, pvBuffer );
1532 traceQUEUE_RECEIVE( pxQueue );
1533 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting - ( UBaseType_t ) 1 );
1535 /* There is now space in the queue, were any tasks waiting to
1536 * post to the queue? If so, unblock the highest priority waiting
1538 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1540 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1542 queueYIELD_IF_USING_PREEMPTION();
1546 mtCOVERAGE_TEST_MARKER();
1551 mtCOVERAGE_TEST_MARKER();
1554 taskEXIT_CRITICAL();
1556 traceRETURN_xQueueReceive( pdPASS );
1562 if( xTicksToWait == ( TickType_t ) 0 )
1564 /* The queue was empty and no block time is specified (or
1565 * the block time has expired) so leave now. */
1566 taskEXIT_CRITICAL();
1568 traceQUEUE_RECEIVE_FAILED( pxQueue );
1569 traceRETURN_xQueueReceive( errQUEUE_EMPTY );
1571 return errQUEUE_EMPTY;
1573 else if( xEntryTimeSet == pdFALSE )
1575 /* The queue was empty and a block time was specified so
1576 * configure the timeout structure. */
1577 vTaskInternalSetTimeOutState( &xTimeOut );
1578 xEntryTimeSet = pdTRUE;
1582 /* Entry time was already set. */
1583 mtCOVERAGE_TEST_MARKER();
1587 taskEXIT_CRITICAL();
1589 /* Interrupts and other tasks can send to and receive from the queue
1590 * now the critical section has been exited. */
1593 prvLockQueue( pxQueue );
1595 /* Update the timeout state to see if it has expired yet. */
1596 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1598 /* The timeout has not expired. If the queue is still empty place
1599 * the task on the list of tasks waiting to receive from the queue. */
1600 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1602 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1603 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1604 prvUnlockQueue( pxQueue );
1606 if( xTaskResumeAll() == pdFALSE )
1608 taskYIELD_WITHIN_API();
1612 mtCOVERAGE_TEST_MARKER();
1617 /* The queue contains data again. Loop back to try and read the
1619 prvUnlockQueue( pxQueue );
1620 ( void ) xTaskResumeAll();
1625 /* Timed out. If there is no data in the queue exit, otherwise loop
1626 * back and attempt to read the data. */
1627 prvUnlockQueue( pxQueue );
1628 ( void ) xTaskResumeAll();
1630 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1632 traceQUEUE_RECEIVE_FAILED( pxQueue );
1633 traceRETURN_xQueueReceive( errQUEUE_EMPTY );
1635 return errQUEUE_EMPTY;
1639 mtCOVERAGE_TEST_MARKER();
1644 /*-----------------------------------------------------------*/
1646 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
1647 TickType_t xTicksToWait )
1649 BaseType_t xEntryTimeSet = pdFALSE;
1651 Queue_t * const pxQueue = xQueue;
1653 #if ( configUSE_MUTEXES == 1 )
1654 BaseType_t xInheritanceOccurred = pdFALSE;
1657 traceENTER_xQueueSemaphoreTake( xQueue, xTicksToWait );
1659 /* Check the queue pointer is not NULL. */
1660 configASSERT( ( pxQueue ) );
1662 /* Check this really is a semaphore, in which case the item size will be
1664 configASSERT( pxQueue->uxItemSize == 0 );
1666 /* Cannot block if the scheduler is suspended. */
1667 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1669 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1675 taskENTER_CRITICAL();
1677 /* Semaphores are queues with an item size of 0, and where the
1678 * number of messages in the queue is the semaphore's count value. */
1679 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
1681 /* Is there data in the queue now? To be running the calling task
1682 * must be the highest priority task wanting to access the queue. */
1683 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
1685 traceQUEUE_RECEIVE( pxQueue );
1687 /* Semaphores are queues with a data size of zero and where the
1688 * messages waiting is the semaphore's count. Reduce the count. */
1689 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxSemaphoreCount - ( UBaseType_t ) 1 );
1691 #if ( configUSE_MUTEXES == 1 )
1693 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1695 /* Record the information required to implement
1696 * priority inheritance should it become necessary. */
1697 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
1701 mtCOVERAGE_TEST_MARKER();
1704 #endif /* configUSE_MUTEXES */
1706 /* Check to see if other tasks are blocked waiting to give the
1707 * semaphore, and if so, unblock the highest priority such task. */
1708 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1710 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1712 queueYIELD_IF_USING_PREEMPTION();
1716 mtCOVERAGE_TEST_MARKER();
1721 mtCOVERAGE_TEST_MARKER();
1724 taskEXIT_CRITICAL();
1726 traceRETURN_xQueueSemaphoreTake( pdPASS );
1732 if( xTicksToWait == ( TickType_t ) 0 )
1734 /* The semaphore count was 0 and no block time is specified
1735 * (or the block time has expired) so exit now. */
1736 taskEXIT_CRITICAL();
1738 traceQUEUE_RECEIVE_FAILED( pxQueue );
1739 traceRETURN_xQueueSemaphoreTake( errQUEUE_EMPTY );
1741 return errQUEUE_EMPTY;
1743 else if( xEntryTimeSet == pdFALSE )
1745 /* The semaphore count was 0 and a block time was specified
1746 * so configure the timeout structure ready to block. */
1747 vTaskInternalSetTimeOutState( &xTimeOut );
1748 xEntryTimeSet = pdTRUE;
1752 /* Entry time was already set. */
1753 mtCOVERAGE_TEST_MARKER();
1757 taskEXIT_CRITICAL();
1759 /* Interrupts and other tasks can give to and take from the semaphore
1760 * now the critical section has been exited. */
1763 prvLockQueue( pxQueue );
1765 /* Update the timeout state to see if it has expired yet. */
1766 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1768 /* A block time is specified and not expired. If the semaphore
1769 * count is 0 then enter the Blocked state to wait for a semaphore to
1770 * become available. As semaphores are implemented with queues the
1771 * queue being empty is equivalent to the semaphore count being 0. */
1772 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1774 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1776 #if ( configUSE_MUTEXES == 1 )
1778 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1780 taskENTER_CRITICAL();
1782 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
1784 taskEXIT_CRITICAL();
1788 mtCOVERAGE_TEST_MARKER();
1791 #endif /* if ( configUSE_MUTEXES == 1 ) */
1793 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1794 prvUnlockQueue( pxQueue );
1796 if( xTaskResumeAll() == pdFALSE )
1798 taskYIELD_WITHIN_API();
1802 mtCOVERAGE_TEST_MARKER();
1807 /* There was no timeout and the semaphore count was not 0, so
1808 * attempt to take the semaphore again. */
1809 prvUnlockQueue( pxQueue );
1810 ( void ) xTaskResumeAll();
1816 prvUnlockQueue( pxQueue );
1817 ( void ) xTaskResumeAll();
1819 /* If the semaphore count is 0 exit now as the timeout has
1820 * expired. Otherwise return to attempt to take the semaphore that is
1821 * known to be available. As semaphores are implemented by queues the
1822 * queue being empty is equivalent to the semaphore count being 0. */
1823 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1825 #if ( configUSE_MUTEXES == 1 )
1827 /* xInheritanceOccurred could only have be set if
1828 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
1829 * test the mutex type again to check it is actually a mutex. */
1830 if( xInheritanceOccurred != pdFALSE )
1832 taskENTER_CRITICAL();
1834 UBaseType_t uxHighestWaitingPriority;
1836 /* This task blocking on the mutex caused another
1837 * task to inherit this task's priority. Now this task
1838 * has timed out the priority should be disinherited
1839 * again, but only as low as the next highest priority
1840 * task that is waiting for the same mutex. */
1841 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
1843 /* vTaskPriorityDisinheritAfterTimeout uses the uxHighestWaitingPriority
1844 * parameter to index pxReadyTasksLists when adding the task holding
1845 * mutex to the ready list for its new priority. Coverity thinks that
1846 * it can result in out-of-bounds access which is not true because
1847 * uxHighestWaitingPriority, as returned by prvGetDisinheritPriorityAfterTimeout,
1848 * is capped at ( configMAX_PRIORITIES - 1 ). */
1849 /* coverity[overrun] */
1850 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
1852 taskEXIT_CRITICAL();
1855 #endif /* configUSE_MUTEXES */
1857 traceQUEUE_RECEIVE_FAILED( pxQueue );
1858 traceRETURN_xQueueSemaphoreTake( errQUEUE_EMPTY );
1860 return errQUEUE_EMPTY;
1864 mtCOVERAGE_TEST_MARKER();
1869 /*-----------------------------------------------------------*/
1871 BaseType_t xQueuePeek( QueueHandle_t xQueue,
1872 void * const pvBuffer,
1873 TickType_t xTicksToWait )
1875 BaseType_t xEntryTimeSet = pdFALSE;
1877 int8_t * pcOriginalReadPosition;
1878 Queue_t * const pxQueue = xQueue;
1880 traceENTER_xQueuePeek( xQueue, pvBuffer, xTicksToWait );
1882 /* Check the pointer is not NULL. */
1883 configASSERT( ( pxQueue ) );
1885 /* The buffer into which data is received can only be NULL if the data size
1886 * is zero (so no data is copied into the buffer. */
1887 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1889 /* Cannot block if the scheduler is suspended. */
1890 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1892 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1898 taskENTER_CRITICAL();
1900 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1902 /* Is there data in the queue now? To be running the calling task
1903 * must be the highest priority task wanting to access the queue. */
1904 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1906 /* Remember the read position so it can be reset after the data
1907 * is read from the queue as this function is only peeking the
1908 * data, not removing it. */
1909 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
1911 prvCopyDataFromQueue( pxQueue, pvBuffer );
1912 traceQUEUE_PEEK( pxQueue );
1914 /* The data is not being removed, so reset the read pointer. */
1915 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
1917 /* The data is being left in the queue, so see if there are
1918 * any other tasks waiting for the data. */
1919 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1921 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1923 /* The task waiting has a higher priority than this task. */
1924 queueYIELD_IF_USING_PREEMPTION();
1928 mtCOVERAGE_TEST_MARKER();
1933 mtCOVERAGE_TEST_MARKER();
1936 taskEXIT_CRITICAL();
1938 traceRETURN_xQueuePeek( pdPASS );
1944 if( xTicksToWait == ( TickType_t ) 0 )
1946 /* The queue was empty and no block time is specified (or
1947 * the block time has expired) so leave now. */
1948 taskEXIT_CRITICAL();
1950 traceQUEUE_PEEK_FAILED( pxQueue );
1951 traceRETURN_xQueuePeek( errQUEUE_EMPTY );
1953 return errQUEUE_EMPTY;
1955 else if( xEntryTimeSet == pdFALSE )
1957 /* The queue was empty and a block time was specified so
1958 * configure the timeout structure ready to enter the blocked
1960 vTaskInternalSetTimeOutState( &xTimeOut );
1961 xEntryTimeSet = pdTRUE;
1965 /* Entry time was already set. */
1966 mtCOVERAGE_TEST_MARKER();
1970 taskEXIT_CRITICAL();
1972 /* Interrupts and other tasks can send to and receive from the queue
1973 * now that the critical section has been exited. */
1976 prvLockQueue( pxQueue );
1978 /* Update the timeout state to see if it has expired yet. */
1979 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1981 /* Timeout has not expired yet, check to see if there is data in the
1982 * queue now, and if not enter the Blocked state to wait for data. */
1983 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1985 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
1986 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1987 prvUnlockQueue( pxQueue );
1989 if( xTaskResumeAll() == pdFALSE )
1991 taskYIELD_WITHIN_API();
1995 mtCOVERAGE_TEST_MARKER();
2000 /* There is data in the queue now, so don't enter the blocked
2001 * state, instead return to try and obtain the data. */
2002 prvUnlockQueue( pxQueue );
2003 ( void ) xTaskResumeAll();
2008 /* The timeout has expired. If there is still no data in the queue
2009 * exit, otherwise go back and try to read the data again. */
2010 prvUnlockQueue( pxQueue );
2011 ( void ) xTaskResumeAll();
2013 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
2015 traceQUEUE_PEEK_FAILED( pxQueue );
2016 traceRETURN_xQueuePeek( errQUEUE_EMPTY );
2018 return errQUEUE_EMPTY;
2022 mtCOVERAGE_TEST_MARKER();
2027 /*-----------------------------------------------------------*/
2029 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
2030 void * const pvBuffer,
2031 BaseType_t * const pxHigherPriorityTaskWoken )
2034 UBaseType_t uxSavedInterruptStatus;
2035 Queue_t * const pxQueue = xQueue;
2037 traceENTER_xQueueReceiveFromISR( xQueue, pvBuffer, pxHigherPriorityTaskWoken );
2039 configASSERT( pxQueue );
2040 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
2042 /* RTOS ports that support interrupt nesting have the concept of a maximum
2043 * system call (or maximum API call) interrupt priority. Interrupts that are
2044 * above the maximum system call priority are kept permanently enabled, even
2045 * when the RTOS kernel is in a critical section, but cannot make any calls to
2046 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2047 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2048 * failure if a FreeRTOS API function is called from an interrupt that has been
2049 * assigned a priority above the configured maximum system call priority.
2050 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2051 * that have been assigned a priority at or (logically) below the maximum
2052 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2053 * safe API to ensure interrupt entry is as fast and as simple as possible.
2054 * More information (albeit Cortex-M specific) is provided on the following
2055 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2056 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2058 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2060 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
2062 /* Cannot block in an ISR, so check there is data available. */
2063 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
2065 const int8_t cRxLock = pxQueue->cRxLock;
2067 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
2069 prvCopyDataFromQueue( pxQueue, pvBuffer );
2070 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting - ( UBaseType_t ) 1 );
2072 /* If the queue is locked the event list will not be modified.
2073 * Instead update the lock count so the task that unlocks the queue
2074 * will know that an ISR has removed data while the queue was
2076 if( cRxLock == queueUNLOCKED )
2078 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2080 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2082 /* The task waiting has a higher priority than us so
2083 * force a context switch. */
2084 if( pxHigherPriorityTaskWoken != NULL )
2086 *pxHigherPriorityTaskWoken = pdTRUE;
2090 mtCOVERAGE_TEST_MARKER();
2095 mtCOVERAGE_TEST_MARKER();
2100 mtCOVERAGE_TEST_MARKER();
2105 /* Increment the lock count so the task that unlocks the queue
2106 * knows that data was removed while it was locked. */
2107 prvIncrementQueueRxLock( pxQueue, cRxLock );
2115 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
2118 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2120 traceRETURN_xQueueReceiveFromISR( xReturn );
2124 /*-----------------------------------------------------------*/
2126 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
2127 void * const pvBuffer )
2130 UBaseType_t uxSavedInterruptStatus;
2131 int8_t * pcOriginalReadPosition;
2132 Queue_t * const pxQueue = xQueue;
2134 traceENTER_xQueuePeekFromISR( xQueue, pvBuffer );
2136 configASSERT( pxQueue );
2137 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
2138 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
2140 /* RTOS ports that support interrupt nesting have the concept of a maximum
2141 * system call (or maximum API call) interrupt priority. Interrupts that are
2142 * above the maximum system call priority are kept permanently enabled, even
2143 * when the RTOS kernel is in a critical section, but cannot make any calls to
2144 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2145 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2146 * failure if a FreeRTOS API function is called from an interrupt that has been
2147 * assigned a priority above the configured maximum system call priority.
2148 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2149 * that have been assigned a priority at or (logically) below the maximum
2150 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2151 * safe API to ensure interrupt entry is as fast and as simple as possible.
2152 * More information (albeit Cortex-M specific) is provided on the following
2153 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2154 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2156 uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
2158 /* Cannot block in an ISR, so check there is data available. */
2159 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2161 traceQUEUE_PEEK_FROM_ISR( pxQueue );
2163 /* Remember the read position so it can be reset as nothing is
2164 * actually being removed from the queue. */
2165 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
2166 prvCopyDataFromQueue( pxQueue, pvBuffer );
2167 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
2174 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
2177 taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
2179 traceRETURN_xQueuePeekFromISR( xReturn );
2183 /*-----------------------------------------------------------*/
2185 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
2187 UBaseType_t uxReturn;
2189 traceENTER_uxQueueMessagesWaiting( xQueue );
2191 configASSERT( xQueue );
2193 taskENTER_CRITICAL();
2195 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
2197 taskEXIT_CRITICAL();
2199 traceRETURN_uxQueueMessagesWaiting( uxReturn );
2203 /*-----------------------------------------------------------*/
2205 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
2207 UBaseType_t uxReturn;
2208 Queue_t * const pxQueue = xQueue;
2210 traceENTER_uxQueueSpacesAvailable( xQueue );
2212 configASSERT( pxQueue );
2214 taskENTER_CRITICAL();
2216 uxReturn = ( UBaseType_t ) ( pxQueue->uxLength - pxQueue->uxMessagesWaiting );
2218 taskEXIT_CRITICAL();
2220 traceRETURN_uxQueueSpacesAvailable( uxReturn );
2224 /*-----------------------------------------------------------*/
2226 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
2228 UBaseType_t uxReturn;
2229 Queue_t * const pxQueue = xQueue;
2231 traceENTER_uxQueueMessagesWaitingFromISR( xQueue );
2233 configASSERT( pxQueue );
2234 uxReturn = pxQueue->uxMessagesWaiting;
2236 traceRETURN_uxQueueMessagesWaitingFromISR( uxReturn );
2240 /*-----------------------------------------------------------*/
2242 void vQueueDelete( QueueHandle_t xQueue )
2244 Queue_t * const pxQueue = xQueue;
2246 traceENTER_vQueueDelete( xQueue );
2248 configASSERT( pxQueue );
2249 traceQUEUE_DELETE( pxQueue );
2251 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2253 vQueueUnregisterQueue( pxQueue );
2257 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
2259 /* The queue can only have been allocated dynamically - free it
2261 vPortFree( pxQueue );
2263 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
2265 /* The queue could have been allocated statically or dynamically, so
2266 * check before attempting to free the memory. */
2267 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
2269 vPortFree( pxQueue );
2273 mtCOVERAGE_TEST_MARKER();
2276 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
2278 /* The queue must have been statically allocated, so is not going to be
2279 * deleted. Avoid compiler warnings about the unused parameter. */
2282 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
2284 traceRETURN_vQueueDelete();
2286 /*-----------------------------------------------------------*/
2288 #if ( configUSE_TRACE_FACILITY == 1 )
2290 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
2292 traceENTER_uxQueueGetQueueNumber( xQueue );
2294 traceRETURN_uxQueueGetQueueNumber( ( ( Queue_t * ) xQueue )->uxQueueNumber );
2296 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
2299 #endif /* configUSE_TRACE_FACILITY */
2300 /*-----------------------------------------------------------*/
2302 #if ( configUSE_TRACE_FACILITY == 1 )
2304 void vQueueSetQueueNumber( QueueHandle_t xQueue,
2305 UBaseType_t uxQueueNumber )
2307 traceENTER_vQueueSetQueueNumber( xQueue, uxQueueNumber );
2309 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
2311 traceRETURN_vQueueSetQueueNumber();
2314 #endif /* configUSE_TRACE_FACILITY */
2315 /*-----------------------------------------------------------*/
2317 #if ( configUSE_TRACE_FACILITY == 1 )
2319 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
2321 traceENTER_ucQueueGetQueueType( xQueue );
2323 traceRETURN_ucQueueGetQueueType( ( ( Queue_t * ) xQueue )->ucQueueType );
2325 return ( ( Queue_t * ) xQueue )->ucQueueType;
2328 #endif /* configUSE_TRACE_FACILITY */
2329 /*-----------------------------------------------------------*/
2331 UBaseType_t uxQueueGetQueueItemSize( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */
2333 traceENTER_uxQueueGetQueueItemSize( xQueue );
2335 traceRETURN_uxQueueGetQueueItemSize( ( ( Queue_t * ) xQueue )->uxItemSize );
2337 return ( ( Queue_t * ) xQueue )->uxItemSize;
2339 /*-----------------------------------------------------------*/
2341 UBaseType_t uxQueueGetQueueLength( QueueHandle_t xQueue ) /* PRIVILEGED_FUNCTION */
2343 traceENTER_uxQueueGetQueueLength( xQueue );
2345 traceRETURN_uxQueueGetQueueLength( ( ( Queue_t * ) xQueue )->uxLength );
2347 return ( ( Queue_t * ) xQueue )->uxLength;
2349 /*-----------------------------------------------------------*/
2351 #if ( configUSE_MUTEXES == 1 )
2353 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
2355 UBaseType_t uxHighestPriorityOfWaitingTasks;
2357 /* If a task waiting for a mutex causes the mutex holder to inherit a
2358 * priority, but the waiting task times out, then the holder should
2359 * disinherit the priority - but only down to the highest priority of any
2360 * other tasks that are waiting for the same mutex. For this purpose,
2361 * return the priority of the highest priority task that is waiting for the
2363 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
2365 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) ( ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) ) );
2369 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
2372 return uxHighestPriorityOfWaitingTasks;
2375 #endif /* configUSE_MUTEXES */
2376 /*-----------------------------------------------------------*/
2378 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
2379 const void * pvItemToQueue,
2380 const BaseType_t xPosition )
2382 BaseType_t xReturn = pdFALSE;
2383 UBaseType_t uxMessagesWaiting;
2385 /* This function is called from a critical section. */
2387 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
2389 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
2391 #if ( configUSE_MUTEXES == 1 )
2393 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
2395 /* The mutex is no longer being held. */
2396 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
2397 pxQueue->u.xSemaphore.xMutexHolder = NULL;
2401 mtCOVERAGE_TEST_MARKER();
2404 #endif /* configUSE_MUTEXES */
2406 else if( xPosition == queueSEND_TO_BACK )
2408 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize );
2409 pxQueue->pcWriteTo += pxQueue->uxItemSize;
2411 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail )
2413 pxQueue->pcWriteTo = pxQueue->pcHead;
2417 mtCOVERAGE_TEST_MARKER();
2422 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize );
2423 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
2425 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead )
2427 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
2431 mtCOVERAGE_TEST_MARKER();
2434 if( xPosition == queueOVERWRITE )
2436 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
2438 /* An item is not being added but overwritten, so subtract
2439 * one from the recorded number of items in the queue so when
2440 * one is added again below the number of recorded items remains
2442 --uxMessagesWaiting;
2446 mtCOVERAGE_TEST_MARKER();
2451 mtCOVERAGE_TEST_MARKER();
2455 pxQueue->uxMessagesWaiting = ( UBaseType_t ) ( uxMessagesWaiting + ( UBaseType_t ) 1 );
2459 /*-----------------------------------------------------------*/
2461 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
2462 void * const pvBuffer )
2464 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
2466 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2468 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2470 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2474 mtCOVERAGE_TEST_MARKER();
2477 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize );
2480 /*-----------------------------------------------------------*/
2482 static void prvUnlockQueue( Queue_t * const pxQueue )
2484 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
2486 /* The lock counts contains the number of extra data items placed or
2487 * removed from the queue while the queue was locked. When a queue is
2488 * locked items can be added or removed, but the event lists cannot be
2490 taskENTER_CRITICAL();
2492 int8_t cTxLock = pxQueue->cTxLock;
2494 /* See if data was added to the queue while it was locked. */
2495 while( cTxLock > queueLOCKED_UNMODIFIED )
2497 /* Data was posted while the queue was locked. Are any tasks
2498 * blocked waiting for data to become available? */
2499 #if ( configUSE_QUEUE_SETS == 1 )
2501 if( pxQueue->pxQueueSetContainer != NULL )
2503 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
2505 /* The queue is a member of a queue set, and posting to
2506 * the queue set caused a higher priority task to unblock.
2507 * A context switch is required. */
2512 mtCOVERAGE_TEST_MARKER();
2517 /* Tasks that are removed from the event list will get
2518 * added to the pending ready list as the scheduler is still
2520 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2522 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2524 /* The task waiting has a higher priority so record that a
2525 * context switch is required. */
2530 mtCOVERAGE_TEST_MARKER();
2539 #else /* configUSE_QUEUE_SETS */
2541 /* Tasks that are removed from the event list will get added to
2542 * the pending ready list as the scheduler is still suspended. */
2543 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2545 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2547 /* The task waiting has a higher priority so record that
2548 * a context switch is required. */
2553 mtCOVERAGE_TEST_MARKER();
2561 #endif /* configUSE_QUEUE_SETS */
2566 pxQueue->cTxLock = queueUNLOCKED;
2568 taskEXIT_CRITICAL();
2570 /* Do the same for the Rx lock. */
2571 taskENTER_CRITICAL();
2573 int8_t cRxLock = pxQueue->cRxLock;
2575 while( cRxLock > queueLOCKED_UNMODIFIED )
2577 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2579 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2585 mtCOVERAGE_TEST_MARKER();
2596 pxQueue->cRxLock = queueUNLOCKED;
2598 taskEXIT_CRITICAL();
2600 /*-----------------------------------------------------------*/
2602 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
2606 taskENTER_CRITICAL();
2608 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2617 taskEXIT_CRITICAL();
2621 /*-----------------------------------------------------------*/
2623 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
2626 Queue_t * const pxQueue = xQueue;
2628 traceENTER_xQueueIsQueueEmptyFromISR( xQueue );
2630 configASSERT( pxQueue );
2632 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2641 traceRETURN_xQueueIsQueueEmptyFromISR( xReturn );
2645 /*-----------------------------------------------------------*/
2647 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
2651 taskENTER_CRITICAL();
2653 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2662 taskEXIT_CRITICAL();
2666 /*-----------------------------------------------------------*/
2668 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
2671 Queue_t * const pxQueue = xQueue;
2673 traceENTER_xQueueIsQueueFullFromISR( xQueue );
2675 configASSERT( pxQueue );
2677 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2686 traceRETURN_xQueueIsQueueFullFromISR( xReturn );
2690 /*-----------------------------------------------------------*/
2692 #if ( configUSE_CO_ROUTINES == 1 )
2694 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
2695 const void * pvItemToQueue,
2696 TickType_t xTicksToWait )
2699 Queue_t * const pxQueue = xQueue;
2701 traceENTER_xQueueCRSend( xQueue, pvItemToQueue, xTicksToWait );
2703 /* If the queue is already full we may have to block. A critical section
2704 * is required to prevent an interrupt removing something from the queue
2705 * between the check to see if the queue is full and blocking on the queue. */
2706 portDISABLE_INTERRUPTS();
2708 if( prvIsQueueFull( pxQueue ) != pdFALSE )
2710 /* The queue is full - do we want to block or just leave without
2712 if( xTicksToWait > ( TickType_t ) 0 )
2714 /* As this is called from a coroutine we cannot block directly, but
2715 * return indicating that we need to block. */
2716 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
2717 portENABLE_INTERRUPTS();
2718 return errQUEUE_BLOCKED;
2722 portENABLE_INTERRUPTS();
2723 return errQUEUE_FULL;
2727 portENABLE_INTERRUPTS();
2729 portDISABLE_INTERRUPTS();
2731 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2733 /* There is room in the queue, copy the data into the queue. */
2734 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2737 /* Were any co-routines waiting for data to become available? */
2738 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2740 /* In this instance the co-routine could be placed directly
2741 * into the ready list as we are within a critical section.
2742 * Instead the same pending ready list mechanism is used as if
2743 * the event were caused from within an interrupt. */
2744 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2746 /* The co-routine waiting has a higher priority so record
2747 * that a yield might be appropriate. */
2748 xReturn = errQUEUE_YIELD;
2752 mtCOVERAGE_TEST_MARKER();
2757 mtCOVERAGE_TEST_MARKER();
2762 xReturn = errQUEUE_FULL;
2765 portENABLE_INTERRUPTS();
2767 traceRETURN_xQueueCRSend( xReturn );
2772 #endif /* configUSE_CO_ROUTINES */
2773 /*-----------------------------------------------------------*/
2775 #if ( configUSE_CO_ROUTINES == 1 )
2777 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
2779 TickType_t xTicksToWait )
2782 Queue_t * const pxQueue = xQueue;
2784 traceENTER_xQueueCRReceive( xQueue, pvBuffer, xTicksToWait );
2786 /* If the queue is already empty we may have to block. A critical section
2787 * is required to prevent an interrupt adding something to the queue
2788 * between the check to see if the queue is empty and blocking on the queue. */
2789 portDISABLE_INTERRUPTS();
2791 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2793 /* There are no messages in the queue, do we want to block or just
2794 * leave with nothing? */
2795 if( xTicksToWait > ( TickType_t ) 0 )
2797 /* As this is a co-routine we cannot block directly, but return
2798 * indicating that we need to block. */
2799 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
2800 portENABLE_INTERRUPTS();
2801 return errQUEUE_BLOCKED;
2805 portENABLE_INTERRUPTS();
2806 return errQUEUE_FULL;
2811 mtCOVERAGE_TEST_MARKER();
2814 portENABLE_INTERRUPTS();
2816 portDISABLE_INTERRUPTS();
2818 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2820 /* Data is available from the queue. */
2821 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2823 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2825 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2829 mtCOVERAGE_TEST_MARKER();
2832 --( pxQueue->uxMessagesWaiting );
2833 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2837 /* Were any co-routines waiting for space to become available? */
2838 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2840 /* In this instance the co-routine could be placed directly
2841 * into the ready list as we are within a critical section.
2842 * Instead the same pending ready list mechanism is used as if
2843 * the event were caused from within an interrupt. */
2844 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2846 xReturn = errQUEUE_YIELD;
2850 mtCOVERAGE_TEST_MARKER();
2855 mtCOVERAGE_TEST_MARKER();
2863 portENABLE_INTERRUPTS();
2865 traceRETURN_xQueueCRReceive( xReturn );
2870 #endif /* configUSE_CO_ROUTINES */
2871 /*-----------------------------------------------------------*/
2873 #if ( configUSE_CO_ROUTINES == 1 )
2875 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
2876 const void * pvItemToQueue,
2877 BaseType_t xCoRoutinePreviouslyWoken )
2879 Queue_t * const pxQueue = xQueue;
2881 traceENTER_xQueueCRSendFromISR( xQueue, pvItemToQueue, xCoRoutinePreviouslyWoken );
2883 /* Cannot block within an ISR so if there is no space on the queue then
2884 * exit without doing anything. */
2885 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2887 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2889 /* We only want to wake one co-routine per ISR, so check that a
2890 * co-routine has not already been woken. */
2891 if( xCoRoutinePreviouslyWoken == pdFALSE )
2893 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2895 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2901 mtCOVERAGE_TEST_MARKER();
2906 mtCOVERAGE_TEST_MARKER();
2911 mtCOVERAGE_TEST_MARKER();
2916 mtCOVERAGE_TEST_MARKER();
2919 traceRETURN_xQueueCRSendFromISR( xCoRoutinePreviouslyWoken );
2921 return xCoRoutinePreviouslyWoken;
2924 #endif /* configUSE_CO_ROUTINES */
2925 /*-----------------------------------------------------------*/
2927 #if ( configUSE_CO_ROUTINES == 1 )
2929 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
2931 BaseType_t * pxCoRoutineWoken )
2934 Queue_t * const pxQueue = xQueue;
2936 traceENTER_xQueueCRReceiveFromISR( xQueue, pvBuffer, pxCoRoutineWoken );
2938 /* We cannot block from an ISR, so check there is data available. If
2939 * not then just leave without doing anything. */
2940 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2942 /* Copy the data from the queue. */
2943 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2945 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2947 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2951 mtCOVERAGE_TEST_MARKER();
2954 --( pxQueue->uxMessagesWaiting );
2955 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2957 if( ( *pxCoRoutineWoken ) == pdFALSE )
2959 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2961 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2963 *pxCoRoutineWoken = pdTRUE;
2967 mtCOVERAGE_TEST_MARKER();
2972 mtCOVERAGE_TEST_MARKER();
2977 mtCOVERAGE_TEST_MARKER();
2987 traceRETURN_xQueueCRReceiveFromISR( xReturn );
2992 #endif /* configUSE_CO_ROUTINES */
2993 /*-----------------------------------------------------------*/
2995 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2997 void vQueueAddToRegistry( QueueHandle_t xQueue,
2998 const char * pcQueueName )
3001 QueueRegistryItem_t * pxEntryToWrite = NULL;
3003 traceENTER_vQueueAddToRegistry( xQueue, pcQueueName );
3005 configASSERT( xQueue );
3007 if( pcQueueName != NULL )
3009 /* See if there is an empty space in the registry. A NULL name denotes
3011 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3013 /* Replace an existing entry if the queue is already in the registry. */
3014 if( xQueue == xQueueRegistry[ ux ].xHandle )
3016 pxEntryToWrite = &( xQueueRegistry[ ux ] );
3019 /* Otherwise, store in the next empty location */
3020 else if( ( pxEntryToWrite == NULL ) && ( xQueueRegistry[ ux ].pcQueueName == NULL ) )
3022 pxEntryToWrite = &( xQueueRegistry[ ux ] );
3026 mtCOVERAGE_TEST_MARKER();
3031 if( pxEntryToWrite != NULL )
3033 /* Store the information on this queue. */
3034 pxEntryToWrite->pcQueueName = pcQueueName;
3035 pxEntryToWrite->xHandle = xQueue;
3037 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
3040 traceRETURN_vQueueAddToRegistry();
3043 #endif /* configQUEUE_REGISTRY_SIZE */
3044 /*-----------------------------------------------------------*/
3046 #if ( configQUEUE_REGISTRY_SIZE > 0 )
3048 const char * pcQueueGetName( QueueHandle_t xQueue )
3051 const char * pcReturn = NULL;
3053 traceENTER_pcQueueGetName( xQueue );
3055 configASSERT( xQueue );
3057 /* Note there is nothing here to protect against another task adding or
3058 * removing entries from the registry while it is being searched. */
3060 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3062 if( xQueueRegistry[ ux ].xHandle == xQueue )
3064 pcReturn = xQueueRegistry[ ux ].pcQueueName;
3069 mtCOVERAGE_TEST_MARKER();
3073 traceRETURN_pcQueueGetName( pcReturn );
3078 #endif /* configQUEUE_REGISTRY_SIZE */
3079 /*-----------------------------------------------------------*/
3081 #if ( configQUEUE_REGISTRY_SIZE > 0 )
3083 void vQueueUnregisterQueue( QueueHandle_t xQueue )
3087 traceENTER_vQueueUnregisterQueue( xQueue );
3089 configASSERT( xQueue );
3091 /* See if the handle of the queue being unregistered in actually in the
3093 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
3095 if( xQueueRegistry[ ux ].xHandle == xQueue )
3097 /* Set the name to NULL to show that this slot if free again. */
3098 xQueueRegistry[ ux ].pcQueueName = NULL;
3100 /* Set the handle to NULL to ensure the same queue handle cannot
3101 * appear in the registry twice if it is added, removed, then
3103 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
3108 mtCOVERAGE_TEST_MARKER();
3112 traceRETURN_vQueueUnregisterQueue();
3115 #endif /* configQUEUE_REGISTRY_SIZE */
3116 /*-----------------------------------------------------------*/
3118 #if ( configUSE_TIMERS == 1 )
3120 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
3121 TickType_t xTicksToWait,
3122 const BaseType_t xWaitIndefinitely )
3124 Queue_t * const pxQueue = xQueue;
3126 traceENTER_vQueueWaitForMessageRestricted( xQueue, xTicksToWait, xWaitIndefinitely );
3128 /* This function should not be called by application code hence the
3129 * 'Restricted' in its name. It is not part of the public API. It is
3130 * designed for use by kernel code, and has special calling requirements.
3131 * It can result in vListInsert() being called on a list that can only
3132 * possibly ever have one item in it, so the list will be fast, but even
3133 * so it should be called with the scheduler locked and not from a critical
3136 /* Only do anything if there are no messages in the queue. This function
3137 * will not actually cause the task to block, just place it on a blocked
3138 * list. It will not block until the scheduler is unlocked - at which
3139 * time a yield will be performed. If an item is added to the queue while
3140 * the queue is locked, and the calling task blocks on the queue, then the
3141 * calling task will be immediately unblocked when the queue is unlocked. */
3142 prvLockQueue( pxQueue );
3144 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
3146 /* There is nothing in the queue, block for the specified period. */
3147 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
3151 mtCOVERAGE_TEST_MARKER();
3154 prvUnlockQueue( pxQueue );
3156 traceRETURN_vQueueWaitForMessageRestricted();
3159 #endif /* configUSE_TIMERS */
3160 /*-----------------------------------------------------------*/
3162 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
3164 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
3166 QueueSetHandle_t pxQueue;
3168 traceENTER_xQueueCreateSet( uxEventQueueLength );
3170 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
3172 traceRETURN_xQueueCreateSet( pxQueue );
3177 #endif /* configUSE_QUEUE_SETS */
3178 /*-----------------------------------------------------------*/
3180 #if ( configUSE_QUEUE_SETS == 1 )
3182 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
3183 QueueSetHandle_t xQueueSet )
3187 traceENTER_xQueueAddToSet( xQueueOrSemaphore, xQueueSet );
3189 taskENTER_CRITICAL();
3191 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
3193 /* Cannot add a queue/semaphore to more than one queue set. */
3196 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
3198 /* Cannot add a queue/semaphore to a queue set if there are already
3199 * items in the queue/semaphore. */
3204 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
3208 taskEXIT_CRITICAL();
3210 traceRETURN_xQueueAddToSet( xReturn );
3215 #endif /* configUSE_QUEUE_SETS */
3216 /*-----------------------------------------------------------*/
3218 #if ( configUSE_QUEUE_SETS == 1 )
3220 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
3221 QueueSetHandle_t xQueueSet )
3224 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
3226 traceENTER_xQueueRemoveFromSet( xQueueOrSemaphore, xQueueSet );
3228 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
3230 /* The queue was not a member of the set. */
3233 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
3235 /* It is dangerous to remove a queue from a set when the queue is
3236 * not empty because the queue set will still hold pending events for
3242 taskENTER_CRITICAL();
3244 /* The queue is no longer contained in the set. */
3245 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
3247 taskEXIT_CRITICAL();
3251 traceRETURN_xQueueRemoveFromSet( xReturn );
3256 #endif /* configUSE_QUEUE_SETS */
3257 /*-----------------------------------------------------------*/
3259 #if ( configUSE_QUEUE_SETS == 1 )
3261 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
3262 TickType_t const xTicksToWait )
3264 QueueSetMemberHandle_t xReturn = NULL;
3266 traceENTER_xQueueSelectFromSet( xQueueSet, xTicksToWait );
3268 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait );
3270 traceRETURN_xQueueSelectFromSet( xReturn );
3275 #endif /* configUSE_QUEUE_SETS */
3276 /*-----------------------------------------------------------*/
3278 #if ( configUSE_QUEUE_SETS == 1 )
3280 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
3282 QueueSetMemberHandle_t xReturn = NULL;
3284 traceENTER_xQueueSelectFromSetFromISR( xQueueSet );
3286 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL );
3288 traceRETURN_xQueueSelectFromSetFromISR( xReturn );
3293 #endif /* configUSE_QUEUE_SETS */
3294 /*-----------------------------------------------------------*/
3296 #if ( configUSE_QUEUE_SETS == 1 )
3298 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
3300 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
3301 BaseType_t xReturn = pdFALSE;
3303 /* This function must be called form a critical section. */
3305 /* The following line is not reachable in unit tests because every call
3306 * to prvNotifyQueueSetContainer is preceded by a check that
3307 * pxQueueSetContainer != NULL */
3308 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
3309 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
3311 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
3313 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
3315 traceQUEUE_SET_SEND( pxQueueSetContainer );
3317 /* The data copied is the handle of the queue that contains data. */
3318 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
3320 if( cTxLock == queueUNLOCKED )
3322 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
3324 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
3326 /* The task waiting has a higher priority. */
3331 mtCOVERAGE_TEST_MARKER();
3336 mtCOVERAGE_TEST_MARKER();
3341 prvIncrementQueueTxLock( pxQueueSetContainer, cTxLock );
3346 mtCOVERAGE_TEST_MARKER();
3352 #endif /* configUSE_QUEUE_SETS */