2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * SPDX-License-Identifier: MIT
\r
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
8 * this software and associated documentation files (the "Software"), to deal in
\r
9 * the Software without restriction, including without limitation the rights to
\r
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
11 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
12 * subject to the following conditions:
\r
14 * The above copyright notice and this permission notice shall be included in all
\r
15 * copies or substantial portions of the Software.
\r
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
24 * https://www.FreeRTOS.org
\r
25 * https://github.com/FreeRTOS
\r
29 /* Standard includes. */
\r
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
34 * all the API functions to use the MPU wrappers. That should only be done when
\r
35 * task.h is included from an application file. */
\r
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
38 /* FreeRTOS includes. */
\r
39 #include "FreeRTOS.h"
\r
42 #include "stack_macros.h"
\r
44 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
45 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
46 * for the header files above, but not in this file, in order to generate the
\r
47 * correct privileged Vs unprivileged linkage and placement. */
\r
48 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
51 * functions but without including stdio.h here. */
\r
52 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
54 /* At the bottom of this file are two optional functions that can be used
\r
55 * to generate human readable text from the raw data generated by the
\r
56 * uxTaskGetSystemState() function. Note the formatting functions are provided
\r
57 * for convenience only, and are NOT considered part of the kernel. */
\r
59 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
61 #if ( configUSE_PREEMPTION == 0 )
\r
63 /* If the cooperative scheduler is being used then a yield should not be
\r
64 * performed just because a higher priority task has been woken. */
\r
65 #define taskYIELD_IF_USING_PREEMPTION()
\r
67 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
70 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
71 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
\r
72 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
73 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
76 * The value used to fill the stack of a task when the task is created. This
\r
77 * is used purely for checking the high water mark for tasks.
\r
79 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
81 /* Bits used to record how a task's stack and TCB were allocated. */
\r
82 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
83 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
84 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
86 /* If any of the following are set then task stacks are filled with a known
\r
87 * value so the high water mark can be determined. If none of the following are
\r
88 * set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
89 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
92 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
96 * Macros used by vListTask to indicate which state a task is in.
\r
98 #define tskRUNNING_CHAR ( 'X' )
\r
99 #define tskBLOCKED_CHAR ( 'B' )
\r
100 #define tskREADY_CHAR ( 'R' )
\r
101 #define tskDELETED_CHAR ( 'D' )
\r
102 #define tskSUSPENDED_CHAR ( 'S' )
\r
105 * Some kernel aware debuggers require the data the debugger needs access to to
\r
106 * be global, rather than file scope.
\r
108 #ifdef portREMOVE_STATIC_QUALIFIER
\r
112 /* The name allocated to the Idle task. This can be overridden by defining
\r
113 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
114 #ifndef configIDLE_TASK_NAME
\r
115 #define configIDLE_TASK_NAME "IDLE"
\r
118 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
120 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
121 * performed in a generic way that is not optimised to any particular
\r
122 * microcontroller architecture. */
\r
124 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
126 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
128 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
130 uxTopReadyPriority = ( uxPriority ); \
\r
132 } /* taskRECORD_READY_PRIORITY */
\r
134 /*-----------------------------------------------------------*/
\r
136 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
138 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
140 /* Find the highest priority queue that contains ready tasks. */ \
\r
141 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
143 configASSERT( uxTopPriority ); \
\r
147 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
148 * the same priority get an equal share of the processor time. */ \
\r
149 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
150 uxTopReadyPriority = uxTopPriority; \
\r
151 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
153 /*-----------------------------------------------------------*/
\r
155 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
156 * they are only required when a port optimised method of task selection is
\r
158 #define taskRESET_READY_PRIORITY( uxPriority )
\r
159 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
161 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
163 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
164 * performed in a way that is tailored to the particular microcontroller
\r
165 * architecture being used. */
\r
167 /* A port optimised version is provided. Call the port defined macros. */
\r
168 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
170 /*-----------------------------------------------------------*/
\r
172 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
174 UBaseType_t uxTopPriority; \
\r
176 /* Find the highest priority list that contains ready tasks. */ \
\r
177 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
178 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
179 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
180 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
182 /*-----------------------------------------------------------*/
\r
184 /* A port optimised version is provided, call it only if the TCB being reset
\r
185 * is being referenced from a ready list. If it is referenced from a delayed
\r
186 * or suspended list then it won't be in a ready list. */
\r
187 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
189 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
191 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
195 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
197 /*-----------------------------------------------------------*/
\r
199 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
200 * count overflows. */
\r
201 #define taskSWITCH_DELAYED_LISTS() \
\r
205 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
206 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
208 pxTemp = pxDelayedTaskList; \
\r
209 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
210 pxOverflowDelayedTaskList = pxTemp; \
\r
211 xNumOfOverflows++; \
\r
212 prvResetNextTaskUnblockTime(); \
\r
215 /*-----------------------------------------------------------*/
\r
218 * Place the task represented by pxTCB into the appropriate ready list for
\r
219 * the task. It is inserted at the end of the list.
\r
221 #define prvAddTaskToReadyList( pxTCB ) \
\r
222 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
223 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
224 listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
225 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
226 /*-----------------------------------------------------------*/
\r
229 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
\r
230 * where NULL is used to indicate that the handle of the currently executing
\r
231 * task should be used in place of the parameter. This macro simply checks to
\r
232 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
234 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
236 /* The item value of the event list item is normally used to hold the priority
\r
237 * of the task to which it belongs (coded to allow it to be held in reverse
\r
238 * priority order). However, it is occasionally borrowed for other purposes. It
\r
239 * is important its value is not updated due to a task priority change while it is
\r
240 * being used for another purpose. The following bit definition is used to inform
\r
241 * the scheduler that the value should not be changed - in which case it is the
\r
242 * responsibility of whichever module is using the value to ensure it gets set back
\r
243 * to its original value when it is released. */
\r
244 #if ( configUSE_16_BIT_TICKS == 1 )
\r
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
247 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
251 * Task control block. A task control block (TCB) is allocated for each task,
\r
252 * and stores task state information, including a pointer to the task's context
\r
253 * (the task's run time environment, including register values)
\r
255 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
257 volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
259 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
260 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
263 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
264 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
265 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
266 StackType_t * pxStack; /*< Points to the start of the stack. */
\r
267 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
269 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
270 StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
273 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
274 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
277 #if ( configUSE_TRACE_FACILITY == 1 )
\r
278 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
279 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
282 #if ( configUSE_MUTEXES == 1 )
\r
283 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
284 UBaseType_t uxMutexesHeld;
\r
287 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
288 TaskHookFunction_t pxTaskTag;
\r
291 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
292 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
295 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
296 configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
299 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
301 /* Allocate a Newlib reent structure that is specific to this task.
\r
302 * Note Newlib support has been included by popular demand, but is not
\r
303 * used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
304 * responsible for resulting newlib operation. User must be familiar with
\r
305 * newlib and must provide system-wide implementations of the necessary
\r
306 * stubs. Be warned that (at the time of writing) the current newlib design
\r
307 * implements a system-wide malloc() that must be provided with locks.
\r
309 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
310 * for additional information. */
\r
311 struct _reent xNewLib_reent;
\r
314 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
315 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
316 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
319 /* See the comments in FreeRTOS.h with the definition of
\r
320 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
321 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
322 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
325 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
326 uint8_t ucDelayAborted;
\r
329 #if ( configUSE_POSIX_ERRNO == 1 )
\r
334 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
335 * below to enable the use of older kernel aware debuggers. */
\r
336 typedef tskTCB TCB_t;
\r
338 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
339 * which static variables must be declared volatile. */
\r
340 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
342 /* Lists for ready and blocked tasks. --------------------
\r
343 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
\r
344 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
345 * the static qualifier. */
\r
346 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
\r
347 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
348 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
349 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
350 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
351 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
353 #if ( INCLUDE_vTaskDelete == 1 )
\r
355 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
356 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
360 #if ( INCLUDE_vTaskSuspend == 1 )
\r
362 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
366 /* Global POSIX errno. Its value is changed upon context switching to match
\r
367 * the errno of the currently running task. */
\r
368 #if ( configUSE_POSIX_ERRNO == 1 )
\r
369 int FreeRTOS_errno = 0;
\r
372 /* Other file private variables. --------------------------------*/
\r
373 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
374 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
375 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
376 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
377 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
378 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
379 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
380 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
381 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
382 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
384 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
\r
385 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
\r
386 * to determine the number of priority lists to read back from the remote target. */
\r
387 const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
\r
389 /* Context switches are held pending while the scheduler is suspended. Also,
\r
390 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
391 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
392 * If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
393 * moves the task's event list item into the xPendingReadyList, ready for the
\r
394 * kernel to move the task from the pending ready list into the real ready list
\r
395 * when the scheduler is unsuspended. The pending ready list itself can only be
\r
396 * accessed from a critical section. */
\r
397 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
399 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
401 /* Do not move these variables to function scope as doing so prevents the
\r
402 * code working with debuggers that need to remove the static qualifier. */
\r
403 PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
404 PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
410 /*-----------------------------------------------------------*/
\r
412 /* File private functions. --------------------------------*/
\r
415 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
416 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
417 * is in any other state.
\r
419 #if ( INCLUDE_vTaskSuspend == 1 )
\r
421 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
423 #endif /* INCLUDE_vTaskSuspend */
\r
426 * Utility to ready all the lists used by the scheduler. This is called
\r
427 * automatically upon the creation of the first task.
\r
429 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
432 * The idle task, which as all tasks is implemented as a never ending loop.
\r
433 * The idle task is automatically created and added to the ready lists upon
\r
434 * creation of the first user task.
\r
436 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
437 * language extensions. The equivalent prototype for this function is:
\r
439 * void prvIdleTask( void *pvParameters );
\r
442 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
\r
445 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
446 * including the stack pointed to by the TCB.
\r
448 * This does not free memory allocated by the task itself (i.e. memory
\r
449 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
451 #if ( INCLUDE_vTaskDelete == 1 )
\r
453 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
\r
458 * Used only by the idle task. This checks to see if anything has been placed
\r
459 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
460 * and its TCB deleted.
\r
462 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
465 * The currently executing task is entering the Blocked state. Add the task to
\r
466 * either the current or the overflow delayed task list.
\r
468 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
469 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
472 * Fills an TaskStatus_t structure with information on each task that is
\r
473 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
474 * a suspended list, etc.).
\r
476 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
477 * NORMAL APPLICATION CODE.
\r
479 #if ( configUSE_TRACE_FACILITY == 1 )
\r
481 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
483 eTaskState eState ) PRIVILEGED_FUNCTION;
\r
488 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
489 * the task if it is found, or NULL if the task is not found.
\r
491 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
493 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
494 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
499 * When a task is created, the stack of the task is filled with a known value.
\r
500 * This function determines the 'high water mark' of the task stack by
\r
501 * determining how much of the stack remains at the original preset value.
\r
503 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
505 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
510 * Return the amount of time, in ticks, that will pass before the kernel will
\r
511 * next move a task from the Blocked state to the Running state.
\r
513 * This conditional compilation should use inequality to 0, not equality to 1.
\r
514 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
515 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
516 * set to a value other than 1.
\r
518 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
520 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
525 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
526 * will exit the Blocked state.
\r
528 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
\r
530 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
533 * Helper function used to pad task names with spaces when printing out
\r
534 * human readable tables of task information.
\r
536 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
537 const char * pcTaskName ) PRIVILEGED_FUNCTION;
\r
542 * Called after a Task_t structure has been allocated either statically or
\r
543 * dynamically to fill in the structure's members.
\r
545 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
546 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
547 const uint32_t ulStackDepth,
\r
548 void * const pvParameters,
\r
549 UBaseType_t uxPriority,
\r
550 TaskHandle_t * const pxCreatedTask,
\r
552 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
555 * Called after a new task has been created and initialised to place the task
\r
556 * under the control of the scheduler.
\r
558 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
\r
561 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
562 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
563 * called by the function.
\r
565 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
567 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
571 /*-----------------------------------------------------------*/
\r
573 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
575 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
576 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
577 const uint32_t ulStackDepth,
\r
578 void * const pvParameters,
\r
579 UBaseType_t uxPriority,
\r
580 StackType_t * const puxStackBuffer,
\r
581 StaticTask_t * const pxTaskBuffer )
\r
584 TaskHandle_t xReturn;
\r
586 configASSERT( puxStackBuffer != NULL );
\r
587 configASSERT( pxTaskBuffer != NULL );
\r
589 #if ( configASSERT_DEFINED == 1 )
\r
591 /* Sanity check that the size of the structure used to declare a
\r
592 * variable of type StaticTask_t equals the size of the real task
\r
594 volatile size_t xSize = sizeof( StaticTask_t );
\r
595 configASSERT( xSize == sizeof( TCB_t ) );
\r
596 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
598 #endif /* configASSERT_DEFINED */
\r
600 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
602 /* The memory used for the task's TCB and stack are passed into this
\r
603 * function - use them. */
\r
604 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
605 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
607 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
609 /* Tasks can be created statically or dynamically, so note this
\r
610 * task was created statically in case the task is later deleted. */
\r
611 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
613 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
615 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
616 prvAddNewTaskToReadyList( pxNewTCB );
\r
626 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
627 /*-----------------------------------------------------------*/
\r
629 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
631 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
\r
632 TaskHandle_t * pxCreatedTask )
\r
635 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
637 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
638 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
640 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
642 /* Allocate space for the TCB. Where the memory comes from depends
\r
643 * on the implementation of the port malloc function and whether or
\r
644 * not static allocation is being used. */
\r
645 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
647 /* Store the stack location in the TCB. */
\r
648 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
650 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
652 /* Tasks can be created statically or dynamically, so note this
\r
653 * task was created statically in case the task is later deleted. */
\r
654 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
656 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
658 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
659 pxTaskDefinition->pcName,
\r
660 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
661 pxTaskDefinition->pvParameters,
\r
662 pxTaskDefinition->uxPriority,
\r
663 pxCreatedTask, pxNewTCB,
\r
664 pxTaskDefinition->xRegions );
\r
666 prvAddNewTaskToReadyList( pxNewTCB );
\r
673 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
674 /*-----------------------------------------------------------*/
\r
676 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
678 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
\r
679 TaskHandle_t * pxCreatedTask )
\r
682 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
684 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
686 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
688 /* Allocate space for the TCB. Where the memory comes from depends
\r
689 * on the implementation of the port malloc function and whether or
\r
690 * not static allocation is being used. */
\r
691 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
693 if( pxNewTCB != NULL )
\r
695 /* Store the stack location in the TCB. */
\r
696 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
698 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
700 /* Tasks can be created statically or dynamically, so note
\r
701 * this task had a statically allocated stack in case it is
\r
702 * later deleted. The TCB was allocated dynamically. */
\r
703 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
705 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
707 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
708 pxTaskDefinition->pcName,
\r
709 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
710 pxTaskDefinition->pvParameters,
\r
711 pxTaskDefinition->uxPriority,
\r
712 pxCreatedTask, pxNewTCB,
\r
713 pxTaskDefinition->xRegions );
\r
715 prvAddNewTaskToReadyList( pxNewTCB );
\r
723 #endif /* portUSING_MPU_WRAPPERS */
\r
724 /*-----------------------------------------------------------*/
\r
726 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
728 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
729 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
730 const configSTACK_DEPTH_TYPE usStackDepth,
\r
731 void * const pvParameters,
\r
732 UBaseType_t uxPriority,
\r
733 TaskHandle_t * const pxCreatedTask )
\r
736 BaseType_t xReturn;
\r
738 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
739 * does not grow into the TCB. Likewise if the stack grows up then allocate
\r
740 * the TCB then the stack. */
\r
741 #if ( portSTACK_GROWTH > 0 )
\r
743 /* Allocate space for the TCB. Where the memory comes from depends on
\r
744 * the implementation of the port malloc function and whether or not static
\r
745 * allocation is being used. */
\r
746 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
748 if( pxNewTCB != NULL )
\r
750 /* Allocate space for the stack used by the task being created.
\r
751 * The base of the stack memory stored in the TCB so the task can
\r
752 * be deleted later if required. */
\r
753 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
755 if( pxNewTCB->pxStack == NULL )
\r
757 /* Could not allocate the stack. Delete the allocated TCB. */
\r
758 vPortFree( pxNewTCB );
\r
763 #else /* portSTACK_GROWTH */
\r
765 StackType_t * pxStack;
\r
767 /* Allocate space for the stack used by the task being created. */
\r
768 pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
770 if( pxStack != NULL )
\r
772 /* Allocate space for the TCB. */
\r
773 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
775 if( pxNewTCB != NULL )
\r
777 /* Store the stack location in the TCB. */
\r
778 pxNewTCB->pxStack = pxStack;
\r
782 /* The stack cannot be used as the TCB was not created. Free
\r
784 vPortFreeStack( pxStack );
\r
792 #endif /* portSTACK_GROWTH */
\r
794 if( pxNewTCB != NULL )
\r
796 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
798 /* Tasks can be created statically or dynamically, so note this
\r
799 * task was created dynamically in case it is later deleted. */
\r
800 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
802 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
804 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
805 prvAddNewTaskToReadyList( pxNewTCB );
\r
810 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
816 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
817 /*-----------------------------------------------------------*/
\r
819 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
820 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
821 const uint32_t ulStackDepth,
\r
822 void * const pvParameters,
\r
823 UBaseType_t uxPriority,
\r
824 TaskHandle_t * const pxCreatedTask,
\r
826 const MemoryRegion_t * const xRegions )
\r
828 StackType_t * pxTopOfStack;
\r
831 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
832 /* Should the task be created in privileged mode? */
\r
833 BaseType_t xRunPrivileged;
\r
835 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
837 xRunPrivileged = pdTRUE;
\r
841 xRunPrivileged = pdFALSE;
\r
843 uxPriority &= ~portPRIVILEGE_BIT;
\r
844 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
846 /* Avoid dependency on memset() if it is not required. */
\r
847 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
849 /* Fill the stack with a known value to assist debugging. */
\r
850 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
852 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
854 /* Calculate the top of stack address. This depends on whether the stack
\r
855 * grows from high memory to low (as per the 80x86) or vice versa.
\r
856 * portSTACK_GROWTH is used to make the result positive or negative as required
\r
858 #if ( portSTACK_GROWTH < 0 )
\r
860 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
861 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
863 /* Check the alignment of the calculated top of stack is correct. */
\r
864 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
866 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
868 /* Also record the stack's high address, which may assist
\r
870 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
872 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
874 #else /* portSTACK_GROWTH */
\r
876 pxTopOfStack = pxNewTCB->pxStack;
\r
878 /* Check the alignment of the stack buffer is correct. */
\r
879 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
881 /* The other extreme of the stack space is required if stack checking is
\r
883 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
885 #endif /* portSTACK_GROWTH */
\r
887 /* Store the task name in the TCB. */
\r
888 if( pcName != NULL )
\r
890 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
892 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
894 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
895 * configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
896 * string is not accessible (extremely unlikely). */
\r
897 if( pcName[ x ] == ( char ) 0x00 )
\r
903 mtCOVERAGE_TEST_MARKER();
\r
907 /* Ensure the name string is terminated in the case that the string length
\r
908 * was greater or equal to configMAX_TASK_NAME_LEN. */
\r
909 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
913 /* The task has not been given a name, so just ensure there is a NULL
\r
914 * terminator when it is read out. */
\r
915 pxNewTCB->pcTaskName[ 0 ] = 0x00;
\r
918 /* This is used as an array index so must ensure it's not too large. */
\r
919 configASSERT( uxPriority < configMAX_PRIORITIES );
\r
921 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
923 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
927 mtCOVERAGE_TEST_MARKER();
\r
930 pxNewTCB->uxPriority = uxPriority;
\r
931 #if ( configUSE_MUTEXES == 1 )
\r
933 pxNewTCB->uxBasePriority = uxPriority;
\r
934 pxNewTCB->uxMutexesHeld = 0;
\r
936 #endif /* configUSE_MUTEXES */
\r
938 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
939 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
941 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
942 * back to the containing TCB from a generic item in a list. */
\r
943 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
945 /* Event lists are always in priority order. */
\r
946 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
947 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
949 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
951 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
953 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
955 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
957 pxNewTCB->pxTaskTag = NULL;
\r
959 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
961 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
963 pxNewTCB->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
\r
965 #endif /* configGENERATE_RUN_TIME_STATS */
\r
967 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
969 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
973 /* Avoid compiler warning about unreferenced parameter. */
\r
978 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
980 memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
\r
984 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
986 memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
\r
987 memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
\r
991 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
993 /* Initialise this task's Newlib reent structure.
\r
994 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
995 * for additional information. */
\r
996 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
1000 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
1002 pxNewTCB->ucDelayAborted = pdFALSE;
\r
1006 /* Initialize the TCB stack to look as if the task was already running,
\r
1007 * but had been interrupted by the scheduler. The return address is set
\r
1008 * to the start of the task function. Once the stack has been initialised
\r
1009 * the top of stack variable is updated. */
\r
1010 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
1012 /* If the port has capability to detect stack overflow,
\r
1013 * pass the stack end address to the stack initialization
\r
1014 * function as well. */
\r
1015 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1017 #if ( portSTACK_GROWTH < 0 )
\r
1019 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1021 #else /* portSTACK_GROWTH */
\r
1023 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1025 #endif /* portSTACK_GROWTH */
\r
1027 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1029 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1031 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1033 #else /* portUSING_MPU_WRAPPERS */
\r
1035 /* If the port has capability to detect stack overflow,
\r
1036 * pass the stack end address to the stack initialization
\r
1037 * function as well. */
\r
1038 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1040 #if ( portSTACK_GROWTH < 0 )
\r
1042 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
1044 #else /* portSTACK_GROWTH */
\r
1046 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1048 #endif /* portSTACK_GROWTH */
\r
1050 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1052 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1054 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1056 #endif /* portUSING_MPU_WRAPPERS */
\r
1058 if( pxCreatedTask != NULL )
\r
1060 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1061 * change the created task's priority, delete the created task, etc.*/
\r
1062 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1066 mtCOVERAGE_TEST_MARKER();
\r
1069 /*-----------------------------------------------------------*/
\r
1071 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
\r
1073 /* Ensure interrupts don't access the task lists while the lists are being
\r
1075 taskENTER_CRITICAL();
\r
1077 uxCurrentNumberOfTasks++;
\r
1079 if( pxCurrentTCB == NULL )
\r
1081 /* There are no other tasks, or all the other tasks are in
\r
1082 * the suspended state - make this the current task. */
\r
1083 pxCurrentTCB = pxNewTCB;
\r
1085 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1087 /* This is the first task to be created so do the preliminary
\r
1088 * initialisation required. We will not recover if this call
\r
1089 * fails, but we will report the failure. */
\r
1090 prvInitialiseTaskLists();
\r
1094 mtCOVERAGE_TEST_MARKER();
\r
1099 /* If the scheduler is not already running, make this task the
\r
1100 * current task if it is the highest priority task to be created
\r
1102 if( xSchedulerRunning == pdFALSE )
\r
1104 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1106 pxCurrentTCB = pxNewTCB;
\r
1110 mtCOVERAGE_TEST_MARKER();
\r
1115 mtCOVERAGE_TEST_MARKER();
\r
1121 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1123 /* Add a counter into the TCB for tracing only. */
\r
1124 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1126 /* Initialize the uxTaskNumber member to zero. It is utilized by the
\r
1127 * application using vTaskSetTaskNumber and uxTaskGetTaskNumber APIs. */
\r
1128 pxNewTCB->uxTaskNumber = 0;
\r
1130 #endif /* configUSE_TRACE_FACILITY */
\r
1131 traceTASK_CREATE( pxNewTCB );
\r
1133 prvAddTaskToReadyList( pxNewTCB );
\r
1135 portSETUP_TCB( pxNewTCB );
\r
1137 taskEXIT_CRITICAL();
\r
1139 if( xSchedulerRunning != pdFALSE )
\r
1141 /* If the created task is of a higher priority than the current task
\r
1142 * then it should run now. */
\r
1143 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1145 taskYIELD_IF_USING_PREEMPTION();
\r
1149 mtCOVERAGE_TEST_MARKER();
\r
1154 mtCOVERAGE_TEST_MARKER();
\r
1157 /*-----------------------------------------------------------*/
\r
1159 #if ( INCLUDE_vTaskDelete == 1 )
\r
1161 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1165 taskENTER_CRITICAL();
\r
1167 /* If null is passed in here then it is the calling task that is
\r
1168 * being deleted. */
\r
1169 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1171 /* Remove task from the ready/delayed list. */
\r
1172 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1174 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1178 mtCOVERAGE_TEST_MARKER();
\r
1181 /* Is the task waiting on an event also? */
\r
1182 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1184 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1188 mtCOVERAGE_TEST_MARKER();
\r
1191 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1192 * detect that the task lists need re-generating. This is done before
\r
1193 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1197 if( pxTCB == pxCurrentTCB )
\r
1199 /* A task is deleting itself. This cannot complete within the
\r
1200 * task itself, as a context switch to another task is required.
\r
1201 * Place the task in the termination list. The idle task will
\r
1202 * check the termination list and free up any memory allocated by
\r
1203 * the scheduler for the TCB and stack of the deleted task. */
\r
1204 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1206 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1207 * there is a task that has been deleted and that it should therefore
\r
1208 * check the xTasksWaitingTermination list. */
\r
1209 ++uxDeletedTasksWaitingCleanUp;
\r
1211 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1212 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1213 traceTASK_DELETE( pxTCB );
\r
1215 /* The pre-delete hook is primarily for the Windows simulator,
\r
1216 * in which Windows specific clean up operations are performed,
\r
1217 * after which it is not possible to yield away from this task -
\r
1218 * hence xYieldPending is used to latch that a context switch is
\r
1220 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1224 --uxCurrentNumberOfTasks;
\r
1225 traceTASK_DELETE( pxTCB );
\r
1227 /* Reset the next expected unblock time in case it referred to
\r
1228 * the task that has just been deleted. */
\r
1229 prvResetNextTaskUnblockTime();
\r
1232 taskEXIT_CRITICAL();
\r
1234 /* If the task is not deleting itself, call prvDeleteTCB from outside of
\r
1235 * critical section. If a task deletes itself, prvDeleteTCB is called
\r
1236 * from prvCheckTasksWaitingTermination which is called from Idle task. */
\r
1237 if( pxTCB != pxCurrentTCB )
\r
1239 prvDeleteTCB( pxTCB );
\r
1242 /* Force a reschedule if it is the currently running task that has just
\r
1243 * been deleted. */
\r
1244 if( xSchedulerRunning != pdFALSE )
\r
1246 if( pxTCB == pxCurrentTCB )
\r
1248 configASSERT( uxSchedulerSuspended == 0 );
\r
1249 portYIELD_WITHIN_API();
\r
1253 mtCOVERAGE_TEST_MARKER();
\r
1258 #endif /* INCLUDE_vTaskDelete */
\r
1259 /*-----------------------------------------------------------*/
\r
1261 #if ( INCLUDE_xTaskDelayUntil == 1 )
\r
1263 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
\r
1264 const TickType_t xTimeIncrement )
\r
1266 TickType_t xTimeToWake;
\r
1267 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1269 configASSERT( pxPreviousWakeTime );
\r
1270 configASSERT( ( xTimeIncrement > 0U ) );
\r
1271 configASSERT( uxSchedulerSuspended == 0 );
\r
1273 vTaskSuspendAll();
\r
1275 /* Minor optimisation. The tick count cannot change in this
\r
1277 const TickType_t xConstTickCount = xTickCount;
\r
1279 /* Generate the tick time at which the task wants to wake. */
\r
1280 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1282 if( xConstTickCount < *pxPreviousWakeTime )
\r
1284 /* The tick count has overflowed since this function was
\r
1285 * lasted called. In this case the only time we should ever
\r
1286 * actually delay is if the wake time has also overflowed,
\r
1287 * and the wake time is greater than the tick time. When this
\r
1288 * is the case it is as if neither time had overflowed. */
\r
1289 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1291 xShouldDelay = pdTRUE;
\r
1295 mtCOVERAGE_TEST_MARKER();
\r
1300 /* The tick time has not overflowed. In this case we will
\r
1301 * delay if either the wake time has overflowed, and/or the
\r
1302 * tick time is less than the wake time. */
\r
1303 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1305 xShouldDelay = pdTRUE;
\r
1309 mtCOVERAGE_TEST_MARKER();
\r
1313 /* Update the wake time ready for the next call. */
\r
1314 *pxPreviousWakeTime = xTimeToWake;
\r
1316 if( xShouldDelay != pdFALSE )
\r
1318 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1320 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1321 * the time to wake, so subtract the current tick count. */
\r
1322 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1326 mtCOVERAGE_TEST_MARKER();
\r
1329 xAlreadyYielded = xTaskResumeAll();
\r
1331 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1332 * have put ourselves to sleep. */
\r
1333 if( xAlreadyYielded == pdFALSE )
\r
1335 portYIELD_WITHIN_API();
\r
1339 mtCOVERAGE_TEST_MARKER();
\r
1342 return xShouldDelay;
\r
1345 #endif /* INCLUDE_xTaskDelayUntil */
\r
1346 /*-----------------------------------------------------------*/
\r
1348 #if ( INCLUDE_vTaskDelay == 1 )
\r
1350 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1352 BaseType_t xAlreadyYielded = pdFALSE;
\r
1354 /* A delay time of zero just forces a reschedule. */
\r
1355 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1357 configASSERT( uxSchedulerSuspended == 0 );
\r
1358 vTaskSuspendAll();
\r
1360 traceTASK_DELAY();
\r
1362 /* A task that is removed from the event list while the
\r
1363 * scheduler is suspended will not get placed in the ready
\r
1364 * list or removed from the blocked list until the scheduler
\r
1367 * This task cannot be in an event list as it is the currently
\r
1368 * executing task. */
\r
1369 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1371 xAlreadyYielded = xTaskResumeAll();
\r
1375 mtCOVERAGE_TEST_MARKER();
\r
1378 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1379 * have put ourselves to sleep. */
\r
1380 if( xAlreadyYielded == pdFALSE )
\r
1382 portYIELD_WITHIN_API();
\r
1386 mtCOVERAGE_TEST_MARKER();
\r
1390 #endif /* INCLUDE_vTaskDelay */
\r
1391 /*-----------------------------------------------------------*/
\r
1393 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1395 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1397 eTaskState eReturn;
\r
1398 List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
\r
1399 const TCB_t * const pxTCB = xTask;
\r
1401 configASSERT( pxTCB );
\r
1403 if( pxTCB == pxCurrentTCB )
\r
1405 /* The task calling this function is querying its own state. */
\r
1406 eReturn = eRunning;
\r
1410 taskENTER_CRITICAL();
\r
1412 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1413 pxDelayedList = pxDelayedTaskList;
\r
1414 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1416 taskEXIT_CRITICAL();
\r
1418 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1420 /* The task being queried is referenced from one of the Blocked
\r
1422 eReturn = eBlocked;
\r
1425 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1426 else if( pxStateList == &xSuspendedTaskList )
\r
1428 /* The task being queried is referenced from the suspended
\r
1429 * list. Is it genuinely suspended or is it blocked
\r
1430 * indefinitely? */
\r
1431 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1433 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1437 /* The task does not appear on the event list item of
\r
1438 * and of the RTOS objects, but could still be in the
\r
1439 * blocked state if it is waiting on its notification
\r
1440 * rather than waiting on an object. If not, is
\r
1442 eReturn = eSuspended;
\r
1444 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1446 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1448 eReturn = eBlocked;
\r
1453 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1455 eReturn = eSuspended;
\r
1457 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1461 eReturn = eBlocked;
\r
1464 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
\r
1466 #if ( INCLUDE_vTaskDelete == 1 )
\r
1467 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1469 /* The task being queried is referenced from the deleted
\r
1470 * tasks list, or it is not referenced from any lists at
\r
1472 eReturn = eDeleted;
\r
1476 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1478 /* If the task is not in any other state, it must be in the
\r
1479 * Ready (including pending ready) state. */
\r
1485 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1487 #endif /* INCLUDE_eTaskGetState */
\r
1488 /*-----------------------------------------------------------*/
\r
1490 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1492 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1494 TCB_t const * pxTCB;
\r
1495 UBaseType_t uxReturn;
\r
1497 taskENTER_CRITICAL();
\r
1499 /* If null is passed in here then it is the priority of the task
\r
1500 * that called uxTaskPriorityGet() that is being queried. */
\r
1501 pxTCB = prvGetTCBFromHandle( xTask );
\r
1502 uxReturn = pxTCB->uxPriority;
\r
1504 taskEXIT_CRITICAL();
\r
1509 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1510 /*-----------------------------------------------------------*/
\r
1512 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1514 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1516 TCB_t const * pxTCB;
\r
1517 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1519 /* RTOS ports that support interrupt nesting have the concept of a
\r
1520 * maximum system call (or maximum API call) interrupt priority.
\r
1521 * Interrupts that are above the maximum system call priority are keep
\r
1522 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1523 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1524 * is defined in FreeRTOSConfig.h then
\r
1525 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1526 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1527 * been assigned a priority above the configured maximum system call
\r
1528 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1529 * from interrupts that have been assigned a priority at or (logically)
\r
1530 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1531 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1532 * simple as possible. More information (albeit Cortex-M specific) is
\r
1533 * provided on the following link:
\r
1534 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1535 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1537 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1539 /* If null is passed in here then it is the priority of the calling
\r
1540 * task that is being queried. */
\r
1541 pxTCB = prvGetTCBFromHandle( xTask );
\r
1542 uxReturn = pxTCB->uxPriority;
\r
1544 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1549 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1550 /*-----------------------------------------------------------*/
\r
1552 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1554 void vTaskPrioritySet( TaskHandle_t xTask,
\r
1555 UBaseType_t uxNewPriority )
\r
1558 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1559 BaseType_t xYieldRequired = pdFALSE;
\r
1561 configASSERT( uxNewPriority < configMAX_PRIORITIES );
\r
1563 /* Ensure the new priority is valid. */
\r
1564 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1566 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1570 mtCOVERAGE_TEST_MARKER();
\r
1573 taskENTER_CRITICAL();
\r
1575 /* If null is passed in here then it is the priority of the calling
\r
1576 * task that is being changed. */
\r
1577 pxTCB = prvGetTCBFromHandle( xTask );
\r
1579 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1581 #if ( configUSE_MUTEXES == 1 )
\r
1583 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1587 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1591 if( uxCurrentBasePriority != uxNewPriority )
\r
1593 /* The priority change may have readied a task of higher
\r
1594 * priority than the calling task. */
\r
1595 if( uxNewPriority > uxCurrentBasePriority )
\r
1597 if( pxTCB != pxCurrentTCB )
\r
1599 /* The priority of a task other than the currently
\r
1600 * running task is being raised. Is the priority being
\r
1601 * raised above that of the running task? */
\r
1602 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1604 xYieldRequired = pdTRUE;
\r
1608 mtCOVERAGE_TEST_MARKER();
\r
1613 /* The priority of the running task is being raised,
\r
1614 * but the running task must already be the highest
\r
1615 * priority task able to run so no yield is required. */
\r
1618 else if( pxTCB == pxCurrentTCB )
\r
1620 /* Setting the priority of the running task down means
\r
1621 * there may now be another task of higher priority that
\r
1622 * is ready to execute. */
\r
1623 xYieldRequired = pdTRUE;
\r
1627 /* Setting the priority of any other task down does not
\r
1628 * require a yield as the running task must be above the
\r
1629 * new priority of the task being modified. */
\r
1632 /* Remember the ready list the task might be referenced from
\r
1633 * before its uxPriority member is changed so the
\r
1634 * taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1635 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1637 #if ( configUSE_MUTEXES == 1 )
\r
1639 /* Only change the priority being used if the task is not
\r
1640 * currently using an inherited priority. */
\r
1641 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1643 pxTCB->uxPriority = uxNewPriority;
\r
1647 mtCOVERAGE_TEST_MARKER();
\r
1650 /* The base priority gets set whatever. */
\r
1651 pxTCB->uxBasePriority = uxNewPriority;
\r
1653 #else /* if ( configUSE_MUTEXES == 1 ) */
\r
1655 pxTCB->uxPriority = uxNewPriority;
\r
1657 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1659 /* Only reset the event list item value if the value is not
\r
1660 * being used for anything else. */
\r
1661 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1663 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1667 mtCOVERAGE_TEST_MARKER();
\r
1670 /* If the task is in the blocked or suspended list we need do
\r
1671 * nothing more than change its priority variable. However, if
\r
1672 * the task is in a ready list it needs to be removed and placed
\r
1673 * in the list appropriate to its new priority. */
\r
1674 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1676 /* The task is currently in its ready list - remove before
\r
1677 * adding it to its new ready list. As we are in a critical
\r
1678 * section we can do this even if the scheduler is suspended. */
\r
1679 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1681 /* It is known that the task is in its ready list so
\r
1682 * there is no need to check again and the port level
\r
1683 * reset macro can be called directly. */
\r
1684 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1688 mtCOVERAGE_TEST_MARKER();
\r
1691 prvAddTaskToReadyList( pxTCB );
\r
1695 mtCOVERAGE_TEST_MARKER();
\r
1698 if( xYieldRequired != pdFALSE )
\r
1700 taskYIELD_IF_USING_PREEMPTION();
\r
1704 mtCOVERAGE_TEST_MARKER();
\r
1707 /* Remove compiler warning about unused variables when the port
\r
1708 * optimised task selection is not being used. */
\r
1709 ( void ) uxPriorityUsedOnEntry;
\r
1712 taskEXIT_CRITICAL();
\r
1715 #endif /* INCLUDE_vTaskPrioritySet */
\r
1716 /*-----------------------------------------------------------*/
\r
1718 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1720 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1724 taskENTER_CRITICAL();
\r
1726 /* If null is passed in here then it is the running task that is
\r
1727 * being suspended. */
\r
1728 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1730 traceTASK_SUSPEND( pxTCB );
\r
1732 /* Remove task from the ready/delayed list and place in the
\r
1733 * suspended list. */
\r
1734 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1736 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1740 mtCOVERAGE_TEST_MARKER();
\r
1743 /* Is the task waiting on an event also? */
\r
1744 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1746 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1750 mtCOVERAGE_TEST_MARKER();
\r
1753 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1755 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1759 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1761 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1763 /* The task was blocked to wait for a notification, but is
\r
1764 * now suspended, so no notification was received. */
\r
1765 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
\r
1769 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1771 taskEXIT_CRITICAL();
\r
1773 if( xSchedulerRunning != pdFALSE )
\r
1775 /* Reset the next expected unblock time in case it referred to the
\r
1776 * task that is now in the Suspended state. */
\r
1777 taskENTER_CRITICAL();
\r
1779 prvResetNextTaskUnblockTime();
\r
1781 taskEXIT_CRITICAL();
\r
1785 mtCOVERAGE_TEST_MARKER();
\r
1788 if( pxTCB == pxCurrentTCB )
\r
1790 if( xSchedulerRunning != pdFALSE )
\r
1792 /* The current task has just been suspended. */
\r
1793 configASSERT( uxSchedulerSuspended == 0 );
\r
1794 portYIELD_WITHIN_API();
\r
1798 /* The scheduler is not running, but the task that was pointed
\r
1799 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1800 * must be adjusted to point to a different task. */
\r
1801 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1803 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1804 * NULL so when the next task is created pxCurrentTCB will
\r
1805 * be set to point to it no matter what its relative priority
\r
1807 pxCurrentTCB = NULL;
\r
1811 vTaskSwitchContext();
\r
1817 mtCOVERAGE_TEST_MARKER();
\r
1821 #endif /* INCLUDE_vTaskSuspend */
\r
1822 /*-----------------------------------------------------------*/
\r
1824 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1826 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1828 BaseType_t xReturn = pdFALSE;
\r
1829 const TCB_t * const pxTCB = xTask;
\r
1831 /* Accesses xPendingReadyList so must be called from a critical
\r
1834 /* It does not make sense to check if the calling task is suspended. */
\r
1835 configASSERT( xTask );
\r
1837 /* Is the task being resumed actually in the suspended list? */
\r
1838 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1840 /* Has the task already been resumed from within an ISR? */
\r
1841 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1843 /* Is it in the suspended list because it is in the Suspended
\r
1844 * state, or because is is blocked with no timeout? */
\r
1845 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1851 mtCOVERAGE_TEST_MARKER();
\r
1856 mtCOVERAGE_TEST_MARKER();
\r
1861 mtCOVERAGE_TEST_MARKER();
\r
1865 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1867 #endif /* INCLUDE_vTaskSuspend */
\r
1868 /*-----------------------------------------------------------*/
\r
1870 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1872 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1874 TCB_t * const pxTCB = xTaskToResume;
\r
1876 /* It does not make sense to resume the calling task. */
\r
1877 configASSERT( xTaskToResume );
\r
1879 /* The parameter cannot be NULL as it is impossible to resume the
\r
1880 * currently executing task. */
\r
1881 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1883 taskENTER_CRITICAL();
\r
1885 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1887 traceTASK_RESUME( pxTCB );
\r
1889 /* The ready list can be accessed even if the scheduler is
\r
1890 * suspended because this is inside a critical section. */
\r
1891 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1892 prvAddTaskToReadyList( pxTCB );
\r
1894 /* A higher priority task may have just been resumed. */
\r
1895 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1897 /* This yield may not cause the task just resumed to run,
\r
1898 * but will leave the lists in the correct state for the
\r
1900 taskYIELD_IF_USING_PREEMPTION();
\r
1904 mtCOVERAGE_TEST_MARKER();
\r
1909 mtCOVERAGE_TEST_MARKER();
\r
1912 taskEXIT_CRITICAL();
\r
1916 mtCOVERAGE_TEST_MARKER();
\r
1920 #endif /* INCLUDE_vTaskSuspend */
\r
1922 /*-----------------------------------------------------------*/
\r
1924 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1926 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1928 BaseType_t xYieldRequired = pdFALSE;
\r
1929 TCB_t * const pxTCB = xTaskToResume;
\r
1930 UBaseType_t uxSavedInterruptStatus;
\r
1932 configASSERT( xTaskToResume );
\r
1934 /* RTOS ports that support interrupt nesting have the concept of a
\r
1935 * maximum system call (or maximum API call) interrupt priority.
\r
1936 * Interrupts that are above the maximum system call priority are keep
\r
1937 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1938 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1939 * is defined in FreeRTOSConfig.h then
\r
1940 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1941 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1942 * been assigned a priority above the configured maximum system call
\r
1943 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1944 * from interrupts that have been assigned a priority at or (logically)
\r
1945 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1946 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1947 * simple as possible. More information (albeit Cortex-M specific) is
\r
1948 * provided on the following link:
\r
1949 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1950 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1952 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1954 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1956 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1958 /* Check the ready lists can be accessed. */
\r
1959 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1961 /* Ready lists can be accessed so move the task from the
\r
1962 * suspended list to the ready list directly. */
\r
1963 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1965 xYieldRequired = pdTRUE;
\r
1967 /* Mark that a yield is pending in case the user is not
\r
1968 * using the return value to initiate a context switch
\r
1969 * from the ISR using portYIELD_FROM_ISR. */
\r
1970 xYieldPending = pdTRUE;
\r
1974 mtCOVERAGE_TEST_MARKER();
\r
1977 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1978 prvAddTaskToReadyList( pxTCB );
\r
1982 /* The delayed or ready lists cannot be accessed so the task
\r
1983 * is held in the pending ready list until the scheduler is
\r
1985 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1990 mtCOVERAGE_TEST_MARKER();
\r
1993 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1995 return xYieldRequired;
\r
1998 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1999 /*-----------------------------------------------------------*/
\r
2001 void vTaskStartScheduler( void )
\r
2003 BaseType_t xReturn;
\r
2005 /* Add the idle task at the lowest priority. */
\r
2006 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
2008 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
\r
2009 StackType_t * pxIdleTaskStackBuffer = NULL;
\r
2010 uint32_t ulIdleTaskStackSize;
\r
2012 /* The Idle task is created using user provided RAM - obtain the
\r
2013 * address of the RAM then create the idle task. */
\r
2014 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
2015 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
2016 configIDLE_TASK_NAME,
\r
2017 ulIdleTaskStackSize,
\r
2018 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
2019 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2020 pxIdleTaskStackBuffer,
\r
2021 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2023 if( xIdleTaskHandle != NULL )
\r
2032 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
2034 /* The Idle task is being created using dynamically allocated RAM. */
\r
2035 xReturn = xTaskCreate( prvIdleTask,
\r
2036 configIDLE_TASK_NAME,
\r
2037 configMINIMAL_STACK_SIZE,
\r
2039 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2040 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2042 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
2044 #if ( configUSE_TIMERS == 1 )
\r
2046 if( xReturn == pdPASS )
\r
2048 xReturn = xTimerCreateTimerTask();
\r
2052 mtCOVERAGE_TEST_MARKER();
\r
2055 #endif /* configUSE_TIMERS */
\r
2057 if( xReturn == pdPASS )
\r
2059 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2060 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2061 * the only macro called by the function. */
\r
2062 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2064 freertos_tasks_c_additions_init();
\r
2068 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2069 * before or during the call to xPortStartScheduler(). The stacks of
\r
2070 * the created tasks contain a status word with interrupts switched on
\r
2071 * so interrupts will automatically get re-enabled when the first task
\r
2072 * starts to run. */
\r
2073 portDISABLE_INTERRUPTS();
\r
2075 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2077 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2078 * structure specific to the task that will run first.
\r
2079 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
2080 * for additional information. */
\r
2081 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2083 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2085 xNextTaskUnblockTime = portMAX_DELAY;
\r
2086 xSchedulerRunning = pdTRUE;
\r
2087 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2089 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2090 * macro must be defined to configure the timer/counter used to generate
\r
2091 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2092 * is set to 0 and the following line fails to build then ensure you do not
\r
2093 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2094 * FreeRTOSConfig.h file. */
\r
2095 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2097 traceTASK_SWITCHED_IN();
\r
2099 /* Setting up the timer tick is hardware specific and thus in the
\r
2100 * portable interface. */
\r
2101 if( xPortStartScheduler() != pdFALSE )
\r
2103 /* Should not reach here as if the scheduler is running the
\r
2104 * function will not return. */
\r
2108 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2113 /* This line will only be reached if the kernel could not be started,
\r
2114 * because there was not enough FreeRTOS heap to create the idle task
\r
2115 * or the timer task. */
\r
2116 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2119 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2120 * meaning xIdleTaskHandle is not used anywhere else. */
\r
2121 ( void ) xIdleTaskHandle;
\r
2123 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
\r
2124 * from getting optimized out as it is no longer used by the kernel. */
\r
2125 ( void ) uxTopUsedPriority;
\r
2127 /*-----------------------------------------------------------*/
\r
2129 void vTaskEndScheduler( void )
\r
2131 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2132 * routine so the original ISRs can be restored if necessary. The port
\r
2133 * layer must ensure interrupts enable bit is left in the correct state. */
\r
2134 portDISABLE_INTERRUPTS();
\r
2135 xSchedulerRunning = pdFALSE;
\r
2136 vPortEndScheduler();
\r
2138 /*----------------------------------------------------------*/
\r
2140 void vTaskSuspendAll( void )
\r
2142 /* A critical section is not required as the variable is of type
\r
2143 * BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2144 * post in the FreeRTOS support forum before reporting this as a bug! -
\r
2145 * https://goo.gl/wu4acr */
\r
2147 /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2148 * do not otherwise exhibit real time behaviour. */
\r
2149 portSOFTWARE_BARRIER();
\r
2151 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2152 * is used to allow calls to vTaskSuspendAll() to nest. */
\r
2153 ++uxSchedulerSuspended;
\r
2155 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2156 * the above increment elsewhere. */
\r
2157 portMEMORY_BARRIER();
\r
2159 /*----------------------------------------------------------*/
\r
2161 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2163 static TickType_t prvGetExpectedIdleTime( void )
\r
2165 TickType_t xReturn;
\r
2166 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2168 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2169 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2170 * task that are in the Ready state, even though the idle task is
\r
2172 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2174 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2176 uxHigherPriorityReadyTasks = pdTRUE;
\r
2181 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2183 /* When port optimised task selection is used the uxTopReadyPriority
\r
2184 * variable is used as a bit map. If bits other than the least
\r
2185 * significant bit are set then there are tasks that have a priority
\r
2186 * above the idle priority that are in the Ready state. This takes
\r
2187 * care of the case where the co-operative scheduler is in use. */
\r
2188 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2190 uxHigherPriorityReadyTasks = pdTRUE;
\r
2193 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
\r
2195 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2199 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2201 /* There are other idle priority tasks in the ready state. If
\r
2202 * time slicing is used then the very next tick interrupt must be
\r
2206 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2208 /* There are tasks in the Ready state that have a priority above the
\r
2209 * idle priority. This path can only be reached if
\r
2210 * configUSE_PREEMPTION is 0. */
\r
2215 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2221 #endif /* configUSE_TICKLESS_IDLE */
\r
2222 /*----------------------------------------------------------*/
\r
2224 BaseType_t xTaskResumeAll( void )
\r
2226 TCB_t * pxTCB = NULL;
\r
2227 BaseType_t xAlreadyYielded = pdFALSE;
\r
2229 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2230 * previous call to vTaskSuspendAll(). */
\r
2231 configASSERT( uxSchedulerSuspended );
\r
2233 /* It is possible that an ISR caused a task to be removed from an event
\r
2234 * list while the scheduler was suspended. If this was the case then the
\r
2235 * removed task will have been added to the xPendingReadyList. Once the
\r
2236 * scheduler has been resumed it is safe to move all the pending ready
\r
2237 * tasks from this list into their appropriate ready list. */
\r
2238 taskENTER_CRITICAL();
\r
2240 --uxSchedulerSuspended;
\r
2242 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2244 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2246 /* Move any readied tasks from the pending list into the
\r
2247 * appropriate ready list. */
\r
2248 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2250 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2251 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2252 portMEMORY_BARRIER();
\r
2253 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2254 prvAddTaskToReadyList( pxTCB );
\r
2256 /* If the moved task has a priority higher than or equal to
\r
2257 * the current task then a yield must be performed. */
\r
2258 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2260 xYieldPending = pdTRUE;
\r
2264 mtCOVERAGE_TEST_MARKER();
\r
2268 if( pxTCB != NULL )
\r
2270 /* A task was unblocked while the scheduler was suspended,
\r
2271 * which may have prevented the next unblock time from being
\r
2272 * re-calculated, in which case re-calculate it now. Mainly
\r
2273 * important for low power tickless implementations, where
\r
2274 * this can prevent an unnecessary exit from low power
\r
2276 prvResetNextTaskUnblockTime();
\r
2279 /* If any ticks occurred while the scheduler was suspended then
\r
2280 * they should be processed now. This ensures the tick count does
\r
2281 * not slip, and that any delayed tasks are resumed at the correct
\r
2284 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2286 if( xPendedCounts > ( TickType_t ) 0U )
\r
2290 if( xTaskIncrementTick() != pdFALSE )
\r
2292 xYieldPending = pdTRUE;
\r
2296 mtCOVERAGE_TEST_MARKER();
\r
2300 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2306 mtCOVERAGE_TEST_MARKER();
\r
2310 if( xYieldPending != pdFALSE )
\r
2312 #if ( configUSE_PREEMPTION != 0 )
\r
2314 xAlreadyYielded = pdTRUE;
\r
2317 taskYIELD_IF_USING_PREEMPTION();
\r
2321 mtCOVERAGE_TEST_MARKER();
\r
2327 mtCOVERAGE_TEST_MARKER();
\r
2330 taskEXIT_CRITICAL();
\r
2332 return xAlreadyYielded;
\r
2334 /*-----------------------------------------------------------*/
\r
2336 TickType_t xTaskGetTickCount( void )
\r
2338 TickType_t xTicks;
\r
2340 /* Critical section required if running on a 16 bit processor. */
\r
2341 portTICK_TYPE_ENTER_CRITICAL();
\r
2343 xTicks = xTickCount;
\r
2345 portTICK_TYPE_EXIT_CRITICAL();
\r
2349 /*-----------------------------------------------------------*/
\r
2351 TickType_t xTaskGetTickCountFromISR( void )
\r
2353 TickType_t xReturn;
\r
2354 UBaseType_t uxSavedInterruptStatus;
\r
2356 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2357 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
2358 * above the maximum system call priority are kept permanently enabled, even
\r
2359 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2360 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2361 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2362 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2363 * assigned a priority above the configured maximum system call priority.
\r
2364 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2365 * that have been assigned a priority at or (logically) below the maximum
\r
2366 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2367 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2368 * More information (albeit Cortex-M specific) is provided on the following
\r
2369 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
2370 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2372 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2374 xReturn = xTickCount;
\r
2376 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2380 /*-----------------------------------------------------------*/
\r
2382 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2384 /* A critical section is not required because the variables are of type
\r
2386 return uxCurrentNumberOfTasks;
\r
2388 /*-----------------------------------------------------------*/
\r
2390 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2394 /* If null is passed in here then the name of the calling task is being
\r
2396 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2397 configASSERT( pxTCB );
\r
2398 return &( pxTCB->pcTaskName[ 0 ] );
\r
2400 /*-----------------------------------------------------------*/
\r
2402 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2404 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
2405 const char pcNameToQuery[] )
\r
2407 TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
\r
2410 BaseType_t xBreakLoop;
\r
2412 /* This function is called with the scheduler suspended. */
\r
2414 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2416 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2420 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2422 /* Check each character in the name looking for a match or
\r
2424 xBreakLoop = pdFALSE;
\r
2426 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2428 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2430 if( cNextChar != pcNameToQuery[ x ] )
\r
2432 /* Characters didn't match. */
\r
2433 xBreakLoop = pdTRUE;
\r
2435 else if( cNextChar == ( char ) 0x00 )
\r
2437 /* Both strings terminated, a match must have been
\r
2439 pxReturn = pxNextTCB;
\r
2440 xBreakLoop = pdTRUE;
\r
2444 mtCOVERAGE_TEST_MARKER();
\r
2447 if( xBreakLoop != pdFALSE )
\r
2453 if( pxReturn != NULL )
\r
2455 /* The handle has been found. */
\r
2458 } while( pxNextTCB != pxFirstTCB );
\r
2462 mtCOVERAGE_TEST_MARKER();
\r
2468 #endif /* INCLUDE_xTaskGetHandle */
\r
2469 /*-----------------------------------------------------------*/
\r
2471 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2473 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2475 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2478 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2479 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2481 vTaskSuspendAll();
\r
2483 /* Search the ready lists. */
\r
2487 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2489 if( pxTCB != NULL )
\r
2491 /* Found the handle. */
\r
2494 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2496 /* Search the delayed lists. */
\r
2497 if( pxTCB == NULL )
\r
2499 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2502 if( pxTCB == NULL )
\r
2504 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2507 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2509 if( pxTCB == NULL )
\r
2511 /* Search the suspended list. */
\r
2512 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2517 #if ( INCLUDE_vTaskDelete == 1 )
\r
2519 if( pxTCB == NULL )
\r
2521 /* Search the deleted list. */
\r
2522 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2527 ( void ) xTaskResumeAll();
\r
2532 #endif /* INCLUDE_xTaskGetHandle */
\r
2533 /*-----------------------------------------------------------*/
\r
2535 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2537 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
\r
2538 const UBaseType_t uxArraySize,
\r
2539 configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
\r
2541 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2543 vTaskSuspendAll();
\r
2545 /* Is there a space in the array for each task in the system? */
\r
2546 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2548 /* Fill in an TaskStatus_t structure with information on each
\r
2549 * task in the Ready state. */
\r
2553 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2554 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2556 /* Fill in an TaskStatus_t structure with information on each
\r
2557 * task in the Blocked state. */
\r
2558 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2559 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2561 #if ( INCLUDE_vTaskDelete == 1 )
\r
2563 /* Fill in an TaskStatus_t structure with information on
\r
2564 * each task that has been deleted but not yet cleaned up. */
\r
2565 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2569 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2571 /* Fill in an TaskStatus_t structure with information on
\r
2572 * each task in the Suspended state. */
\r
2573 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2577 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2579 if( pulTotalRunTime != NULL )
\r
2581 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2582 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2584 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2588 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2590 if( pulTotalRunTime != NULL )
\r
2592 *pulTotalRunTime = 0;
\r
2595 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2599 mtCOVERAGE_TEST_MARKER();
\r
2602 ( void ) xTaskResumeAll();
\r
2607 #endif /* configUSE_TRACE_FACILITY */
\r
2608 /*----------------------------------------------------------*/
\r
2610 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2612 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2614 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2615 * started, then xIdleTaskHandle will be NULL. */
\r
2616 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2617 return xIdleTaskHandle;
\r
2620 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2621 /*----------------------------------------------------------*/
\r
2623 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2624 * This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2625 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2627 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2629 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2631 /* Correct the tick count value after a period during which the tick
\r
2632 * was suppressed. Note this does *not* call the tick hook function for
\r
2633 * each stepped tick. */
\r
2634 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2635 xTickCount += xTicksToJump;
\r
2636 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2639 #endif /* configUSE_TICKLESS_IDLE */
\r
2640 /*----------------------------------------------------------*/
\r
2642 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2644 BaseType_t xYieldOccurred;
\r
2646 /* Must not be called with the scheduler suspended as the implementation
\r
2647 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2648 configASSERT( uxSchedulerSuspended == 0 );
\r
2650 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2651 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2652 vTaskSuspendAll();
\r
2653 xPendedTicks += xTicksToCatchUp;
\r
2654 xYieldOccurred = xTaskResumeAll();
\r
2656 return xYieldOccurred;
\r
2658 /*----------------------------------------------------------*/
\r
2660 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2662 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2664 TCB_t * pxTCB = xTask;
\r
2665 BaseType_t xReturn;
\r
2667 configASSERT( pxTCB );
\r
2669 vTaskSuspendAll();
\r
2671 /* A task can only be prematurely removed from the Blocked state if
\r
2672 * it is actually in the Blocked state. */
\r
2673 if( eTaskGetState( xTask ) == eBlocked )
\r
2677 /* Remove the reference to the task from the blocked list. An
\r
2678 * interrupt won't touch the xStateListItem because the
\r
2679 * scheduler is suspended. */
\r
2680 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2682 /* Is the task waiting on an event also? If so remove it from
\r
2683 * the event list too. Interrupts can touch the event list item,
\r
2684 * even though the scheduler is suspended, so a critical section
\r
2686 taskENTER_CRITICAL();
\r
2688 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2690 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2692 /* This lets the task know it was forcibly removed from the
\r
2693 * blocked state so it should not re-evaluate its block time and
\r
2694 * then block again. */
\r
2695 pxTCB->ucDelayAborted = pdTRUE;
\r
2699 mtCOVERAGE_TEST_MARKER();
\r
2702 taskEXIT_CRITICAL();
\r
2704 /* Place the unblocked task into the appropriate ready list. */
\r
2705 prvAddTaskToReadyList( pxTCB );
\r
2707 /* A task being unblocked cannot cause an immediate context
\r
2708 * switch if preemption is turned off. */
\r
2709 #if ( configUSE_PREEMPTION == 1 )
\r
2711 /* Preemption is on, but a context switch should only be
\r
2712 * performed if the unblocked task has a priority that is
\r
2713 * higher than the currently executing task. */
\r
2714 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2716 /* Pend the yield to be performed when the scheduler
\r
2717 * is unsuspended. */
\r
2718 xYieldPending = pdTRUE;
\r
2722 mtCOVERAGE_TEST_MARKER();
\r
2725 #endif /* configUSE_PREEMPTION */
\r
2732 ( void ) xTaskResumeAll();
\r
2737 #endif /* INCLUDE_xTaskAbortDelay */
\r
2738 /*----------------------------------------------------------*/
\r
2740 BaseType_t xTaskIncrementTick( void )
\r
2743 TickType_t xItemValue;
\r
2744 BaseType_t xSwitchRequired = pdFALSE;
\r
2746 /* Called by the portable layer each time a tick interrupt occurs.
\r
2747 * Increments the tick then checks to see if the new tick value will cause any
\r
2748 * tasks to be unblocked. */
\r
2749 traceTASK_INCREMENT_TICK( xTickCount );
\r
2751 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2753 /* Minor optimisation. The tick count cannot change in this
\r
2755 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2757 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2758 * delayed lists if it wraps to 0. */
\r
2759 xTickCount = xConstTickCount;
\r
2761 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2763 taskSWITCH_DELAYED_LISTS();
\r
2767 mtCOVERAGE_TEST_MARKER();
\r
2770 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2771 * the queue in the order of their wake time - meaning once one task
\r
2772 * has been found whose block time has not expired there is no need to
\r
2773 * look any further down the list. */
\r
2774 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2778 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2780 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2781 * to the maximum possible value so it is extremely
\r
2782 * unlikely that the
\r
2783 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2784 * next time through. */
\r
2785 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2790 /* The delayed list is not empty, get the value of the
\r
2791 * item at the head of the delayed list. This is the time
\r
2792 * at which the task at the head of the delayed list must
\r
2793 * be removed from the Blocked state. */
\r
2794 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2795 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2797 if( xConstTickCount < xItemValue )
\r
2799 /* It is not time to unblock this item yet, but the
\r
2800 * item value is the time at which the task at the head
\r
2801 * of the blocked list must be removed from the Blocked
\r
2802 * state - so record the item value in
\r
2803 * xNextTaskUnblockTime. */
\r
2804 xNextTaskUnblockTime = xItemValue;
\r
2805 break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
\r
2809 mtCOVERAGE_TEST_MARKER();
\r
2812 /* It is time to remove the item from the Blocked state. */
\r
2813 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2815 /* Is the task waiting on an event also? If so remove
\r
2816 * it from the event list. */
\r
2817 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2819 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2823 mtCOVERAGE_TEST_MARKER();
\r
2826 /* Place the unblocked task into the appropriate ready
\r
2828 prvAddTaskToReadyList( pxTCB );
\r
2830 /* A task being unblocked cannot cause an immediate
\r
2831 * context switch if preemption is turned off. */
\r
2832 #if ( configUSE_PREEMPTION == 1 )
\r
2834 /* Preemption is on, but a context switch should
\r
2835 * only be performed if the unblocked task has a
\r
2836 * priority that is equal to or higher than the
\r
2837 * currently executing task. */
\r
2838 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2840 xSwitchRequired = pdTRUE;
\r
2844 mtCOVERAGE_TEST_MARKER();
\r
2847 #endif /* configUSE_PREEMPTION */
\r
2852 /* Tasks of equal priority to the currently running task will share
\r
2853 * processing time (time slice) if preemption is on, and the application
\r
2854 * writer has not explicitly turned time slicing off. */
\r
2855 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2857 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2859 xSwitchRequired = pdTRUE;
\r
2863 mtCOVERAGE_TEST_MARKER();
\r
2866 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2868 #if ( configUSE_TICK_HOOK == 1 )
\r
2870 /* Guard against the tick hook being called when the pended tick
\r
2871 * count is being unwound (when the scheduler is being unlocked). */
\r
2872 if( xPendedTicks == ( TickType_t ) 0 )
\r
2874 vApplicationTickHook();
\r
2878 mtCOVERAGE_TEST_MARKER();
\r
2881 #endif /* configUSE_TICK_HOOK */
\r
2883 #if ( configUSE_PREEMPTION == 1 )
\r
2885 if( xYieldPending != pdFALSE )
\r
2887 xSwitchRequired = pdTRUE;
\r
2891 mtCOVERAGE_TEST_MARKER();
\r
2894 #endif /* configUSE_PREEMPTION */
\r
2900 /* The tick hook gets called at regular intervals, even if the
\r
2901 * scheduler is locked. */
\r
2902 #if ( configUSE_TICK_HOOK == 1 )
\r
2904 vApplicationTickHook();
\r
2909 return xSwitchRequired;
\r
2911 /*-----------------------------------------------------------*/
\r
2913 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2915 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
\r
2916 TaskHookFunction_t pxHookFunction )
\r
2920 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2922 if( xTask == NULL )
\r
2924 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2931 /* Save the hook function in the TCB. A critical section is required as
\r
2932 * the value can be accessed from an interrupt. */
\r
2933 taskENTER_CRITICAL();
\r
2935 xTCB->pxTaskTag = pxHookFunction;
\r
2937 taskEXIT_CRITICAL();
\r
2940 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2941 /*-----------------------------------------------------------*/
\r
2943 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2945 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2948 TaskHookFunction_t xReturn;
\r
2950 /* If xTask is NULL then set the calling task's hook. */
\r
2951 pxTCB = prvGetTCBFromHandle( xTask );
\r
2953 /* Save the hook function in the TCB. A critical section is required as
\r
2954 * the value can be accessed from an interrupt. */
\r
2955 taskENTER_CRITICAL();
\r
2957 xReturn = pxTCB->pxTaskTag;
\r
2959 taskEXIT_CRITICAL();
\r
2964 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2965 /*-----------------------------------------------------------*/
\r
2967 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2969 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2972 TaskHookFunction_t xReturn;
\r
2973 UBaseType_t uxSavedInterruptStatus;
\r
2975 /* If xTask is NULL then set the calling task's hook. */
\r
2976 pxTCB = prvGetTCBFromHandle( xTask );
\r
2978 /* Save the hook function in the TCB. A critical section is required as
\r
2979 * the value can be accessed from an interrupt. */
\r
2980 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2982 xReturn = pxTCB->pxTaskTag;
\r
2984 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2989 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2990 /*-----------------------------------------------------------*/
\r
2992 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2994 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
\r
2995 void * pvParameter )
\r
2998 BaseType_t xReturn;
\r
3000 /* If xTask is NULL then we are calling our own task hook. */
\r
3001 if( xTask == NULL )
\r
3003 xTCB = pxCurrentTCB;
\r
3010 if( xTCB->pxTaskTag != NULL )
\r
3012 xReturn = xTCB->pxTaskTag( pvParameter );
\r
3022 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
3023 /*-----------------------------------------------------------*/
\r
3025 void vTaskSwitchContext( void )
\r
3027 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
3029 /* The scheduler is currently suspended - do not allow a context
\r
3031 xYieldPending = pdTRUE;
\r
3035 xYieldPending = pdFALSE;
\r
3036 traceTASK_SWITCHED_OUT();
\r
3038 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3040 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3041 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3043 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3046 /* Add the amount of time the task has been running to the
\r
3047 * accumulated time so far. The time the task started running was
\r
3048 * stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3049 * protection here so count values are only valid until the timer
\r
3050 * overflows. The guard against negative values is to protect
\r
3051 * against suspect run time stat counter implementations - which
\r
3052 * are provided by the application, not the kernel. */
\r
3053 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3055 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3059 mtCOVERAGE_TEST_MARKER();
\r
3062 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3064 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3066 /* Check for stack overflow, if configured. */
\r
3067 taskCHECK_FOR_STACK_OVERFLOW();
\r
3069 /* Before the currently running task is switched out, save its errno. */
\r
3070 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3072 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3076 /* Select a new task to run using either the generic C or port
\r
3077 * optimised asm code. */
\r
3078 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3079 traceTASK_SWITCHED_IN();
\r
3081 /* After the new task is switched in, update the global errno. */
\r
3082 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3084 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3088 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3090 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
3091 * structure specific to this task.
\r
3092 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3093 * for additional information. */
\r
3094 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
3096 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3099 /*-----------------------------------------------------------*/
\r
3101 void vTaskPlaceOnEventList( List_t * const pxEventList,
\r
3102 const TickType_t xTicksToWait )
\r
3104 configASSERT( pxEventList );
\r
3106 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3107 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3109 /* Place the event list item of the TCB in the appropriate event list.
\r
3110 * This is placed in the list in priority order so the highest priority task
\r
3111 * is the first to be woken by the event.
\r
3113 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
\r
3114 * Normally, the xItemValue of a TCB's ListItem_t members is:
\r
3115 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
\r
3116 * Therefore, the event list is sorted in descending priority order.
\r
3118 * The queue that contains the event list is locked, preventing
\r
3119 * simultaneous access from interrupts. */
\r
3120 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3122 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3124 /*-----------------------------------------------------------*/
\r
3126 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
\r
3127 const TickType_t xItemValue,
\r
3128 const TickType_t xTicksToWait )
\r
3130 configASSERT( pxEventList );
\r
3132 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3133 * the event groups implementation. */
\r
3134 configASSERT( uxSchedulerSuspended != 0 );
\r
3136 /* Store the item value in the event list item. It is safe to access the
\r
3137 * event list item here as interrupts won't access the event list item of a
\r
3138 * task that is not in the Blocked state. */
\r
3139 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3141 /* Place the event list item of the TCB at the end of the appropriate event
\r
3142 * list. It is safe to access the event list here because it is part of an
\r
3143 * event group implementation - and interrupts don't access event groups
\r
3144 * directly (instead they access them indirectly by pending function calls to
\r
3145 * the task level). */
\r
3146 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3148 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3150 /*-----------------------------------------------------------*/
\r
3152 #if ( configUSE_TIMERS == 1 )
\r
3154 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
\r
3155 TickType_t xTicksToWait,
\r
3156 const BaseType_t xWaitIndefinitely )
\r
3158 configASSERT( pxEventList );
\r
3160 /* This function should not be called by application code hence the
\r
3161 * 'Restricted' in its name. It is not part of the public API. It is
\r
3162 * designed for use by kernel code, and has special calling requirements -
\r
3163 * it should be called with the scheduler suspended. */
\r
3166 /* Place the event list item of the TCB in the appropriate event list.
\r
3167 * In this case it is assume that this is the only task that is going to
\r
3168 * be waiting on this event list, so the faster vListInsertEnd() function
\r
3169 * can be used in place of vListInsert. */
\r
3170 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3172 /* If the task should block indefinitely then set the block time to a
\r
3173 * value that will be recognised as an indefinite delay inside the
\r
3174 * prvAddCurrentTaskToDelayedList() function. */
\r
3175 if( xWaitIndefinitely != pdFALSE )
\r
3177 xTicksToWait = portMAX_DELAY;
\r
3180 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3181 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3184 #endif /* configUSE_TIMERS */
\r
3185 /*-----------------------------------------------------------*/
\r
3187 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3189 TCB_t * pxUnblockedTCB;
\r
3190 BaseType_t xReturn;
\r
3192 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3193 * called from a critical section within an ISR. */
\r
3195 /* The event list is sorted in priority order, so the first in the list can
\r
3196 * be removed as it is known to be the highest priority. Remove the TCB from
\r
3197 * the delayed list, and add it to the ready list.
\r
3199 * If an event is for a queue that is locked then this function will never
\r
3200 * get called - the lock count on the queue will get modified instead. This
\r
3201 * means exclusive access to the event list is guaranteed here.
\r
3203 * This function assumes that a check has already been made to ensure that
\r
3204 * pxEventList is not empty. */
\r
3205 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3206 configASSERT( pxUnblockedTCB );
\r
3207 listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
\r
3209 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3211 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3212 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3214 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3216 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3217 * might be set to the blocked task's time out time. If the task is
\r
3218 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3219 * normally left unchanged, because it is automatically reset to a new
\r
3220 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3221 * tickless idling is used it might be more important to enter sleep mode
\r
3222 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3223 * ensure it is updated at the earliest possible time. */
\r
3224 prvResetNextTaskUnblockTime();
\r
3230 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3231 * pending until the scheduler is resumed. */
\r
3232 listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3235 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3237 /* Return true if the task removed from the event list has a higher
\r
3238 * priority than the calling task. This allows the calling task to know if
\r
3239 * it should force a context switch now. */
\r
3242 /* Mark that a yield is pending in case the user is not using the
\r
3243 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3244 xYieldPending = pdTRUE;
\r
3248 xReturn = pdFALSE;
\r
3253 /*-----------------------------------------------------------*/
\r
3255 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
\r
3256 const TickType_t xItemValue )
\r
3258 TCB_t * pxUnblockedTCB;
\r
3260 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3261 * the event flags implementation. */
\r
3262 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3264 /* Store the new item value in the event list. */
\r
3265 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3267 /* Remove the event list form the event flag. Interrupts do not access
\r
3269 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3270 configASSERT( pxUnblockedTCB );
\r
3271 listREMOVE_ITEM( pxEventListItem );
\r
3273 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3275 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3276 * might be set to the blocked task's time out time. If the task is
\r
3277 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3278 * normally left unchanged, because it is automatically reset to a new
\r
3279 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3280 * tickless idling is used it might be more important to enter sleep mode
\r
3281 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3282 * ensure it is updated at the earliest possible time. */
\r
3283 prvResetNextTaskUnblockTime();
\r
3287 /* Remove the task from the delayed list and add it to the ready list. The
\r
3288 * scheduler is suspended so interrupts will not be accessing the ready
\r
3290 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3291 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3293 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3295 /* The unblocked task has a priority above that of the calling task, so
\r
3296 * a context switch is required. This function is called with the
\r
3297 * scheduler suspended so xYieldPending is set so the context switch
\r
3298 * occurs immediately that the scheduler is resumed (unsuspended). */
\r
3299 xYieldPending = pdTRUE;
\r
3302 /*-----------------------------------------------------------*/
\r
3304 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3306 configASSERT( pxTimeOut );
\r
3307 taskENTER_CRITICAL();
\r
3309 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3310 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3312 taskEXIT_CRITICAL();
\r
3314 /*-----------------------------------------------------------*/
\r
3316 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3318 /* For internal use only as it does not use a critical section. */
\r
3319 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3320 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3322 /*-----------------------------------------------------------*/
\r
3324 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
\r
3325 TickType_t * const pxTicksToWait )
\r
3327 BaseType_t xReturn;
\r
3329 configASSERT( pxTimeOut );
\r
3330 configASSERT( pxTicksToWait );
\r
3332 taskENTER_CRITICAL();
\r
3334 /* Minor optimisation. The tick count cannot change in this block. */
\r
3335 const TickType_t xConstTickCount = xTickCount;
\r
3336 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3338 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
3339 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3341 /* The delay was aborted, which is not the same as a time out,
\r
3342 * but has the same result. */
\r
3343 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3349 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3350 if( *pxTicksToWait == portMAX_DELAY )
\r
3352 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3353 * specified is the maximum block time then the task should block
\r
3354 * indefinitely, and therefore never time out. */
\r
3355 xReturn = pdFALSE;
\r
3360 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3362 /* The tick count is greater than the time at which
\r
3363 * vTaskSetTimeout() was called, but has also overflowed since
\r
3364 * vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3365 * around and gone past again. This passed since vTaskSetTimeout()
\r
3368 *pxTicksToWait = ( TickType_t ) 0;
\r
3370 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3372 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3373 *pxTicksToWait -= xElapsedTime;
\r
3374 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3375 xReturn = pdFALSE;
\r
3379 *pxTicksToWait = ( TickType_t ) 0;
\r
3383 taskEXIT_CRITICAL();
\r
3387 /*-----------------------------------------------------------*/
\r
3389 void vTaskMissedYield( void )
\r
3391 xYieldPending = pdTRUE;
\r
3393 /*-----------------------------------------------------------*/
\r
3395 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3397 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3399 UBaseType_t uxReturn;
\r
3400 TCB_t const * pxTCB;
\r
3402 if( xTask != NULL )
\r
3405 uxReturn = pxTCB->uxTaskNumber;
\r
3415 #endif /* configUSE_TRACE_FACILITY */
\r
3416 /*-----------------------------------------------------------*/
\r
3418 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3420 void vTaskSetTaskNumber( TaskHandle_t xTask,
\r
3421 const UBaseType_t uxHandle )
\r
3425 if( xTask != NULL )
\r
3428 pxTCB->uxTaskNumber = uxHandle;
\r
3432 #endif /* configUSE_TRACE_FACILITY */
\r
3435 * -----------------------------------------------------------
\r
3437 * ----------------------------------------------------------
\r
3439 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3440 * language extensions. The equivalent prototype for this function is:
\r
3442 * void prvIdleTask( void *pvParameters );
\r
3445 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3447 /* Stop warnings. */
\r
3448 ( void ) pvParameters;
\r
3450 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3451 * SCHEDULER IS STARTED. **/
\r
3453 /* In case a task that has a secure context deletes itself, in which case
\r
3454 * the idle task is responsible for deleting the task's secure context, if
\r
3456 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3460 /* See if any tasks have deleted themselves - if so then the idle task
\r
3461 * is responsible for freeing the deleted task's TCB and stack. */
\r
3462 prvCheckTasksWaitingTermination();
\r
3464 #if ( configUSE_PREEMPTION == 0 )
\r
3466 /* If we are not using preemption we keep forcing a task switch to
\r
3467 * see if any other task has become available. If we are using
\r
3468 * preemption we don't need to do this as any task becoming available
\r
3469 * will automatically get the processor anyway. */
\r
3472 #endif /* configUSE_PREEMPTION */
\r
3474 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3476 /* When using preemption tasks of equal priority will be
\r
3477 * timesliced. If a task that is sharing the idle priority is ready
\r
3478 * to run then the idle task should yield before the end of the
\r
3481 * A critical region is not required here as we are just reading from
\r
3482 * the list, and an occasional incorrect value will not matter. If
\r
3483 * the ready list at the idle priority contains more than one task
\r
3484 * then a task other than the idle task is ready to execute. */
\r
3485 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3491 mtCOVERAGE_TEST_MARKER();
\r
3494 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3496 #if ( configUSE_IDLE_HOOK == 1 )
\r
3498 extern void vApplicationIdleHook( void );
\r
3500 /* Call the user defined function from within the idle task. This
\r
3501 * allows the application designer to add background functionality
\r
3502 * without the overhead of a separate task.
\r
3503 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3504 * CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3505 vApplicationIdleHook();
\r
3507 #endif /* configUSE_IDLE_HOOK */
\r
3509 /* This conditional compilation should use inequality to 0, not equality
\r
3510 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3511 * user defined low power mode implementations require
\r
3512 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3513 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3515 TickType_t xExpectedIdleTime;
\r
3517 /* It is not desirable to suspend then resume the scheduler on
\r
3518 * each iteration of the idle task. Therefore, a preliminary
\r
3519 * test of the expected idle time is performed without the
\r
3520 * scheduler suspended. The result here is not necessarily
\r
3522 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3524 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3526 vTaskSuspendAll();
\r
3528 /* Now the scheduler is suspended, the expected idle
\r
3529 * time can be sampled again, and this time its value can
\r
3531 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3532 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3534 /* Define the following macro to set xExpectedIdleTime to 0
\r
3535 * if the application does not want
\r
3536 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3537 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3539 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3541 traceLOW_POWER_IDLE_BEGIN();
\r
3542 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3543 traceLOW_POWER_IDLE_END();
\r
3547 mtCOVERAGE_TEST_MARKER();
\r
3550 ( void ) xTaskResumeAll();
\r
3554 mtCOVERAGE_TEST_MARKER();
\r
3557 #endif /* configUSE_TICKLESS_IDLE */
\r
3560 /*-----------------------------------------------------------*/
\r
3562 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3564 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3566 /* The idle task exists in addition to the application tasks. */
\r
3567 const UBaseType_t uxNonApplicationTasks = 1;
\r
3568 eSleepModeStatus eReturn = eStandardSleep;
\r
3570 /* This function must be called from a critical section. */
\r
3572 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3574 /* A task was made ready while the scheduler was suspended. */
\r
3575 eReturn = eAbortSleep;
\r
3577 else if( xYieldPending != pdFALSE )
\r
3579 /* A yield was pended while the scheduler was suspended. */
\r
3580 eReturn = eAbortSleep;
\r
3582 else if( xPendedTicks != 0 )
\r
3584 /* A tick interrupt has already occurred but was held pending
\r
3585 * because the scheduler is suspended. */
\r
3586 eReturn = eAbortSleep;
\r
3590 /* If all the tasks are in the suspended list (which might mean they
\r
3591 * have an infinite block time rather than actually being suspended)
\r
3592 * then it is safe to turn all clocks off and just wait for external
\r
3594 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3596 eReturn = eNoTasksWaitingTimeout;
\r
3600 mtCOVERAGE_TEST_MARKER();
\r
3607 #endif /* configUSE_TICKLESS_IDLE */
\r
3608 /*-----------------------------------------------------------*/
\r
3610 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3612 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
\r
3613 BaseType_t xIndex,
\r
3618 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3620 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3621 configASSERT( pxTCB != NULL );
\r
3622 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3626 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3627 /*-----------------------------------------------------------*/
\r
3629 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3631 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
\r
3632 BaseType_t xIndex )
\r
3634 void * pvReturn = NULL;
\r
3637 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3639 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3640 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3650 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3651 /*-----------------------------------------------------------*/
\r
3653 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3655 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
\r
3656 const MemoryRegion_t * const xRegions )
\r
3660 /* If null is passed in here then we are modifying the MPU settings of
\r
3661 * the calling task. */
\r
3662 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3664 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3667 #endif /* portUSING_MPU_WRAPPERS */
\r
3668 /*-----------------------------------------------------------*/
\r
3670 static void prvInitialiseTaskLists( void )
\r
3672 UBaseType_t uxPriority;
\r
3674 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3676 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3679 vListInitialise( &xDelayedTaskList1 );
\r
3680 vListInitialise( &xDelayedTaskList2 );
\r
3681 vListInitialise( &xPendingReadyList );
\r
3683 #if ( INCLUDE_vTaskDelete == 1 )
\r
3685 vListInitialise( &xTasksWaitingTermination );
\r
3687 #endif /* INCLUDE_vTaskDelete */
\r
3689 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3691 vListInitialise( &xSuspendedTaskList );
\r
3693 #endif /* INCLUDE_vTaskSuspend */
\r
3695 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3697 pxDelayedTaskList = &xDelayedTaskList1;
\r
3698 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3700 /*-----------------------------------------------------------*/
\r
3702 static void prvCheckTasksWaitingTermination( void )
\r
3704 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3706 #if ( INCLUDE_vTaskDelete == 1 )
\r
3710 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3711 * being called too often in the idle task. */
\r
3712 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3714 taskENTER_CRITICAL();
\r
3716 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3717 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3718 --uxCurrentNumberOfTasks;
\r
3719 --uxDeletedTasksWaitingCleanUp;
\r
3721 taskEXIT_CRITICAL();
\r
3723 prvDeleteTCB( pxTCB );
\r
3726 #endif /* INCLUDE_vTaskDelete */
\r
3728 /*-----------------------------------------------------------*/
\r
3730 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3732 void vTaskGetInfo( TaskHandle_t xTask,
\r
3733 TaskStatus_t * pxTaskStatus,
\r
3734 BaseType_t xGetFreeStackSpace,
\r
3735 eTaskState eState )
\r
3739 /* xTask is NULL then get the state of the calling task. */
\r
3740 pxTCB = prvGetTCBFromHandle( xTask );
\r
3742 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3743 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
\r
3744 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3745 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3746 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3748 #if ( configUSE_MUTEXES == 1 )
\r
3750 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3754 pxTaskStatus->uxBasePriority = 0;
\r
3758 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3760 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3764 pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
\r
3768 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3769 * value of eState passed into this function is eInvalid - otherwise the
\r
3770 * state is just set to whatever is passed in. */
\r
3771 if( eState != eInvalid )
\r
3773 if( pxTCB == pxCurrentTCB )
\r
3775 pxTaskStatus->eCurrentState = eRunning;
\r
3779 pxTaskStatus->eCurrentState = eState;
\r
3781 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3783 /* If the task is in the suspended list then there is a
\r
3784 * chance it is actually just blocked indefinitely - so really
\r
3785 * it should be reported as being in the Blocked state. */
\r
3786 if( eState == eSuspended )
\r
3788 vTaskSuspendAll();
\r
3790 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3792 pxTaskStatus->eCurrentState = eBlocked;
\r
3795 ( void ) xTaskResumeAll();
\r
3798 #endif /* INCLUDE_vTaskSuspend */
\r
3803 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3806 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3807 * parameter is provided to allow it to be skipped. */
\r
3808 if( xGetFreeStackSpace != pdFALSE )
\r
3810 #if ( portSTACK_GROWTH > 0 )
\r
3812 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3816 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3822 pxTaskStatus->usStackHighWaterMark = 0;
\r
3826 #endif /* configUSE_TRACE_FACILITY */
\r
3827 /*-----------------------------------------------------------*/
\r
3829 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3831 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
3833 eTaskState eState )
\r
3835 configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
\r
3836 UBaseType_t uxTask = 0;
\r
3838 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3840 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3842 /* Populate an TaskStatus_t structure within the
\r
3843 * pxTaskStatusArray array for each task that is referenced from
\r
3844 * pxList. See the definition of TaskStatus_t in task.h for the
\r
3845 * meaning of each TaskStatus_t structure member. */
\r
3848 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3849 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3851 } while( pxNextTCB != pxFirstTCB );
\r
3855 mtCOVERAGE_TEST_MARKER();
\r
3861 #endif /* configUSE_TRACE_FACILITY */
\r
3862 /*-----------------------------------------------------------*/
\r
3864 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3866 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3868 uint32_t ulCount = 0U;
\r
3870 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3872 pucStackByte -= portSTACK_GROWTH;
\r
3876 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3878 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3881 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3882 /*-----------------------------------------------------------*/
\r
3884 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3886 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3887 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3888 * user to determine the return type. It gets around the problem of the value
\r
3889 * overflowing on 8-bit types without breaking backward compatibility for
\r
3890 * applications that expect an 8-bit return type. */
\r
3891 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3894 uint8_t * pucEndOfStack;
\r
3895 configSTACK_DEPTH_TYPE uxReturn;
\r
3897 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3898 * the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3899 * allows the user to determine the return type. It gets around the
\r
3900 * problem of the value overflowing on 8-bit types without breaking
\r
3901 * backward compatibility for applications that expect an 8-bit return
\r
3904 pxTCB = prvGetTCBFromHandle( xTask );
\r
3906 #if portSTACK_GROWTH < 0
\r
3908 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3912 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3916 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3921 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3922 /*-----------------------------------------------------------*/
\r
3924 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3926 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3929 uint8_t * pucEndOfStack;
\r
3930 UBaseType_t uxReturn;
\r
3932 pxTCB = prvGetTCBFromHandle( xTask );
\r
3934 #if portSTACK_GROWTH < 0
\r
3936 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3940 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3944 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3949 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3950 /*-----------------------------------------------------------*/
\r
3952 #if ( INCLUDE_vTaskDelete == 1 )
\r
3954 static void prvDeleteTCB( TCB_t * pxTCB )
\r
3956 /* This call is required specifically for the TriCore port. It must be
\r
3957 * above the vPortFree() calls. The call is also used by ports/demos that
\r
3958 * want to allocate and clean RAM statically. */
\r
3959 portCLEAN_UP_TCB( pxTCB );
\r
3961 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3962 * to the task to free any memory allocated at the application level.
\r
3963 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3964 * for additional information. */
\r
3965 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3967 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3969 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3971 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3973 /* The task can only have been allocated dynamically - free both
\r
3974 * the stack and TCB. */
\r
3975 vPortFreeStack( pxTCB->pxStack );
\r
3976 vPortFree( pxTCB );
\r
3978 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3980 /* The task could have been allocated statically or dynamically, so
\r
3981 * check what was statically allocated before trying to free the
\r
3983 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3985 /* Both the stack and TCB were allocated dynamically, so both
\r
3986 * must be freed. */
\r
3987 vPortFreeStack( pxTCB->pxStack );
\r
3988 vPortFree( pxTCB );
\r
3990 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3992 /* Only the stack was statically allocated, so the TCB is the
\r
3993 * only memory that must be freed. */
\r
3994 vPortFree( pxTCB );
\r
3998 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3999 * nothing needs to be freed. */
\r
4000 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
4001 mtCOVERAGE_TEST_MARKER();
\r
4004 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
4007 #endif /* INCLUDE_vTaskDelete */
\r
4008 /*-----------------------------------------------------------*/
\r
4010 static void prvResetNextTaskUnblockTime( void )
\r
4012 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
4014 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
4015 * the maximum possible value so it is extremely unlikely that the
\r
4016 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
4017 * there is an item in the delayed list. */
\r
4018 xNextTaskUnblockTime = portMAX_DELAY;
\r
4022 /* The new current delayed list is not empty, get the value of
\r
4023 * the item at the head of the delayed list. This is the time at
\r
4024 * which the task at the head of the delayed list should be removed
\r
4025 * from the Blocked state. */
\r
4026 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
4029 /*-----------------------------------------------------------*/
\r
4031 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
4033 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
4035 TaskHandle_t xReturn;
\r
4037 /* A critical section is not required as this is not called from
\r
4038 * an interrupt and the current TCB will always be the same for any
\r
4039 * individual execution thread. */
\r
4040 xReturn = pxCurrentTCB;
\r
4045 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
4046 /*-----------------------------------------------------------*/
\r
4048 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
4050 BaseType_t xTaskGetSchedulerState( void )
\r
4052 BaseType_t xReturn;
\r
4054 if( xSchedulerRunning == pdFALSE )
\r
4056 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4060 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4062 xReturn = taskSCHEDULER_RUNNING;
\r
4066 xReturn = taskSCHEDULER_SUSPENDED;
\r
4073 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4074 /*-----------------------------------------------------------*/
\r
4076 #if ( configUSE_MUTEXES == 1 )
\r
4078 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4080 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4081 BaseType_t xReturn = pdFALSE;
\r
4083 /* If the mutex was given back by an interrupt while the queue was
\r
4084 * locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4085 * needed as interrupts can no longer use mutexes? */
\r
4086 if( pxMutexHolder != NULL )
\r
4088 /* If the holder of the mutex has a priority below the priority of
\r
4089 * the task attempting to obtain the mutex then it will temporarily
\r
4090 * inherit the priority of the task attempting to obtain the mutex. */
\r
4091 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4093 /* Adjust the mutex holder state to account for its new
\r
4094 * priority. Only reset the event list item value if the value is
\r
4095 * not being used for anything else. */
\r
4096 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4098 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4102 mtCOVERAGE_TEST_MARKER();
\r
4105 /* If the task being modified is in the ready state it will need
\r
4106 * to be moved into a new list. */
\r
4107 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4109 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4111 /* It is known that the task is in its ready list so
\r
4112 * there is no need to check again and the port level
\r
4113 * reset macro can be called directly. */
\r
4114 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4118 mtCOVERAGE_TEST_MARKER();
\r
4121 /* Inherit the priority before being moved into the new list. */
\r
4122 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4123 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4127 /* Just inherit the priority. */
\r
4128 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4131 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4133 /* Inheritance occurred. */
\r
4138 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4140 /* The base priority of the mutex holder is lower than the
\r
4141 * priority of the task attempting to take the mutex, but the
\r
4142 * current priority of the mutex holder is not lower than the
\r
4143 * priority of the task attempting to take the mutex.
\r
4144 * Therefore the mutex holder must have already inherited a
\r
4145 * priority, but inheritance would have occurred if that had
\r
4146 * not been the case. */
\r
4151 mtCOVERAGE_TEST_MARKER();
\r
4157 mtCOVERAGE_TEST_MARKER();
\r
4163 #endif /* configUSE_MUTEXES */
\r
4164 /*-----------------------------------------------------------*/
\r
4166 #if ( configUSE_MUTEXES == 1 )
\r
4168 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4170 TCB_t * const pxTCB = pxMutexHolder;
\r
4171 BaseType_t xReturn = pdFALSE;
\r
4173 if( pxMutexHolder != NULL )
\r
4175 /* A task can only have an inherited priority if it holds the mutex.
\r
4176 * If the mutex is held by a task then it cannot be given from an
\r
4177 * interrupt, and if a mutex is given by the holding task then it must
\r
4178 * be the running state task. */
\r
4179 configASSERT( pxTCB == pxCurrentTCB );
\r
4180 configASSERT( pxTCB->uxMutexesHeld );
\r
4181 ( pxTCB->uxMutexesHeld )--;
\r
4183 /* Has the holder of the mutex inherited the priority of another
\r
4185 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4187 /* Only disinherit if no other mutexes are held. */
\r
4188 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4190 /* A task can only have an inherited priority if it holds
\r
4191 * the mutex. If the mutex is held by a task then it cannot be
\r
4192 * given from an interrupt, and if a mutex is given by the
\r
4193 * holding task then it must be the running state task. Remove
\r
4194 * the holding task from the ready list. */
\r
4195 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4197 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4201 mtCOVERAGE_TEST_MARKER();
\r
4204 /* Disinherit the priority before adding the task into the
\r
4205 * new ready list. */
\r
4206 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4207 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4209 /* Reset the event list item value. It cannot be in use for
\r
4210 * any other purpose if this task is running, and it must be
\r
4211 * running to give back the mutex. */
\r
4212 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4213 prvAddTaskToReadyList( pxTCB );
\r
4215 /* Return true to indicate that a context switch is required.
\r
4216 * This is only actually required in the corner case whereby
\r
4217 * multiple mutexes were held and the mutexes were given back
\r
4218 * in an order different to that in which they were taken.
\r
4219 * If a context switch did not occur when the first mutex was
\r
4220 * returned, even if a task was waiting on it, then a context
\r
4221 * switch should occur when the last mutex is returned whether
\r
4222 * a task is waiting on it or not. */
\r
4227 mtCOVERAGE_TEST_MARKER();
\r
4232 mtCOVERAGE_TEST_MARKER();
\r
4237 mtCOVERAGE_TEST_MARKER();
\r
4243 #endif /* configUSE_MUTEXES */
\r
4244 /*-----------------------------------------------------------*/
\r
4246 #if ( configUSE_MUTEXES == 1 )
\r
4248 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
\r
4249 UBaseType_t uxHighestPriorityWaitingTask )
\r
4251 TCB_t * const pxTCB = pxMutexHolder;
\r
4252 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4253 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4255 if( pxMutexHolder != NULL )
\r
4257 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4259 configASSERT( pxTCB->uxMutexesHeld );
\r
4261 /* Determine the priority to which the priority of the task that
\r
4262 * holds the mutex should be set. This will be the greater of the
\r
4263 * holding task's base priority and the priority of the highest
\r
4264 * priority task that is waiting to obtain the mutex. */
\r
4265 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4267 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4271 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4274 /* Does the priority need to change? */
\r
4275 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4277 /* Only disinherit if no other mutexes are held. This is a
\r
4278 * simplification in the priority inheritance implementation. If
\r
4279 * the task that holds the mutex is also holding other mutexes then
\r
4280 * the other mutexes may have caused the priority inheritance. */
\r
4281 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4283 /* If a task has timed out because it already holds the
\r
4284 * mutex it was trying to obtain then it cannot of inherited
\r
4285 * its own priority. */
\r
4286 configASSERT( pxTCB != pxCurrentTCB );
\r
4288 /* Disinherit the priority, remembering the previous
\r
4289 * priority to facilitate determining the subject task's
\r
4291 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
\r
4292 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4293 pxTCB->uxPriority = uxPriorityToUse;
\r
4295 /* Only reset the event list item value if the value is not
\r
4296 * being used for anything else. */
\r
4297 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4299 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4303 mtCOVERAGE_TEST_MARKER();
\r
4306 /* If the running task is not the task that holds the mutex
\r
4307 * then the task that holds the mutex could be in either the
\r
4308 * Ready, Blocked or Suspended states. Only remove the task
\r
4309 * from its current state list if it is in the Ready state as
\r
4310 * the task's priority is going to change and there is one
\r
4311 * Ready list per priority. */
\r
4312 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4314 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4316 /* It is known that the task is in its ready list so
\r
4317 * there is no need to check again and the port level
\r
4318 * reset macro can be called directly. */
\r
4319 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4323 mtCOVERAGE_TEST_MARKER();
\r
4326 prvAddTaskToReadyList( pxTCB );
\r
4330 mtCOVERAGE_TEST_MARKER();
\r
4335 mtCOVERAGE_TEST_MARKER();
\r
4340 mtCOVERAGE_TEST_MARKER();
\r
4345 mtCOVERAGE_TEST_MARKER();
\r
4349 #endif /* configUSE_MUTEXES */
\r
4350 /*-----------------------------------------------------------*/
\r
4352 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4354 void vTaskEnterCritical( void )
\r
4356 portDISABLE_INTERRUPTS();
\r
4358 if( xSchedulerRunning != pdFALSE )
\r
4360 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4362 /* This is not the interrupt safe version of the enter critical
\r
4363 * function so assert() if it is being called from an interrupt
\r
4364 * context. Only API functions that end in "FromISR" can be used in an
\r
4365 * interrupt. Only assert if the critical nesting count is 1 to
\r
4366 * protect against recursive calls if the assert function also uses a
\r
4367 * critical section. */
\r
4368 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4370 portASSERT_IF_IN_ISR();
\r
4375 mtCOVERAGE_TEST_MARKER();
\r
4379 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4380 /*-----------------------------------------------------------*/
\r
4382 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4384 void vTaskExitCritical( void )
\r
4386 if( xSchedulerRunning != pdFALSE )
\r
4388 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4390 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4392 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4394 portENABLE_INTERRUPTS();
\r
4398 mtCOVERAGE_TEST_MARKER();
\r
4403 mtCOVERAGE_TEST_MARKER();
\r
4408 mtCOVERAGE_TEST_MARKER();
\r
4412 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4413 /*-----------------------------------------------------------*/
\r
4415 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4417 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
4418 const char * pcTaskName )
\r
4422 /* Start by copying the entire string. */
\r
4423 strcpy( pcBuffer, pcTaskName );
\r
4425 /* Pad the end of the string with spaces to ensure columns line up when
\r
4427 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4429 pcBuffer[ x ] = ' ';
\r
4433 pcBuffer[ x ] = ( char ) 0x00;
\r
4435 /* Return the new end of string. */
\r
4436 return &( pcBuffer[ x ] );
\r
4439 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4440 /*-----------------------------------------------------------*/
\r
4442 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4444 void vTaskList( char * pcWriteBuffer )
\r
4446 TaskStatus_t * pxTaskStatusArray;
\r
4447 UBaseType_t uxArraySize, x;
\r
4453 * This function is provided for convenience only, and is used by many
\r
4454 * of the demo applications. Do not consider it to be part of the
\r
4457 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4458 * uxTaskGetSystemState() output into a human readable table that
\r
4459 * displays task: names, states, priority, stack usage and task number.
\r
4460 * Stack usage specified as the number of unused StackType_t words stack can hold
\r
4461 * on top of stack - not the number of bytes.
\r
4463 * vTaskList() has a dependency on the sprintf() C library function that
\r
4464 * might bloat the code size, use a lot of stack, and provide different
\r
4465 * results on different platforms. An alternative, tiny, third party,
\r
4466 * and limited functionality implementation of sprintf() is provided in
\r
4467 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4468 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4469 * snprintf() implementation!).
\r
4471 * It is recommended that production systems call uxTaskGetSystemState()
\r
4472 * directly to get access to raw stats data, rather than indirectly
\r
4473 * through a call to vTaskList().
\r
4477 /* Make sure the write buffer does not contain a string. */
\r
4478 *pcWriteBuffer = ( char ) 0x00;
\r
4480 /* Take a snapshot of the number of tasks in case it changes while this
\r
4481 * function is executing. */
\r
4482 uxArraySize = uxCurrentNumberOfTasks;
\r
4484 /* Allocate an array index for each task. NOTE! if
\r
4485 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4486 * equate to NULL. */
\r
4487 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4489 if( pxTaskStatusArray != NULL )
\r
4491 /* Generate the (binary) data. */
\r
4492 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4494 /* Create a human readable table from the binary data. */
\r
4495 for( x = 0; x < uxArraySize; x++ )
\r
4497 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4500 cStatus = tskRUNNING_CHAR;
\r
4504 cStatus = tskREADY_CHAR;
\r
4508 cStatus = tskBLOCKED_CHAR;
\r
4512 cStatus = tskSUSPENDED_CHAR;
\r
4516 cStatus = tskDELETED_CHAR;
\r
4519 case eInvalid: /* Fall through. */
\r
4520 default: /* Should not get here, but it is included
\r
4521 * to prevent static checking errors. */
\r
4522 cStatus = ( char ) 0x00;
\r
4526 /* Write the task name to the string, padding with spaces so it
\r
4527 * can be printed in tabular form more easily. */
\r
4528 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4530 /* Write the rest of the string. */
\r
4531 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4532 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4535 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4536 * is 0 then vPortFree() will be #defined to nothing. */
\r
4537 vPortFree( pxTaskStatusArray );
\r
4541 mtCOVERAGE_TEST_MARKER();
\r
4545 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4546 /*----------------------------------------------------------*/
\r
4548 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4550 void vTaskGetRunTimeStats( char * pcWriteBuffer )
\r
4552 TaskStatus_t * pxTaskStatusArray;
\r
4553 UBaseType_t uxArraySize, x;
\r
4554 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulStatsAsPercentage;
\r
4556 #if ( configUSE_TRACE_FACILITY != 1 )
\r
4558 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4565 * This function is provided for convenience only, and is used by many
\r
4566 * of the demo applications. Do not consider it to be part of the
\r
4569 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4570 * of the uxTaskGetSystemState() output into a human readable table that
\r
4571 * displays the amount of time each task has spent in the Running state
\r
4572 * in both absolute and percentage terms.
\r
4574 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4575 * function that might bloat the code size, use a lot of stack, and
\r
4576 * provide different results on different platforms. An alternative,
\r
4577 * tiny, third party, and limited functionality implementation of
\r
4578 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4579 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4580 * a full snprintf() implementation!).
\r
4582 * It is recommended that production systems call uxTaskGetSystemState()
\r
4583 * directly to get access to raw stats data, rather than indirectly
\r
4584 * through a call to vTaskGetRunTimeStats().
\r
4587 /* Make sure the write buffer does not contain a string. */
\r
4588 *pcWriteBuffer = ( char ) 0x00;
\r
4590 /* Take a snapshot of the number of tasks in case it changes while this
\r
4591 * function is executing. */
\r
4592 uxArraySize = uxCurrentNumberOfTasks;
\r
4594 /* Allocate an array index for each task. NOTE! If
\r
4595 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4596 * equate to NULL. */
\r
4597 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4599 if( pxTaskStatusArray != NULL )
\r
4601 /* Generate the (binary) data. */
\r
4602 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4604 /* For percentage calculations. */
\r
4605 ulTotalTime /= 100UL;
\r
4607 /* Avoid divide by zero errors. */
\r
4608 if( ulTotalTime > 0UL )
\r
4610 /* Create a human readable table from the binary data. */
\r
4611 for( x = 0; x < uxArraySize; x++ )
\r
4613 /* What percentage of the total run time has the task used?
\r
4614 * This will always be rounded down to the nearest integer.
\r
4615 * ulTotalRunTime has already been divided by 100. */
\r
4616 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4618 /* Write the task name to the string, padding with
\r
4619 * spaces so it can be printed in tabular form more
\r
4621 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4623 if( ulStatsAsPercentage > 0UL )
\r
4625 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4627 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4631 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4632 * printf() library can be used. */
\r
4633 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4639 /* If the percentage is zero here then the task has
\r
4640 * consumed less than 1% of the total run time. */
\r
4641 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4643 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4647 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4648 * printf() library can be used. */
\r
4649 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4654 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4659 mtCOVERAGE_TEST_MARKER();
\r
4662 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4663 * is 0 then vPortFree() will be #defined to nothing. */
\r
4664 vPortFree( pxTaskStatusArray );
\r
4668 mtCOVERAGE_TEST_MARKER();
\r
4672 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4673 /*-----------------------------------------------------------*/
\r
4675 TickType_t uxTaskResetEventItemValue( void )
\r
4677 TickType_t uxReturn;
\r
4679 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4681 /* Reset the event list item to its normal value - so it can be used with
\r
4682 * queues and semaphores. */
\r
4683 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4687 /*-----------------------------------------------------------*/
\r
4689 #if ( configUSE_MUTEXES == 1 )
\r
4691 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4693 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4694 * then pxCurrentTCB will be NULL. */
\r
4695 if( pxCurrentTCB != NULL )
\r
4697 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4700 return pxCurrentTCB;
\r
4703 #endif /* configUSE_MUTEXES */
\r
4704 /*-----------------------------------------------------------*/
\r
4706 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4708 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
\r
4709 BaseType_t xClearCountOnExit,
\r
4710 TickType_t xTicksToWait )
\r
4712 uint32_t ulReturn;
\r
4714 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4716 taskENTER_CRITICAL();
\r
4718 /* Only block if the notification count is not already non-zero. */
\r
4719 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
\r
4721 /* Mark this task as waiting for a notification. */
\r
4722 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4724 if( xTicksToWait > ( TickType_t ) 0 )
\r
4726 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4727 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
\r
4729 /* All ports are written to allow a yield in a critical
\r
4730 * section (some will yield immediately, others wait until the
\r
4731 * critical section exits) - but it is not something that
\r
4732 * application code should ever do. */
\r
4733 portYIELD_WITHIN_API();
\r
4737 mtCOVERAGE_TEST_MARKER();
\r
4742 mtCOVERAGE_TEST_MARKER();
\r
4745 taskEXIT_CRITICAL();
\r
4747 taskENTER_CRITICAL();
\r
4749 traceTASK_NOTIFY_TAKE( uxIndexToWait );
\r
4750 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4752 if( ulReturn != 0UL )
\r
4754 if( xClearCountOnExit != pdFALSE )
\r
4756 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
\r
4760 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
\r
4765 mtCOVERAGE_TEST_MARKER();
\r
4768 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4770 taskEXIT_CRITICAL();
\r
4775 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4776 /*-----------------------------------------------------------*/
\r
4778 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4780 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
\r
4781 uint32_t ulBitsToClearOnEntry,
\r
4782 uint32_t ulBitsToClearOnExit,
\r
4783 uint32_t * pulNotificationValue,
\r
4784 TickType_t xTicksToWait )
\r
4786 BaseType_t xReturn;
\r
4788 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4790 taskENTER_CRITICAL();
\r
4792 /* Only block if a notification is not already pending. */
\r
4793 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4795 /* Clear bits in the task's notification value as bits may get
\r
4796 * set by the notifying task or interrupt. This can be used to
\r
4797 * clear the value to zero. */
\r
4798 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
\r
4800 /* Mark this task as waiting for a notification. */
\r
4801 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4803 if( xTicksToWait > ( TickType_t ) 0 )
\r
4805 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4806 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
\r
4808 /* All ports are written to allow a yield in a critical
\r
4809 * section (some will yield immediately, others wait until the
\r
4810 * critical section exits) - but it is not something that
\r
4811 * application code should ever do. */
\r
4812 portYIELD_WITHIN_API();
\r
4816 mtCOVERAGE_TEST_MARKER();
\r
4821 mtCOVERAGE_TEST_MARKER();
\r
4824 taskEXIT_CRITICAL();
\r
4826 taskENTER_CRITICAL();
\r
4828 traceTASK_NOTIFY_WAIT( uxIndexToWait );
\r
4830 if( pulNotificationValue != NULL )
\r
4832 /* Output the current notification value, which may or may not
\r
4833 * have changed. */
\r
4834 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4837 /* If ucNotifyValue is set then either the task never entered the
\r
4838 * blocked state (because a notification was already pending) or the
\r
4839 * task unblocked because of a notification. Otherwise the task
\r
4840 * unblocked because of a timeout. */
\r
4841 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4843 /* A notification was not received. */
\r
4844 xReturn = pdFALSE;
\r
4848 /* A notification was already pending or a notification was
\r
4849 * received while the task was waiting. */
\r
4850 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
\r
4854 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4856 taskEXIT_CRITICAL();
\r
4861 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4862 /*-----------------------------------------------------------*/
\r
4864 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4866 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
\r
4867 UBaseType_t uxIndexToNotify,
\r
4869 eNotifyAction eAction,
\r
4870 uint32_t * pulPreviousNotificationValue )
\r
4873 BaseType_t xReturn = pdPASS;
\r
4874 uint8_t ucOriginalNotifyState;
\r
4876 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4877 configASSERT( xTaskToNotify );
\r
4878 pxTCB = xTaskToNotify;
\r
4880 taskENTER_CRITICAL();
\r
4882 if( pulPreviousNotificationValue != NULL )
\r
4884 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
4887 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
4889 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
4894 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
4898 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
4901 case eSetValueWithOverwrite:
\r
4902 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4905 case eSetValueWithoutOverwrite:
\r
4907 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4909 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4913 /* The value could not be written to the task. */
\r
4921 /* The task is being notified without its notify value being
\r
4927 /* Should not get here if all enums are handled.
\r
4928 * Artificially force an assert by testing a value the
\r
4929 * compiler can't assume is const. */
\r
4930 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
4935 traceTASK_NOTIFY( uxIndexToNotify );
\r
4937 /* If the task is in the blocked state specifically to wait for a
\r
4938 * notification then unblock it now. */
\r
4939 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4941 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
4942 prvAddTaskToReadyList( pxTCB );
\r
4944 /* The task should not have been on an event list. */
\r
4945 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4947 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
4949 /* If a task is blocked waiting for a notification then
\r
4950 * xNextTaskUnblockTime might be set to the blocked task's time
\r
4951 * out time. If the task is unblocked for a reason other than
\r
4952 * a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4953 * because it will automatically get reset to a new value when
\r
4954 * the tick count equals xNextTaskUnblockTime. However if
\r
4955 * tickless idling is used it might be more important to enter
\r
4956 * sleep mode at the earliest possible time - so reset
\r
4957 * xNextTaskUnblockTime here to ensure it is updated at the
\r
4958 * earliest possible time. */
\r
4959 prvResetNextTaskUnblockTime();
\r
4963 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4965 /* The notified task has a priority above the currently
\r
4966 * executing task so a yield is required. */
\r
4967 taskYIELD_IF_USING_PREEMPTION();
\r
4971 mtCOVERAGE_TEST_MARKER();
\r
4976 mtCOVERAGE_TEST_MARKER();
\r
4979 taskEXIT_CRITICAL();
\r
4984 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4985 /*-----------------------------------------------------------*/
\r
4987 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4989 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
\r
4990 UBaseType_t uxIndexToNotify,
\r
4992 eNotifyAction eAction,
\r
4993 uint32_t * pulPreviousNotificationValue,
\r
4994 BaseType_t * pxHigherPriorityTaskWoken )
\r
4997 uint8_t ucOriginalNotifyState;
\r
4998 BaseType_t xReturn = pdPASS;
\r
4999 UBaseType_t uxSavedInterruptStatus;
\r
5001 configASSERT( xTaskToNotify );
\r
5002 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5004 /* RTOS ports that support interrupt nesting have the concept of a
\r
5005 * maximum system call (or maximum API call) interrupt priority.
\r
5006 * Interrupts that are above the maximum system call priority are keep
\r
5007 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5008 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5009 * is defined in FreeRTOSConfig.h then
\r
5010 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5011 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5012 * been assigned a priority above the configured maximum system call
\r
5013 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5014 * from interrupts that have been assigned a priority at or (logically)
\r
5015 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5016 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5017 * simple as possible. More information (albeit Cortex-M specific) is
\r
5018 * provided on the following link:
\r
5019 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5020 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5022 pxTCB = xTaskToNotify;
\r
5024 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5026 if( pulPreviousNotificationValue != NULL )
\r
5028 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
5031 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5032 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5037 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
5041 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5044 case eSetValueWithOverwrite:
\r
5045 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5048 case eSetValueWithoutOverwrite:
\r
5050 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
5052 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5056 /* The value could not be written to the task. */
\r
5064 /* The task is being notified without its notify value being
\r
5070 /* Should not get here if all enums are handled.
\r
5071 * Artificially force an assert by testing a value the
\r
5072 * compiler can't assume is const. */
\r
5073 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
5077 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
\r
5079 /* If the task is in the blocked state specifically to wait for a
\r
5080 * notification then unblock it now. */
\r
5081 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5083 /* The task should not have been on an event list. */
\r
5084 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5086 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5088 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5089 prvAddTaskToReadyList( pxTCB );
\r
5093 /* The delayed and ready lists cannot be accessed, so hold
\r
5094 * this task pending until the scheduler is resumed. */
\r
5095 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5098 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5100 /* The notified task has a priority above the currently
\r
5101 * executing task so a yield is required. */
\r
5102 if( pxHigherPriorityTaskWoken != NULL )
\r
5104 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5107 /* Mark that a yield is pending in case the user is not
\r
5108 * using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5109 * safe FreeRTOS function. */
\r
5110 xYieldPending = pdTRUE;
\r
5114 mtCOVERAGE_TEST_MARKER();
\r
5118 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5123 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5124 /*-----------------------------------------------------------*/
\r
5126 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5128 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
\r
5129 UBaseType_t uxIndexToNotify,
\r
5130 BaseType_t * pxHigherPriorityTaskWoken )
\r
5133 uint8_t ucOriginalNotifyState;
\r
5134 UBaseType_t uxSavedInterruptStatus;
\r
5136 configASSERT( xTaskToNotify );
\r
5137 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5139 /* RTOS ports that support interrupt nesting have the concept of a
\r
5140 * maximum system call (or maximum API call) interrupt priority.
\r
5141 * Interrupts that are above the maximum system call priority are keep
\r
5142 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5143 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5144 * is defined in FreeRTOSConfig.h then
\r
5145 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5146 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5147 * been assigned a priority above the configured maximum system call
\r
5148 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5149 * from interrupts that have been assigned a priority at or (logically)
\r
5150 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5151 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5152 * simple as possible. More information (albeit Cortex-M specific) is
\r
5153 * provided on the following link:
\r
5154 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5155 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5157 pxTCB = xTaskToNotify;
\r
5159 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5161 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5162 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5164 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5166 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5168 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
\r
5170 /* If the task is in the blocked state specifically to wait for a
\r
5171 * notification then unblock it now. */
\r
5172 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5174 /* The task should not have been on an event list. */
\r
5175 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5177 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5179 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5180 prvAddTaskToReadyList( pxTCB );
\r
5184 /* The delayed and ready lists cannot be accessed, so hold
\r
5185 * this task pending until the scheduler is resumed. */
\r
5186 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5189 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5191 /* The notified task has a priority above the currently
\r
5192 * executing task so a yield is required. */
\r
5193 if( pxHigherPriorityTaskWoken != NULL )
\r
5195 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5198 /* Mark that a yield is pending in case the user is not
\r
5199 * using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5200 * safe FreeRTOS function. */
\r
5201 xYieldPending = pdTRUE;
\r
5205 mtCOVERAGE_TEST_MARKER();
\r
5209 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5212 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5213 /*-----------------------------------------------------------*/
\r
5215 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5217 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
\r
5218 UBaseType_t uxIndexToClear )
\r
5221 BaseType_t xReturn;
\r
5223 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5225 /* If null is passed in here then it is the calling task that is having
\r
5226 * its notification state cleared. */
\r
5227 pxTCB = prvGetTCBFromHandle( xTask );
\r
5229 taskENTER_CRITICAL();
\r
5231 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
\r
5233 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
\r
5241 taskEXIT_CRITICAL();
\r
5246 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5247 /*-----------------------------------------------------------*/
\r
5249 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5251 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
\r
5252 UBaseType_t uxIndexToClear,
\r
5253 uint32_t ulBitsToClear )
\r
5256 uint32_t ulReturn;
\r
5258 /* If null is passed in here then it is the calling task that is having
\r
5259 * its notification state cleared. */
\r
5260 pxTCB = prvGetTCBFromHandle( xTask );
\r
5262 taskENTER_CRITICAL();
\r
5264 /* Return the notification as it was before the bits were cleared,
\r
5265 * then clear the bit mask. */
\r
5266 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
\r
5267 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
\r
5269 taskEXIT_CRITICAL();
\r
5274 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5275 /*-----------------------------------------------------------*/
\r
5277 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5279 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
\r
5281 return xIdleTaskHandle->ulRunTimeCounter;
\r
5285 /*-----------------------------------------------------------*/
\r
5287 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5289 configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
\r
5291 configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
\r
5293 ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
5295 /* For percentage calculations. */
\r
5296 ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
\r
5298 /* Avoid divide by zero errors. */
\r
5299 if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
\r
5301 ulReturn = xIdleTaskHandle->ulRunTimeCounter / ulTotalTime;
\r
5311 #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
\r
5312 /*-----------------------------------------------------------*/
\r
5314 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
5315 const BaseType_t xCanBlockIndefinitely )
\r
5317 TickType_t xTimeToWake;
\r
5318 const TickType_t xConstTickCount = xTickCount;
\r
5320 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
5322 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5323 * reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5324 * when the task leaves the Blocked state. */
\r
5325 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5329 /* Remove the task from the ready list before adding it to the blocked list
\r
5330 * as the same list item is used for both lists. */
\r
5331 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5333 /* The current task must be in a ready list, so there is no need to
\r
5334 * check, and the port reset macro can be called directly. */
\r
5335 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5339 mtCOVERAGE_TEST_MARKER();
\r
5342 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5344 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5346 /* Add the task to the suspended task list instead of a delayed task
\r
5347 * list to ensure it is not woken by a timing event. It will block
\r
5348 * indefinitely. */
\r
5349 listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5353 /* Calculate the time at which the task should be woken if the event
\r
5354 * does not occur. This may overflow but this doesn't matter, the
\r
5355 * kernel will manage it correctly. */
\r
5356 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5358 /* The list item will be inserted in wake time order. */
\r
5359 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5361 if( xTimeToWake < xConstTickCount )
\r
5363 /* Wake time has overflowed. Place this item in the overflow
\r
5365 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5369 /* The wake time has not overflowed, so the current block list
\r
5371 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5373 /* If the task entering the blocked state was placed at the
\r
5374 * head of the list of blocked tasks then xNextTaskUnblockTime
\r
5375 * needs to be updated too. */
\r
5376 if( xTimeToWake < xNextTaskUnblockTime )
\r
5378 xNextTaskUnblockTime = xTimeToWake;
\r
5382 mtCOVERAGE_TEST_MARKER();
\r
5387 #else /* INCLUDE_vTaskSuspend */
\r
5389 /* Calculate the time at which the task should be woken if the event
\r
5390 * does not occur. This may overflow but this doesn't matter, the kernel
\r
5391 * will manage it correctly. */
\r
5392 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5394 /* The list item will be inserted in wake time order. */
\r
5395 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5397 if( xTimeToWake < xConstTickCount )
\r
5399 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5400 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5404 /* The wake time has not overflowed, so the current block list is used. */
\r
5405 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5407 /* If the task entering the blocked state was placed at the head of the
\r
5408 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5410 if( xTimeToWake < xNextTaskUnblockTime )
\r
5412 xNextTaskUnblockTime = xTimeToWake;
\r
5416 mtCOVERAGE_TEST_MARKER();
\r
5420 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5421 ( void ) xCanBlockIndefinitely;
\r
5423 #endif /* INCLUDE_vTaskSuspend */
\r
5426 /* Code below here allows additional code to be inserted into this source file,
\r
5427 * especially where access to file scope functions and data is needed (for example
\r
5428 * when performing module tests). */
\r
5430 #ifdef FREERTOS_MODULE_TEST
\r
5431 #include "tasks_test_access_functions.h"
\r
5435 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5437 #include "freertos_tasks_c_additions.h"
\r
5439 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5440 static void freertos_tasks_c_additions_init( void )
\r
5442 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r
5446 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
\r