2 * FreeRTOS Kernel V10.3.1
\r
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * http://www.FreeRTOS.org
\r
23 * http://aws.amazon.com/freertos
\r
25 * 1 tab == 4 spaces!
\r
28 /* Standard includes. */
\r
32 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
33 all the API functions to use the MPU wrappers. That should only be done when
\r
34 task.h is included from an application file. */
\r
35 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
37 /* FreeRTOS includes. */
\r
38 #include "FreeRTOS.h"
\r
41 #include "stack_macros.h"
\r
43 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
44 because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
45 for the header files above, but not in this file, in order to generate the
\r
46 correct privileged Vs unprivileged linkage and placement. */
\r
47 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
49 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
50 functions but without including stdio.h here. */
\r
51 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
52 /* At the bottom of this file are two optional functions that can be used
\r
53 to generate human readable text from the raw data generated by the
\r
54 uxTaskGetSystemState() function. Note the formatting functions are provided
\r
55 for convenience only, and are NOT considered part of the kernel. */
\r
57 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
59 #if( configUSE_PREEMPTION == 0 )
\r
60 /* If the cooperative scheduler is being used then a yield should not be
\r
61 performed just because a higher priority task has been woken. */
\r
62 #define taskYIELD_IF_USING_PREEMPTION()
\r
64 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
67 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
68 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 )
\r
69 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
70 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
73 * The value used to fill the stack of a task when the task is created. This
\r
74 * is used purely for checking the high water mark for tasks.
\r
76 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
78 /* Bits used to recored how a task's stack and TCB were allocated. */
\r
79 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
80 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
81 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
83 /* If any of the following are set then task stacks are filled with a known
\r
84 value so the high water mark can be determined. If none of the following are
\r
85 set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
86 #if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
87 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
89 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
93 * Macros used by vListTask to indicate which state a task is in.
\r
95 #define tskRUNNING_CHAR ( 'X' )
\r
96 #define tskBLOCKED_CHAR ( 'B' )
\r
97 #define tskREADY_CHAR ( 'R' )
\r
98 #define tskDELETED_CHAR ( 'D' )
\r
99 #define tskSUSPENDED_CHAR ( 'S' )
\r
102 * Some kernel aware debuggers require the data the debugger needs access to be
\r
103 * global, rather than file scope.
\r
105 #ifdef portREMOVE_STATIC_QUALIFIER
\r
109 /* The name allocated to the Idle task. This can be overridden by defining
\r
110 configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
111 #ifndef configIDLE_TASK_NAME
\r
112 #define configIDLE_TASK_NAME "IDLE"
\r
115 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
117 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
118 performed in a generic way that is not optimised to any particular
\r
119 microcontroller architecture. */
\r
121 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
123 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
125 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
127 uxTopReadyPriority = ( uxPriority ); \
\r
129 } /* taskRECORD_READY_PRIORITY */
\r
131 /*-----------------------------------------------------------*/
\r
133 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
135 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
137 /* Find the highest priority queue that contains ready tasks. */ \
\r
138 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
140 configASSERT( uxTopPriority ); \
\r
144 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
145 the same priority get an equal share of the processor time. */ \
\r
146 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
147 uxTopReadyPriority = uxTopPriority; \
\r
148 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
150 /*-----------------------------------------------------------*/
\r
152 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
153 they are only required when a port optimised method of task selection is
\r
155 #define taskRESET_READY_PRIORITY( uxPriority )
\r
156 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
158 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
160 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
161 performed in a way that is tailored to the particular microcontroller
\r
162 architecture being used. */
\r
164 /* A port optimised version is provided. Call the port defined macros. */
\r
165 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
167 /*-----------------------------------------------------------*/
\r
169 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
171 UBaseType_t uxTopPriority; \
\r
173 /* Find the highest priority list that contains ready tasks. */ \
\r
174 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
175 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
176 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
177 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
179 /*-----------------------------------------------------------*/
\r
181 /* A port optimised version is provided, call it only if the TCB being reset
\r
182 is being referenced from a ready list. If it is referenced from a delayed
\r
183 or suspended list then it won't be in a ready list. */
\r
184 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
186 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
188 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
192 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
194 /*-----------------------------------------------------------*/
\r
196 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
197 count overflows. */
\r
198 #define taskSWITCH_DELAYED_LISTS() \
\r
202 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
203 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
205 pxTemp = pxDelayedTaskList; \
\r
206 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
207 pxOverflowDelayedTaskList = pxTemp; \
\r
208 xNumOfOverflows++; \
\r
209 prvResetNextTaskUnblockTime(); \
\r
212 /*-----------------------------------------------------------*/
\r
215 * Place the task represented by pxTCB into the appropriate ready list for
\r
216 * the task. It is inserted at the end of the list.
\r
218 #define prvAddTaskToReadyList( pxTCB ) \
\r
219 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
220 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
221 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
222 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
223 /*-----------------------------------------------------------*/
\r
226 * Several functions take an TaskHandle_t parameter that can optionally be NULL,
\r
227 * where NULL is used to indicate that the handle of the currently executing
\r
228 * task should be used in place of the parameter. This macro simply checks to
\r
229 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
231 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
233 /* The item value of the event list item is normally used to hold the priority
\r
234 of the task to which it belongs (coded to allow it to be held in reverse
\r
235 priority order). However, it is occasionally borrowed for other purposes. It
\r
236 is important its value is not updated due to a task priority change while it is
\r
237 being used for another purpose. The following bit definition is used to inform
\r
238 the scheduler that the value should not be changed - in which case it is the
\r
239 responsibility of whichever module is using the value to ensure it gets set back
\r
240 to its original value when it is released. */
\r
241 #if( configUSE_16_BIT_TICKS == 1 )
\r
242 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
244 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
248 * Task control block. A task control block (TCB) is allocated for each task,
\r
249 * and stores task state information, including a pointer to the task's context
\r
250 * (the task's run time environment, including register values)
\r
252 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
254 volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
256 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
257 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
260 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
261 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
262 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
263 StackType_t *pxStack; /*< Points to the start of the stack. */
\r
264 char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
266 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
267 StackType_t *pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
270 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
271 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
274 #if ( configUSE_TRACE_FACILITY == 1 )
\r
275 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
276 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
279 #if ( configUSE_MUTEXES == 1 )
\r
280 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
281 UBaseType_t uxMutexesHeld;
\r
284 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
285 TaskHookFunction_t pxTaskTag;
\r
288 #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
289 void *pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
292 #if( configGENERATE_RUN_TIME_STATS == 1 )
\r
293 uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
296 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
297 /* Allocate a Newlib reent structure that is specific to this task.
\r
298 Note Newlib support has been included by popular demand, but is not
\r
299 used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
300 responsible for resulting newlib operation. User must be familiar with
\r
301 newlib and must provide system-wide implementations of the necessary
\r
302 stubs. Be warned that (at the time of writing) the current newlib design
\r
303 implements a system-wide malloc() that must be provided with locks.
\r
305 See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
306 for additional information. */
\r
307 struct _reent xNewLib_reent;
\r
310 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
311 volatile uint32_t ulNotifiedValue;
\r
312 volatile uint8_t ucNotifyState;
\r
315 /* See the comments in FreeRTOS.h with the definition of
\r
316 tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
317 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
318 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
321 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
322 uint8_t ucDelayAborted;
\r
325 #if( configUSE_POSIX_ERRNO == 1 )
\r
331 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
332 below to enable the use of older kernel aware debuggers. */
\r
333 typedef tskTCB TCB_t;
\r
335 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
336 which static variables must be declared volatile. */
\r
337 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
339 /* Lists for ready and blocked tasks. --------------------
\r
340 xDelayedTaskList1 and xDelayedTaskList2 could be move to function scople but
\r
341 doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
342 the static qualifier. */
\r
343 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */
\r
344 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
345 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
346 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
347 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
348 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
350 #if( INCLUDE_vTaskDelete == 1 )
\r
352 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
353 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
357 #if ( INCLUDE_vTaskSuspend == 1 )
\r
359 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
363 /* Global POSIX errno. Its value is changed upon context switching to match
\r
364 the errno of the currently running task. */
\r
365 #if ( configUSE_POSIX_ERRNO == 1 )
\r
366 int FreeRTOS_errno = 0;
\r
369 /* Other file private variables. --------------------------------*/
\r
370 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
371 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
372 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
373 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
374 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
375 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
376 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
377 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
378 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
379 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
381 /* Context switches are held pending while the scheduler is suspended. Also,
\r
382 interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
383 lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
384 If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
385 moves the task's event list item into the xPendingReadyList, ready for the
\r
386 kernel to move the task from the pending ready list into the real ready list
\r
387 when the scheduler is unsuspended. The pending ready list itself can only be
\r
388 accessed from a critical section. */
\r
389 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
391 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
393 /* Do not move these variables to function scope as doing so prevents the
\r
394 code working with debuggers that need to remove the static qualifier. */
\r
395 PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
396 PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
402 /*-----------------------------------------------------------*/
\r
404 /* Callback function prototypes. --------------------------*/
\r
405 #if( configCHECK_FOR_STACK_OVERFLOW > 0 )
\r
407 extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName );
\r
411 #if( configUSE_TICK_HOOK > 0 )
\r
413 extern void vApplicationTickHook( void ); /*lint !e526 Symbol not defined as it is an application callback. */
\r
417 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
419 extern void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /*lint !e526 Symbol not defined as it is an application callback. */
\r
423 /* File private functions. --------------------------------*/
\r
426 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
427 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
428 * is in any other state.
\r
430 #if ( INCLUDE_vTaskSuspend == 1 )
\r
432 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
434 #endif /* INCLUDE_vTaskSuspend */
\r
437 * Utility to ready all the lists used by the scheduler. This is called
\r
438 * automatically upon the creation of the first task.
\r
440 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
443 * The idle task, which as all tasks is implemented as a never ending loop.
\r
444 * The idle task is automatically created and added to the ready lists upon
\r
445 * creation of the first user task.
\r
447 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
448 * language extensions. The equivalent prototype for this function is:
\r
450 * void prvIdleTask( void *pvParameters );
\r
453 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters );
\r
456 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
457 * including the stack pointed to by the TCB.
\r
459 * This does not free memory allocated by the task itself (i.e. memory
\r
460 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
462 #if ( INCLUDE_vTaskDelete == 1 )
\r
464 static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION;
\r
469 * Used only by the idle task. This checks to see if anything has been placed
\r
470 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
471 * and its TCB deleted.
\r
473 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
476 * The currently executing task is entering the Blocked state. Add the task to
\r
477 * either the current or the overflow delayed task list.
\r
479 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
482 * Fills an TaskStatus_t structure with information on each task that is
\r
483 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
484 * a suspended list, etc.).
\r
486 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
487 * NORMAL APPLICATION CODE.
\r
489 #if ( configUSE_TRACE_FACILITY == 1 )
\r
491 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION;
\r
496 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
497 * the task if it is found, or NULL if the task is not found.
\r
499 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
501 static TCB_t *prvSearchForNameWithinSingleList( List_t *pxList, const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
506 * When a task is created, the stack of the task is filled with a known value.
\r
507 * This function determines the 'high water mark' of the task stack by
\r
508 * determining how much of the stack remains at the original preset value.
\r
510 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
512 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
517 * Return the amount of time, in ticks, that will pass before the kernel will
\r
518 * next move a task from the Blocked state to the Running state.
\r
520 * This conditional compilation should use inequality to 0, not equality to 1.
\r
521 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
522 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
523 * set to a value other than 1.
\r
525 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
527 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
532 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
533 * will exit the Blocked state.
\r
535 static void prvResetNextTaskUnblockTime( void );
\r
537 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
540 * Helper function used to pad task names with spaces when printing out
\r
541 * human readable tables of task information.
\r
543 static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName ) PRIVILEGED_FUNCTION;
\r
548 * Called after a Task_t structure has been allocated either statically or
\r
549 * dynamically to fill in the structure's members.
\r
551 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
552 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
553 const uint32_t ulStackDepth,
\r
554 void * const pvParameters,
\r
555 UBaseType_t uxPriority,
\r
556 TaskHandle_t * const pxCreatedTask,
\r
558 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
561 * Called after a new task has been created and initialised to place the task
\r
562 * under the control of the scheduler.
\r
564 static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB ) PRIVILEGED_FUNCTION;
\r
567 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
568 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
569 * called by the function.
\r
571 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
573 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
577 /*-----------------------------------------------------------*/
\r
579 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
581 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
582 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
583 const uint32_t ulStackDepth,
\r
584 void * const pvParameters,
\r
585 UBaseType_t uxPriority,
\r
586 StackType_t * const puxStackBuffer,
\r
587 StaticTask_t * const pxTaskBuffer )
\r
590 TaskHandle_t xReturn;
\r
592 configASSERT( puxStackBuffer != NULL );
\r
593 configASSERT( pxTaskBuffer != NULL );
\r
595 #if( configASSERT_DEFINED == 1 )
\r
597 /* Sanity check that the size of the structure used to declare a
\r
598 variable of type StaticTask_t equals the size of the real task
\r
600 volatile size_t xSize = sizeof( StaticTask_t );
\r
601 configASSERT( xSize == sizeof( TCB_t ) );
\r
602 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
604 #endif /* configASSERT_DEFINED */
\r
607 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
609 /* The memory used for the task's TCB and stack are passed into this
\r
610 function - use them. */
\r
611 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
612 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
614 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
616 /* Tasks can be created statically or dynamically, so note this
\r
617 task was created statically in case the task is later deleted. */
\r
618 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
620 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
622 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
623 prvAddNewTaskToReadyList( pxNewTCB );
\r
633 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
634 /*-----------------------------------------------------------*/
\r
636 #if( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
638 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask )
\r
641 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
643 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
644 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
646 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
648 /* Allocate space for the TCB. Where the memory comes from depends
\r
649 on the implementation of the port malloc function and whether or
\r
650 not static allocation is being used. */
\r
651 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
653 /* Store the stack location in the TCB. */
\r
654 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
656 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
658 /* Tasks can be created statically or dynamically, so note this
\r
659 task was created statically in case the task is later deleted. */
\r
660 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
662 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
664 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
665 pxTaskDefinition->pcName,
\r
666 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
667 pxTaskDefinition->pvParameters,
\r
668 pxTaskDefinition->uxPriority,
\r
669 pxCreatedTask, pxNewTCB,
\r
670 pxTaskDefinition->xRegions );
\r
672 prvAddNewTaskToReadyList( pxNewTCB );
\r
679 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
680 /*-----------------------------------------------------------*/
\r
682 #if( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
684 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask )
\r
687 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
689 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
691 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
693 /* Allocate space for the TCB. Where the memory comes from depends
\r
694 on the implementation of the port malloc function and whether or
\r
695 not static allocation is being used. */
\r
696 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
698 if( pxNewTCB != NULL )
\r
700 /* Store the stack location in the TCB. */
\r
701 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
703 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
705 /* Tasks can be created statically or dynamically, so note
\r
706 this task had a statically allocated stack in case it is
\r
707 later deleted. The TCB was allocated dynamically. */
\r
708 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
710 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
712 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
713 pxTaskDefinition->pcName,
\r
714 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
715 pxTaskDefinition->pvParameters,
\r
716 pxTaskDefinition->uxPriority,
\r
717 pxCreatedTask, pxNewTCB,
\r
718 pxTaskDefinition->xRegions );
\r
720 prvAddNewTaskToReadyList( pxNewTCB );
\r
728 #endif /* portUSING_MPU_WRAPPERS */
\r
729 /*-----------------------------------------------------------*/
\r
731 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
733 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
734 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
735 const configSTACK_DEPTH_TYPE usStackDepth,
\r
736 void * const pvParameters,
\r
737 UBaseType_t uxPriority,
\r
738 TaskHandle_t * const pxCreatedTask )
\r
741 BaseType_t xReturn;
\r
743 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
744 does not grow into the TCB. Likewise if the stack grows up then allocate
\r
745 the TCB then the stack. */
\r
746 #if( portSTACK_GROWTH > 0 )
\r
748 /* Allocate space for the TCB. Where the memory comes from depends on
\r
749 the implementation of the port malloc function and whether or not static
\r
750 allocation is being used. */
\r
751 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
753 if( pxNewTCB != NULL )
\r
755 /* Allocate space for the stack used by the task being created.
\r
756 The base of the stack memory stored in the TCB so the task can
\r
757 be deleted later if required. */
\r
758 pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
760 if( pxNewTCB->pxStack == NULL )
\r
762 /* Could not allocate the stack. Delete the allocated TCB. */
\r
763 vPortFree( pxNewTCB );
\r
768 #else /* portSTACK_GROWTH */
\r
770 StackType_t *pxStack;
\r
772 /* Allocate space for the stack used by the task being created. */
\r
773 pxStack = pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
775 if( pxStack != NULL )
\r
777 /* Allocate space for the TCB. */
\r
778 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
780 if( pxNewTCB != NULL )
\r
782 /* Store the stack location in the TCB. */
\r
783 pxNewTCB->pxStack = pxStack;
\r
787 /* The stack cannot be used as the TCB was not created. Free
\r
789 vPortFree( pxStack );
\r
797 #endif /* portSTACK_GROWTH */
\r
799 if( pxNewTCB != NULL )
\r
801 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
803 /* Tasks can be created statically or dynamically, so note this
\r
804 task was created dynamically in case it is later deleted. */
\r
805 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
807 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
809 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
810 prvAddNewTaskToReadyList( pxNewTCB );
\r
815 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
821 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
822 /*-----------------------------------------------------------*/
\r
824 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
825 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
826 const uint32_t ulStackDepth,
\r
827 void * const pvParameters,
\r
828 UBaseType_t uxPriority,
\r
829 TaskHandle_t * const pxCreatedTask,
\r
831 const MemoryRegion_t * const xRegions )
\r
833 StackType_t *pxTopOfStack;
\r
836 #if( portUSING_MPU_WRAPPERS == 1 )
\r
837 /* Should the task be created in privileged mode? */
\r
838 BaseType_t xRunPrivileged;
\r
839 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
841 xRunPrivileged = pdTRUE;
\r
845 xRunPrivileged = pdFALSE;
\r
847 uxPriority &= ~portPRIVILEGE_BIT;
\r
848 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
850 /* Avoid dependency on memset() if it is not required. */
\r
851 #if( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
853 /* Fill the stack with a known value to assist debugging. */
\r
854 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
856 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
858 /* Calculate the top of stack address. This depends on whether the stack
\r
859 grows from high memory to low (as per the 80x86) or vice versa.
\r
860 portSTACK_GROWTH is used to make the result positive or negative as required
\r
862 #if( portSTACK_GROWTH < 0 )
\r
864 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
865 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
867 /* Check the alignment of the calculated top of stack is correct. */
\r
868 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
870 #if( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
872 /* Also record the stack's high address, which may assist
\r
874 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
876 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
878 #else /* portSTACK_GROWTH */
\r
880 pxTopOfStack = pxNewTCB->pxStack;
\r
882 /* Check the alignment of the stack buffer is correct. */
\r
883 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
885 /* The other extreme of the stack space is required if stack checking is
\r
887 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
889 #endif /* portSTACK_GROWTH */
\r
891 /* Store the task name in the TCB. */
\r
892 if( pcName != NULL )
\r
894 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
896 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
898 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
899 configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
900 string is not accessible (extremely unlikely). */
\r
901 if( pcName[ x ] == ( char ) 0x00 )
\r
907 mtCOVERAGE_TEST_MARKER();
\r
911 /* Ensure the name string is terminated in the case that the string length
\r
912 was greater or equal to configMAX_TASK_NAME_LEN. */
\r
913 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
917 /* The task has not been given a name, so just ensure there is a NULL
\r
918 terminator when it is read out. */
\r
919 pxNewTCB->pcTaskName[ 0 ] = 0x00;
\r
922 /* This is used as an array index so must ensure it's not too large. First
\r
923 remove the privilege bit if one is present. */
\r
924 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
926 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
930 mtCOVERAGE_TEST_MARKER();
\r
933 pxNewTCB->uxPriority = uxPriority;
\r
934 #if ( configUSE_MUTEXES == 1 )
\r
936 pxNewTCB->uxBasePriority = uxPriority;
\r
937 pxNewTCB->uxMutexesHeld = 0;
\r
939 #endif /* configUSE_MUTEXES */
\r
941 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
942 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
944 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
945 back to the containing TCB from a generic item in a list. */
\r
946 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
948 /* Event lists are always in priority order. */
\r
949 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
950 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
952 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
954 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
956 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
958 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
960 pxNewTCB->pxTaskTag = NULL;
\r
962 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
964 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
966 pxNewTCB->ulRunTimeCounter = 0UL;
\r
968 #endif /* configGENERATE_RUN_TIME_STATS */
\r
970 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
972 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
976 /* Avoid compiler warning about unreferenced parameter. */
\r
981 #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
983 for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
\r
985 pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL;
\r
990 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
992 pxNewTCB->ulNotifiedValue = 0;
\r
993 pxNewTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
997 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
999 /* Initialise this task's Newlib reent structure.
\r
1000 See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
1001 for additional information. */
\r
1002 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
1006 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
1008 pxNewTCB->ucDelayAborted = pdFALSE;
\r
1012 /* Initialize the TCB stack to look as if the task was already running,
\r
1013 but had been interrupted by the scheduler. The return address is set
\r
1014 to the start of the task function. Once the stack has been initialised
\r
1015 the top of stack variable is updated. */
\r
1016 #if( portUSING_MPU_WRAPPERS == 1 )
\r
1018 /* If the port has capability to detect stack overflow,
\r
1019 pass the stack end address to the stack initialization
\r
1020 function as well. */
\r
1021 #if( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1023 #if( portSTACK_GROWTH < 0 )
\r
1025 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1027 #else /* portSTACK_GROWTH */
\r
1029 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1031 #endif /* portSTACK_GROWTH */
\r
1033 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1035 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1037 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1039 #else /* portUSING_MPU_WRAPPERS */
\r
1041 /* If the port has capability to detect stack overflow,
\r
1042 pass the stack end address to the stack initialization
\r
1043 function as well. */
\r
1044 #if( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1046 #if( portSTACK_GROWTH < 0 )
\r
1048 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
1050 #else /* portSTACK_GROWTH */
\r
1052 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1054 #endif /* portSTACK_GROWTH */
\r
1056 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1058 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1060 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1062 #endif /* portUSING_MPU_WRAPPERS */
\r
1064 if( pxCreatedTask != NULL )
\r
1066 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1067 change the created task's priority, delete the created task, etc.*/
\r
1068 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1072 mtCOVERAGE_TEST_MARKER();
\r
1075 /*-----------------------------------------------------------*/
\r
1077 static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB )
\r
1079 /* Ensure interrupts don't access the task lists while the lists are being
\r
1081 taskENTER_CRITICAL();
\r
1083 uxCurrentNumberOfTasks++;
\r
1084 if( pxCurrentTCB == NULL )
\r
1086 /* There are no other tasks, or all the other tasks are in
\r
1087 the suspended state - make this the current task. */
\r
1088 pxCurrentTCB = pxNewTCB;
\r
1090 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1092 /* This is the first task to be created so do the preliminary
\r
1093 initialisation required. We will not recover if this call
\r
1094 fails, but we will report the failure. */
\r
1095 prvInitialiseTaskLists();
\r
1099 mtCOVERAGE_TEST_MARKER();
\r
1104 /* If the scheduler is not already running, make this task the
\r
1105 current task if it is the highest priority task to be created
\r
1107 if( xSchedulerRunning == pdFALSE )
\r
1109 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1111 pxCurrentTCB = pxNewTCB;
\r
1115 mtCOVERAGE_TEST_MARKER();
\r
1120 mtCOVERAGE_TEST_MARKER();
\r
1126 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1128 /* Add a counter into the TCB for tracing only. */
\r
1129 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1131 #endif /* configUSE_TRACE_FACILITY */
\r
1132 traceTASK_CREATE( pxNewTCB );
\r
1134 prvAddTaskToReadyList( pxNewTCB );
\r
1136 portSETUP_TCB( pxNewTCB );
\r
1138 taskEXIT_CRITICAL();
\r
1140 if( xSchedulerRunning != pdFALSE )
\r
1142 /* If the created task is of a higher priority than the current task
\r
1143 then it should run now. */
\r
1144 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1146 taskYIELD_IF_USING_PREEMPTION();
\r
1150 mtCOVERAGE_TEST_MARKER();
\r
1155 mtCOVERAGE_TEST_MARKER();
\r
1158 /*-----------------------------------------------------------*/
\r
1160 #if ( INCLUDE_vTaskDelete == 1 )
\r
1162 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1166 taskENTER_CRITICAL();
\r
1168 /* If null is passed in here then it is the calling task that is
\r
1170 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1172 /* Remove task from the ready/delayed list. */
\r
1173 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1175 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1179 mtCOVERAGE_TEST_MARKER();
\r
1182 /* Is the task waiting on an event also? */
\r
1183 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1185 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1189 mtCOVERAGE_TEST_MARKER();
\r
1192 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1193 detect that the task lists need re-generating. This is done before
\r
1194 portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1198 if( pxTCB == pxCurrentTCB )
\r
1200 /* A task is deleting itself. This cannot complete within the
\r
1201 task itself, as a context switch to another task is required.
\r
1202 Place the task in the termination list. The idle task will
\r
1203 check the termination list and free up any memory allocated by
\r
1204 the scheduler for the TCB and stack of the deleted task. */
\r
1205 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1207 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1208 there is a task that has been deleted and that it should therefore
\r
1209 check the xTasksWaitingTermination list. */
\r
1210 ++uxDeletedTasksWaitingCleanUp;
\r
1212 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1213 portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1214 traceTASK_DELETE( pxTCB );
\r
1216 /* The pre-delete hook is primarily for the Windows simulator,
\r
1217 in which Windows specific clean up operations are performed,
\r
1218 after which it is not possible to yield away from this task -
\r
1219 hence xYieldPending is used to latch that a context switch is
\r
1221 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1225 --uxCurrentNumberOfTasks;
\r
1226 traceTASK_DELETE( pxTCB );
\r
1227 prvDeleteTCB( pxTCB );
\r
1229 /* Reset the next expected unblock time in case it referred to
\r
1230 the task that has just been deleted. */
\r
1231 prvResetNextTaskUnblockTime();
\r
1234 taskEXIT_CRITICAL();
\r
1236 /* Force a reschedule if it is the currently running task that has just
\r
1238 if( xSchedulerRunning != pdFALSE )
\r
1240 if( pxTCB == pxCurrentTCB )
\r
1242 configASSERT( uxSchedulerSuspended == 0 );
\r
1243 portYIELD_WITHIN_API();
\r
1247 mtCOVERAGE_TEST_MARKER();
\r
1252 #endif /* INCLUDE_vTaskDelete */
\r
1253 /*-----------------------------------------------------------*/
\r
1255 #if ( INCLUDE_vTaskDelayUntil == 1 )
\r
1257 void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement )
\r
1259 TickType_t xTimeToWake;
\r
1260 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1262 configASSERT( pxPreviousWakeTime );
\r
1263 configASSERT( ( xTimeIncrement > 0U ) );
\r
1264 configASSERT( uxSchedulerSuspended == 0 );
\r
1266 vTaskSuspendAll();
\r
1268 /* Minor optimisation. The tick count cannot change in this
\r
1270 const TickType_t xConstTickCount = xTickCount;
\r
1272 /* Generate the tick time at which the task wants to wake. */
\r
1273 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1275 if( xConstTickCount < *pxPreviousWakeTime )
\r
1277 /* The tick count has overflowed since this function was
\r
1278 lasted called. In this case the only time we should ever
\r
1279 actually delay is if the wake time has also overflowed,
\r
1280 and the wake time is greater than the tick time. When this
\r
1281 is the case it is as if neither time had overflowed. */
\r
1282 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1284 xShouldDelay = pdTRUE;
\r
1288 mtCOVERAGE_TEST_MARKER();
\r
1293 /* The tick time has not overflowed. In this case we will
\r
1294 delay if either the wake time has overflowed, and/or the
\r
1295 tick time is less than the wake time. */
\r
1296 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1298 xShouldDelay = pdTRUE;
\r
1302 mtCOVERAGE_TEST_MARKER();
\r
1306 /* Update the wake time ready for the next call. */
\r
1307 *pxPreviousWakeTime = xTimeToWake;
\r
1309 if( xShouldDelay != pdFALSE )
\r
1311 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1313 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1314 the time to wake, so subtract the current tick count. */
\r
1315 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1319 mtCOVERAGE_TEST_MARKER();
\r
1322 xAlreadyYielded = xTaskResumeAll();
\r
1324 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1325 have put ourselves to sleep. */
\r
1326 if( xAlreadyYielded == pdFALSE )
\r
1328 portYIELD_WITHIN_API();
\r
1332 mtCOVERAGE_TEST_MARKER();
\r
1336 #endif /* INCLUDE_vTaskDelayUntil */
\r
1337 /*-----------------------------------------------------------*/
\r
1339 #if ( INCLUDE_vTaskDelay == 1 )
\r
1341 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1343 BaseType_t xAlreadyYielded = pdFALSE;
\r
1345 /* A delay time of zero just forces a reschedule. */
\r
1346 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1348 configASSERT( uxSchedulerSuspended == 0 );
\r
1349 vTaskSuspendAll();
\r
1351 traceTASK_DELAY();
\r
1353 /* A task that is removed from the event list while the
\r
1354 scheduler is suspended will not get placed in the ready
\r
1355 list or removed from the blocked list until the scheduler
\r
1358 This task cannot be in an event list as it is the currently
\r
1359 executing task. */
\r
1360 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1362 xAlreadyYielded = xTaskResumeAll();
\r
1366 mtCOVERAGE_TEST_MARKER();
\r
1369 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1370 have put ourselves to sleep. */
\r
1371 if( xAlreadyYielded == pdFALSE )
\r
1373 portYIELD_WITHIN_API();
\r
1377 mtCOVERAGE_TEST_MARKER();
\r
1381 #endif /* INCLUDE_vTaskDelay */
\r
1382 /*-----------------------------------------------------------*/
\r
1384 #if( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1386 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1388 eTaskState eReturn;
\r
1389 List_t const * pxStateList, *pxDelayedList, *pxOverflowedDelayedList;
\r
1390 const TCB_t * const pxTCB = xTask;
\r
1392 configASSERT( pxTCB );
\r
1394 if( pxTCB == pxCurrentTCB )
\r
1396 /* The task calling this function is querying its own state. */
\r
1397 eReturn = eRunning;
\r
1401 taskENTER_CRITICAL();
\r
1403 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1404 pxDelayedList = pxDelayedTaskList;
\r
1405 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1407 taskEXIT_CRITICAL();
\r
1409 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1411 /* The task being queried is referenced from one of the Blocked
\r
1413 eReturn = eBlocked;
\r
1416 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1417 else if( pxStateList == &xSuspendedTaskList )
\r
1419 /* The task being queried is referenced from the suspended
\r
1420 list. Is it genuinely suspended or is it blocked
\r
1422 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1424 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1426 /* The task does not appear on the event list item of
\r
1427 and of the RTOS objects, but could still be in the
\r
1428 blocked state if it is waiting on its notification
\r
1429 rather than waiting on an object. */
\r
1430 if( pxTCB->ucNotifyState == taskWAITING_NOTIFICATION )
\r
1432 eReturn = eBlocked;
\r
1436 eReturn = eSuspended;
\r
1441 eReturn = eSuspended;
\r
1447 eReturn = eBlocked;
\r
1452 #if ( INCLUDE_vTaskDelete == 1 )
\r
1453 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1455 /* The task being queried is referenced from the deleted
\r
1456 tasks list, or it is not referenced from any lists at
\r
1458 eReturn = eDeleted;
\r
1462 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1464 /* If the task is not in any other state, it must be in the
\r
1465 Ready (including pending ready) state. */
\r
1471 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1473 #endif /* INCLUDE_eTaskGetState */
\r
1474 /*-----------------------------------------------------------*/
\r
1476 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1478 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1480 TCB_t const *pxTCB;
\r
1481 UBaseType_t uxReturn;
\r
1483 taskENTER_CRITICAL();
\r
1485 /* If null is passed in here then it is the priority of the task
\r
1486 that called uxTaskPriorityGet() that is being queried. */
\r
1487 pxTCB = prvGetTCBFromHandle( xTask );
\r
1488 uxReturn = pxTCB->uxPriority;
\r
1490 taskEXIT_CRITICAL();
\r
1495 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1496 /*-----------------------------------------------------------*/
\r
1498 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1500 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1502 TCB_t const *pxTCB;
\r
1503 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1505 /* RTOS ports that support interrupt nesting have the concept of a
\r
1506 maximum system call (or maximum API call) interrupt priority.
\r
1507 Interrupts that are above the maximum system call priority are keep
\r
1508 permanently enabled, even when the RTOS kernel is in a critical section,
\r
1509 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1510 is defined in FreeRTOSConfig.h then
\r
1511 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1512 failure if a FreeRTOS API function is called from an interrupt that has
\r
1513 been assigned a priority above the configured maximum system call
\r
1514 priority. Only FreeRTOS functions that end in FromISR can be called
\r
1515 from interrupts that have been assigned a priority at or (logically)
\r
1516 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1517 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1518 simple as possible. More information (albeit Cortex-M specific) is
\r
1519 provided on the following link:
\r
1520 https://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1521 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1523 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1525 /* If null is passed in here then it is the priority of the calling
\r
1526 task that is being queried. */
\r
1527 pxTCB = prvGetTCBFromHandle( xTask );
\r
1528 uxReturn = pxTCB->uxPriority;
\r
1530 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1535 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1536 /*-----------------------------------------------------------*/
\r
1538 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1540 void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority )
\r
1543 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1544 BaseType_t xYieldRequired = pdFALSE;
\r
1546 configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
\r
1548 /* Ensure the new priority is valid. */
\r
1549 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1551 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1555 mtCOVERAGE_TEST_MARKER();
\r
1558 taskENTER_CRITICAL();
\r
1560 /* If null is passed in here then it is the priority of the calling
\r
1561 task that is being changed. */
\r
1562 pxTCB = prvGetTCBFromHandle( xTask );
\r
1564 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1566 #if ( configUSE_MUTEXES == 1 )
\r
1568 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1572 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1576 if( uxCurrentBasePriority != uxNewPriority )
\r
1578 /* The priority change may have readied a task of higher
\r
1579 priority than the calling task. */
\r
1580 if( uxNewPriority > uxCurrentBasePriority )
\r
1582 if( pxTCB != pxCurrentTCB )
\r
1584 /* The priority of a task other than the currently
\r
1585 running task is being raised. Is the priority being
\r
1586 raised above that of the running task? */
\r
1587 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1589 xYieldRequired = pdTRUE;
\r
1593 mtCOVERAGE_TEST_MARKER();
\r
1598 /* The priority of the running task is being raised,
\r
1599 but the running task must already be the highest
\r
1600 priority task able to run so no yield is required. */
\r
1603 else if( pxTCB == pxCurrentTCB )
\r
1605 /* Setting the priority of the running task down means
\r
1606 there may now be another task of higher priority that
\r
1607 is ready to execute. */
\r
1608 xYieldRequired = pdTRUE;
\r
1612 /* Setting the priority of any other task down does not
\r
1613 require a yield as the running task must be above the
\r
1614 new priority of the task being modified. */
\r
1617 /* Remember the ready list the task might be referenced from
\r
1618 before its uxPriority member is changed so the
\r
1619 taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1620 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1622 #if ( configUSE_MUTEXES == 1 )
\r
1624 /* Only change the priority being used if the task is not
\r
1625 currently using an inherited priority. */
\r
1626 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1628 pxTCB->uxPriority = uxNewPriority;
\r
1632 mtCOVERAGE_TEST_MARKER();
\r
1635 /* The base priority gets set whatever. */
\r
1636 pxTCB->uxBasePriority = uxNewPriority;
\r
1640 pxTCB->uxPriority = uxNewPriority;
\r
1644 /* Only reset the event list item value if the value is not
\r
1645 being used for anything else. */
\r
1646 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1648 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1652 mtCOVERAGE_TEST_MARKER();
\r
1655 /* If the task is in the blocked or suspended list we need do
\r
1656 nothing more than change its priority variable. However, if
\r
1657 the task is in a ready list it needs to be removed and placed
\r
1658 in the list appropriate to its new priority. */
\r
1659 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1661 /* The task is currently in its ready list - remove before
\r
1662 adding it to it's new ready list. As we are in a critical
\r
1663 section we can do this even if the scheduler is suspended. */
\r
1664 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1666 /* It is known that the task is in its ready list so
\r
1667 there is no need to check again and the port level
\r
1668 reset macro can be called directly. */
\r
1669 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1673 mtCOVERAGE_TEST_MARKER();
\r
1675 prvAddTaskToReadyList( pxTCB );
\r
1679 mtCOVERAGE_TEST_MARKER();
\r
1682 if( xYieldRequired != pdFALSE )
\r
1684 taskYIELD_IF_USING_PREEMPTION();
\r
1688 mtCOVERAGE_TEST_MARKER();
\r
1691 /* Remove compiler warning about unused variables when the port
\r
1692 optimised task selection is not being used. */
\r
1693 ( void ) uxPriorityUsedOnEntry;
\r
1696 taskEXIT_CRITICAL();
\r
1699 #endif /* INCLUDE_vTaskPrioritySet */
\r
1700 /*-----------------------------------------------------------*/
\r
1702 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1704 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1708 taskENTER_CRITICAL();
\r
1710 /* If null is passed in here then it is the running task that is
\r
1711 being suspended. */
\r
1712 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1714 traceTASK_SUSPEND( pxTCB );
\r
1716 /* Remove task from the ready/delayed list and place in the
\r
1717 suspended list. */
\r
1718 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1720 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1724 mtCOVERAGE_TEST_MARKER();
\r
1727 /* Is the task waiting on an event also? */
\r
1728 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1730 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1734 mtCOVERAGE_TEST_MARKER();
\r
1737 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1739 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1741 if( pxTCB->ucNotifyState == taskWAITING_NOTIFICATION )
\r
1743 /* The task was blocked to wait for a notification, but is
\r
1744 now suspended, so no notification was received. */
\r
1745 pxTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
1750 taskEXIT_CRITICAL();
\r
1752 if( xSchedulerRunning != pdFALSE )
\r
1754 /* Reset the next expected unblock time in case it referred to the
\r
1755 task that is now in the Suspended state. */
\r
1756 taskENTER_CRITICAL();
\r
1758 prvResetNextTaskUnblockTime();
\r
1760 taskEXIT_CRITICAL();
\r
1764 mtCOVERAGE_TEST_MARKER();
\r
1767 if( pxTCB == pxCurrentTCB )
\r
1769 if( xSchedulerRunning != pdFALSE )
\r
1771 /* The current task has just been suspended. */
\r
1772 configASSERT( uxSchedulerSuspended == 0 );
\r
1773 portYIELD_WITHIN_API();
\r
1777 /* The scheduler is not running, but the task that was pointed
\r
1778 to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1779 must be adjusted to point to a different task. */
\r
1780 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1782 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1783 NULL so when the next task is created pxCurrentTCB will
\r
1784 be set to point to it no matter what its relative priority
\r
1786 pxCurrentTCB = NULL;
\r
1790 vTaskSwitchContext();
\r
1796 mtCOVERAGE_TEST_MARKER();
\r
1800 #endif /* INCLUDE_vTaskSuspend */
\r
1801 /*-----------------------------------------------------------*/
\r
1803 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1805 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1807 BaseType_t xReturn = pdFALSE;
\r
1808 const TCB_t * const pxTCB = xTask;
\r
1810 /* Accesses xPendingReadyList so must be called from a critical
\r
1813 /* It does not make sense to check if the calling task is suspended. */
\r
1814 configASSERT( xTask );
\r
1816 /* Is the task being resumed actually in the suspended list? */
\r
1817 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1819 /* Has the task already been resumed from within an ISR? */
\r
1820 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1822 /* Is it in the suspended list because it is in the Suspended
\r
1823 state, or because is is blocked with no timeout? */
\r
1824 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1830 mtCOVERAGE_TEST_MARKER();
\r
1835 mtCOVERAGE_TEST_MARKER();
\r
1840 mtCOVERAGE_TEST_MARKER();
\r
1844 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1846 #endif /* INCLUDE_vTaskSuspend */
\r
1847 /*-----------------------------------------------------------*/
\r
1849 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1851 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1853 TCB_t * const pxTCB = xTaskToResume;
\r
1855 /* It does not make sense to resume the calling task. */
\r
1856 configASSERT( xTaskToResume );
\r
1858 /* The parameter cannot be NULL as it is impossible to resume the
\r
1859 currently executing task. */
\r
1860 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1862 taskENTER_CRITICAL();
\r
1864 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1866 traceTASK_RESUME( pxTCB );
\r
1868 /* The ready list can be accessed even if the scheduler is
\r
1869 suspended because this is inside a critical section. */
\r
1870 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1871 prvAddTaskToReadyList( pxTCB );
\r
1873 /* A higher priority task may have just been resumed. */
\r
1874 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1876 /* This yield may not cause the task just resumed to run,
\r
1877 but will leave the lists in the correct state for the
\r
1879 taskYIELD_IF_USING_PREEMPTION();
\r
1883 mtCOVERAGE_TEST_MARKER();
\r
1888 mtCOVERAGE_TEST_MARKER();
\r
1891 taskEXIT_CRITICAL();
\r
1895 mtCOVERAGE_TEST_MARKER();
\r
1899 #endif /* INCLUDE_vTaskSuspend */
\r
1901 /*-----------------------------------------------------------*/
\r
1903 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1905 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1907 BaseType_t xYieldRequired = pdFALSE;
\r
1908 TCB_t * const pxTCB = xTaskToResume;
\r
1909 UBaseType_t uxSavedInterruptStatus;
\r
1911 configASSERT( xTaskToResume );
\r
1913 /* RTOS ports that support interrupt nesting have the concept of a
\r
1914 maximum system call (or maximum API call) interrupt priority.
\r
1915 Interrupts that are above the maximum system call priority are keep
\r
1916 permanently enabled, even when the RTOS kernel is in a critical section,
\r
1917 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1918 is defined in FreeRTOSConfig.h then
\r
1919 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1920 failure if a FreeRTOS API function is called from an interrupt that has
\r
1921 been assigned a priority above the configured maximum system call
\r
1922 priority. Only FreeRTOS functions that end in FromISR can be called
\r
1923 from interrupts that have been assigned a priority at or (logically)
\r
1924 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1925 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1926 simple as possible. More information (albeit Cortex-M specific) is
\r
1927 provided on the following link:
\r
1928 https://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1929 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1931 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1933 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1935 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1937 /* Check the ready lists can be accessed. */
\r
1938 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1940 /* Ready lists can be accessed so move the task from the
\r
1941 suspended list to the ready list directly. */
\r
1942 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1944 xYieldRequired = pdTRUE;
\r
1948 mtCOVERAGE_TEST_MARKER();
\r
1951 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1952 prvAddTaskToReadyList( pxTCB );
\r
1956 /* The delayed or ready lists cannot be accessed so the task
\r
1957 is held in the pending ready list until the scheduler is
\r
1959 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1964 mtCOVERAGE_TEST_MARKER();
\r
1967 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1969 return xYieldRequired;
\r
1972 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1973 /*-----------------------------------------------------------*/
\r
1975 void vTaskStartScheduler( void )
\r
1977 BaseType_t xReturn;
\r
1979 /* Add the idle task at the lowest priority. */
\r
1980 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1982 StaticTask_t *pxIdleTaskTCBBuffer = NULL;
\r
1983 StackType_t *pxIdleTaskStackBuffer = NULL;
\r
1984 uint32_t ulIdleTaskStackSize;
\r
1986 /* The Idle task is created using user provided RAM - obtain the
\r
1987 address of the RAM then create the idle task. */
\r
1988 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
1989 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
1990 configIDLE_TASK_NAME,
\r
1991 ulIdleTaskStackSize,
\r
1992 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
1993 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
1994 pxIdleTaskStackBuffer,
\r
1995 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
1997 if( xIdleTaskHandle != NULL )
\r
2008 /* The Idle task is being created using dynamically allocated RAM. */
\r
2009 xReturn = xTaskCreate( prvIdleTask,
\r
2010 configIDLE_TASK_NAME,
\r
2011 configMINIMAL_STACK_SIZE,
\r
2013 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2014 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2016 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
2018 #if ( configUSE_TIMERS == 1 )
\r
2020 if( xReturn == pdPASS )
\r
2022 xReturn = xTimerCreateTimerTask();
\r
2026 mtCOVERAGE_TEST_MARKER();
\r
2029 #endif /* configUSE_TIMERS */
\r
2031 if( xReturn == pdPASS )
\r
2033 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2034 definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2035 the only macro called by the function. */
\r
2036 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2038 freertos_tasks_c_additions_init();
\r
2042 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2043 before or during the call to xPortStartScheduler(). The stacks of
\r
2044 the created tasks contain a status word with interrupts switched on
\r
2045 so interrupts will automatically get re-enabled when the first task
\r
2047 portDISABLE_INTERRUPTS();
\r
2049 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2051 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2052 structure specific to the task that will run first.
\r
2053 See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
2054 for additional information. */
\r
2055 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2057 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2059 xNextTaskUnblockTime = portMAX_DELAY;
\r
2060 xSchedulerRunning = pdTRUE;
\r
2061 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2063 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2064 macro must be defined to configure the timer/counter used to generate
\r
2065 the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2066 is set to 0 and the following line fails to build then ensure you do not
\r
2067 have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2068 FreeRTOSConfig.h file. */
\r
2069 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2071 traceTASK_SWITCHED_IN();
\r
2073 /* Setting up the timer tick is hardware specific and thus in the
\r
2074 portable interface. */
\r
2075 if( xPortStartScheduler() != pdFALSE )
\r
2077 /* Should not reach here as if the scheduler is running the
\r
2078 function will not return. */
\r
2082 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2087 /* This line will only be reached if the kernel could not be started,
\r
2088 because there was not enough FreeRTOS heap to create the idle task
\r
2089 or the timer task. */
\r
2090 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2093 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2094 meaning xIdleTaskHandle is not used anywhere else. */
\r
2095 ( void ) xIdleTaskHandle;
\r
2097 /*-----------------------------------------------------------*/
\r
2099 void vTaskEndScheduler( void )
\r
2101 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2102 routine so the original ISRs can be restored if necessary. The port
\r
2103 layer must ensure interrupts enable bit is left in the correct state. */
\r
2104 portDISABLE_INTERRUPTS();
\r
2105 xSchedulerRunning = pdFALSE;
\r
2106 vPortEndScheduler();
\r
2108 /*----------------------------------------------------------*/
\r
2110 void vTaskSuspendAll( void )
\r
2112 /* A critical section is not required as the variable is of type
\r
2113 BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2114 post in the FreeRTOS support forum before reporting this as a bug! -
\r
2115 http://goo.gl/wu4acr */
\r
2117 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2118 do not otherwise exhibit real time behaviour. */
\r
2119 portSOFTWARE_BARRIER();
\r
2121 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2122 is used to allow calls to vTaskSuspendAll() to nest. */
\r
2123 ++uxSchedulerSuspended;
\r
2125 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2126 the above increment elsewhere. */
\r
2127 portMEMORY_BARRIER();
\r
2129 /*----------------------------------------------------------*/
\r
2131 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2133 static TickType_t prvGetExpectedIdleTime( void )
\r
2135 TickType_t xReturn;
\r
2136 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2138 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2139 configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2140 task that are in the Ready state, even though the idle task is
\r
2142 #if( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2144 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2146 uxHigherPriorityReadyTasks = pdTRUE;
\r
2151 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2153 /* When port optimised task selection is used the uxTopReadyPriority
\r
2154 variable is used as a bit map. If bits other than the least
\r
2155 significant bit are set then there are tasks that have a priority
\r
2156 above the idle priority that are in the Ready state. This takes
\r
2157 care of the case where the co-operative scheduler is in use. */
\r
2158 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2160 uxHigherPriorityReadyTasks = pdTRUE;
\r
2165 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2169 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2171 /* There are other idle priority tasks in the ready state. If
\r
2172 time slicing is used then the very next tick interrupt must be
\r
2176 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2178 /* There are tasks in the Ready state that have a priority above the
\r
2179 idle priority. This path can only be reached if
\r
2180 configUSE_PREEMPTION is 0. */
\r
2185 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2191 #endif /* configUSE_TICKLESS_IDLE */
\r
2192 /*----------------------------------------------------------*/
\r
2194 BaseType_t xTaskResumeAll( void )
\r
2196 TCB_t *pxTCB = NULL;
\r
2197 BaseType_t xAlreadyYielded = pdFALSE;
\r
2199 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2200 previous call to vTaskSuspendAll(). */
\r
2201 configASSERT( uxSchedulerSuspended );
\r
2203 /* It is possible that an ISR caused a task to be removed from an event
\r
2204 list while the scheduler was suspended. If this was the case then the
\r
2205 removed task will have been added to the xPendingReadyList. Once the
\r
2206 scheduler has been resumed it is safe to move all the pending ready
\r
2207 tasks from this list into their appropriate ready list. */
\r
2208 taskENTER_CRITICAL();
\r
2210 --uxSchedulerSuspended;
\r
2212 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2214 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2216 /* Move any readied tasks from the pending list into the
\r
2217 appropriate ready list. */
\r
2218 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2220 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2221 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2222 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2223 prvAddTaskToReadyList( pxTCB );
\r
2225 /* If the moved task has a priority higher than the current
\r
2226 task then a yield must be performed. */
\r
2227 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2229 xYieldPending = pdTRUE;
\r
2233 mtCOVERAGE_TEST_MARKER();
\r
2237 if( pxTCB != NULL )
\r
2239 /* A task was unblocked while the scheduler was suspended,
\r
2240 which may have prevented the next unblock time from being
\r
2241 re-calculated, in which case re-calculate it now. Mainly
\r
2242 important for low power tickless implementations, where
\r
2243 this can prevent an unnecessary exit from low power
\r
2245 prvResetNextTaskUnblockTime();
\r
2248 /* If any ticks occurred while the scheduler was suspended then
\r
2249 they should be processed now. This ensures the tick count does
\r
2250 not slip, and that any delayed tasks are resumed at the correct
\r
2253 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2255 if( xPendedCounts > ( TickType_t ) 0U )
\r
2259 if( xTaskIncrementTick() != pdFALSE )
\r
2261 xYieldPending = pdTRUE;
\r
2265 mtCOVERAGE_TEST_MARKER();
\r
2268 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2274 mtCOVERAGE_TEST_MARKER();
\r
2278 if( xYieldPending != pdFALSE )
\r
2280 #if( configUSE_PREEMPTION != 0 )
\r
2282 xAlreadyYielded = pdTRUE;
\r
2285 taskYIELD_IF_USING_PREEMPTION();
\r
2289 mtCOVERAGE_TEST_MARKER();
\r
2295 mtCOVERAGE_TEST_MARKER();
\r
2298 taskEXIT_CRITICAL();
\r
2300 return xAlreadyYielded;
\r
2302 /*-----------------------------------------------------------*/
\r
2304 TickType_t xTaskGetTickCount( void )
\r
2306 TickType_t xTicks;
\r
2308 /* Critical section required if running on a 16 bit processor. */
\r
2309 portTICK_TYPE_ENTER_CRITICAL();
\r
2311 xTicks = xTickCount;
\r
2313 portTICK_TYPE_EXIT_CRITICAL();
\r
2317 /*-----------------------------------------------------------*/
\r
2319 TickType_t xTaskGetTickCountFromISR( void )
\r
2321 TickType_t xReturn;
\r
2322 UBaseType_t uxSavedInterruptStatus;
\r
2324 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2325 system call (or maximum API call) interrupt priority. Interrupts that are
\r
2326 above the maximum system call priority are kept permanently enabled, even
\r
2327 when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2328 FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2329 then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2330 failure if a FreeRTOS API function is called from an interrupt that has been
\r
2331 assigned a priority above the configured maximum system call priority.
\r
2332 Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2333 that have been assigned a priority at or (logically) below the maximum
\r
2334 system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2335 safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2336 More information (albeit Cortex-M specific) is provided on the following
\r
2337 link: https://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
2338 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2340 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2342 xReturn = xTickCount;
\r
2344 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2348 /*-----------------------------------------------------------*/
\r
2350 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2352 /* A critical section is not required because the variables are of type
\r
2354 return uxCurrentNumberOfTasks;
\r
2356 /*-----------------------------------------------------------*/
\r
2358 char *pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2362 /* If null is passed in here then the name of the calling task is being
\r
2364 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2365 configASSERT( pxTCB );
\r
2366 return &( pxTCB->pcTaskName[ 0 ] );
\r
2368 /*-----------------------------------------------------------*/
\r
2370 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2372 static TCB_t *prvSearchForNameWithinSingleList( List_t *pxList, const char pcNameToQuery[] )
\r
2374 TCB_t *pxNextTCB, *pxFirstTCB, *pxReturn = NULL;
\r
2377 BaseType_t xBreakLoop;
\r
2379 /* This function is called with the scheduler suspended. */
\r
2381 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2383 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2387 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2389 /* Check each character in the name looking for a match or
\r
2391 xBreakLoop = pdFALSE;
\r
2392 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2394 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2396 if( cNextChar != pcNameToQuery[ x ] )
\r
2398 /* Characters didn't match. */
\r
2399 xBreakLoop = pdTRUE;
\r
2401 else if( cNextChar == ( char ) 0x00 )
\r
2403 /* Both strings terminated, a match must have been
\r
2405 pxReturn = pxNextTCB;
\r
2406 xBreakLoop = pdTRUE;
\r
2410 mtCOVERAGE_TEST_MARKER();
\r
2413 if( xBreakLoop != pdFALSE )
\r
2419 if( pxReturn != NULL )
\r
2421 /* The handle has been found. */
\r
2425 } while( pxNextTCB != pxFirstTCB );
\r
2429 mtCOVERAGE_TEST_MARKER();
\r
2435 #endif /* INCLUDE_xTaskGetHandle */
\r
2436 /*-----------------------------------------------------------*/
\r
2438 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2440 TaskHandle_t xTaskGetHandle( const char *pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2442 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2445 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2446 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2448 vTaskSuspendAll();
\r
2450 /* Search the ready lists. */
\r
2454 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2456 if( pxTCB != NULL )
\r
2458 /* Found the handle. */
\r
2462 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2464 /* Search the delayed lists. */
\r
2465 if( pxTCB == NULL )
\r
2467 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2470 if( pxTCB == NULL )
\r
2472 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2475 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2477 if( pxTCB == NULL )
\r
2479 /* Search the suspended list. */
\r
2480 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2485 #if( INCLUDE_vTaskDelete == 1 )
\r
2487 if( pxTCB == NULL )
\r
2489 /* Search the deleted list. */
\r
2490 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2495 ( void ) xTaskResumeAll();
\r
2500 #endif /* INCLUDE_xTaskGetHandle */
\r
2501 /*-----------------------------------------------------------*/
\r
2503 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2505 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime )
\r
2507 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2509 vTaskSuspendAll();
\r
2511 /* Is there a space in the array for each task in the system? */
\r
2512 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2514 /* Fill in an TaskStatus_t structure with information on each
\r
2515 task in the Ready state. */
\r
2519 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2521 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2523 /* Fill in an TaskStatus_t structure with information on each
\r
2524 task in the Blocked state. */
\r
2525 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2526 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2528 #if( INCLUDE_vTaskDelete == 1 )
\r
2530 /* Fill in an TaskStatus_t structure with information on
\r
2531 each task that has been deleted but not yet cleaned up. */
\r
2532 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2536 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2538 /* Fill in an TaskStatus_t structure with information on
\r
2539 each task in the Suspended state. */
\r
2540 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2544 #if ( configGENERATE_RUN_TIME_STATS == 1)
\r
2546 if( pulTotalRunTime != NULL )
\r
2548 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2549 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2551 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2557 if( pulTotalRunTime != NULL )
\r
2559 *pulTotalRunTime = 0;
\r
2566 mtCOVERAGE_TEST_MARKER();
\r
2569 ( void ) xTaskResumeAll();
\r
2574 #endif /* configUSE_TRACE_FACILITY */
\r
2575 /*----------------------------------------------------------*/
\r
2577 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2579 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2581 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2582 started, then xIdleTaskHandle will be NULL. */
\r
2583 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2584 return xIdleTaskHandle;
\r
2587 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2588 /*----------------------------------------------------------*/
\r
2590 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2591 This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2592 implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2594 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2596 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2598 /* Correct the tick count value after a period during which the tick
\r
2599 was suppressed. Note this does *not* call the tick hook function for
\r
2600 each stepped tick. */
\r
2601 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2602 xTickCount += xTicksToJump;
\r
2603 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2606 #endif /* configUSE_TICKLESS_IDLE */
\r
2607 /*----------------------------------------------------------*/
\r
2609 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2611 BaseType_t xYieldRequired = pdFALSE;
\r
2613 /* Must not be called with the scheduler suspended as the implementation
\r
2614 relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2615 configASSERT( uxSchedulerSuspended == 0 );
\r
2617 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2618 the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2619 vTaskSuspendAll();
\r
2620 xPendedTicks += xTicksToCatchUp;
\r
2621 xYieldRequired = xTaskResumeAll();
\r
2623 return xYieldRequired;
\r
2625 /*----------------------------------------------------------*/
\r
2627 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2629 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2631 TCB_t *pxTCB = xTask;
\r
2632 BaseType_t xReturn;
\r
2634 configASSERT( pxTCB );
\r
2636 vTaskSuspendAll();
\r
2638 /* A task can only be prematurely removed from the Blocked state if
\r
2639 it is actually in the Blocked state. */
\r
2640 if( eTaskGetState( xTask ) == eBlocked )
\r
2644 /* Remove the reference to the task from the blocked list. An
\r
2645 interrupt won't touch the xStateListItem because the
\r
2646 scheduler is suspended. */
\r
2647 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2649 /* Is the task waiting on an event also? If so remove it from
\r
2650 the event list too. Interrupts can touch the event list item,
\r
2651 even though the scheduler is suspended, so a critical section
\r
2653 taskENTER_CRITICAL();
\r
2655 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2657 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2659 /* This lets the task know it was forcibly removed from the
\r
2660 blocked state so it should not re-evaluate its block time and
\r
2661 then block again. */
\r
2662 pxTCB->ucDelayAborted = pdTRUE;
\r
2666 mtCOVERAGE_TEST_MARKER();
\r
2669 taskEXIT_CRITICAL();
\r
2671 /* Place the unblocked task into the appropriate ready list. */
\r
2672 prvAddTaskToReadyList( pxTCB );
\r
2674 /* A task being unblocked cannot cause an immediate context
\r
2675 switch if preemption is turned off. */
\r
2676 #if ( configUSE_PREEMPTION == 1 )
\r
2678 /* Preemption is on, but a context switch should only be
\r
2679 performed if the unblocked task has a priority that is
\r
2680 equal to or higher than the currently executing task. */
\r
2681 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2683 /* Pend the yield to be performed when the scheduler
\r
2684 is unsuspended. */
\r
2685 xYieldPending = pdTRUE;
\r
2689 mtCOVERAGE_TEST_MARKER();
\r
2692 #endif /* configUSE_PREEMPTION */
\r
2699 ( void ) xTaskResumeAll();
\r
2704 #endif /* INCLUDE_xTaskAbortDelay */
\r
2705 /*----------------------------------------------------------*/
\r
2707 BaseType_t xTaskIncrementTick( void )
\r
2710 TickType_t xItemValue;
\r
2711 BaseType_t xSwitchRequired = pdFALSE;
\r
2713 /* Called by the portable layer each time a tick interrupt occurs.
\r
2714 Increments the tick then checks to see if the new tick value will cause any
\r
2715 tasks to be unblocked. */
\r
2716 traceTASK_INCREMENT_TICK( xTickCount );
\r
2717 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2719 /* Minor optimisation. The tick count cannot change in this
\r
2721 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2723 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2724 delayed lists if it wraps to 0. */
\r
2725 xTickCount = xConstTickCount;
\r
2727 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2729 taskSWITCH_DELAYED_LISTS();
\r
2733 mtCOVERAGE_TEST_MARKER();
\r
2736 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2737 the queue in the order of their wake time - meaning once one task
\r
2738 has been found whose block time has not expired there is no need to
\r
2739 look any further down the list. */
\r
2740 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2744 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2746 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2747 to the maximum possible value so it is extremely
\r
2749 if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2750 next time through. */
\r
2751 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2756 /* The delayed list is not empty, get the value of the
\r
2757 item at the head of the delayed list. This is the time
\r
2758 at which the task at the head of the delayed list must
\r
2759 be removed from the Blocked state. */
\r
2760 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2761 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2763 if( xConstTickCount < xItemValue )
\r
2765 /* It is not time to unblock this item yet, but the
\r
2766 item value is the time at which the task at the head
\r
2767 of the blocked list must be removed from the Blocked
\r
2768 state - so record the item value in
\r
2769 xNextTaskUnblockTime. */
\r
2770 xNextTaskUnblockTime = xItemValue;
\r
2771 break; /*lint !e9011 Code structure here is deedmed easier to understand with multiple breaks. */
\r
2775 mtCOVERAGE_TEST_MARKER();
\r
2778 /* It is time to remove the item from the Blocked state. */
\r
2779 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2781 /* Is the task waiting on an event also? If so remove
\r
2782 it from the event list. */
\r
2783 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2785 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2789 mtCOVERAGE_TEST_MARKER();
\r
2792 /* Place the unblocked task into the appropriate ready
\r
2794 prvAddTaskToReadyList( pxTCB );
\r
2796 /* A task being unblocked cannot cause an immediate
\r
2797 context switch if preemption is turned off. */
\r
2798 #if ( configUSE_PREEMPTION == 1 )
\r
2800 /* Preemption is on, but a context switch should
\r
2801 only be performed if the unblocked task has a
\r
2802 priority that is equal to or higher than the
\r
2803 currently executing task. */
\r
2804 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2806 xSwitchRequired = pdTRUE;
\r
2810 mtCOVERAGE_TEST_MARKER();
\r
2813 #endif /* configUSE_PREEMPTION */
\r
2818 /* Tasks of equal priority to the currently running task will share
\r
2819 processing time (time slice) if preemption is on, and the application
\r
2820 writer has not explicitly turned time slicing off. */
\r
2821 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2823 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2825 xSwitchRequired = pdTRUE;
\r
2829 mtCOVERAGE_TEST_MARKER();
\r
2832 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2834 #if ( configUSE_TICK_HOOK == 1 )
\r
2836 /* Guard against the tick hook being called when the pended tick
\r
2837 count is being unwound (when the scheduler is being unlocked). */
\r
2838 if( xPendedTicks == ( TickType_t ) 0 )
\r
2840 vApplicationTickHook();
\r
2844 mtCOVERAGE_TEST_MARKER();
\r
2847 #endif /* configUSE_TICK_HOOK */
\r
2849 #if ( configUSE_PREEMPTION == 1 )
\r
2851 if( xYieldPending != pdFALSE )
\r
2853 xSwitchRequired = pdTRUE;
\r
2857 mtCOVERAGE_TEST_MARKER();
\r
2860 #endif /* configUSE_PREEMPTION */
\r
2866 /* The tick hook gets called at regular intervals, even if the
\r
2867 scheduler is locked. */
\r
2868 #if ( configUSE_TICK_HOOK == 1 )
\r
2870 vApplicationTickHook();
\r
2875 return xSwitchRequired;
\r
2877 /*-----------------------------------------------------------*/
\r
2879 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2881 void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction )
\r
2885 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2887 if( xTask == NULL )
\r
2889 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2896 /* Save the hook function in the TCB. A critical section is required as
\r
2897 the value can be accessed from an interrupt. */
\r
2898 taskENTER_CRITICAL();
\r
2900 xTCB->pxTaskTag = pxHookFunction;
\r
2902 taskEXIT_CRITICAL();
\r
2905 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2906 /*-----------------------------------------------------------*/
\r
2908 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2910 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2913 TaskHookFunction_t xReturn;
\r
2915 /* If xTask is NULL then set the calling task's hook. */
\r
2916 pxTCB = prvGetTCBFromHandle( xTask );
\r
2918 /* Save the hook function in the TCB. A critical section is required as
\r
2919 the value can be accessed from an interrupt. */
\r
2920 taskENTER_CRITICAL();
\r
2922 xReturn = pxTCB->pxTaskTag;
\r
2924 taskEXIT_CRITICAL();
\r
2929 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2930 /*-----------------------------------------------------------*/
\r
2932 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2934 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2937 TaskHookFunction_t xReturn;
\r
2938 UBaseType_t uxSavedInterruptStatus;
\r
2940 /* If xTask is NULL then set the calling task's hook. */
\r
2941 pxTCB = prvGetTCBFromHandle( xTask );
\r
2943 /* Save the hook function in the TCB. A critical section is required as
\r
2944 the value can be accessed from an interrupt. */
\r
2945 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2947 xReturn = pxTCB->pxTaskTag;
\r
2949 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2954 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2955 /*-----------------------------------------------------------*/
\r
2957 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2959 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter )
\r
2962 BaseType_t xReturn;
\r
2964 /* If xTask is NULL then we are calling our own task hook. */
\r
2965 if( xTask == NULL )
\r
2967 xTCB = pxCurrentTCB;
\r
2974 if( xTCB->pxTaskTag != NULL )
\r
2976 xReturn = xTCB->pxTaskTag( pvParameter );
\r
2986 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2987 /*-----------------------------------------------------------*/
\r
2989 void vTaskSwitchContext( void )
\r
2991 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
2993 /* The scheduler is currently suspended - do not allow a context
\r
2995 xYieldPending = pdTRUE;
\r
2999 xYieldPending = pdFALSE;
\r
3000 traceTASK_SWITCHED_OUT();
\r
3002 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3004 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3005 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3007 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3010 /* Add the amount of time the task has been running to the
\r
3011 accumulated time so far. The time the task started running was
\r
3012 stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3013 protection here so count values are only valid until the timer
\r
3014 overflows. The guard against negative values is to protect
\r
3015 against suspect run time stat counter implementations - which
\r
3016 are provided by the application, not the kernel. */
\r
3017 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3019 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3023 mtCOVERAGE_TEST_MARKER();
\r
3025 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3027 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3029 /* Check for stack overflow, if configured. */
\r
3030 taskCHECK_FOR_STACK_OVERFLOW();
\r
3032 /* Before the currently running task is switched out, save its errno. */
\r
3033 #if( configUSE_POSIX_ERRNO == 1 )
\r
3035 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3039 /* Select a new task to run using either the generic C or port
\r
3040 optimised asm code. */
\r
3041 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3042 traceTASK_SWITCHED_IN();
\r
3044 /* After the new task is switched in, update the global errno. */
\r
3045 #if( configUSE_POSIX_ERRNO == 1 )
\r
3047 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3051 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3053 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
3054 structure specific to this task.
\r
3055 See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3056 for additional information. */
\r
3057 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
3059 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3062 /*-----------------------------------------------------------*/
\r
3064 void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait )
\r
3066 configASSERT( pxEventList );
\r
3068 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3069 SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3071 /* Place the event list item of the TCB in the appropriate event list.
\r
3072 This is placed in the list in priority order so the highest priority task
\r
3073 is the first to be woken by the event. The queue that contains the event
\r
3074 list is locked, preventing simultaneous access from interrupts. */
\r
3075 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3077 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3079 /*-----------------------------------------------------------*/
\r
3081 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait )
\r
3083 configASSERT( pxEventList );
\r
3085 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3086 the event groups implementation. */
\r
3087 configASSERT( uxSchedulerSuspended != 0 );
\r
3089 /* Store the item value in the event list item. It is safe to access the
\r
3090 event list item here as interrupts won't access the event list item of a
\r
3091 task that is not in the Blocked state. */
\r
3092 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3094 /* Place the event list item of the TCB at the end of the appropriate event
\r
3095 list. It is safe to access the event list here because it is part of an
\r
3096 event group implementation - and interrupts don't access event groups
\r
3097 directly (instead they access them indirectly by pending function calls to
\r
3098 the task level). */
\r
3099 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3101 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3103 /*-----------------------------------------------------------*/
\r
3105 #if( configUSE_TIMERS == 1 )
\r
3107 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely )
\r
3109 configASSERT( pxEventList );
\r
3111 /* This function should not be called by application code hence the
\r
3112 'Restricted' in its name. It is not part of the public API. It is
\r
3113 designed for use by kernel code, and has special calling requirements -
\r
3114 it should be called with the scheduler suspended. */
\r
3117 /* Place the event list item of the TCB in the appropriate event list.
\r
3118 In this case it is assume that this is the only task that is going to
\r
3119 be waiting on this event list, so the faster vListInsertEnd() function
\r
3120 can be used in place of vListInsert. */
\r
3121 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3123 /* If the task should block indefinitely then set the block time to a
\r
3124 value that will be recognised as an indefinite delay inside the
\r
3125 prvAddCurrentTaskToDelayedList() function. */
\r
3126 if( xWaitIndefinitely != pdFALSE )
\r
3128 xTicksToWait = portMAX_DELAY;
\r
3131 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3132 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3135 #endif /* configUSE_TIMERS */
\r
3136 /*-----------------------------------------------------------*/
\r
3138 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3140 TCB_t *pxUnblockedTCB;
\r
3141 BaseType_t xReturn;
\r
3143 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3144 called from a critical section within an ISR. */
\r
3146 /* The event list is sorted in priority order, so the first in the list can
\r
3147 be removed as it is known to be the highest priority. Remove the TCB from
\r
3148 the delayed list, and add it to the ready list.
\r
3150 If an event is for a queue that is locked then this function will never
\r
3151 get called - the lock count on the queue will get modified instead. This
\r
3152 means exclusive access to the event list is guaranteed here.
\r
3154 This function assumes that a check has already been made to ensure that
\r
3155 pxEventList is not empty. */
\r
3156 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3157 configASSERT( pxUnblockedTCB );
\r
3158 ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
\r
3160 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3162 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3163 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3165 #if( configUSE_TICKLESS_IDLE != 0 )
\r
3167 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3168 might be set to the blocked task's time out time. If the task is
\r
3169 unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3170 normally left unchanged, because it is automatically reset to a new
\r
3171 value when the tick count equals xNextTaskUnblockTime. However if
\r
3172 tickless idling is used it might be more important to enter sleep mode
\r
3173 at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3174 ensure it is updated at the earliest possible time. */
\r
3175 prvResetNextTaskUnblockTime();
\r
3181 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3182 pending until the scheduler is resumed. */
\r
3183 vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3186 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3188 /* Return true if the task removed from the event list has a higher
\r
3189 priority than the calling task. This allows the calling task to know if
\r
3190 it should force a context switch now. */
\r
3193 /* Mark that a yield is pending in case the user is not using the
\r
3194 "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3195 xYieldPending = pdTRUE;
\r
3199 xReturn = pdFALSE;
\r
3204 /*-----------------------------------------------------------*/
\r
3206 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue )
\r
3208 TCB_t *pxUnblockedTCB;
\r
3210 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3211 the event flags implementation. */
\r
3212 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3214 /* Store the new item value in the event list. */
\r
3215 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3217 /* Remove the event list form the event flag. Interrupts do not access
\r
3219 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3220 configASSERT( pxUnblockedTCB );
\r
3221 ( void ) uxListRemove( pxEventListItem );
\r
3223 #if( configUSE_TICKLESS_IDLE != 0 )
\r
3225 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3226 might be set to the blocked task's time out time. If the task is
\r
3227 unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3228 normally left unchanged, because it is automatically reset to a new
\r
3229 value when the tick count equals xNextTaskUnblockTime. However if
\r
3230 tickless idling is used it might be more important to enter sleep mode
\r
3231 at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3232 ensure it is updated at the earliest possible time. */
\r
3233 prvResetNextTaskUnblockTime();
\r
3237 /* Remove the task from the delayed list and add it to the ready list. The
\r
3238 scheduler is suspended so interrupts will not be accessing the ready
\r
3240 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
3241 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3243 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3245 /* The unblocked task has a priority above that of the calling task, so
\r
3246 a context switch is required. This function is called with the
\r
3247 scheduler suspended so xYieldPending is set so the context switch
\r
3248 occurs immediately that the scheduler is resumed (unsuspended). */
\r
3249 xYieldPending = pdTRUE;
\r
3252 /*-----------------------------------------------------------*/
\r
3254 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3256 configASSERT( pxTimeOut );
\r
3257 taskENTER_CRITICAL();
\r
3259 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3260 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3262 taskEXIT_CRITICAL();
\r
3264 /*-----------------------------------------------------------*/
\r
3266 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3268 /* For internal use only as it does not use a critical section. */
\r
3269 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3270 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3272 /*-----------------------------------------------------------*/
\r
3274 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait )
\r
3276 BaseType_t xReturn;
\r
3278 configASSERT( pxTimeOut );
\r
3279 configASSERT( pxTicksToWait );
\r
3281 taskENTER_CRITICAL();
\r
3283 /* Minor optimisation. The tick count cannot change in this block. */
\r
3284 const TickType_t xConstTickCount = xTickCount;
\r
3285 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3287 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
3288 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3290 /* The delay was aborted, which is not the same as a time out,
\r
3291 but has the same result. */
\r
3292 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3298 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3299 if( *pxTicksToWait == portMAX_DELAY )
\r
3301 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3302 specified is the maximum block time then the task should block
\r
3303 indefinitely, and therefore never time out. */
\r
3304 xReturn = pdFALSE;
\r
3309 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3311 /* The tick count is greater than the time at which
\r
3312 vTaskSetTimeout() was called, but has also overflowed since
\r
3313 vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3314 around and gone past again. This passed since vTaskSetTimeout()
\r
3318 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3320 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3321 *pxTicksToWait -= xElapsedTime;
\r
3322 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3323 xReturn = pdFALSE;
\r
3327 *pxTicksToWait = 0;
\r
3331 taskEXIT_CRITICAL();
\r
3335 /*-----------------------------------------------------------*/
\r
3337 void vTaskMissedYield( void )
\r
3339 xYieldPending = pdTRUE;
\r
3341 /*-----------------------------------------------------------*/
\r
3343 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3345 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3347 UBaseType_t uxReturn;
\r
3348 TCB_t const *pxTCB;
\r
3350 if( xTask != NULL )
\r
3353 uxReturn = pxTCB->uxTaskNumber;
\r
3363 #endif /* configUSE_TRACE_FACILITY */
\r
3364 /*-----------------------------------------------------------*/
\r
3366 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3368 void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle )
\r
3372 if( xTask != NULL )
\r
3375 pxTCB->uxTaskNumber = uxHandle;
\r
3379 #endif /* configUSE_TRACE_FACILITY */
\r
3382 * -----------------------------------------------------------
\r
3384 * ----------------------------------------------------------
\r
3386 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3387 * language extensions. The equivalent prototype for this function is:
\r
3389 * void prvIdleTask( void *pvParameters );
\r
3392 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3394 /* Stop warnings. */
\r
3395 ( void ) pvParameters;
\r
3397 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3398 SCHEDULER IS STARTED. **/
\r
3400 /* In case a task that has a secure context deletes itself, in which case
\r
3401 the idle task is responsible for deleting the task's secure context, if
\r
3403 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3407 /* See if any tasks have deleted themselves - if so then the idle task
\r
3408 is responsible for freeing the deleted task's TCB and stack. */
\r
3409 prvCheckTasksWaitingTermination();
\r
3411 #if ( configUSE_PREEMPTION == 0 )
\r
3413 /* If we are not using preemption we keep forcing a task switch to
\r
3414 see if any other task has become available. If we are using
\r
3415 preemption we don't need to do this as any task becoming available
\r
3416 will automatically get the processor anyway. */
\r
3419 #endif /* configUSE_PREEMPTION */
\r
3421 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3423 /* When using preemption tasks of equal priority will be
\r
3424 timesliced. If a task that is sharing the idle priority is ready
\r
3425 to run then the idle task should yield before the end of the
\r
3428 A critical region is not required here as we are just reading from
\r
3429 the list, and an occasional incorrect value will not matter. If
\r
3430 the ready list at the idle priority contains more than one task
\r
3431 then a task other than the idle task is ready to execute. */
\r
3432 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3438 mtCOVERAGE_TEST_MARKER();
\r
3441 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3443 #if ( configUSE_IDLE_HOOK == 1 )
\r
3445 extern void vApplicationIdleHook( void );
\r
3447 /* Call the user defined function from within the idle task. This
\r
3448 allows the application designer to add background functionality
\r
3449 without the overhead of a separate task.
\r
3450 NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3451 CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3452 vApplicationIdleHook();
\r
3454 #endif /* configUSE_IDLE_HOOK */
\r
3456 /* This conditional compilation should use inequality to 0, not equality
\r
3457 to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3458 user defined low power mode implementations require
\r
3459 configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3460 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3462 TickType_t xExpectedIdleTime;
\r
3464 /* It is not desirable to suspend then resume the scheduler on
\r
3465 each iteration of the idle task. Therefore, a preliminary
\r
3466 test of the expected idle time is performed without the
\r
3467 scheduler suspended. The result here is not necessarily
\r
3469 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3471 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3473 vTaskSuspendAll();
\r
3475 /* Now the scheduler is suspended, the expected idle
\r
3476 time can be sampled again, and this time its value can
\r
3478 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3479 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3481 /* Define the following macro to set xExpectedIdleTime to 0
\r
3482 if the application does not want
\r
3483 portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3484 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3486 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3488 traceLOW_POWER_IDLE_BEGIN();
\r
3489 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3490 traceLOW_POWER_IDLE_END();
\r
3494 mtCOVERAGE_TEST_MARKER();
\r
3497 ( void ) xTaskResumeAll();
\r
3501 mtCOVERAGE_TEST_MARKER();
\r
3504 #endif /* configUSE_TICKLESS_IDLE */
\r
3507 /*-----------------------------------------------------------*/
\r
3509 #if( configUSE_TICKLESS_IDLE != 0 )
\r
3511 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3513 /* The idle task exists in addition to the application tasks. */
\r
3514 const UBaseType_t uxNonApplicationTasks = 1;
\r
3515 eSleepModeStatus eReturn = eStandardSleep;
\r
3517 /* This function must be called from a critical section. */
\r
3519 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3521 /* A task was made ready while the scheduler was suspended. */
\r
3522 eReturn = eAbortSleep;
\r
3524 else if( xYieldPending != pdFALSE )
\r
3526 /* A yield was pended while the scheduler was suspended. */
\r
3527 eReturn = eAbortSleep;
\r
3529 else if( xPendedTicks != 0 )
\r
3531 /* A tick interrupt has already occurred but was held pending
\r
3532 because the scheduler is suspended. */
\r
3533 eReturn = eAbortSleep;
\r
3537 /* If all the tasks are in the suspended list (which might mean they
\r
3538 have an infinite block time rather than actually being suspended)
\r
3539 then it is safe to turn all clocks off and just wait for external
\r
3541 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3543 eReturn = eNoTasksWaitingTimeout;
\r
3547 mtCOVERAGE_TEST_MARKER();
\r
3554 #endif /* configUSE_TICKLESS_IDLE */
\r
3555 /*-----------------------------------------------------------*/
\r
3557 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3559 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue )
\r
3563 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3565 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3566 configASSERT( pxTCB != NULL );
\r
3567 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3571 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3572 /*-----------------------------------------------------------*/
\r
3574 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3576 void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex )
\r
3578 void *pvReturn = NULL;
\r
3581 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3583 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3584 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3594 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3595 /*-----------------------------------------------------------*/
\r
3597 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3599 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions )
\r
3603 /* If null is passed in here then we are modifying the MPU settings of
\r
3604 the calling task. */
\r
3605 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3607 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3610 #endif /* portUSING_MPU_WRAPPERS */
\r
3611 /*-----------------------------------------------------------*/
\r
3613 static void prvInitialiseTaskLists( void )
\r
3615 UBaseType_t uxPriority;
\r
3617 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3619 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3622 vListInitialise( &xDelayedTaskList1 );
\r
3623 vListInitialise( &xDelayedTaskList2 );
\r
3624 vListInitialise( &xPendingReadyList );
\r
3626 #if ( INCLUDE_vTaskDelete == 1 )
\r
3628 vListInitialise( &xTasksWaitingTermination );
\r
3630 #endif /* INCLUDE_vTaskDelete */
\r
3632 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3634 vListInitialise( &xSuspendedTaskList );
\r
3636 #endif /* INCLUDE_vTaskSuspend */
\r
3638 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3640 pxDelayedTaskList = &xDelayedTaskList1;
\r
3641 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3643 /*-----------------------------------------------------------*/
\r
3645 static void prvCheckTasksWaitingTermination( void )
\r
3648 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3650 #if ( INCLUDE_vTaskDelete == 1 )
\r
3654 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3655 being called too often in the idle task. */
\r
3656 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3658 taskENTER_CRITICAL();
\r
3660 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3661 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3662 --uxCurrentNumberOfTasks;
\r
3663 --uxDeletedTasksWaitingCleanUp;
\r
3665 taskEXIT_CRITICAL();
\r
3667 prvDeleteTCB( pxTCB );
\r
3670 #endif /* INCLUDE_vTaskDelete */
\r
3672 /*-----------------------------------------------------------*/
\r
3674 #if( configUSE_TRACE_FACILITY == 1 )
\r
3676 void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState )
\r
3680 /* xTask is NULL then get the state of the calling task. */
\r
3681 pxTCB = prvGetTCBFromHandle( xTask );
\r
3683 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3684 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName [ 0 ] );
\r
3685 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3686 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3687 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3689 #if ( configUSE_MUTEXES == 1 )
\r
3691 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3695 pxTaskStatus->uxBasePriority = 0;
\r
3699 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3701 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3705 pxTaskStatus->ulRunTimeCounter = 0;
\r
3709 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3710 value of eState passed into this function is eInvalid - otherwise the
\r
3711 state is just set to whatever is passed in. */
\r
3712 if( eState != eInvalid )
\r
3714 if( pxTCB == pxCurrentTCB )
\r
3716 pxTaskStatus->eCurrentState = eRunning;
\r
3720 pxTaskStatus->eCurrentState = eState;
\r
3722 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3724 /* If the task is in the suspended list then there is a
\r
3725 chance it is actually just blocked indefinitely - so really
\r
3726 it should be reported as being in the Blocked state. */
\r
3727 if( eState == eSuspended )
\r
3729 vTaskSuspendAll();
\r
3731 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3733 pxTaskStatus->eCurrentState = eBlocked;
\r
3736 ( void ) xTaskResumeAll();
\r
3739 #endif /* INCLUDE_vTaskSuspend */
\r
3744 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3747 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3748 parameter is provided to allow it to be skipped. */
\r
3749 if( xGetFreeStackSpace != pdFALSE )
\r
3751 #if ( portSTACK_GROWTH > 0 )
\r
3753 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3757 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3763 pxTaskStatus->usStackHighWaterMark = 0;
\r
3767 #endif /* configUSE_TRACE_FACILITY */
\r
3768 /*-----------------------------------------------------------*/
\r
3770 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3772 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState )
\r
3774 configLIST_VOLATILE TCB_t *pxNextTCB, *pxFirstTCB;
\r
3775 UBaseType_t uxTask = 0;
\r
3777 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3779 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3781 /* Populate an TaskStatus_t structure within the
\r
3782 pxTaskStatusArray array for each task that is referenced from
\r
3783 pxList. See the definition of TaskStatus_t in task.h for the
\r
3784 meaning of each TaskStatus_t structure member. */
\r
3787 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3788 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3790 } while( pxNextTCB != pxFirstTCB );
\r
3794 mtCOVERAGE_TEST_MARKER();
\r
3800 #endif /* configUSE_TRACE_FACILITY */
\r
3801 /*-----------------------------------------------------------*/
\r
3803 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3805 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3807 uint32_t ulCount = 0U;
\r
3809 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3811 pucStackByte -= portSTACK_GROWTH;
\r
3815 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3817 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3820 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3821 /*-----------------------------------------------------------*/
\r
3823 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3825 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3826 same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3827 user to determine the return type. It gets around the problem of the value
\r
3828 overflowing on 8-bit types without breaking backward compatibility for
\r
3829 applications that expect an 8-bit return type. */
\r
3830 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3833 uint8_t *pucEndOfStack;
\r
3834 configSTACK_DEPTH_TYPE uxReturn;
\r
3836 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3837 the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3838 allows the user to determine the return type. It gets around the
\r
3839 problem of the value overflowing on 8-bit types without breaking
\r
3840 backward compatibility for applications that expect an 8-bit return
\r
3843 pxTCB = prvGetTCBFromHandle( xTask );
\r
3845 #if portSTACK_GROWTH < 0
\r
3847 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3851 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3855 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3860 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3861 /*-----------------------------------------------------------*/
\r
3863 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3865 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3868 uint8_t *pucEndOfStack;
\r
3869 UBaseType_t uxReturn;
\r
3871 pxTCB = prvGetTCBFromHandle( xTask );
\r
3873 #if portSTACK_GROWTH < 0
\r
3875 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3879 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3883 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3888 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3889 /*-----------------------------------------------------------*/
\r
3891 #if ( INCLUDE_vTaskDelete == 1 )
\r
3893 static void prvDeleteTCB( TCB_t *pxTCB )
\r
3895 /* This call is required specifically for the TriCore port. It must be
\r
3896 above the vPortFree() calls. The call is also used by ports/demos that
\r
3897 want to allocate and clean RAM statically. */
\r
3898 portCLEAN_UP_TCB( pxTCB );
\r
3900 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3901 to the task to free any memory allocated at the application level.
\r
3902 See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3903 for additional information. */
\r
3904 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3906 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3908 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3910 #if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3912 /* The task can only have been allocated dynamically - free both
\r
3913 the stack and TCB. */
\r
3914 vPortFree( pxTCB->pxStack );
\r
3915 vPortFree( pxTCB );
\r
3917 #elif( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3919 /* The task could have been allocated statically or dynamically, so
\r
3920 check what was statically allocated before trying to free the
\r
3922 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3924 /* Both the stack and TCB were allocated dynamically, so both
\r
3926 vPortFree( pxTCB->pxStack );
\r
3927 vPortFree( pxTCB );
\r
3929 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3931 /* Only the stack was statically allocated, so the TCB is the
\r
3932 only memory that must be freed. */
\r
3933 vPortFree( pxTCB );
\r
3937 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3938 nothing needs to be freed. */
\r
3939 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
3940 mtCOVERAGE_TEST_MARKER();
\r
3943 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3946 #endif /* INCLUDE_vTaskDelete */
\r
3947 /*-----------------------------------------------------------*/
\r
3949 static void prvResetNextTaskUnblockTime( void )
\r
3953 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
3955 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
3956 the maximum possible value so it is extremely unlikely that the
\r
3957 if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
3958 there is an item in the delayed list. */
\r
3959 xNextTaskUnblockTime = portMAX_DELAY;
\r
3963 /* The new current delayed list is not empty, get the value of
\r
3964 the item at the head of the delayed list. This is the time at
\r
3965 which the task at the head of the delayed list should be removed
\r
3966 from the Blocked state. */
\r
3967 ( pxTCB ) = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3968 xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xStateListItem ) );
\r
3971 /*-----------------------------------------------------------*/
\r
3973 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
3975 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
3977 TaskHandle_t xReturn;
\r
3979 /* A critical section is not required as this is not called from
\r
3980 an interrupt and the current TCB will always be the same for any
\r
3981 individual execution thread. */
\r
3982 xReturn = pxCurrentTCB;
\r
3987 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
3988 /*-----------------------------------------------------------*/
\r
3990 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
3992 BaseType_t xTaskGetSchedulerState( void )
\r
3994 BaseType_t xReturn;
\r
3996 if( xSchedulerRunning == pdFALSE )
\r
3998 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4002 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4004 xReturn = taskSCHEDULER_RUNNING;
\r
4008 xReturn = taskSCHEDULER_SUSPENDED;
\r
4015 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4016 /*-----------------------------------------------------------*/
\r
4018 #if ( configUSE_MUTEXES == 1 )
\r
4020 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4022 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4023 BaseType_t xReturn = pdFALSE;
\r
4025 /* If the mutex was given back by an interrupt while the queue was
\r
4026 locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4027 needed as interrupts can no longer use mutexes? */
\r
4028 if( pxMutexHolder != NULL )
\r
4030 /* If the holder of the mutex has a priority below the priority of
\r
4031 the task attempting to obtain the mutex then it will temporarily
\r
4032 inherit the priority of the task attempting to obtain the mutex. */
\r
4033 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4035 /* Adjust the mutex holder state to account for its new
\r
4036 priority. Only reset the event list item value if the value is
\r
4037 not being used for anything else. */
\r
4038 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4040 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4044 mtCOVERAGE_TEST_MARKER();
\r
4047 /* If the task being modified is in the ready state it will need
\r
4048 to be moved into a new list. */
\r
4049 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4051 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4053 /* It is known that the task is in its ready list so
\r
4054 there is no need to check again and the port level
\r
4055 reset macro can be called directly. */
\r
4056 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4060 mtCOVERAGE_TEST_MARKER();
\r
4063 /* Inherit the priority before being moved into the new list. */
\r
4064 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4065 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4069 /* Just inherit the priority. */
\r
4070 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4073 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4075 /* Inheritance occurred. */
\r
4080 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4082 /* The base priority of the mutex holder is lower than the
\r
4083 priority of the task attempting to take the mutex, but the
\r
4084 current priority of the mutex holder is not lower than the
\r
4085 priority of the task attempting to take the mutex.
\r
4086 Therefore the mutex holder must have already inherited a
\r
4087 priority, but inheritance would have occurred if that had
\r
4088 not been the case. */
\r
4093 mtCOVERAGE_TEST_MARKER();
\r
4099 mtCOVERAGE_TEST_MARKER();
\r
4105 #endif /* configUSE_MUTEXES */
\r
4106 /*-----------------------------------------------------------*/
\r
4108 #if ( configUSE_MUTEXES == 1 )
\r
4110 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4112 TCB_t * const pxTCB = pxMutexHolder;
\r
4113 BaseType_t xReturn = pdFALSE;
\r
4115 if( pxMutexHolder != NULL )
\r
4117 /* A task can only have an inherited priority if it holds the mutex.
\r
4118 If the mutex is held by a task then it cannot be given from an
\r
4119 interrupt, and if a mutex is given by the holding task then it must
\r
4120 be the running state task. */
\r
4121 configASSERT( pxTCB == pxCurrentTCB );
\r
4122 configASSERT( pxTCB->uxMutexesHeld );
\r
4123 ( pxTCB->uxMutexesHeld )--;
\r
4125 /* Has the holder of the mutex inherited the priority of another
\r
4127 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4129 /* Only disinherit if no other mutexes are held. */
\r
4130 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4132 /* A task can only have an inherited priority if it holds
\r
4133 the mutex. If the mutex is held by a task then it cannot be
\r
4134 given from an interrupt, and if a mutex is given by the
\r
4135 holding task then it must be the running state task. Remove
\r
4136 the holding task from the ready/delayed list. */
\r
4137 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4139 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
4143 mtCOVERAGE_TEST_MARKER();
\r
4146 /* Disinherit the priority before adding the task into the
\r
4147 new ready list. */
\r
4148 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4149 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4151 /* Reset the event list item value. It cannot be in use for
\r
4152 any other purpose if this task is running, and it must be
\r
4153 running to give back the mutex. */
\r
4154 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4155 prvAddTaskToReadyList( pxTCB );
\r
4157 /* Return true to indicate that a context switch is required.
\r
4158 This is only actually required in the corner case whereby
\r
4159 multiple mutexes were held and the mutexes were given back
\r
4160 in an order different to that in which they were taken.
\r
4161 If a context switch did not occur when the first mutex was
\r
4162 returned, even if a task was waiting on it, then a context
\r
4163 switch should occur when the last mutex is returned whether
\r
4164 a task is waiting on it or not. */
\r
4169 mtCOVERAGE_TEST_MARKER();
\r
4174 mtCOVERAGE_TEST_MARKER();
\r
4179 mtCOVERAGE_TEST_MARKER();
\r
4185 #endif /* configUSE_MUTEXES */
\r
4186 /*-----------------------------------------------------------*/
\r
4188 #if ( configUSE_MUTEXES == 1 )
\r
4190 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder, UBaseType_t uxHighestPriorityWaitingTask )
\r
4192 TCB_t * const pxTCB = pxMutexHolder;
\r
4193 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4194 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4196 if( pxMutexHolder != NULL )
\r
4198 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4200 configASSERT( pxTCB->uxMutexesHeld );
\r
4202 /* Determine the priority to which the priority of the task that
\r
4203 holds the mutex should be set. This will be the greater of the
\r
4204 holding task's base priority and the priority of the highest
\r
4205 priority task that is waiting to obtain the mutex. */
\r
4206 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4208 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4212 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4215 /* Does the priority need to change? */
\r
4216 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4218 /* Only disinherit if no other mutexes are held. This is a
\r
4219 simplification in the priority inheritance implementation. If
\r
4220 the task that holds the mutex is also holding other mutexes then
\r
4221 the other mutexes may have caused the priority inheritance. */
\r
4222 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4224 /* If a task has timed out because it already holds the
\r
4225 mutex it was trying to obtain then it cannot of inherited
\r
4226 its own priority. */
\r
4227 configASSERT( pxTCB != pxCurrentTCB );
\r
4229 /* Disinherit the priority, remembering the previous
\r
4230 priority to facilitate determining the subject task's
\r
4232 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4233 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4234 pxTCB->uxPriority = uxPriorityToUse;
\r
4236 /* Only reset the event list item value if the value is not
\r
4237 being used for anything else. */
\r
4238 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4240 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4244 mtCOVERAGE_TEST_MARKER();
\r
4247 /* If the running task is not the task that holds the mutex
\r
4248 then the task that holds the mutex could be in either the
\r
4249 Ready, Blocked or Suspended states. Only remove the task
\r
4250 from its current state list if it is in the Ready state as
\r
4251 the task's priority is going to change and there is one
\r
4252 Ready list per priority. */
\r
4253 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4255 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4257 /* It is known that the task is in its ready list so
\r
4258 there is no need to check again and the port level
\r
4259 reset macro can be called directly. */
\r
4260 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4264 mtCOVERAGE_TEST_MARKER();
\r
4267 prvAddTaskToReadyList( pxTCB );
\r
4271 mtCOVERAGE_TEST_MARKER();
\r
4276 mtCOVERAGE_TEST_MARKER();
\r
4281 mtCOVERAGE_TEST_MARKER();
\r
4286 mtCOVERAGE_TEST_MARKER();
\r
4290 #endif /* configUSE_MUTEXES */
\r
4291 /*-----------------------------------------------------------*/
\r
4293 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4295 void vTaskEnterCritical( void )
\r
4297 portDISABLE_INTERRUPTS();
\r
4299 if( xSchedulerRunning != pdFALSE )
\r
4301 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4303 /* This is not the interrupt safe version of the enter critical
\r
4304 function so assert() if it is being called from an interrupt
\r
4305 context. Only API functions that end in "FromISR" can be used in an
\r
4306 interrupt. Only assert if the critical nesting count is 1 to
\r
4307 protect against recursive calls if the assert function also uses a
\r
4308 critical section. */
\r
4309 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4311 portASSERT_IF_IN_ISR();
\r
4316 mtCOVERAGE_TEST_MARKER();
\r
4320 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4321 /*-----------------------------------------------------------*/
\r
4323 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4325 void vTaskExitCritical( void )
\r
4327 if( xSchedulerRunning != pdFALSE )
\r
4329 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4331 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4333 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4335 portENABLE_INTERRUPTS();
\r
4339 mtCOVERAGE_TEST_MARKER();
\r
4344 mtCOVERAGE_TEST_MARKER();
\r
4349 mtCOVERAGE_TEST_MARKER();
\r
4353 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4354 /*-----------------------------------------------------------*/
\r
4356 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4358 static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName )
\r
4362 /* Start by copying the entire string. */
\r
4363 strcpy( pcBuffer, pcTaskName );
\r
4365 /* Pad the end of the string with spaces to ensure columns line up when
\r
4367 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4369 pcBuffer[ x ] = ' ';
\r
4373 pcBuffer[ x ] = ( char ) 0x00;
\r
4375 /* Return the new end of string. */
\r
4376 return &( pcBuffer[ x ] );
\r
4379 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4380 /*-----------------------------------------------------------*/
\r
4382 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4384 void vTaskList( char * pcWriteBuffer )
\r
4386 TaskStatus_t *pxTaskStatusArray;
\r
4387 UBaseType_t uxArraySize, x;
\r
4393 * This function is provided for convenience only, and is used by many
\r
4394 * of the demo applications. Do not consider it to be part of the
\r
4397 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4398 * uxTaskGetSystemState() output into a human readable table that
\r
4399 * displays task names, states and stack usage.
\r
4401 * vTaskList() has a dependency on the sprintf() C library function that
\r
4402 * might bloat the code size, use a lot of stack, and provide different
\r
4403 * results on different platforms. An alternative, tiny, third party,
\r
4404 * and limited functionality implementation of sprintf() is provided in
\r
4405 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4406 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4407 * snprintf() implementation!).
\r
4409 * It is recommended that production systems call uxTaskGetSystemState()
\r
4410 * directly to get access to raw stats data, rather than indirectly
\r
4411 * through a call to vTaskList().
\r
4415 /* Make sure the write buffer does not contain a string. */
\r
4416 *pcWriteBuffer = ( char ) 0x00;
\r
4418 /* Take a snapshot of the number of tasks in case it changes while this
\r
4419 function is executing. */
\r
4420 uxArraySize = uxCurrentNumberOfTasks;
\r
4422 /* Allocate an array index for each task. NOTE! if
\r
4423 configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4424 equate to NULL. */
\r
4425 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4427 if( pxTaskStatusArray != NULL )
\r
4429 /* Generate the (binary) data. */
\r
4430 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4432 /* Create a human readable table from the binary data. */
\r
4433 for( x = 0; x < uxArraySize; x++ )
\r
4435 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4437 case eRunning: cStatus = tskRUNNING_CHAR;
\r
4440 case eReady: cStatus = tskREADY_CHAR;
\r
4443 case eBlocked: cStatus = tskBLOCKED_CHAR;
\r
4446 case eSuspended: cStatus = tskSUSPENDED_CHAR;
\r
4449 case eDeleted: cStatus = tskDELETED_CHAR;
\r
4452 case eInvalid: /* Fall through. */
\r
4453 default: /* Should not get here, but it is included
\r
4454 to prevent static checking errors. */
\r
4455 cStatus = ( char ) 0x00;
\r
4459 /* Write the task name to the string, padding with spaces so it
\r
4460 can be printed in tabular form more easily. */
\r
4461 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4463 /* Write the rest of the string. */
\r
4464 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4465 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4468 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4469 is 0 then vPortFree() will be #defined to nothing. */
\r
4470 vPortFree( pxTaskStatusArray );
\r
4474 mtCOVERAGE_TEST_MARKER();
\r
4478 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4479 /*----------------------------------------------------------*/
\r
4481 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4483 void vTaskGetRunTimeStats( char *pcWriteBuffer )
\r
4485 TaskStatus_t *pxTaskStatusArray;
\r
4486 UBaseType_t uxArraySize, x;
\r
4487 uint32_t ulTotalTime, ulStatsAsPercentage;
\r
4489 #if( configUSE_TRACE_FACILITY != 1 )
\r
4491 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4498 * This function is provided for convenience only, and is used by many
\r
4499 * of the demo applications. Do not consider it to be part of the
\r
4502 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4503 * of the uxTaskGetSystemState() output into a human readable table that
\r
4504 * displays the amount of time each task has spent in the Running state
\r
4505 * in both absolute and percentage terms.
\r
4507 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4508 * function that might bloat the code size, use a lot of stack, and
\r
4509 * provide different results on different platforms. An alternative,
\r
4510 * tiny, third party, and limited functionality implementation of
\r
4511 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4512 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4513 * a full snprintf() implementation!).
\r
4515 * It is recommended that production systems call uxTaskGetSystemState()
\r
4516 * directly to get access to raw stats data, rather than indirectly
\r
4517 * through a call to vTaskGetRunTimeStats().
\r
4520 /* Make sure the write buffer does not contain a string. */
\r
4521 *pcWriteBuffer = ( char ) 0x00;
\r
4523 /* Take a snapshot of the number of tasks in case it changes while this
\r
4524 function is executing. */
\r
4525 uxArraySize = uxCurrentNumberOfTasks;
\r
4527 /* Allocate an array index for each task. NOTE! If
\r
4528 configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4529 equate to NULL. */
\r
4530 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4532 if( pxTaskStatusArray != NULL )
\r
4534 /* Generate the (binary) data. */
\r
4535 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4537 /* For percentage calculations. */
\r
4538 ulTotalTime /= 100UL;
\r
4540 /* Avoid divide by zero errors. */
\r
4541 if( ulTotalTime > 0UL )
\r
4543 /* Create a human readable table from the binary data. */
\r
4544 for( x = 0; x < uxArraySize; x++ )
\r
4546 /* What percentage of the total run time has the task used?
\r
4547 This will always be rounded down to the nearest integer.
\r
4548 ulTotalRunTimeDiv100 has already been divided by 100. */
\r
4549 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4551 /* Write the task name to the string, padding with
\r
4552 spaces so it can be printed in tabular form more
\r
4554 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4556 if( ulStatsAsPercentage > 0UL )
\r
4558 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4560 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4564 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4565 printf() library can be used. */
\r
4566 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4572 /* If the percentage is zero here then the task has
\r
4573 consumed less than 1% of the total run time. */
\r
4574 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4576 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4580 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4581 printf() library can be used. */
\r
4582 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4587 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4592 mtCOVERAGE_TEST_MARKER();
\r
4595 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4596 is 0 then vPortFree() will be #defined to nothing. */
\r
4597 vPortFree( pxTaskStatusArray );
\r
4601 mtCOVERAGE_TEST_MARKER();
\r
4605 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4606 /*-----------------------------------------------------------*/
\r
4608 TickType_t uxTaskResetEventItemValue( void )
\r
4610 TickType_t uxReturn;
\r
4612 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4614 /* Reset the event list item to its normal value - so it can be used with
\r
4615 queues and semaphores. */
\r
4616 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4620 /*-----------------------------------------------------------*/
\r
4622 #if ( configUSE_MUTEXES == 1 )
\r
4624 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4626 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4627 then pxCurrentTCB will be NULL. */
\r
4628 if( pxCurrentTCB != NULL )
\r
4630 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4633 return pxCurrentTCB;
\r
4636 #endif /* configUSE_MUTEXES */
\r
4637 /*-----------------------------------------------------------*/
\r
4639 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4641 uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait )
\r
4643 uint32_t ulReturn;
\r
4645 taskENTER_CRITICAL();
\r
4647 /* Only block if the notification count is not already non-zero. */
\r
4648 if( pxCurrentTCB->ulNotifiedValue == 0UL )
\r
4650 /* Mark this task as waiting for a notification. */
\r
4651 pxCurrentTCB->ucNotifyState = taskWAITING_NOTIFICATION;
\r
4653 if( xTicksToWait > ( TickType_t ) 0 )
\r
4655 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4656 traceTASK_NOTIFY_TAKE_BLOCK();
\r
4658 /* All ports are written to allow a yield in a critical
\r
4659 section (some will yield immediately, others wait until the
\r
4660 critical section exits) - but it is not something that
\r
4661 application code should ever do. */
\r
4662 portYIELD_WITHIN_API();
\r
4666 mtCOVERAGE_TEST_MARKER();
\r
4671 mtCOVERAGE_TEST_MARKER();
\r
4674 taskEXIT_CRITICAL();
\r
4676 taskENTER_CRITICAL();
\r
4678 traceTASK_NOTIFY_TAKE();
\r
4679 ulReturn = pxCurrentTCB->ulNotifiedValue;
\r
4681 if( ulReturn != 0UL )
\r
4683 if( xClearCountOnExit != pdFALSE )
\r
4685 pxCurrentTCB->ulNotifiedValue = 0UL;
\r
4689 pxCurrentTCB->ulNotifiedValue = ulReturn - ( uint32_t ) 1;
\r
4694 mtCOVERAGE_TEST_MARKER();
\r
4697 pxCurrentTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
4699 taskEXIT_CRITICAL();
\r
4704 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4705 /*-----------------------------------------------------------*/
\r
4707 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4709 BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait )
\r
4711 BaseType_t xReturn;
\r
4713 taskENTER_CRITICAL();
\r
4715 /* Only block if a notification is not already pending. */
\r
4716 if( pxCurrentTCB->ucNotifyState != taskNOTIFICATION_RECEIVED )
\r
4718 /* Clear bits in the task's notification value as bits may get
\r
4719 set by the notifying task or interrupt. This can be used to
\r
4720 clear the value to zero. */
\r
4721 pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnEntry;
\r
4723 /* Mark this task as waiting for a notification. */
\r
4724 pxCurrentTCB->ucNotifyState = taskWAITING_NOTIFICATION;
\r
4726 if( xTicksToWait > ( TickType_t ) 0 )
\r
4728 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4729 traceTASK_NOTIFY_WAIT_BLOCK();
\r
4731 /* All ports are written to allow a yield in a critical
\r
4732 section (some will yield immediately, others wait until the
\r
4733 critical section exits) - but it is not something that
\r
4734 application code should ever do. */
\r
4735 portYIELD_WITHIN_API();
\r
4739 mtCOVERAGE_TEST_MARKER();
\r
4744 mtCOVERAGE_TEST_MARKER();
\r
4747 taskEXIT_CRITICAL();
\r
4749 taskENTER_CRITICAL();
\r
4751 traceTASK_NOTIFY_WAIT();
\r
4753 if( pulNotificationValue != NULL )
\r
4755 /* Output the current notification value, which may or may not
\r
4757 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue;
\r
4760 /* If ucNotifyValue is set then either the task never entered the
\r
4761 blocked state (because a notification was already pending) or the
\r
4762 task unblocked because of a notification. Otherwise the task
\r
4763 unblocked because of a timeout. */
\r
4764 if( pxCurrentTCB->ucNotifyState != taskNOTIFICATION_RECEIVED )
\r
4766 /* A notification was not received. */
\r
4767 xReturn = pdFALSE;
\r
4771 /* A notification was already pending or a notification was
\r
4772 received while the task was waiting. */
\r
4773 pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnExit;
\r
4777 pxCurrentTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
4779 taskEXIT_CRITICAL();
\r
4784 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4785 /*-----------------------------------------------------------*/
\r
4787 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4789 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue )
\r
4792 BaseType_t xReturn = pdPASS;
\r
4793 uint8_t ucOriginalNotifyState;
\r
4795 configASSERT( xTaskToNotify );
\r
4796 pxTCB = xTaskToNotify;
\r
4798 taskENTER_CRITICAL();
\r
4800 if( pulPreviousNotificationValue != NULL )
\r
4802 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue;
\r
4805 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
4807 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
4812 pxTCB->ulNotifiedValue |= ulValue;
\r
4816 ( pxTCB->ulNotifiedValue )++;
\r
4819 case eSetValueWithOverwrite :
\r
4820 pxTCB->ulNotifiedValue = ulValue;
\r
4823 case eSetValueWithoutOverwrite :
\r
4824 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4826 pxTCB->ulNotifiedValue = ulValue;
\r
4830 /* The value could not be written to the task. */
\r
4836 /* The task is being notified without its notify value being
\r
4841 /* Should not get here if all enums are handled.
\r
4842 Artificially force an assert by testing a value the
\r
4843 compiler can't assume is const. */
\r
4844 configASSERT( pxTCB->ulNotifiedValue == ~0UL );
\r
4849 traceTASK_NOTIFY();
\r
4851 /* If the task is in the blocked state specifically to wait for a
\r
4852 notification then unblock it now. */
\r
4853 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4855 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4856 prvAddTaskToReadyList( pxTCB );
\r
4858 /* The task should not have been on an event list. */
\r
4859 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4861 #if( configUSE_TICKLESS_IDLE != 0 )
\r
4863 /* If a task is blocked waiting for a notification then
\r
4864 xNextTaskUnblockTime might be set to the blocked task's time
\r
4865 out time. If the task is unblocked for a reason other than
\r
4866 a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4867 because it will automatically get reset to a new value when
\r
4868 the tick count equals xNextTaskUnblockTime. However if
\r
4869 tickless idling is used it might be more important to enter
\r
4870 sleep mode at the earliest possible time - so reset
\r
4871 xNextTaskUnblockTime here to ensure it is updated at the
\r
4872 earliest possible time. */
\r
4873 prvResetNextTaskUnblockTime();
\r
4877 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4879 /* The notified task has a priority above the currently
\r
4880 executing task so a yield is required. */
\r
4881 taskYIELD_IF_USING_PREEMPTION();
\r
4885 mtCOVERAGE_TEST_MARKER();
\r
4890 mtCOVERAGE_TEST_MARKER();
\r
4893 taskEXIT_CRITICAL();
\r
4898 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4899 /*-----------------------------------------------------------*/
\r
4901 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4903 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken )
\r
4906 uint8_t ucOriginalNotifyState;
\r
4907 BaseType_t xReturn = pdPASS;
\r
4908 UBaseType_t uxSavedInterruptStatus;
\r
4910 configASSERT( xTaskToNotify );
\r
4912 /* RTOS ports that support interrupt nesting have the concept of a
\r
4913 maximum system call (or maximum API call) interrupt priority.
\r
4914 Interrupts that are above the maximum system call priority are keep
\r
4915 permanently enabled, even when the RTOS kernel is in a critical section,
\r
4916 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4917 is defined in FreeRTOSConfig.h then
\r
4918 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4919 failure if a FreeRTOS API function is called from an interrupt that has
\r
4920 been assigned a priority above the configured maximum system call
\r
4921 priority. Only FreeRTOS functions that end in FromISR can be called
\r
4922 from interrupts that have been assigned a priority at or (logically)
\r
4923 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
4924 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
4925 simple as possible. More information (albeit Cortex-M specific) is
\r
4926 provided on the following link:
\r
4927 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
4928 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
4930 pxTCB = xTaskToNotify;
\r
4932 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
4934 if( pulPreviousNotificationValue != NULL )
\r
4936 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue;
\r
4939 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
4940 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
4945 pxTCB->ulNotifiedValue |= ulValue;
\r
4949 ( pxTCB->ulNotifiedValue )++;
\r
4952 case eSetValueWithOverwrite :
\r
4953 pxTCB->ulNotifiedValue = ulValue;
\r
4956 case eSetValueWithoutOverwrite :
\r
4957 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4959 pxTCB->ulNotifiedValue = ulValue;
\r
4963 /* The value could not be written to the task. */
\r
4969 /* The task is being notified without its notify value being
\r
4974 /* Should not get here if all enums are handled.
\r
4975 Artificially force an assert by testing a value the
\r
4976 compiler can't assume is const. */
\r
4977 configASSERT( pxTCB->ulNotifiedValue == ~0UL );
\r
4981 traceTASK_NOTIFY_FROM_ISR();
\r
4983 /* If the task is in the blocked state specifically to wait for a
\r
4984 notification then unblock it now. */
\r
4985 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4987 /* The task should not have been on an event list. */
\r
4988 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4990 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4992 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4993 prvAddTaskToReadyList( pxTCB );
\r
4997 /* The delayed and ready lists cannot be accessed, so hold
\r
4998 this task pending until the scheduler is resumed. */
\r
4999 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5002 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5004 /* The notified task has a priority above the currently
\r
5005 executing task so a yield is required. */
\r
5006 if( pxHigherPriorityTaskWoken != NULL )
\r
5008 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5011 /* Mark that a yield is pending in case the user is not
\r
5012 using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5013 safe FreeRTOS function. */
\r
5014 xYieldPending = pdTRUE;
\r
5018 mtCOVERAGE_TEST_MARKER();
\r
5022 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5027 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5028 /*-----------------------------------------------------------*/
\r
5030 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5032 void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken )
\r
5035 uint8_t ucOriginalNotifyState;
\r
5036 UBaseType_t uxSavedInterruptStatus;
\r
5038 configASSERT( xTaskToNotify );
\r
5040 /* RTOS ports that support interrupt nesting have the concept of a
\r
5041 maximum system call (or maximum API call) interrupt priority.
\r
5042 Interrupts that are above the maximum system call priority are keep
\r
5043 permanently enabled, even when the RTOS kernel is in a critical section,
\r
5044 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5045 is defined in FreeRTOSConfig.h then
\r
5046 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5047 failure if a FreeRTOS API function is called from an interrupt that has
\r
5048 been assigned a priority above the configured maximum system call
\r
5049 priority. Only FreeRTOS functions that end in FromISR can be called
\r
5050 from interrupts that have been assigned a priority at or (logically)
\r
5051 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5052 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5053 simple as possible. More information (albeit Cortex-M specific) is
\r
5054 provided on the following link:
\r
5055 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
5056 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5058 pxTCB = xTaskToNotify;
\r
5060 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5062 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
5063 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
5065 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5067 ( pxTCB->ulNotifiedValue )++;
\r
5069 traceTASK_NOTIFY_GIVE_FROM_ISR();
\r
5071 /* If the task is in the blocked state specifically to wait for a
\r
5072 notification then unblock it now. */
\r
5073 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5075 /* The task should not have been on an event list. */
\r
5076 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5078 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5080 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
5081 prvAddTaskToReadyList( pxTCB );
\r
5085 /* The delayed and ready lists cannot be accessed, so hold
\r
5086 this task pending until the scheduler is resumed. */
\r
5087 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5090 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5092 /* The notified task has a priority above the currently
\r
5093 executing task so a yield is required. */
\r
5094 if( pxHigherPriorityTaskWoken != NULL )
\r
5096 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5099 /* Mark that a yield is pending in case the user is not
\r
5100 using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5101 safe FreeRTOS function. */
\r
5102 xYieldPending = pdTRUE;
\r
5106 mtCOVERAGE_TEST_MARKER();
\r
5110 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5113 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5114 /*-----------------------------------------------------------*/
\r
5116 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5118 BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask )
\r
5121 BaseType_t xReturn;
\r
5123 /* If null is passed in here then it is the calling task that is having
\r
5124 its notification state cleared. */
\r
5125 pxTCB = prvGetTCBFromHandle( xTask );
\r
5127 taskENTER_CRITICAL();
\r
5129 if( pxTCB->ucNotifyState == taskNOTIFICATION_RECEIVED )
\r
5131 pxTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
5139 taskEXIT_CRITICAL();
\r
5144 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5145 /*-----------------------------------------------------------*/
\r
5147 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5149 uint32_t ulTaskNotifyValueClear( TaskHandle_t xTask, uint32_t ulBitsToClear )
\r
5152 uint32_t ulReturn;
\r
5154 /* If null is passed in here then it is the calling task that is having
\r
5155 its notification state cleared. */
\r
5156 pxTCB = prvGetTCBFromHandle( xTask );
\r
5158 taskENTER_CRITICAL();
\r
5160 /* Return the notification as it was before the bits were cleared,
\r
5161 then clear the bit mask. */
\r
5162 ulReturn = pxCurrentTCB->ulNotifiedValue;
\r
5163 pxTCB->ulNotifiedValue &= ~ulBitsToClear;
\r
5165 taskEXIT_CRITICAL();
\r
5170 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5171 /*-----------------------------------------------------------*/
\r
5173 #if( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5175 uint32_t ulTaskGetIdleRunTimeCounter( void )
\r
5177 return xIdleTaskHandle->ulRunTimeCounter;
\r
5181 /*-----------------------------------------------------------*/
\r
5183 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely )
\r
5185 TickType_t xTimeToWake;
\r
5186 const TickType_t xConstTickCount = xTickCount;
\r
5188 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
5190 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5191 reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5192 when the task leaves the Blocked state. */
\r
5193 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5197 /* Remove the task from the ready list before adding it to the blocked list
\r
5198 as the same list item is used for both lists. */
\r
5199 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5201 /* The current task must be in a ready list, so there is no need to
\r
5202 check, and the port reset macro can be called directly. */
\r
5203 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5207 mtCOVERAGE_TEST_MARKER();
\r
5210 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5212 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5214 /* Add the task to the suspended task list instead of a delayed task
\r
5215 list to ensure it is not woken by a timing event. It will block
\r
5217 vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5221 /* Calculate the time at which the task should be woken if the event
\r
5222 does not occur. This may overflow but this doesn't matter, the
\r
5223 kernel will manage it correctly. */
\r
5224 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5226 /* The list item will be inserted in wake time order. */
\r
5227 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5229 if( xTimeToWake < xConstTickCount )
\r
5231 /* Wake time has overflowed. Place this item in the overflow
\r
5233 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5237 /* The wake time has not overflowed, so the current block list
\r
5239 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5241 /* If the task entering the blocked state was placed at the
\r
5242 head of the list of blocked tasks then xNextTaskUnblockTime
\r
5243 needs to be updated too. */
\r
5244 if( xTimeToWake < xNextTaskUnblockTime )
\r
5246 xNextTaskUnblockTime = xTimeToWake;
\r
5250 mtCOVERAGE_TEST_MARKER();
\r
5255 #else /* INCLUDE_vTaskSuspend */
\r
5257 /* Calculate the time at which the task should be woken if the event
\r
5258 does not occur. This may overflow but this doesn't matter, the kernel
\r
5259 will manage it correctly. */
\r
5260 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5262 /* The list item will be inserted in wake time order. */
\r
5263 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5265 if( xTimeToWake < xConstTickCount )
\r
5267 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5268 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5272 /* The wake time has not overflowed, so the current block list is used. */
\r
5273 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5275 /* If the task entering the blocked state was placed at the head of the
\r
5276 list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5278 if( xTimeToWake < xNextTaskUnblockTime )
\r
5280 xNextTaskUnblockTime = xTimeToWake;
\r
5284 mtCOVERAGE_TEST_MARKER();
\r
5288 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5289 ( void ) xCanBlockIndefinitely;
\r
5291 #endif /* INCLUDE_vTaskSuspend */
\r
5294 /* Code below here allows additional code to be inserted into this source file,
\r
5295 especially where access to file scope functions and data is needed (for example
\r
5296 when performing module tests). */
\r
5298 #ifdef FREERTOS_MODULE_TEST
\r
5299 #include "tasks_test_access_functions.h"
\r
5303 #if( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5305 #include "freertos_tasks_c_additions.h"
\r
5307 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5308 static void freertos_tasks_c_additions_init( void )
\r
5310 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r