2 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
6 * this software and associated documentation files (the "Software"), to deal in
\r
7 * the Software without restriction, including without limitation the rights to
\r
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
9 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
10 * subject to the following conditions:
\r
12 * The above copyright notice and this permission notice shall be included in all
\r
13 * copies or substantial portions of the Software.
\r
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
22 * https://www.FreeRTOS.org
\r
23 * https://github.com/FreeRTOS
\r
27 /* Standard includes. */
\r
30 /* Scheduler includes. */
\r
31 #include "FreeRTOS.h"
\r
34 #ifndef configINTERRUPT_CONTROLLER_BASE_ADDRESS
\r
35 #error configINTERRUPT_CONTROLLER_BASE_ADDRESS must be defined. See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
\r
38 #ifndef configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET
\r
39 #error configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET must be defined. See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
\r
42 #ifndef configUNIQUE_INTERRUPT_PRIORITIES
\r
43 #error configUNIQUE_INTERRUPT_PRIORITIES must be defined. See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
\r
46 #ifndef configSETUP_TICK_INTERRUPT
\r
47 #error configSETUP_TICK_INTERRUPT() must be defined. See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
\r
48 #endif /* configSETUP_TICK_INTERRUPT */
\r
50 #ifndef configMAX_API_CALL_INTERRUPT_PRIORITY
\r
51 #error configMAX_API_CALL_INTERRUPT_PRIORITY must be defined. See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
\r
54 #if configMAX_API_CALL_INTERRUPT_PRIORITY == 0
\r
55 #error configMAX_API_CALL_INTERRUPT_PRIORITY must not be set to 0
\r
58 #if configMAX_API_CALL_INTERRUPT_PRIORITY > configUNIQUE_INTERRUPT_PRIORITIES
\r
59 #error configMAX_API_CALL_INTERRUPT_PRIORITY must be less than or equal to configUNIQUE_INTERRUPT_PRIORITIES as the lower the numeric priority value the higher the logical interrupt priority
\r
62 #if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
\r
63 /* Check the configuration. */
\r
64 #if( configMAX_PRIORITIES > 32 )
\r
65 #error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
\r
67 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
69 /* In case security extensions are implemented. */
\r
70 #if configMAX_API_CALL_INTERRUPT_PRIORITY <= ( configUNIQUE_INTERRUPT_PRIORITIES / 2 )
\r
71 #error configMAX_API_CALL_INTERRUPT_PRIORITY must be greater than ( configUNIQUE_INTERRUPT_PRIORITIES / 2 )
\r
74 /* Some vendor specific files default configCLEAR_TICK_INTERRUPT() in
\r
76 #ifndef configCLEAR_TICK_INTERRUPT
\r
77 #define configCLEAR_TICK_INTERRUPT()
\r
80 /* A critical section is exited when the critical section nesting count reaches
\r
82 #define portNO_CRITICAL_NESTING ( ( uint32_t ) 0 )
\r
84 /* In all GICs 255 can be written to the priority mask register to unmask all
\r
85 (but the lowest) interrupt priority. */
\r
86 #define portUNMASK_VALUE ( 0xFFUL )
\r
88 /* Tasks are not created with a floating point context, but can be given a
\r
89 floating point context after they have been created. A variable is stored as
\r
90 part of the tasks context that holds portNO_FLOATING_POINT_CONTEXT if the task
\r
91 does not have an FPU context, or any other value if the task does have an FPU
\r
93 #define portNO_FLOATING_POINT_CONTEXT ( ( StackType_t ) 0 )
\r
95 /* Constants required to setup the initial task context. */
\r
96 #define portINITIAL_SPSR ( ( StackType_t ) 0x1f ) /* System mode, ARM mode, IRQ enabled FIQ enabled. */
\r
97 #define portTHUMB_MODE_BIT ( ( StackType_t ) 0x20 )
\r
98 #define portINTERRUPT_ENABLE_BIT ( 0x80UL )
\r
99 #define portTHUMB_MODE_ADDRESS ( 0x01UL )
\r
101 /* Used by portASSERT_IF_INTERRUPT_PRIORITY_INVALID() when ensuring the binary
\r
103 #define portBINARY_POINT_BITS ( ( uint8_t ) 0x03 )
\r
105 /* Masks all bits in the APSR other than the mode bits. */
\r
106 #define portAPSR_MODE_BITS_MASK ( 0x1F )
\r
108 /* The value of the mode bits in the APSR when the CPU is executing in user
\r
110 #define portAPSR_USER_MODE ( 0x10 )
\r
112 /* The critical section macros only mask interrupts up to an application
\r
113 determined priority level. Sometimes it is necessary to turn interrupt off in
\r
114 the CPU itself before modifying certain hardware registers. */
\r
115 #define portCPU_IRQ_DISABLE() \
\r
116 __asm volatile ( "CPSID i" ::: "memory" ); \
\r
117 __asm volatile ( "DSB" ); \
\r
118 __asm volatile ( "ISB" );
\r
120 #define portCPU_IRQ_ENABLE() \
\r
121 __asm volatile ( "CPSIE i" ::: "memory" ); \
\r
122 __asm volatile ( "DSB" ); \
\r
123 __asm volatile ( "ISB" );
\r
126 /* Macro to unmask all interrupt priorities. */
\r
127 #define portCLEAR_INTERRUPT_MASK() \
\r
129 portCPU_IRQ_DISABLE(); \
\r
130 portICCPMR_PRIORITY_MASK_REGISTER = portUNMASK_VALUE; \
\r
131 __asm volatile ( "DSB \n" \
\r
133 portCPU_IRQ_ENABLE(); \
\r
136 #define portINTERRUPT_PRIORITY_REGISTER_OFFSET 0x400UL
\r
137 #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
\r
138 #define portBIT_0_SET ( ( uint8_t ) 0x01 )
\r
140 /* Let the user override the pre-loading of the initial LR with the address of
\r
141 prvTaskExitError() in case it messes up unwinding of the stack in the
\r
143 #ifdef configTASK_RETURN_ADDRESS
\r
144 #define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS
\r
146 #define portTASK_RETURN_ADDRESS prvTaskExitError
\r
149 /* The space on the stack required to hold the FPU registers. This is 32 64-bit
\r
150 registers, plus a 32-bit status register. */
\r
151 #define portFPU_REGISTER_WORDS ( ( 32 * 2 ) + 1 )
\r
153 /*-----------------------------------------------------------*/
\r
156 * Starts the first task executing. This function is necessarily written in
\r
157 * assembly code so is implemented in portASM.s.
\r
159 extern void vPortRestoreTaskContext( void );
\r
162 * Used to catch tasks that attempt to return from their implementing function.
\r
164 static void prvTaskExitError( void );
\r
167 * If the application provides an implementation of vApplicationIRQHandler(),
\r
168 * then it will get called directly without saving the FPU registers on
\r
169 * interrupt entry, and this weak implementation of
\r
170 * vApplicationFPUSafeIRQHandler() is just provided to remove linkage errors -
\r
171 * it should never actually get called so its implementation contains a
\r
172 * call to configASSERT() that will always fail.
\r
174 * If the application provides its own implementation of
\r
175 * vApplicationFPUSafeIRQHandler() then the implementation of
\r
176 * vApplicationIRQHandler() provided in portASM.S will save the FPU registers
\r
177 * before calling it.
\r
179 * Therefore, if the application writer wants FPU registers to be saved on
\r
180 * interrupt entry their IRQ handler must be called
\r
181 * vApplicationFPUSafeIRQHandler(), and if the application writer does not want
\r
182 * FPU registers to be saved on interrupt entry their IRQ handler must be
\r
183 * called vApplicationIRQHandler().
\r
185 void vApplicationFPUSafeIRQHandler( uint32_t ulICCIAR ) __attribute__((weak) );
\r
187 /*-----------------------------------------------------------*/
\r
189 /* A variable is used to keep track of the critical section nesting. This
\r
190 variable has to be stored as part of the task context and must be initialised to
\r
191 a non zero value to ensure interrupts don't inadvertently become unmasked before
\r
192 the scheduler starts. As it is stored as part of the task context it will
\r
193 automatically be set to 0 when the first task is started. */
\r
194 volatile uint32_t ulCriticalNesting = 9999UL;
\r
196 /* Saved as part of the task context. If ulPortTaskHasFPUContext is non-zero then
\r
197 a floating point context must be saved and restored for the task. */
\r
198 volatile uint32_t ulPortTaskHasFPUContext = pdFALSE;
\r
200 /* Set to 1 to pend a context switch from an ISR. */
\r
201 volatile uint32_t ulPortYieldRequired = pdFALSE;
\r
203 /* Counts the interrupt nesting depth. A context switch is only performed if
\r
204 if the nesting depth is 0. */
\r
205 volatile uint32_t ulPortInterruptNesting = 0UL;
\r
207 /* Used in the asm file. */
\r
208 __attribute__(( used )) const uint32_t ulICCIAR = portICCIAR_INTERRUPT_ACKNOWLEDGE_REGISTER_ADDRESS;
\r
209 __attribute__(( used )) const uint32_t ulICCEOIR = portICCEOIR_END_OF_INTERRUPT_REGISTER_ADDRESS;
\r
210 __attribute__(( used )) const uint32_t ulICCPMR = portICCPMR_PRIORITY_MASK_REGISTER_ADDRESS;
\r
211 __attribute__(( used )) const uint32_t ulMaxAPIPriorityMask = ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );
\r
213 /*-----------------------------------------------------------*/
\r
216 * See header file for description.
\r
218 StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
\r
220 /* Setup the initial stack of the task. The stack is set exactly as
\r
221 expected by the portRESTORE_CONTEXT() macro.
\r
223 The fist real value on the stack is the status register, which is set for
\r
224 system mode, with interrupts enabled. A few NULLs are added first to ensure
\r
225 GDB does not try decoding a non-existent return address. */
\r
226 *pxTopOfStack = ( StackType_t ) NULL;
\r
228 *pxTopOfStack = ( StackType_t ) NULL;
\r
230 *pxTopOfStack = ( StackType_t ) NULL;
\r
232 *pxTopOfStack = ( StackType_t ) portINITIAL_SPSR;
\r
234 if( ( ( uint32_t ) pxCode & portTHUMB_MODE_ADDRESS ) != 0x00UL )
\r
236 /* The task will start in THUMB mode. */
\r
237 *pxTopOfStack |= portTHUMB_MODE_BIT;
\r
242 /* Next the return address, which in this case is the start of the task. */
\r
243 *pxTopOfStack = ( StackType_t ) pxCode;
\r
246 /* Next all the registers other than the stack pointer. */
\r
247 *pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* R14 */
\r
249 *pxTopOfStack = ( StackType_t ) 0x12121212; /* R12 */
\r
251 *pxTopOfStack = ( StackType_t ) 0x11111111; /* R11 */
\r
253 *pxTopOfStack = ( StackType_t ) 0x10101010; /* R10 */
\r
255 *pxTopOfStack = ( StackType_t ) 0x09090909; /* R9 */
\r
257 *pxTopOfStack = ( StackType_t ) 0x08080808; /* R8 */
\r
259 *pxTopOfStack = ( StackType_t ) 0x07070707; /* R7 */
\r
261 *pxTopOfStack = ( StackType_t ) 0x06060606; /* R6 */
\r
263 *pxTopOfStack = ( StackType_t ) 0x05050505; /* R5 */
\r
265 *pxTopOfStack = ( StackType_t ) 0x04040404; /* R4 */
\r
267 *pxTopOfStack = ( StackType_t ) 0x03030303; /* R3 */
\r
269 *pxTopOfStack = ( StackType_t ) 0x02020202; /* R2 */
\r
271 *pxTopOfStack = ( StackType_t ) 0x01010101; /* R1 */
\r
273 *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
\r
276 /* The task will start with a critical nesting count of 0 as interrupts are
\r
278 *pxTopOfStack = portNO_CRITICAL_NESTING;
\r
280 #if( configUSE_TASK_FPU_SUPPORT == 1 )
\r
282 /* The task will start without a floating point context. A task that
\r
283 uses the floating point hardware must call vPortTaskUsesFPU() before
\r
284 executing any floating point instructions. */
\r
286 *pxTopOfStack = portNO_FLOATING_POINT_CONTEXT;
\r
288 #elif( configUSE_TASK_FPU_SUPPORT == 2 )
\r
290 /* The task will start with a floating point context. Leave enough
\r
291 space for the registers - and ensure they are initialised to 0. */
\r
292 pxTopOfStack -= portFPU_REGISTER_WORDS;
\r
293 memset( pxTopOfStack, 0x00, portFPU_REGISTER_WORDS * sizeof( StackType_t ) );
\r
296 *pxTopOfStack = pdTRUE;
\r
297 ulPortTaskHasFPUContext = pdTRUE;
\r
301 #error Invalid configUSE_TASK_FPU_SUPPORT setting - configUSE_TASK_FPU_SUPPORT must be set to 1, 2, or left undefined.
\r
305 return pxTopOfStack;
\r
307 /*-----------------------------------------------------------*/
\r
309 static void prvTaskExitError( void )
\r
311 /* A function that implements a task must not exit or attempt to return to
\r
312 its caller as there is nothing to return to. If a task wants to exit it
\r
313 should instead call vTaskDelete( NULL ).
\r
315 Artificially force an assert() to be triggered if configASSERT() is
\r
316 defined, then stop here so application writers can catch the error. */
\r
317 configASSERT( ulPortInterruptNesting == ~0UL );
\r
318 portDISABLE_INTERRUPTS();
\r
321 /*-----------------------------------------------------------*/
\r
323 BaseType_t xPortStartScheduler( void )
\r
327 #if( configASSERT_DEFINED == 1 )
\r
329 volatile uint32_t ulOriginalPriority;
\r
330 volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( configINTERRUPT_CONTROLLER_BASE_ADDRESS + portINTERRUPT_PRIORITY_REGISTER_OFFSET );
\r
331 volatile uint8_t ucMaxPriorityValue;
\r
333 /* Determine how many priority bits are implemented in the GIC.
\r
335 Save the interrupt priority value that is about to be clobbered. */
\r
336 ulOriginalPriority = *pucFirstUserPriorityRegister;
\r
338 /* Determine the number of priority bits available. First write to
\r
339 all possible bits. */
\r
340 *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
\r
342 /* Read the value back to see how many bits stuck. */
\r
343 ucMaxPriorityValue = *pucFirstUserPriorityRegister;
\r
345 /* Shift to the least significant bits. */
\r
346 while( ( ucMaxPriorityValue & portBIT_0_SET ) != portBIT_0_SET )
\r
348 ucMaxPriorityValue >>= ( uint8_t ) 0x01;
\r
351 /* Sanity check configUNIQUE_INTERRUPT_PRIORITIES matches the read
\r
353 configASSERT( ucMaxPriorityValue == portLOWEST_INTERRUPT_PRIORITY );
\r
355 /* Restore the clobbered interrupt priority register to its original
\r
357 *pucFirstUserPriorityRegister = ulOriginalPriority;
\r
359 #endif /* conifgASSERT_DEFINED */
\r
362 /* Only continue if the CPU is not in User mode. The CPU must be in a
\r
363 Privileged mode for the scheduler to start. */
\r
364 __asm volatile ( "MRS %0, APSR" : "=r" ( ulAPSR ) :: "memory" );
\r
365 ulAPSR &= portAPSR_MODE_BITS_MASK;
\r
366 configASSERT( ulAPSR != portAPSR_USER_MODE );
\r
368 if( ulAPSR != portAPSR_USER_MODE )
\r
370 /* Only continue if the binary point value is set to its lowest possible
\r
371 setting. See the comments in vPortValidateInterruptPriority() below for
\r
372 more information. */
\r
373 configASSERT( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE );
\r
375 if( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE )
\r
377 /* Interrupts are turned off in the CPU itself to ensure tick does
\r
378 not execute while the scheduler is being started. Interrupts are
\r
379 automatically turned back on in the CPU when the first task starts
\r
381 portCPU_IRQ_DISABLE();
\r
383 /* Start the timer that generates the tick ISR. */
\r
384 configSETUP_TICK_INTERRUPT();
\r
386 /* Start the first task executing. */
\r
387 vPortRestoreTaskContext();
\r
391 /* Will only get here if vTaskStartScheduler() was called with the CPU in
\r
392 a non-privileged mode or the binary point register was not set to its lowest
\r
393 possible value. prvTaskExitError() is referenced to prevent a compiler
\r
394 warning about it being defined but not referenced in the case that the user
\r
395 defines their own exit address. */
\r
396 ( void ) prvTaskExitError;
\r
399 /*-----------------------------------------------------------*/
\r
401 void vPortEndScheduler( void )
\r
403 /* Not implemented in ports where there is nothing to return to.
\r
404 Artificially force an assert. */
\r
405 configASSERT( ulCriticalNesting == 1000UL );
\r
407 /*-----------------------------------------------------------*/
\r
409 void vPortEnterCritical( void )
\r
411 /* Mask interrupts up to the max syscall interrupt priority. */
\r
412 ulPortSetInterruptMask();
\r
414 /* Now interrupts are disabled ulCriticalNesting can be accessed
\r
415 directly. Increment ulCriticalNesting to keep a count of how many times
\r
416 portENTER_CRITICAL() has been called. */
\r
417 ulCriticalNesting++;
\r
419 /* This is not the interrupt safe version of the enter critical function so
\r
420 assert() if it is being called from an interrupt context. Only API
\r
421 functions that end in "FromISR" can be used in an interrupt. Only assert if
\r
422 the critical nesting count is 1 to protect against recursive calls if the
\r
423 assert function also uses a critical section. */
\r
424 if( ulCriticalNesting == 1 )
\r
426 configASSERT( ulPortInterruptNesting == 0 );
\r
429 /*-----------------------------------------------------------*/
\r
431 void vPortExitCritical( void )
\r
433 if( ulCriticalNesting > portNO_CRITICAL_NESTING )
\r
435 /* Decrement the nesting count as the critical section is being
\r
437 ulCriticalNesting--;
\r
439 /* If the nesting level has reached zero then all interrupt
\r
440 priorities must be re-enabled. */
\r
441 if( ulCriticalNesting == portNO_CRITICAL_NESTING )
\r
443 /* Critical nesting has reached zero so all interrupt priorities
\r
444 should be unmasked. */
\r
445 portCLEAR_INTERRUPT_MASK();
\r
449 /*-----------------------------------------------------------*/
\r
451 void FreeRTOS_Tick_Handler( void )
\r
453 /* Set interrupt mask before altering scheduler structures. The tick
\r
454 handler runs at the lowest priority, so interrupts cannot already be masked,
\r
455 so there is no need to save and restore the current mask value. It is
\r
456 necessary to turn off interrupts in the CPU itself while the ICCPMR is being
\r
458 portCPU_IRQ_DISABLE();
\r
459 portICCPMR_PRIORITY_MASK_REGISTER = ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );
\r
460 __asm volatile ( "dsb \n"
\r
461 "isb \n" ::: "memory" );
\r
462 portCPU_IRQ_ENABLE();
\r
464 /* Increment the RTOS tick. */
\r
465 if( xTaskIncrementTick() != pdFALSE )
\r
467 ulPortYieldRequired = pdTRUE;
\r
470 /* Ensure all interrupt priorities are active again. */
\r
471 portCLEAR_INTERRUPT_MASK();
\r
472 configCLEAR_TICK_INTERRUPT();
\r
474 /*-----------------------------------------------------------*/
\r
476 #if( configUSE_TASK_FPU_SUPPORT != 2 )
\r
478 void vPortTaskUsesFPU( void )
\r
480 uint32_t ulInitialFPSCR = 0;
\r
482 /* A task is registering the fact that it needs an FPU context. Set the
\r
483 FPU flag (which is saved as part of the task context). */
\r
484 ulPortTaskHasFPUContext = pdTRUE;
\r
486 /* Initialise the floating point status register. */
\r
487 __asm volatile ( "FMXR FPSCR, %0" :: "r" (ulInitialFPSCR) : "memory" );
\r
490 #endif /* configUSE_TASK_FPU_SUPPORT */
\r
491 /*-----------------------------------------------------------*/
\r
493 void vPortClearInterruptMask( uint32_t ulNewMaskValue )
\r
495 if( ulNewMaskValue == pdFALSE )
\r
497 portCLEAR_INTERRUPT_MASK();
\r
500 /*-----------------------------------------------------------*/
\r
502 uint32_t ulPortSetInterruptMask( void )
\r
506 /* Interrupt in the CPU must be turned off while the ICCPMR is being
\r
508 portCPU_IRQ_DISABLE();
\r
509 if( portICCPMR_PRIORITY_MASK_REGISTER == ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) )
\r
511 /* Interrupts were already masked. */
\r
516 ulReturn = pdFALSE;
\r
517 portICCPMR_PRIORITY_MASK_REGISTER = ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );
\r
518 __asm volatile ( "dsb \n"
\r
519 "isb \n" ::: "memory" );
\r
521 portCPU_IRQ_ENABLE();
\r
525 /*-----------------------------------------------------------*/
\r
527 #if( configASSERT_DEFINED == 1 )
\r
529 void vPortValidateInterruptPriority( void )
\r
531 /* The following assertion will fail if a service routine (ISR) for
\r
532 an interrupt that has been assigned a priority above
\r
533 configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
\r
534 function. ISR safe FreeRTOS API functions must *only* be called
\r
535 from interrupts that have been assigned a priority at or below
\r
536 configMAX_SYSCALL_INTERRUPT_PRIORITY.
\r
538 Numerically low interrupt priority numbers represent logically high
\r
539 interrupt priorities, therefore the priority of the interrupt must
\r
540 be set to a value equal to or numerically *higher* than
\r
541 configMAX_SYSCALL_INTERRUPT_PRIORITY.
\r
543 FreeRTOS maintains separate thread and ISR API functions to ensure
\r
544 interrupt entry is as fast and simple as possible. */
\r
545 configASSERT( portICCRPR_RUNNING_PRIORITY_REGISTER >= ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) );
\r
547 /* Priority grouping: The interrupt controller (GIC) allows the bits
\r
548 that define each interrupt's priority to be split between bits that
\r
549 define the interrupt's pre-emption priority bits and bits that define
\r
550 the interrupt's sub-priority. For simplicity all bits must be defined
\r
551 to be pre-emption priority bits. The following assertion will fail if
\r
552 this is not the case (if some bits represent a sub-priority).
\r
554 The priority grouping is configured by the GIC's binary point register
\r
555 (ICCBPR). Writting 0 to ICCBPR will ensure it is set to its lowest
\r
556 possible value (which may be above 0). */
\r
557 configASSERT( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE );
\r
560 #endif /* configASSERT_DEFINED */
\r
561 /*-----------------------------------------------------------*/
\r
563 void vApplicationFPUSafeIRQHandler( uint32_t ulICCIAR )
\r
566 configASSERT( ( volatile void * ) NULL );
\r