2 FreeRTOS V9.0.0rc2 - Copyright (C) 2016 Real Time Engineers Ltd.
\r
5 VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
\r
7 This file is part of the FreeRTOS distribution.
\r
9 FreeRTOS is free software; you can redistribute it and/or modify it under
\r
10 the terms of the GNU General Public License (version 2) as published by the
\r
11 Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
\r
13 ***************************************************************************
\r
14 >>! NOTE: The modification to the GPL is included to allow you to !<<
\r
15 >>! distribute a combined work that includes FreeRTOS without being !<<
\r
16 >>! obliged to provide the source code for proprietary components !<<
\r
17 >>! outside of the FreeRTOS kernel. !<<
\r
18 ***************************************************************************
\r
20 FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
\r
21 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
\r
22 FOR A PARTICULAR PURPOSE. Full license text is available on the following
\r
23 link: http://www.freertos.org/a00114.html
\r
25 ***************************************************************************
\r
27 * FreeRTOS provides completely free yet professionally developed, *
\r
28 * robust, strictly quality controlled, supported, and cross *
\r
29 * platform software that is more than just the market leader, it *
\r
30 * is the industry's de facto standard. *
\r
32 * Help yourself get started quickly while simultaneously helping *
\r
33 * to support the FreeRTOS project by purchasing a FreeRTOS *
\r
34 * tutorial book, reference manual, or both: *
\r
35 * http://www.FreeRTOS.org/Documentation *
\r
37 ***************************************************************************
\r
39 http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
\r
40 the FAQ page "My application does not run, what could be wrong?". Have you
\r
41 defined configASSERT()?
\r
43 http://www.FreeRTOS.org/support - In return for receiving this top quality
\r
44 embedded software for free we request you assist our global community by
\r
45 participating in the support forum.
\r
47 http://www.FreeRTOS.org/training - Investing in training allows your team to
\r
48 be as productive as possible as early as possible. Now you can receive
\r
49 FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
\r
50 Ltd, and the world's leading authority on the world's leading RTOS.
\r
52 http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
\r
53 including FreeRTOS+Trace - an indispensable productivity tool, a DOS
\r
54 compatible FAT file system, and our tiny thread aware UDP/IP stack.
\r
56 http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
\r
57 Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
\r
59 http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
\r
60 Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
\r
61 licenses offer ticketed support, indemnification and commercial middleware.
\r
63 http://www.SafeRTOS.com - High Integrity Systems also provide a safety
\r
64 engineered and independently SIL3 certified version for use in safety and
\r
65 mission critical applications that require provable dependability.
\r
72 * Demonstrates how to create FreeRTOS objects using pre-allocated memory,
\r
73 * rather than the normal dynamically allocated memory, and tests objects being
\r
74 * created and deleted with both statically allocated memory and dynamically
\r
77 * See http://www.FreeRTOS.org/Static_Vs_Dynamic_Memory_Allocation.html
\r
80 /* Scheduler include files. */
\r
81 #include "FreeRTOS.h"
\r
85 #include "event_groups.h"
\r
88 /* Demo program include files. */
\r
89 #include "StaticAllocation.h"
\r
91 /* Exclude the entire file if configSUPPORT_STATIC_ALLOCATION is 0. */
\r
92 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
94 /* The priority at which the task that performs the tests is created. */
\r
95 #define staticTASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
\r
97 /* The length of the queue, in items, not bytes, used in the queue static
\r
98 allocation tests. */
\r
99 #define staticQUEUE_LENGTH_IN_ITEMS ( 5 )
\r
101 /* A block time of 0 simply means "don't block". */
\r
102 #define staticDONT_BLOCK ( ( TickType_t ) 0 )
\r
104 /* Binary semaphores have a maximum count of 1. */
\r
105 #define staticBINARY_SEMAPHORE_MAX_COUNT ( 1 )
\r
107 /* The size of the stack used by the task that runs the tests. */
\r
108 #define staticCREATOR_TASK_STACK_SIZE ( configMINIMAL_STACK_SIZE * 2 )
\r
110 /* The number of times the software timer will execute before stopping itself. */
\r
111 #define staticMAX_TIMER_CALLBACK_EXECUTIONS ( 5 )
\r
114 /*-----------------------------------------------------------*/
\r
117 * The task that repeatedly creates and deletes statically allocated tasks, and
\r
118 * other RTOS objects.
\r
120 static void prvStaticallyAllocatedCreator( void *pvParameters );
\r
123 * The callback function used by the software timer that is repeatedly created
\r
124 * and deleted using both static and dynamically allocated memory.
\r
126 static void prvTimerCallback( TimerHandle_t xExpiredTimer );
\r
129 * A task that is created and deleted multiple times, using both statically and
\r
130 * dynamically allocated stack and TCB.
\r
132 static void prvStaticallyAllocatedTask( void *pvParameters );
\r
135 * A function that demonstrates and tests the API functions that create and
\r
136 * delete tasks using both statically and dynamically allocated TCBs and stacks.
\r
138 static void prvCreateAndDeleteStaticallyAllocatedTasks( void );
\r
141 * A function that demonstrates and tests the API functions that create and
\r
142 * delete event groups using both statically and dynamically allocated RAM.
\r
144 static void prvCreateAndDeleteStaticallyAllocatedEventGroups( void );
\r
147 * A function that demonstrates and tests the API functions that create and
\r
148 * delete queues using both statically and dynamically allocated RAM.
\r
150 static void prvCreateAndDeleteStaticallyAllocatedQueues( void );
\r
153 * A function that demonstrates and tests the API functions that create and
\r
154 * delete binary semaphores using both statically and dynamically allocated RAM.
\r
156 static void prvCreateAndDeleteStaticallyAllocatedBinarySemaphores( void );
\r
159 * A function that demonstrates and tests the API functions that create and
\r
160 * delete software timers using both statically and dynamically allocated RAM.
\r
162 static void prvCreateAndDeleteStaticallyAllocatedTimers( void );
\r
165 * A function that demonstrates and tests the API functions that create and
\r
166 * delete mutexes using both statically and dynamically allocated RAM.
\r
168 static void prvCreateAndDeleteStaticallyAllocatedMutexes( void );
\r
171 * A function that demonstrates and tests the API functions that create and
\r
172 * delete counting semaphores using both statically and dynamically allocated
\r
175 static void prvCreateAndDeleteStaticallyAllocatedCountingSemaphores( void );
\r
178 * A function that demonstrates and tests the API functions that create and
\r
179 * delete recursive mutexes using both statically and dynamically allocated RAM.
\r
181 static void prvCreateAndDeleteStaticallyAllocatedRecursiveMutexes( void );
\r
184 * Utility function to create pseudo random numbers.
\r
186 static UBaseType_t prvRand( void );
\r
189 * The task that creates and deletes other tasks has to delay occasionally to
\r
190 * ensure lower priority tasks are not starved of processing time. A pseudo
\r
191 * random delay time is used just to add a little bit of randomisation into the
\r
192 * execution pattern. prvGetNextDelayTime() generates the pseudo random delay.
\r
194 static TickType_t prvGetNextDelayTime( void );
\r
197 * Checks the basic operation of a queue after it has been created.
\r
199 static void prvSanityCheckCreatedQueue( QueueHandle_t xQueue );
\r
202 * Checks the basic operation of a recursive mutex after it has been created.
\r
204 static void prvSanityCheckCreatedRecursiveMutex( SemaphoreHandle_t xSemaphore );
\r
207 * Checks the basic operation of a binary semaphore after it has been created.
\r
209 static void prvSanityCheckCreatedSemaphore( SemaphoreHandle_t xSemaphore, UBaseType_t uxMaxCount );
\r
212 * Checks the basic operation of an event group after it has been created.
\r
214 static void prvSanityCheckCreatedEventGroup( EventGroupHandle_t xEventGroup );
\r
216 /*-----------------------------------------------------------*/
\r
218 /* StaticTask_t is a publicly accessible structure that has the same size and
\r
219 alignment requirements as the real TCB structure. It is provided as a mechanism
\r
220 for applications to know the size of the TCB (which is dependent on the
\r
221 architecture and configuration file settings) without breaking the strict data
\r
222 hiding policy by exposing the real TCB. This StaticTask_t variable is passed
\r
223 into the xTaskCreateStatic() function that creates the
\r
224 prvStaticallyAllocatedCreator() task, and will hold the TCB of the created
\r
226 static StaticTask_t xCreatorTaskTCBBuffer;
\r
228 /* This is the stack that will be used by the prvStaticallyAllocatedCreator()
\r
229 task, which is itself created using statically allocated buffers (so without any
\r
230 dynamic memory allocation). */
\r
231 static StackType_t uxCreatorTaskStackBuffer[ staticCREATOR_TASK_STACK_SIZE ];
\r
233 /* Used by the pseudo random number generating function. */
\r
234 static uint32_t ulNextRand = 0;
\r
236 /* Used so a check task can ensure this test is still executing, and not
\r
238 static volatile UBaseType_t uxCycleCounter = 0;
\r
240 /* A variable that gets set to pdTRUE if an error is detected. */
\r
241 static volatile BaseType_t xErrorOccurred = pdFALSE;
\r
243 /*-----------------------------------------------------------*/
\r
245 void vStartStaticallyAllocatedTasks( void )
\r
247 /* Create a single task, which then repeatedly creates and deletes the other
\r
248 RTOS objects using both statically and dynamically allocated RAM. */
\r
249 xTaskCreateStatic( prvStaticallyAllocatedCreator, /* The function that implements the task being created. */
\r
250 "StatCreate", /* Text name for the task - not used by the RTOS, its just to assist debugging. */
\r
251 staticCREATOR_TASK_STACK_SIZE, /* Size of the buffer passed in as the stack - in words, not bytes! */
\r
252 NULL, /* Parameter passed into the task - not used in this case. */
\r
253 staticTASK_PRIORITY, /* Priority of the task. */
\r
254 &( uxCreatorTaskStackBuffer[ 0 ] ), /* The buffer to use as the task's stack. */
\r
255 &xCreatorTaskTCBBuffer ); /* The variable that will hold the task's TCB. */
\r
257 /* Pseudo seed the random number generator. */
\r
258 ulNextRand = ( uint32_t ) prvRand;
\r
260 /*-----------------------------------------------------------*/
\r
262 static void prvStaticallyAllocatedCreator( void *pvParameters )
\r
264 /* Avoid compiler warnings. */
\r
265 ( void ) pvParameters;
\r
269 /* Loop, running functions that create and delete the various RTOS
\r
270 objects that can be optionally created using either static or dynamic
\r
271 memory allocation. */
\r
272 prvCreateAndDeleteStaticallyAllocatedTasks();
\r
273 prvCreateAndDeleteStaticallyAllocatedQueues();
\r
275 /* Delay to ensure lower priority tasks get CPU time, and increment the
\r
276 cycle counter so a 'check' task can determine that this task is still
\r
278 vTaskDelay( prvGetNextDelayTime() );
\r
281 prvCreateAndDeleteStaticallyAllocatedBinarySemaphores();
\r
282 prvCreateAndDeleteStaticallyAllocatedCountingSemaphores();
\r
284 vTaskDelay( prvGetNextDelayTime() );
\r
287 prvCreateAndDeleteStaticallyAllocatedMutexes();
\r
288 prvCreateAndDeleteStaticallyAllocatedRecursiveMutexes();
\r
290 vTaskDelay( prvGetNextDelayTime() );
\r
293 prvCreateAndDeleteStaticallyAllocatedEventGroups();
\r
294 prvCreateAndDeleteStaticallyAllocatedTimers();
\r
297 /*-----------------------------------------------------------*/
\r
299 static void prvCreateAndDeleteStaticallyAllocatedCountingSemaphores( void )
\r
301 SemaphoreHandle_t xSemaphore;
\r
302 const UBaseType_t uxMaxCount = ( UBaseType_t ) 10;
\r
304 /* StaticSemaphore_t is a publicly accessible structure that has the same size
\r
305 and alignment requirements as the real semaphore structure. It is provided as a
\r
306 mechanism for applications to know the size of the semaphore (which is dependent
\r
307 on the architecture and configuration file settings) without breaking the strict
\r
308 data hiding policy by exposing the real semaphore internals. This
\r
309 StaticSemaphore_t variable is passed into the xSemaphoreCreateCountingStatic()
\r
310 function calls within this function. NOTE: In most usage scenarios now it is
\r
311 faster and more memory efficient to use a direct to task notification instead of
\r
312 a counting semaphore. http://www.freertos.org/RTOS-task-notifications.html */
\r
313 StaticSemaphore_t xSemaphoreBuffer;
\r
315 /* Create the semaphore. xSemaphoreCreateCountingStatic() has one more
\r
316 parameter than the usual xSemaphoreCreateCounting() function. The parameter
\r
317 is a pointer to the pre-allocated StaticSemaphore_t structure, which will
\r
318 hold information on the semaphore in an anonymous way. If the pointer is
\r
319 passed as NULL then the structure will be allocated dynamically, just as
\r
320 when xSemaphoreCreateCounting() is called. */
\r
321 xSemaphore = xSemaphoreCreateCountingStatic( uxMaxCount, 0, &xSemaphoreBuffer );
\r
323 /* The semaphore handle should equal the static semaphore structure passed
\r
324 into the xSemaphoreCreateBinaryStatic() function. */
\r
325 configASSERT( xSemaphore == ( SemaphoreHandle_t ) &xSemaphoreBuffer );
\r
327 /* Ensure the semaphore passes a few sanity checks as a valid semaphore. */
\r
328 prvSanityCheckCreatedSemaphore( xSemaphore, uxMaxCount );
\r
330 /* Delete the semaphore again so the buffers can be reused. */
\r
331 vSemaphoreDelete( xSemaphore );
\r
333 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
335 /* Now do the same but using dynamically allocated buffers to ensure the
\r
336 delete functions are working correctly in both the static and dynamic
\r
337 allocation cases. */
\r
338 xSemaphore = xSemaphoreCreateCounting( uxMaxCount, 0 );
\r
339 configASSERT( xSemaphore != NULL );
\r
340 prvSanityCheckCreatedSemaphore( xSemaphore, uxMaxCount );
\r
341 vSemaphoreDelete( xSemaphore );
\r
345 /*-----------------------------------------------------------*/
\r
347 static void prvCreateAndDeleteStaticallyAllocatedRecursiveMutexes( void )
\r
349 SemaphoreHandle_t xSemaphore;
\r
351 /* StaticSemaphore_t is a publicly accessible structure that has the same size
\r
352 and alignment requirements as the real semaphore structure. It is provided as a
\r
353 mechanism for applications to know the size of the semaphore (which is dependent
\r
354 on the architecture and configuration file settings) without breaking the strict
\r
355 data hiding policy by exposing the real semaphore internals. This
\r
356 StaticSemaphore_t variable is passed into the
\r
357 xSemaphoreCreateRecursiveMutexStatic() function calls within this function. */
\r
358 StaticSemaphore_t xSemaphoreBuffer;
\r
360 /* Create the semaphore. xSemaphoreCreateRecursiveMutexStatic() has one
\r
361 more parameter than the usual xSemaphoreCreateRecursiveMutex() function.
\r
362 The parameter is a pointer to the pre-allocated StaticSemaphore_t structure,
\r
363 which will hold information on the semaphore in an anonymous way. If the
\r
364 pointer is passed as NULL then the structure will be allocated dynamically,
\r
365 just as when xSemaphoreCreateRecursiveMutex() is called. */
\r
366 xSemaphore = xSemaphoreCreateRecursiveMutexStatic( &xSemaphoreBuffer );
\r
368 /* The semaphore handle should equal the static semaphore structure passed
\r
369 into the xSemaphoreCreateBinaryStatic() function. */
\r
370 configASSERT( xSemaphore == ( SemaphoreHandle_t ) &xSemaphoreBuffer );
\r
372 /* Ensure the semaphore passes a few sanity checks as a valid
\r
373 recursive semaphore. */
\r
374 prvSanityCheckCreatedRecursiveMutex( xSemaphore );
\r
376 /* Delete the semaphore again so the buffers can be reused. */
\r
377 vSemaphoreDelete( xSemaphore );
\r
379 /* Now do the same using dynamically allocated buffers to ensure the delete
\r
380 functions are working correctly in both the static and dynamic memory
\r
381 allocation cases. */
\r
382 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
384 xSemaphore = xSemaphoreCreateRecursiveMutex();
\r
385 configASSERT( xSemaphore != NULL );
\r
386 prvSanityCheckCreatedRecursiveMutex( xSemaphore );
\r
387 vSemaphoreDelete( xSemaphore );
\r
391 /*-----------------------------------------------------------*/
\r
393 static void prvCreateAndDeleteStaticallyAllocatedQueues( void )
\r
395 QueueHandle_t xQueue;
\r
397 /* StaticQueue_t is a publicly accessible structure that has the same size and
\r
398 alignment requirements as the real queue structure. It is provided as a
\r
399 mechanism for applications to know the size of the queue (which is dependent on
\r
400 the architecture and configuration file settings) without breaking the strict
\r
401 data hiding policy by exposing the real queue internals. This StaticQueue_t
\r
402 variable is passed into the xQueueCreateStatic() function calls within this
\r
404 static StaticQueue_t xStaticQueue;
\r
406 /* The queue storage area must be large enough to hold the maximum number of
\r
407 items it is possible for the queue to hold at any one time, which equals the
\r
408 queue length (in items, not bytes) multiplied by the size of each item. In this
\r
409 case the queue will hold staticQUEUE_LENGTH_IN_ITEMS 64-bit items. See
\r
410 http://www.freertos.org/Embedded-RTOS-Queues.html */
\r
411 static uint8_t ucQueueStorageArea[ staticQUEUE_LENGTH_IN_ITEMS * sizeof( uint64_t ) ];
\r
413 /* Create the queue. xQueueCreateStatic() has two more parameters than the
\r
414 usual xQueueCreate() function. The first new parameter is a pointer to the
\r
415 pre-allocated queue storage area. The second new parameter is a pointer to
\r
416 the StaticQueue_t structure that will hold the queue state information in
\r
417 an anonymous way. If the two pointers are passed as NULL then the data
\r
418 will be allocated dynamically as if xQueueCreate() had been called. */
\r
419 xQueue = xQueueCreateStatic( staticQUEUE_LENGTH_IN_ITEMS, /* The maximum number of items the queue can hold. */
\r
420 sizeof( uint64_t ), /* The size of each item. */
\r
421 ucQueueStorageArea, /* The buffer used to hold items within the queue. */
\r
422 &xStaticQueue ); /* The static queue structure that will hold the state of the queue. */
\r
424 /* The queue handle should equal the static queue structure passed into the
\r
425 xQueueCreateStatic() function. */
\r
426 configASSERT( xQueue == ( QueueHandle_t ) &xStaticQueue );
\r
428 /* Ensure the queue passes a few sanity checks as a valid queue. */
\r
429 prvSanityCheckCreatedQueue( xQueue );
\r
431 /* Delete the queue again so the buffers can be reused. */
\r
432 vQueueDelete( xQueue );
\r
434 /* Now do the same using a dynamically allocated queue to ensure the delete
\r
435 function is working correctly in both the static and dynamic memory
\r
436 allocation cases. */
\r
437 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
439 xQueue = xQueueCreate( staticQUEUE_LENGTH_IN_ITEMS, /* The maximum number of items the queue can hold. */
\r
440 sizeof( uint64_t ) ); /* The size of each item. */
\r
442 /* The queue handle should equal the static queue structure passed into the
\r
443 xQueueCreateStatic() function. */
\r
444 configASSERT( xQueue != NULL );
\r
446 /* Ensure the queue passes a few sanity checks as a valid queue. */
\r
447 prvSanityCheckCreatedQueue( xQueue );
\r
449 /* Delete the queue again so the buffers can be reused. */
\r
450 vQueueDelete( xQueue );
\r
454 /*-----------------------------------------------------------*/
\r
456 static void prvCreateAndDeleteStaticallyAllocatedMutexes( void )
\r
458 SemaphoreHandle_t xSemaphore;
\r
459 BaseType_t xReturned;
\r
461 /* StaticSemaphore_t is a publicly accessible structure that has the same size
\r
462 and alignment requirements as the real semaphore structure. It is provided as a
\r
463 mechanism for applications to know the size of the semaphore (which is dependent
\r
464 on the architecture and configuration file settings) without breaking the strict
\r
465 data hiding policy by exposing the real semaphore internals. This
\r
466 StaticSemaphore_t variable is passed into the xSemaphoreCreateMutexStatic()
\r
467 function calls within this function. */
\r
468 StaticSemaphore_t xSemaphoreBuffer;
\r
470 /* Create the semaphore. xSemaphoreCreateMutexStatic() has one more
\r
471 parameter than the usual xSemaphoreCreateMutex() function. The parameter
\r
472 is a pointer to the pre-allocated StaticSemaphore_t structure, which will
\r
473 hold information on the semaphore in an anonymous way. If the pointer is
\r
474 passed as NULL then the structure will be allocated dynamically, just as
\r
475 when xSemaphoreCreateMutex() is called. */
\r
476 xSemaphore = xSemaphoreCreateMutexStatic( &xSemaphoreBuffer );
\r
478 /* The semaphore handle should equal the static semaphore structure passed
\r
479 into the xSemaphoreCreateMutexStatic() function. */
\r
480 configASSERT( xSemaphore == ( SemaphoreHandle_t ) &xSemaphoreBuffer );
\r
482 /* Take the mutex so the mutex is in the state expected by the
\r
483 prvSanityCheckCreatedSemaphore() function. */
\r
484 xReturned = xSemaphoreTake( xSemaphore, staticDONT_BLOCK );
\r
486 if( xReturned != pdPASS )
\r
488 xErrorOccurred = pdTRUE;
\r
491 /* Ensure the semaphore passes a few sanity checks as a valid semaphore. */
\r
492 prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );
\r
494 /* Delete the semaphore again so the buffers can be reused. */
\r
495 vSemaphoreDelete( xSemaphore );
\r
497 /* Now do the same using a dynamically allocated mutex to ensure the delete
\r
498 function is working correctly in both the static and dynamic allocation
\r
500 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
502 xSemaphore = xSemaphoreCreateMutex();
\r
504 /* The semaphore handle should equal the static semaphore structure
\r
505 passed into the xSemaphoreCreateMutexStatic() function. */
\r
506 configASSERT( xSemaphore != NULL );
\r
508 /* Take the mutex so the mutex is in the state expected by the
\r
509 prvSanityCheckCreatedSemaphore() function. */
\r
510 xReturned = xSemaphoreTake( xSemaphore, staticDONT_BLOCK );
\r
512 if( xReturned != pdPASS )
\r
514 xErrorOccurred = pdTRUE;
\r
517 /* Ensure the semaphore passes a few sanity checks as a valid semaphore. */
\r
518 prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );
\r
520 /* Delete the semaphore again so the buffers can be reused. */
\r
521 vSemaphoreDelete( xSemaphore );
\r
525 /*-----------------------------------------------------------*/
\r
527 static void prvCreateAndDeleteStaticallyAllocatedBinarySemaphores( void )
\r
529 SemaphoreHandle_t xSemaphore;
\r
531 /* StaticSemaphore_t is a publicly accessible structure that has the same size
\r
532 and alignment requirements as the real semaphore structure. It is provided as a
\r
533 mechanism for applications to know the size of the semaphore (which is dependent
\r
534 on the architecture and configuration file settings) without breaking the strict
\r
535 data hiding policy by exposing the real semaphore internals. This
\r
536 StaticSemaphore_t variable is passed into the xSemaphoreCreateBinaryStatic()
\r
537 function calls within this function. NOTE: In most usage scenarios now it is
\r
538 faster and more memory efficient to use a direct to task notification instead of
\r
539 a binary semaphore. http://www.freertos.org/RTOS-task-notifications.html */
\r
540 StaticSemaphore_t xSemaphoreBuffer;
\r
542 /* Create the semaphore. xSemaphoreCreateBinaryStatic() has one more
\r
543 parameter than the usual xSemaphoreCreateBinary() function. The parameter
\r
544 is a pointer to the pre-allocated StaticSemaphore_t structure, which will
\r
545 hold information on the semaphore in an anonymous way. If the pointer is
\r
546 passed as NULL then the structure will be allocated dynamically, just as
\r
547 when xSemaphoreCreateBinary() is called. */
\r
548 xSemaphore = xSemaphoreCreateBinaryStatic( &xSemaphoreBuffer );
\r
550 /* The semaphore handle should equal the static semaphore structure passed
\r
551 into the xSemaphoreCreateBinaryStatic() function. */
\r
552 configASSERT( xSemaphore == ( SemaphoreHandle_t ) &xSemaphoreBuffer );
\r
554 /* Ensure the semaphore passes a few sanity checks as a valid semaphore. */
\r
555 prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );
\r
557 /* Delete the semaphore again so the buffers can be reused. */
\r
558 vSemaphoreDelete( xSemaphore );
\r
560 /* Now do the same using a dynamically allocated semaphore to check the
\r
561 delete function is working correctly in both the static and dynamic
\r
562 allocation cases. */
\r
563 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
565 xSemaphore = xSemaphoreCreateBinary();
\r
566 configASSERT( xSemaphore != NULL );
\r
567 prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );
\r
568 vSemaphoreDelete( xSemaphore );
\r
572 /* There isn't a static version of the old and deprecated
\r
573 vSemaphoreCreateBinary() macro (because its deprecated!), but check it is
\r
574 still functioning correctly. */
\r
575 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
577 vSemaphoreCreateBinary( xSemaphore );
\r
579 /* The macro starts with the binary semaphore available, but the test
\r
580 function expects it to be unavailable. */
\r
581 if( xSemaphoreTake( xSemaphore, staticDONT_BLOCK ) == pdFAIL )
\r
583 xErrorOccurred = pdTRUE;
\r
586 prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );
\r
587 vSemaphoreDelete( xSemaphore );
\r
591 /*-----------------------------------------------------------*/
\r
593 static void prvTimerCallback( TimerHandle_t xExpiredTimer )
\r
595 UBaseType_t *puxVariableToIncrement;
\r
596 BaseType_t xReturned;
\r
598 /* The timer callback just demonstrates it is executing by incrementing a
\r
599 variable - the address of which is passed into the timer as its ID. Obtain
\r
600 the address of the variable to increment. */
\r
601 puxVariableToIncrement = ( UBaseType_t * ) pvTimerGetTimerID( xExpiredTimer );
\r
603 /* Increment the variable to show the timer callback has executed. */
\r
604 ( *puxVariableToIncrement )++;
\r
606 /* If this callback has executed the required number of times, stop the
\r
608 if( *puxVariableToIncrement == staticMAX_TIMER_CALLBACK_EXECUTIONS )
\r
610 /* This is called from a timer callback so must not block. See
\r
611 http://www.FreeRTOS.org/FreeRTOS-timers-xTimerStop.html */
\r
612 xReturned = xTimerStop( xExpiredTimer, staticDONT_BLOCK );
\r
614 if( xReturned != pdPASS )
\r
616 xErrorOccurred = pdTRUE;
\r
620 /*-----------------------------------------------------------*/
\r
622 static void prvCreateAndDeleteStaticallyAllocatedTimers( void )
\r
624 TimerHandle_t xTimer;
\r
625 UBaseType_t uxVariableToIncrement;
\r
626 const TickType_t xTimerPeriod = pdMS_TO_TICKS( 20 );
\r
627 BaseType_t xReturned;
\r
629 /* StaticTimer_t is a publicly accessible structure that has the same size
\r
630 and alignment requirements as the real timer structure. It is provided as a
\r
631 mechanism for applications to know the size of the timer structure (which is
\r
632 dependent on the architecture and configuration file settings) without breaking
\r
633 the strict data hiding policy by exposing the real timer internals. This
\r
634 StaticTimer_t variable is passed into the xTimerCreateStatic() function calls
\r
635 within this function. */
\r
636 StaticTimer_t xTimerBuffer;
\r
638 /* Create the software time. xTimerCreateStatic() has an extra parameter
\r
639 than the normal xTimerCreate() API function. The parameter is a pointer to
\r
640 the StaticTimer_t structure that will hold the software timer structure. If
\r
641 the parameter is passed as NULL then the structure will be allocated
\r
642 dynamically, just as if xTimerCreate() had been called. */
\r
643 xTimer = xTimerCreateStatic( "T1", /* Text name for the task. Helps debugging only. Not used by FreeRTOS. */
\r
644 xTimerPeriod, /* The period of the timer in ticks. */
\r
645 pdTRUE, /* This is an auto-reload timer. */
\r
646 ( void * ) &uxVariableToIncrement, /* The variable incremented by the test is passed into the timer callback using the timer ID. */
\r
647 prvTimerCallback, /* The function to execute when the timer expires. */
\r
648 &xTimerBuffer ); /* The buffer that will hold the software timer structure. */
\r
650 /* The timer handle should equal the static timer structure passed into the
\r
651 xTimerCreateStatic() function. */
\r
652 configASSERT( xTimer == ( TimerHandle_t ) &xTimerBuffer );
\r
654 /* Set the variable to 0, wait for a few timer periods to expire, then check
\r
655 the timer callback has incremented the variable to the expected value. */
\r
656 uxVariableToIncrement = 0;
\r
658 /* This is a low priority so a block time should not be needed. */
\r
659 xReturned = xTimerStart( xTimer, staticDONT_BLOCK );
\r
661 if( xReturned != pdPASS )
\r
663 xErrorOccurred = pdTRUE;
\r
666 vTaskDelay( xTimerPeriod * staticMAX_TIMER_CALLBACK_EXECUTIONS );
\r
668 /* By now the timer should have expired staticMAX_TIMER_CALLBACK_EXECUTIONS
\r
669 times, and then stopped itself. */
\r
670 if( uxVariableToIncrement != staticMAX_TIMER_CALLBACK_EXECUTIONS )
\r
672 xErrorOccurred = pdTRUE;
\r
675 /* Finished with the timer, delete it. */
\r
676 xReturned = xTimerDelete( xTimer, staticDONT_BLOCK );
\r
678 /* Again, as this is a low priority task it is expected that the timer
\r
679 command will have been sent even without a block time being used. */
\r
680 if( xReturned != pdPASS )
\r
682 xErrorOccurred = pdTRUE;
\r
685 /* Just to show the check task that this task is still executing. */
\r
688 /* Now do the same using a dynamically allocated software timer to ensure
\r
689 the delete function is working correctly in both the static and dynamic
\r
690 allocation cases. */
\r
691 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
693 xTimer = xTimerCreate( "T1", /* Text name for the task. Helps debugging only. Not used by FreeRTOS. */
\r
694 xTimerPeriod, /* The period of the timer in ticks. */
\r
695 pdTRUE, /* This is an auto-reload timer. */
\r
696 ( void * ) &uxVariableToIncrement, /* The variable incremented by the test is passed into the timer callback using the timer ID. */
\r
697 prvTimerCallback ); /* The function to execute when the timer expires. */
\r
699 configASSERT( xTimer != NULL );
\r
701 uxVariableToIncrement = 0;
\r
702 xReturned = xTimerStart( xTimer, staticDONT_BLOCK );
\r
704 if( xReturned != pdPASS )
\r
706 xErrorOccurred = pdTRUE;
\r
709 vTaskDelay( xTimerPeriod * staticMAX_TIMER_CALLBACK_EXECUTIONS );
\r
711 if( uxVariableToIncrement != staticMAX_TIMER_CALLBACK_EXECUTIONS )
\r
713 xErrorOccurred = pdTRUE;
\r
716 xReturned = xTimerDelete( xTimer, staticDONT_BLOCK );
\r
718 if( xReturned != pdPASS )
\r
720 xErrorOccurred = pdTRUE;
\r
725 /*-----------------------------------------------------------*/
\r
727 static void prvCreateAndDeleteStaticallyAllocatedEventGroups( void )
\r
729 EventGroupHandle_t xEventGroup;
\r
731 /* StaticEventGroup_t is a publicly accessible structure that has the same size
\r
732 and alignment requirements as the real event group structure. It is provided as
\r
733 a mechanism for applications to know the size of the event group (which is
\r
734 dependent on the architecture and configuration file settings) without breaking
\r
735 the strict data hiding policy by exposing the real event group internals. This
\r
736 StaticEventGroup_t variable is passed into the xSemaphoreCreateEventGroupStatic()
\r
737 function calls within this function. */
\r
738 StaticEventGroup_t xEventGroupBuffer;
\r
740 /* Create the event group. xEventGroupCreateStatic() has an extra parameter
\r
741 than the normal xEventGroupCreate() API function. The parameter is a
\r
742 pointer to the StaticEventGroup_t structure that will hold the event group
\r
743 structure. If the parameter is passed as NULL then the structure will be
\r
744 allocated dynamically, just as if xEventGroupCreate() had been called. */
\r
745 xEventGroup = xEventGroupCreateStatic( &xEventGroupBuffer );
\r
747 /* The event group handle should equal the static event group structure
\r
748 passed into the xEventGroupCreateStatic() function. */
\r
749 configASSERT( xEventGroup == ( EventGroupHandle_t ) &xEventGroupBuffer );
\r
751 /* Ensure the event group passes a few sanity checks as a valid event
\r
753 prvSanityCheckCreatedEventGroup( xEventGroup );
\r
755 /* Delete the event group again so the buffers can be reused. */
\r
756 vEventGroupDelete( xEventGroup );
\r
758 /* Now do the same using a dynamically allocated event group to ensure the
\r
759 delete function is working correctly in both the static and dynamic
\r
760 allocation cases. */
\r
761 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
763 xEventGroup = xEventGroupCreate();
\r
764 configASSERT( xEventGroup != NULL );
\r
765 prvSanityCheckCreatedEventGroup( xEventGroup );
\r
766 vEventGroupDelete( xEventGroup );
\r
770 /*-----------------------------------------------------------*/
\r
772 static void prvCreateAndDeleteStaticallyAllocatedTasks( void )
\r
774 TaskHandle_t xCreatedTask;
\r
776 /* The variable that will hold the TCB of tasks created by this function. See
\r
777 the comments above the declaration of the xCreatorTaskTCBBuffer variable for
\r
778 more information. */
\r
779 StaticTask_t xTCBBuffer;
\r
781 /* This buffer that will be used as the stack of tasks created by this function.
\r
782 See the comments above the declaration of the uxCreatorTaskStackBuffer[] array
\r
783 above for more information. */
\r
784 static StackType_t uxStackBuffer[ configMINIMAL_STACK_SIZE ];
\r
786 /* Create the task. xTaskCreateStatic() has two more parameters than
\r
787 the usual xTaskCreate() function. The first new parameter is a pointer to
\r
788 the pre-allocated stack. The second new parameter is a pointer to the
\r
789 StaticTask_t structure that will hold the task's TCB. If both pointers are
\r
790 passed as NULL then the respective object will be allocated dynamically as
\r
791 if xTaskCreate() had been called. */
\r
792 xCreatedTask = xTaskCreateStatic(
\r
793 prvStaticallyAllocatedTask, /* Function that implements the task. */
\r
794 "Static", /* Human readable name for the task. */
\r
795 configMINIMAL_STACK_SIZE, /* Task's stack size, in words (not bytes!). */
\r
796 NULL, /* Parameter to pass into the task. */
\r
797 uxTaskPriorityGet( NULL ) + 1, /* The priority of the task. */
\r
798 &( uxStackBuffer[ 0 ] ), /* The buffer to use as the task's stack. */
\r
799 &xTCBBuffer ); /* The variable that will hold that task's TCB. */
\r
801 /* Check the task was created correctly, then delete the task. */
\r
802 if( xCreatedTask == NULL )
\r
804 xErrorOccurred = pdTRUE;
\r
806 else if( eTaskGetState( xCreatedTask ) != eSuspended )
\r
808 /* The created task had a higher priority so should have executed and
\r
809 suspended itself by now. */
\r
810 xErrorOccurred = pdTRUE;
\r
814 vTaskDelete( xCreatedTask );
\r
817 /* Now do the same using a dynamically allocated task to ensure the delete
\r
818 function is working correctly in both the static and dynamic allocation
\r
820 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
822 BaseType_t xReturned;
\r
824 xReturned = xTaskCreate(
\r
825 prvStaticallyAllocatedTask, /* Function that implements the task - the same function is used but is actually dynamically allocated this time. */
\r
826 "Static", /* Human readable name for the task. */
\r
827 configMINIMAL_STACK_SIZE, /* Task's stack size, in words (not bytes!). */
\r
828 NULL, /* Parameter to pass into the task. */
\r
829 uxTaskPriorityGet( NULL ) + 1, /* The priority of the task. */
\r
830 &xCreatedTask ); /* Handle of the task being created. */
\r
832 if( eTaskGetState( xCreatedTask ) != eSuspended )
\r
834 xErrorOccurred = pdTRUE;
\r
837 configASSERT( xReturned == pdPASS );
\r
838 if( xReturned != pdPASS )
\r
840 xErrorOccurred = pdTRUE;
\r
842 vTaskDelete( xCreatedTask );
\r
846 /*-----------------------------------------------------------*/
\r
848 static void prvStaticallyAllocatedTask( void *pvParameters )
\r
850 ( void ) pvParameters;
\r
852 /* The created task just suspends itself to wait to get deleted. The task
\r
853 that creates this task checks this task is in the expected Suspended state
\r
854 before deleting it. */
\r
855 vTaskSuspend( NULL );
\r
857 /*-----------------------------------------------------------*/
\r
859 static UBaseType_t prvRand( void )
\r
861 const uint32_t ulMultiplier = 0x015a4e35UL, ulIncrement = 1UL;
\r
863 /* Utility function to generate a pseudo random number. */
\r
864 ulNextRand = ( ulMultiplier * ulNextRand ) + ulIncrement;
\r
865 return( ( ulNextRand >> 16UL ) & 0x7fffUL );
\r
867 /*-----------------------------------------------------------*/
\r
869 static TickType_t prvGetNextDelayTime( void )
\r
871 TickType_t xNextDelay;
\r
872 const TickType_t xMaxDelay = pdMS_TO_TICKS( ( TickType_t ) 150 );
\r
873 const TickType_t xMinDelay = pdMS_TO_TICKS( ( TickType_t ) 75 );
\r
874 const TickType_t xTinyDelay = pdMS_TO_TICKS( ( TickType_t ) 2 );
\r
876 /* Generate the next delay time. This is kept within a narrow band so as
\r
877 not to disturb the timing of other tests - but does add in some pseudo
\r
878 randomisation into the tests. */
\r
881 xNextDelay = prvRand() % xMaxDelay;
\r
883 /* Just in case this loop is executed lots of times. */
\r
884 vTaskDelay( xTinyDelay );
\r
886 } while ( xNextDelay < xMinDelay );
\r
890 /*-----------------------------------------------------------*/
\r
892 static void prvSanityCheckCreatedEventGroup( EventGroupHandle_t xEventGroup )
\r
894 EventBits_t xEventBits;
\r
895 const EventBits_t xFirstTestBits = ( EventBits_t ) 0xaa, xSecondTestBits = ( EventBits_t ) 0x55;
\r
897 /* The event group should not have any bits set yet. */
\r
898 xEventBits = xEventGroupGetBits( xEventGroup );
\r
900 if( xEventBits != ( EventBits_t ) 0 )
\r
902 xErrorOccurred = pdTRUE;
\r
905 /* Some some bits, then read them back to check they are as expected. */
\r
906 xEventGroupSetBits( xEventGroup, xFirstTestBits );
\r
908 xEventBits = xEventGroupGetBits( xEventGroup );
\r
910 if( xEventBits != xFirstTestBits )
\r
912 xErrorOccurred = pdTRUE;
\r
915 xEventGroupSetBits( xEventGroup, xSecondTestBits );
\r
917 xEventBits = xEventGroupGetBits( xEventGroup );
\r
919 if( xEventBits != ( xFirstTestBits | xSecondTestBits ) )
\r
921 xErrorOccurred = pdTRUE;
\r
924 /* Finally try clearing some bits too and check that operation proceeds as
\r
926 xEventGroupClearBits( xEventGroup, xFirstTestBits );
\r
928 xEventBits = xEventGroupGetBits( xEventGroup );
\r
930 if( xEventBits != xSecondTestBits )
\r
932 xErrorOccurred = pdTRUE;
\r
935 /*-----------------------------------------------------------*/
\r
937 static void prvSanityCheckCreatedSemaphore( SemaphoreHandle_t xSemaphore, UBaseType_t uxMaxCount )
\r
939 BaseType_t xReturned;
\r
941 const TickType_t xShortBlockTime = pdMS_TO_TICKS( 10 );
\r
942 TickType_t xTickCount;
\r
944 /* The binary semaphore should start 'empty', so a call to xSemaphoreTake()
\r
946 xTickCount = xTaskGetTickCount();
\r
947 xReturned = xSemaphoreTake( xSemaphore, xShortBlockTime );
\r
949 if( ( ( TickType_t ) ( xTaskGetTickCount() - xTickCount ) ) < xShortBlockTime )
\r
951 /* Did not block on the semaphore as long as expected. */
\r
952 xErrorOccurred = pdTRUE;
\r
955 if( xReturned != pdFAIL )
\r
957 xErrorOccurred = pdTRUE;
\r
960 /* Should be possible to 'give' the semaphore up to a maximum of uxMaxCount
\r
962 for( x = 0; x < uxMaxCount; x++ )
\r
964 xReturned = xSemaphoreGive( xSemaphore );
\r
966 if( xReturned == pdFAIL )
\r
968 xErrorOccurred = pdTRUE;
\r
972 /* Giving the semaphore again should fail, as it is 'full'. */
\r
973 xReturned = xSemaphoreGive( xSemaphore );
\r
975 if( xReturned != pdFAIL )
\r
977 xErrorOccurred = pdTRUE;
\r
980 configASSERT( uxSemaphoreGetCount( xSemaphore ) == uxMaxCount );
\r
982 /* Should now be possible to 'take' the semaphore up to a maximum of
\r
983 uxMaxCount times without blocking. */
\r
984 for( x = 0; x < uxMaxCount; x++ )
\r
986 xReturned = xSemaphoreTake( xSemaphore, staticDONT_BLOCK );
\r
988 if( xReturned == pdFAIL )
\r
990 xErrorOccurred = pdTRUE;
\r
994 /* Back to the starting condition, where the semaphore should not be
\r
996 xTickCount = xTaskGetTickCount();
\r
997 xReturned = xSemaphoreTake( xSemaphore, xShortBlockTime );
\r
999 if( ( ( TickType_t ) ( xTaskGetTickCount() - xTickCount ) ) < xShortBlockTime )
\r
1001 /* Did not block on the semaphore as long as expected. */
\r
1002 xErrorOccurred = pdTRUE;
\r
1005 if( xReturned != pdFAIL )
\r
1007 xErrorOccurred = pdTRUE;
\r
1010 configASSERT( uxSemaphoreGetCount( xSemaphore ) == 0 );
\r
1012 /*-----------------------------------------------------------*/
\r
1014 static void prvSanityCheckCreatedQueue( QueueHandle_t xQueue )
\r
1016 uint64_t ull, ullRead;
\r
1017 BaseType_t xReturned, xLoop;
\r
1019 /* This test is done twice to ensure the queue storage area wraps. */
\r
1020 for( xLoop = 0; xLoop < 2; xLoop++ )
\r
1022 /* A very basic test that the queue can be written to and read from as
\r
1023 expected. First the queue should be empty. */
\r
1024 xReturned = xQueueReceive( xQueue, &ull, staticDONT_BLOCK );
\r
1025 if( xReturned != errQUEUE_EMPTY )
\r
1027 xErrorOccurred = pdTRUE;
\r
1030 /* Now it should be possible to write to the queue staticQUEUE_LENGTH_IN_ITEMS
\r
1032 for( ull = 0; ull < staticQUEUE_LENGTH_IN_ITEMS; ull++ )
\r
1034 xReturned = xQueueSend( xQueue, &ull, staticDONT_BLOCK );
\r
1035 if( xReturned != pdPASS )
\r
1037 xErrorOccurred = pdTRUE;
\r
1041 /* Should not now be possible to write to the queue again. */
\r
1042 xReturned = xQueueSend( xQueue, &ull, staticDONT_BLOCK );
\r
1043 if( xReturned != errQUEUE_FULL )
\r
1045 xErrorOccurred = pdTRUE;
\r
1048 /* Now read back from the queue to ensure the data read back matches that
\r
1050 for( ull = 0; ull < staticQUEUE_LENGTH_IN_ITEMS; ull++ )
\r
1052 xReturned = xQueueReceive( xQueue, &ullRead, staticDONT_BLOCK );
\r
1054 if( xReturned != pdPASS )
\r
1056 xErrorOccurred = pdTRUE;
\r
1059 if( ullRead != ull )
\r
1061 xErrorOccurred = pdTRUE;
\r
1065 /* The queue should be empty again. */
\r
1066 xReturned = xQueueReceive( xQueue, &ull, staticDONT_BLOCK );
\r
1067 if( xReturned != errQUEUE_EMPTY )
\r
1069 xErrorOccurred = pdTRUE;
\r
1073 /*-----------------------------------------------------------*/
\r
1075 static void prvSanityCheckCreatedRecursiveMutex( SemaphoreHandle_t xSemaphore )
\r
1077 const BaseType_t xLoops = 5;
\r
1078 BaseType_t x, xReturned;
\r
1080 /* A very basic test that the recursive semaphore behaved like a recursive
\r
1081 semaphore. First the semaphore should not be able to be given, as it has not
\r
1082 yet been taken. */
\r
1083 xReturned = xSemaphoreGiveRecursive( xSemaphore );
\r
1085 if( xReturned != pdFAIL )
\r
1087 xErrorOccurred = pdTRUE;
\r
1090 /* Now it should be possible to take the mutex a number of times. */
\r
1091 for( x = 0; x < xLoops; x++ )
\r
1093 xReturned = xSemaphoreTakeRecursive( xSemaphore, staticDONT_BLOCK );
\r
1095 if( xReturned != pdPASS )
\r
1097 xErrorOccurred = pdTRUE;
\r
1101 /* Should be possible to give the semaphore the same number of times as it
\r
1102 was given in the loop above. */
\r
1103 for( x = 0; x < xLoops; x++ )
\r
1105 xReturned = xSemaphoreGiveRecursive( xSemaphore );
\r
1107 if( xReturned != pdPASS )
\r
1109 xErrorOccurred = pdTRUE;
\r
1113 /* No more gives should be possible though. */
\r
1114 xReturned = xSemaphoreGiveRecursive( xSemaphore );
\r
1116 if( xReturned != pdFAIL )
\r
1118 xErrorOccurred = pdTRUE;
\r
1121 /*-----------------------------------------------------------*/
\r
1123 BaseType_t xAreStaticAllocationTasksStillRunning( void )
\r
1125 static UBaseType_t uxLastCycleCounter = 0;
\r
1126 BaseType_t xReturn;
\r
1128 if( uxCycleCounter == uxLastCycleCounter )
\r
1130 xErrorOccurred = pdTRUE;
\r
1134 uxLastCycleCounter = uxCycleCounter;
\r
1137 if( xErrorOccurred != pdFALSE )
\r
1148 /*-----------------------------------------------------------*/
\r
1150 /* Exclude the entire file if configSUPPORT_STATIC_ALLOCATION is 0. */
\r
1151 #endif /* configSUPPORT_STATIC_ALLOCATION == 1 */
\r