2 FreeRTOS V7.4.1 - Copyright (C) 2013 Real Time Engineers Ltd.
\r
4 FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
\r
5 http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
\r
7 ***************************************************************************
\r
9 * FreeRTOS tutorial books are available in pdf and paperback. *
\r
10 * Complete, revised, and edited pdf reference manuals are also *
\r
13 * Purchasing FreeRTOS documentation will not only help you, by *
\r
14 * ensuring you get running as quickly as possible and with an *
\r
15 * in-depth knowledge of how to use FreeRTOS, it will also help *
\r
16 * the FreeRTOS project to continue with its mission of providing *
\r
17 * professional grade, cross platform, de facto standard solutions *
\r
18 * for microcontrollers - completely free of charge! *
\r
20 * >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
\r
22 * Thank you for using FreeRTOS, and thank you for your support! *
\r
24 ***************************************************************************
\r
27 This file is part of the FreeRTOS distribution.
\r
29 FreeRTOS is free software; you can redistribute it and/or modify it under
\r
30 the terms of the GNU General Public License (version 2) as published by the
\r
31 Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
\r
33 >>>>>>NOTE<<<<<< The modification to the GPL is included to allow you to
\r
34 distribute a combined work that includes FreeRTOS without being obliged to
\r
35 provide the source code for proprietary components outside of the FreeRTOS
\r
38 FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
\r
39 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
\r
40 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
\r
41 details. You should have received a copy of the GNU General Public License
\r
42 and the FreeRTOS license exception along with FreeRTOS; if not it can be
\r
43 viewed here: http://www.freertos.org/a00114.html and also obtained by
\r
44 writing to Real Time Engineers Ltd., contact details for whom are available
\r
45 on the FreeRTOS WEB site.
\r
49 ***************************************************************************
\r
51 * Having a problem? Start by reading the FAQ "My application does *
\r
52 * not run, what could be wrong?" *
\r
54 * http://www.FreeRTOS.org/FAQHelp.html *
\r
56 ***************************************************************************
\r
59 http://www.FreeRTOS.org - Documentation, books, training, latest versions,
\r
60 license and Real Time Engineers Ltd. contact details.
\r
62 http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
\r
63 including FreeRTOS+Trace - an indispensable productivity tool, and our new
\r
64 fully thread aware and reentrant UDP/IP stack.
\r
66 http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
\r
67 Integrity Systems, who sell the code with commercial support,
\r
68 indemnification and middleware, under the OpenRTOS brand.
\r
70 http://www.SafeRTOS.com - High Integrity Systems also provide a safety
\r
71 engineered and independently SIL3 certified version for use in safety and
\r
72 mission critical applications that require provable dependability.
\r
75 /* Kernel includes. */
\r
76 #include "FreeRTOS.h"
\r
80 /* Hardware includes. */
\r
83 #include "eth_phy.h"
\r
88 #include "uip_arp.h"
\r
90 /* Delay between polling the PHY to see if a link has been established. */
\r
91 #define fecLINK_DELAY ( 500 / portTICK_RATE_MS )
\r
93 /* Delay to wait for an MII access. */
\r
94 #define fecMII_DELAY ( 10 / portTICK_RATE_MS )
\r
95 #define fecMAX_POLLS ( 20 )
\r
97 /* Constants used to delay while waiting for a tx descriptor to be free. */
\r
98 #define fecMAX_WAIT_FOR_TX_BUFFER ( 200 / portTICK_RATE_MS )
\r
100 /* We only use a single Tx descriptor which can lead to Txed packets being sent
\r
101 twice (due to a bug in the FEC silicon). However, in this case the bug is used
\r
102 to our advantage in that it means the uip-split mechanism is not required. */
\r
103 #define fecNUM_FEC_TX_BUFFERS ( 1 )
\r
104 #define fecTX_BUFFER_TO_USE ( 0 )
\r
105 /*-----------------------------------------------------------*/
\r
107 /* The semaphore used to wake the uIP task when data arrives. */
\r
108 xSemaphoreHandle xFECSemaphore = NULL, xTxSemaphore = NULL;
\r
110 /* The buffer used by the uIP stack. In this case the pointer is used to
\r
111 point to one of the Rx buffers to effect a zero copy policy. */
\r
112 unsigned portCHAR *uip_buf;
\r
114 /* The DMA descriptors. This is a char array to allow us to align it correctly. */
\r
115 static unsigned portCHAR xFECTxDescriptors_unaligned[ ( fecNUM_FEC_TX_BUFFERS * sizeof( FECBD ) ) + 16 ];
\r
116 static unsigned portCHAR xFECRxDescriptors_unaligned[ ( configNUM_FEC_RX_BUFFERS * sizeof( FECBD ) ) + 16 ];
\r
117 static FECBD *xFECTxDescriptors;
\r
118 static FECBD *xFECRxDescriptors;
\r
120 /* The DMA buffers. These are char arrays to allow them to be aligned correctly. */
\r
121 static unsigned portCHAR ucFECRxBuffers[ ( configNUM_FEC_RX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
\r
122 static unsigned portBASE_TYPE uxNextRxBuffer = 0, uxIndexToBufferOwner = 0;
\r
124 /*-----------------------------------------------------------*/
\r
127 * Enable all the required interrupts in the FEC and in the interrupt controller.
\r
129 static void prvEnableFECInterrupts( void );
\r
132 * Reset the FEC if we get into an unrecoverable state.
\r
134 static void prvResetFEC( portBASE_TYPE xCalledFromISR );
\r
136 /********************************************************************/
\r
139 * FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
\r
141 * Write a value to a PHY's MII register.
\r
145 * phy_addr Address of the PHY.
\r
146 * reg_addr Address of the register in the PHY.
\r
147 * data Data to be written to the PHY register.
\r
153 * Please refer to your PHY manual for registers and their meanings.
\r
154 * mii_write() polls for the FEC's MII interrupt event and clears it.
\r
155 * If after a suitable amount of time the event isn't triggered, a
\r
156 * value of 0 is returned.
\r
158 static int fec_mii_write( int phy_addr, int reg_addr, int data )
\r
160 int timeout, iReturn;
\r
163 /* Clear the MII interrupt bit */
\r
164 MCF_FEC_EIR = MCF_FEC_EIR_MII;
\r
166 /* Mask the MII interrupt */
\r
167 eimr = MCF_FEC_EIMR;
\r
168 MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
\r
170 /* Write to the MII Management Frame Register to kick-off the MII write */
\r
171 MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_WRITE | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10 | MCF_FEC_MMFR_DATA( data );
\r
173 /* Poll for the MII interrupt (interrupt should be masked) */
\r
174 for( timeout = 0; timeout < fecMAX_POLLS; timeout++ )
\r
176 if( MCF_FEC_EIR & MCF_FEC_EIR_MII )
\r
182 vTaskDelay( fecMII_DELAY );
\r
186 if( timeout == fecMAX_POLLS )
\r
195 /* Clear the MII interrupt bit */
\r
196 MCF_FEC_EIR = MCF_FEC_EIR_MII;
\r
198 /* Restore the EIMR */
\r
199 MCF_FEC_EIMR = eimr;
\r
204 /********************************************************************/
\r
206 * FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
\r
208 * Read a value from a PHY's MII register.
\r
212 * phy_addr Address of the PHY.
\r
213 * reg_addr Address of the register in the PHY.
\r
214 * data Pointer to storage for the Data to be read
\r
215 * from the PHY register (passed by reference)
\r
221 * Please refer to your PHY manual for registers and their meanings.
\r
222 * mii_read() polls for the FEC's MII interrupt event and clears it.
\r
223 * If after a suitable amount of time the event isn't triggered, a
\r
224 * value of 0 is returned.
\r
226 static int fec_mii_read( int phy_addr, int reg_addr, unsigned portSHORT* data )
\r
228 int timeout, iReturn;
\r
231 /* Clear the MII interrupt bit */
\r
232 MCF_FEC_EIR = MCF_FEC_EIR_MII;
\r
234 /* Mask the MII interrupt */
\r
235 eimr = MCF_FEC_EIMR;
\r
236 MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
\r
238 /* Write to the MII Management Frame Register to kick-off the MII read */
\r
239 MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_READ | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10;
\r
241 /* Poll for the MII interrupt (interrupt should be masked) */
\r
242 for( timeout = 0; timeout < fecMAX_POLLS; timeout++ )
\r
244 if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
\r
250 vTaskDelay( fecMII_DELAY );
\r
254 if( timeout == fecMAX_POLLS )
\r
260 *data = (uint16)(MCF_FEC_MMFR & 0x0000FFFF);
\r
264 /* Clear the MII interrupt bit */
\r
265 MCF_FEC_EIR = MCF_FEC_EIR_MII;
\r
267 /* Restore the EIMR */
\r
268 MCF_FEC_EIMR = eimr;
\r
274 /********************************************************************/
\r
276 * FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
\r
278 * Generate the hash table settings for the given address
\r
281 * addr 48-bit (6 byte) Address to generate the hash for
\r
284 * The 6 most significant bits of the 32-bit CRC result
\r
286 static unsigned portCHAR fec_hash_address( const unsigned portCHAR* addr )
\r
288 unsigned portLONG crc;
\r
289 unsigned portCHAR byte;
\r
298 if((byte & 0x01)^(crc & 0x01))
\r
301 crc = crc ^ 0xEDB88320;
\r
312 return (unsigned portCHAR)(crc >> 26);
\r
315 /********************************************************************/
\r
317 * FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
\r
319 * Set the Physical (Hardware) Address and the Individual Address
\r
320 * Hash in the selected FEC
\r
324 * pa Physical (Hardware) Address for the selected FEC
\r
326 static void fec_set_address( const unsigned portCHAR *pa )
\r
328 unsigned portCHAR crc;
\r
331 * Set the Physical Address
\r
333 /* Set the source address for the controller */
\r
334 MCF_FEC_PALR = ( pa[ 0 ] << 24 ) | ( pa[ 1 ] << 16 ) | ( pa[ 2 ] << 8 ) | ( pa[ 3 ] << 0 );
\r
335 MCF_FEC_PAUR = ( pa[ 4 ] << 24 ) | ( pa[ 5 ] << 16 );
\r
338 * Calculate and set the hash for given Physical Address
\r
339 * in the Individual Address Hash registers
\r
341 crc = fec_hash_address( pa );
\r
344 MCF_FEC_IAUR |= (unsigned portLONG)(1 << (crc - 32));
\r
348 MCF_FEC_IALR |= (unsigned portLONG)(1 << crc);
\r
351 /*-----------------------------------------------------------*/
\r
353 static void prvInitialiseFECBuffers( void )
\r
355 unsigned portBASE_TYPE ux;
\r
356 unsigned portCHAR *pcBufPointer;
\r
358 /* Correctly align the Tx descriptor pointer. */
\r
359 pcBufPointer = &( xFECTxDescriptors_unaligned[ 0 ] );
\r
360 while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
\r
365 xFECTxDescriptors = ( FECBD * ) pcBufPointer;
\r
367 /* Likewise the Rx descriptor pointer. */
\r
368 pcBufPointer = &( xFECRxDescriptors_unaligned[ 0 ] );
\r
369 while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
\r
374 xFECRxDescriptors = ( FECBD * ) pcBufPointer;
\r
377 /* Setup the Tx buffers and descriptors. There is no separate Tx buffer
\r
378 to point to (the Rx buffers are actually used) so the data member is
\r
379 set to NULL for now. */
\r
380 for( ux = 0; ux < fecNUM_FEC_TX_BUFFERS; ux++ )
\r
382 xFECTxDescriptors[ ux ].status = TX_BD_TC;
\r
383 xFECTxDescriptors[ ux ].data = NULL;
\r
384 xFECTxDescriptors[ ux ].length = 0;
\r
387 /* Setup the Rx buffers and descriptors, having first ensured correct
\r
389 pcBufPointer = &( ucFECRxBuffers[ 0 ] );
\r
390 while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
\r
395 for( ux = 0; ux < configNUM_FEC_RX_BUFFERS; ux++ )
\r
397 xFECRxDescriptors[ ux ].status = RX_BD_E;
\r
398 xFECRxDescriptors[ ux ].length = configFEC_BUFFER_SIZE;
\r
399 xFECRxDescriptors[ ux ].data = pcBufPointer;
\r
400 pcBufPointer += configFEC_BUFFER_SIZE;
\r
403 /* Set the wrap bit in the last descriptors to form a ring. */
\r
404 xFECTxDescriptors[ fecNUM_FEC_TX_BUFFERS - 1 ].status |= TX_BD_W;
\r
405 xFECRxDescriptors[ configNUM_FEC_RX_BUFFERS - 1 ].status |= RX_BD_W;
\r
407 uxNextRxBuffer = 0;
\r
409 /*-----------------------------------------------------------*/
\r
411 void vFECInit( void )
\r
413 unsigned portSHORT usData;
\r
414 struct uip_eth_addr xAddr;
\r
415 unsigned portBASE_TYPE ux;
\r
417 /* The MAC address is set at the foot of FreeRTOSConfig.h. */
\r
418 const unsigned portCHAR ucMACAddress[6] =
\r
420 configMAC_0, configMAC_1,configMAC_2, configMAC_3, configMAC_4, configMAC_5
\r
423 /* Create the semaphore used by the ISR to wake the uIP task. */
\r
424 vSemaphoreCreateBinary( xFECSemaphore );
\r
426 /* Create the semaphore used to unblock any tasks that might be waiting
\r
427 for a Tx descriptor. */
\r
428 vSemaphoreCreateBinary( xTxSemaphore );
\r
430 /* Initialise all the buffers and descriptors used by the DMA. */
\r
431 prvInitialiseFECBuffers();
\r
433 for( usData = 0; usData < 6; usData++ )
\r
435 xAddr.addr[ usData ] = ucMACAddress[ usData ];
\r
437 uip_setethaddr( xAddr );
\r
439 /* Set the Reset bit and clear the Enable bit */
\r
440 MCF_FEC_ECR = MCF_FEC_ECR_RESET;
\r
442 /* Wait at least 8 clock cycles */
\r
443 for( usData = 0; usData < 10; usData++ )
\r
448 /* Set MII speed to 2.5MHz. */
\r
449 MCF_FEC_MSCR = MCF_FEC_MSCR_MII_SPEED( ( ( ( configCPU_CLOCK_HZ / 1000000 ) / 5 ) + 1 ) );
\r
451 /* Initialize PLDPAR to enable Ethernet LEDs. */
\r
452 MCF_GPIO_PLDPAR = MCF_GPIO_PLDPAR_ACTLED_ACTLED | MCF_GPIO_PLDPAR_LINKLED_LINKLED | MCF_GPIO_PLDPAR_SPDLED_SPDLED
\r
453 | MCF_GPIO_PLDPAR_DUPLED_DUPLED | MCF_GPIO_PLDPAR_COLLED_COLLED | MCF_GPIO_PLDPAR_RXLED_RXLED
\r
454 | MCF_GPIO_PLDPAR_TXLED_TXLED;
\r
456 /* Initialize Port TA to enable Axcel control. */
\r
457 MCF_GPIO_PTAPAR = 0x00;
\r
458 MCF_GPIO_DDRTA = 0x0F;
\r
459 MCF_GPIO_PORTTA = 0x04;
\r
461 /* Set phy address to zero. */
\r
462 MCF_EPHY_EPHYCTL1 = MCF_EPHY_EPHYCTL1_PHYADD( 0 );
\r
464 /* Enable EPHY module with PHY clocks disabled. Do not turn on PHY clocks
\r
465 until both FEC and EPHY are completely setup (see Below). */
\r
466 MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0_DIS100 | MCF_EPHY_EPHYCTL0_DIS10);
\r
468 /* Enable auto_neg at start-up */
\r
469 MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0 & (MCF_EPHY_EPHYCTL0_ANDIS));
\r
471 /* Enable EPHY module. */
\r
472 MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0_EPHYEN | MCF_EPHY_EPHYCTL0);
\r
474 /* Let PHY PLLs be determined by PHY. */
\r
475 MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0 & ~(MCF_EPHY_EPHYCTL0_DIS100 | MCF_EPHY_EPHYCTL0_DIS10));
\r
478 vTaskDelay( fecLINK_DELAY );
\r
480 /* Can we talk to the PHY? */
\r
483 vTaskDelay( fecLINK_DELAY );
\r
485 fec_mii_read( configPHY_ADDRESS, PHY_PHYIDR1, &usData );
\r
487 } while( usData == 0xffff );
\r
491 /* Start auto negotiate. */
\r
492 fec_mii_write( configPHY_ADDRESS, PHY_BMCR, ( PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE ) );
\r
494 /* Wait for auto negotiate to complete. */
\r
500 /* Hardware bug workaround! Force 100Mbps half duplex. */
\r
501 while( !fec_mii_read( configPHY_ADDRESS, 0, &usData ) ){};
\r
502 usData &= ~0x2000; /* 10Mbps */
\r
503 usData &= ~0x0100; /* Half Duplex */
\r
504 usData &= ~0x1000; /* Manual Mode */
\r
505 while( !fec_mii_write( configPHY_ADDRESS, 0, usData ) ){};
\r
506 while( !fec_mii_write( configPHY_ADDRESS, 0, (usData|0x0200) )){}; /* Force re-negotiate */
\r
509 vTaskDelay( fecLINK_DELAY );
\r
510 fec_mii_read( configPHY_ADDRESS, PHY_BMSR, &usData );
\r
512 } while( !( usData & PHY_BMSR_AN_COMPLETE ) );
\r
514 } while( 0 ); //while( !( usData & PHY_BMSR_LINK ) );
\r
516 /* When we get here we have a link - find out what has been negotiated. */
\r
517 fec_mii_read( configPHY_ADDRESS, PHY_ANLPAR, &usData );
\r
519 if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_100BTX ) )
\r
521 /* Speed is 100. */
\r
528 if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_10BTX_FDX ) )
\r
530 MCF_FEC_RCR &= (unsigned portLONG)~MCF_FEC_RCR_DRT;
\r
531 MCF_FEC_TCR |= MCF_FEC_TCR_FDEN;
\r
535 MCF_FEC_RCR |= MCF_FEC_RCR_DRT;
\r
536 MCF_FEC_TCR &= (unsigned portLONG)~MCF_FEC_TCR_FDEN;
\r
539 /* Clear the Individual and Group Address Hash registers */
\r
545 /* Set the Physical Address for the selected FEC */
\r
546 fec_set_address( ucMACAddress );
\r
548 /* Set Rx Buffer Size */
\r
549 MCF_FEC_EMRBR = (unsigned portSHORT)configFEC_BUFFER_SIZE;
\r
551 /* Point to the start of the circular Rx buffer descriptor queue */
\r
552 MCF_FEC_ERDSR = ( volatile unsigned portLONG ) &( xFECRxDescriptors[ 0 ] );
\r
554 /* Point to the start of the circular Tx buffer descriptor queue */
\r
555 MCF_FEC_ETSDR = ( volatile unsigned portLONG ) &( xFECTxDescriptors[ 0 ] );
\r
557 /* Mask all FEC interrupts */
\r
558 MCF_FEC_EIMR = ( unsigned portLONG ) -1;
\r
560 /* Clear all FEC interrupt events */
\r
561 MCF_FEC_EIR = ( unsigned portLONG ) -1;
\r
563 /* Initialize the Receive Control Register */
\r
564 MCF_FEC_RCR = MCF_FEC_RCR_MAX_FL(ETH_MAX_FRM) | MCF_FEC_RCR_FCE;
\r
566 MCF_FEC_RCR |= MCF_FEC_RCR_MII_MODE;
\r
568 #if( configUSE_PROMISCUOUS_MODE == 1 )
\r
570 MCF_FEC_RCR |= MCF_FEC_RCR_PROM;
\r
574 prvEnableFECInterrupts();
\r
576 /* Finally... enable. */
\r
577 MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
\r
578 MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
\r
580 /*-----------------------------------------------------------*/
\r
582 static void prvEnableFECInterrupts( void )
\r
584 const unsigned portBASE_TYPE uxFirstFECVector = 23, uxLastFECVector = 35;
\r
585 unsigned portBASE_TYPE ux;
\r
587 #if configFEC_INTERRUPT_PRIORITY > configMAX_SYSCALL_INTERRUPT_PRIORITY
\r
588 #error configFEC_INTERRUPT_PRIORITY must be less than or equal to configMAX_SYSCALL_INTERRUPT_PRIORITY
\r
591 /* Set the priority of each of the FEC interrupts. */
\r
592 for( ux = uxFirstFECVector; ux <= uxLastFECVector; ux++ )
\r
594 MCF_INTC0_ICR( ux ) = MCF_INTC_ICR_IL( configFEC_INTERRUPT_PRIORITY );
\r
597 /* Enable the FEC interrupts in the mask register */
\r
598 MCF_INTC0_IMRH &= ~( MCF_INTC_IMRH_INT_MASK33 | MCF_INTC_IMRH_INT_MASK34 | MCF_INTC_IMRH_INT_MASK35 );
\r
599 MCF_INTC0_IMRL &= ~( MCF_INTC_IMRL_INT_MASK25 | MCF_INTC_IMRL_INT_MASK26 | MCF_INTC_IMRL_INT_MASK27
\r
600 | MCF_INTC_IMRL_INT_MASK28 | MCF_INTC_IMRL_INT_MASK29 | MCF_INTC_IMRL_INT_MASK30
\r
601 | MCF_INTC_IMRL_INT_MASK31 | MCF_INTC_IMRL_INT_MASK23 | MCF_INTC_IMRL_INT_MASK24
\r
602 | MCF_INTC_IMRL_MASKALL );
\r
604 /* Clear any pending FEC interrupt events */
\r
605 MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;
\r
607 /* Unmask all FEC interrupts */
\r
608 MCF_FEC_EIMR = MCF_FEC_EIMR_UNMASK_ALL;
\r
610 /*-----------------------------------------------------------*/
\r
612 static void prvResetFEC( portBASE_TYPE xCalledFromISR )
\r
616 /* A critical section is used unless this function is being called from
\r
618 if( xCalledFromISR == pdFALSE )
\r
620 taskENTER_CRITICAL();
\r
624 /* Reset all buffers and descriptors. */
\r
625 prvInitialiseFECBuffers();
\r
627 /* Set the Reset bit and clear the Enable bit */
\r
628 MCF_FEC_ECR = MCF_FEC_ECR_RESET;
\r
630 /* Wait at least 8 clock cycles */
\r
631 for( x = 0; x < 10; x++ )
\r
637 MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
\r
638 MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
\r
641 if( xCalledFromISR == pdFALSE )
\r
643 taskEXIT_CRITICAL();
\r
646 /*-----------------------------------------------------------*/
\r
648 unsigned short usFECGetRxedData( void )
\r
650 unsigned portSHORT usLen;
\r
652 /* Obtain the size of the packet and put it into the "len" variable. */
\r
653 usLen = xFECRxDescriptors[ uxNextRxBuffer ].length;
\r
655 if( ( usLen != 0 ) && ( ( xFECRxDescriptors[ uxNextRxBuffer ].status & RX_BD_E ) == 0 ) )
\r
657 uip_buf = xFECRxDescriptors[ uxNextRxBuffer ].data;
\r
666 /*-----------------------------------------------------------*/
\r
668 void vFECRxProcessingCompleted( void )
\r
670 /* Free the descriptor as the buffer it points to is no longer in use. */
\r
671 xFECRxDescriptors[ uxNextRxBuffer ].status |= RX_BD_E;
\r
672 MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
\r
674 if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
\r
676 uxNextRxBuffer = 0;
\r
679 /*-----------------------------------------------------------*/
\r
681 void vFECSendData( void )
\r
683 /* Ensure no Tx frames are outstanding. */
\r
684 if( xSemaphoreTake( xTxSemaphore, fecMAX_WAIT_FOR_TX_BUFFER ) == pdPASS )
\r
686 /* Get a DMA buffer into which we can write the data to send. */
\r
687 if( xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].status & TX_BD_R )
\r
689 /*** ERROR didn't expect this. Sledge hammer error handling. ***/
\r
690 prvResetFEC( pdFALSE );
\r
692 /* Make sure we leave the semaphore in the expected state as nothing
\r
693 is being transmitted this will not happen in the Tx ISR. */
\r
694 xSemaphoreGive( xTxSemaphore );
\r
698 /* Setup the buffer descriptor for transmission. The data being
\r
699 sent is actually stored in one of the Rx descriptor buffers,
\r
700 pointed to by uip_buf. */
\r
701 xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].length = uip_len;
\r
702 xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].status |= ( TX_BD_R | TX_BD_L );
\r
703 xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].data = uip_buf;
\r
705 /* Remember which Rx descriptor owns the buffer we are sending. */
\r
706 uxIndexToBufferOwner = uxNextRxBuffer;
\r
708 /* We have finished with this Rx descriptor now. */
\r
710 if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
\r
712 uxNextRxBuffer = 0;
\r
715 /* Continue the Tx DMA (in case it was waiting for a new TxBD) */
\r
716 MCF_FEC_TDAR = MCF_FEC_TDAR_X_DES_ACTIVE;
\r
721 /* Gave up waiting. Free the buffer back to the DMA. */
\r
722 vFECRxProcessingCompleted();
\r
725 /*-----------------------------------------------------------*/
\r
727 void vFEC_ISR( void )
\r
729 unsigned portLONG ulEvent;
\r
730 portBASE_TYPE xHighPriorityTaskWoken = pdFALSE;
\r
732 /* This handler is called in response to any of the many separate FEC
\r
735 /* Find the cause of the interrupt, then clear the interrupt. */
\r
736 ulEvent = MCF_FEC_EIR & MCF_FEC_EIMR;
\r
737 MCF_FEC_EIR = ulEvent;
\r
739 if( ( ulEvent & MCF_FEC_EIR_RXB ) || ( ulEvent & MCF_FEC_EIR_RXF ) )
\r
741 /* A packet has been received. Wake the handler task. */
\r
742 xSemaphoreGiveFromISR( xFECSemaphore, &xHighPriorityTaskWoken );
\r
745 if( ulEvent & ( MCF_FEC_EIR_UN | MCF_FEC_EIR_RL | MCF_FEC_EIR_LC | MCF_FEC_EIR_EBERR | MCF_FEC_EIR_BABT | MCF_FEC_EIR_BABR | MCF_FEC_EIR_HBERR ) )
\r
747 /* Sledge hammer error handling. */
\r
748 prvResetFEC( pdTRUE );
\r
751 if( ( ulEvent & MCF_FEC_EIR_TXF ) || ( ulEvent & MCF_FEC_EIR_TXB ) )
\r
753 /* The buffer being sent is pointed to by an Rx descriptor, now the
\r
754 buffer has been sent we can mark the Rx descriptor as free again. */
\r
755 xFECRxDescriptors[ uxIndexToBufferOwner ].status |= RX_BD_E;
\r
756 MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
\r
757 xSemaphoreGiveFromISR( xTxSemaphore, &xHighPriorityTaskWoken );
\r
760 portEND_SWITCHING_ISR( xHighPriorityTaskWoken );
\r
762 /*-----------------------------------------------------------*/
\r
764 /* Install the many different interrupt vectors, all of which call the same
\r
765 handler function. */
\r
766 void __attribute__ ((interrupt)) __cs3_isr_interrupt_87( void ) { vFEC_ISR(); }
\r
767 void __attribute__ ((interrupt)) __cs3_isr_interrupt_88( void ) { vFEC_ISR(); }
\r
768 void __attribute__ ((interrupt)) __cs3_isr_interrupt_89( void ) { vFEC_ISR(); }
\r
769 void __attribute__ ((interrupt)) __cs3_isr_interrupt_90( void ) { vFEC_ISR(); }
\r
770 void __attribute__ ((interrupt)) __cs3_isr_interrupt_91( void ) { vFEC_ISR(); }
\r
771 void __attribute__ ((interrupt)) __cs3_isr_interrupt_92( void ) { vFEC_ISR(); }
\r
772 void __attribute__ ((interrupt)) __cs3_isr_interrupt_93( void ) { vFEC_ISR(); }
\r
773 void __attribute__ ((interrupt)) __cs3_isr_interrupt_94( void ) { vFEC_ISR(); }
\r
774 void __attribute__ ((interrupt)) __cs3_isr_interrupt_95( void ) { vFEC_ISR(); }
\r
775 void __attribute__ ((interrupt)) __cs3_isr_interrupt_96( void ) { vFEC_ISR(); }
\r
776 void __attribute__ ((interrupt)) __cs3_isr_interrupt_97( void ) { vFEC_ISR(); }
\r
777 void __attribute__ ((interrupt)) __cs3_isr_interrupt_98( void ) { vFEC_ISR(); }
\r
778 void __attribute__ ((interrupt)) __cs3_isr_interrupt_99( void ) { vFEC_ISR(); }
\r