2 * FreeRTOS Kernel V10.4.4
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * SPDX-License-Identifier: MIT
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
8 * this software and associated documentation files (the "Software"), to deal in
\r
9 * the Software without restriction, including without limitation the rights to
\r
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
11 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
12 * subject to the following conditions:
\r
14 * The above copyright notice and this permission notice shall be included in all
\r
15 * copies or substantial portions of the Software.
\r
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
24 * https://www.FreeRTOS.org
\r
25 * https://github.com/FreeRTOS
\r
29 /* Standard includes. */
\r
33 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
34 * all the API functions to use the MPU wrappers. That should only be done when
\r
35 * task.h is included from an application file. */
\r
36 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
38 /* FreeRTOS includes. */
\r
39 #include "FreeRTOS.h"
\r
42 #include "stack_macros.h"
\r
44 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
45 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
46 * for the header files above, but not in this file, in order to generate the
\r
47 * correct privileged Vs unprivileged linkage and placement. */
\r
48 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
50 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
51 * functions but without including stdio.h here. */
\r
52 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
54 /* At the bottom of this file are two optional functions that can be used
\r
55 * to generate human readable text from the raw data generated by the
\r
56 * uxTaskGetSystemState() function. Note the formatting functions are provided
\r
57 * for convenience only, and are NOT considered part of the kernel. */
\r
59 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
61 #if ( configUSE_PREEMPTION == 0 )
\r
63 /* If the cooperative scheduler is being used then a yield should not be
\r
64 * performed just because a higher priority task has been woken. */
\r
65 #define taskYIELD_IF_USING_PREEMPTION()
\r
67 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
70 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
71 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
\r
72 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
73 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
76 * The value used to fill the stack of a task when the task is created. This
\r
77 * is used purely for checking the high water mark for tasks.
\r
79 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
81 /* Bits used to record how a task's stack and TCB were allocated. */
\r
82 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
83 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
84 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
86 /* If any of the following are set then task stacks are filled with a known
\r
87 * value so the high water mark can be determined. If none of the following are
\r
88 * set then don't fill the stack so there is no unnecessary dependency on memset. */
\r
89 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
\r
92 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
\r
96 * Macros used by vListTask to indicate which state a task is in.
\r
98 #define tskRUNNING_CHAR ( 'X' )
\r
99 #define tskBLOCKED_CHAR ( 'B' )
\r
100 #define tskREADY_CHAR ( 'R' )
\r
101 #define tskDELETED_CHAR ( 'D' )
\r
102 #define tskSUSPENDED_CHAR ( 'S' )
\r
105 * Some kernel aware debuggers require the data the debugger needs access to to
\r
106 * be global, rather than file scope.
\r
108 #ifdef portREMOVE_STATIC_QUALIFIER
\r
112 /* The name allocated to the Idle task. This can be overridden by defining
\r
113 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
\r
114 #ifndef configIDLE_TASK_NAME
\r
115 #define configIDLE_TASK_NAME "IDLE"
\r
118 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
120 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
121 * performed in a generic way that is not optimised to any particular
\r
122 * microcontroller architecture. */
\r
124 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
126 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
128 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
130 uxTopReadyPriority = ( uxPriority ); \
\r
132 } /* taskRECORD_READY_PRIORITY */
\r
134 /*-----------------------------------------------------------*/
\r
136 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
138 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
140 /* Find the highest priority queue that contains ready tasks. */ \
\r
141 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
143 configASSERT( uxTopPriority ); \
\r
147 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
148 * the same priority get an equal share of the processor time. */ \
\r
149 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
150 uxTopReadyPriority = uxTopPriority; \
\r
151 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
153 /*-----------------------------------------------------------*/
\r
155 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
156 * they are only required when a port optimised method of task selection is
\r
158 #define taskRESET_READY_PRIORITY( uxPriority )
\r
159 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
161 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
163 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
164 * performed in a way that is tailored to the particular microcontroller
\r
165 * architecture being used. */
\r
167 /* A port optimised version is provided. Call the port defined macros. */
\r
168 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
170 /*-----------------------------------------------------------*/
\r
172 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
174 UBaseType_t uxTopPriority; \
\r
176 /* Find the highest priority list that contains ready tasks. */ \
\r
177 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
178 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
179 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
180 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
182 /*-----------------------------------------------------------*/
\r
184 /* A port optimised version is provided, call it only if the TCB being reset
\r
185 * is being referenced from a ready list. If it is referenced from a delayed
\r
186 * or suspended list then it won't be in a ready list. */
\r
187 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
189 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
191 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
195 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
197 /*-----------------------------------------------------------*/
\r
199 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
200 * count overflows. */
\r
201 #define taskSWITCH_DELAYED_LISTS() \
\r
205 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
206 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
208 pxTemp = pxDelayedTaskList; \
\r
209 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
210 pxOverflowDelayedTaskList = pxTemp; \
\r
211 xNumOfOverflows++; \
\r
212 prvResetNextTaskUnblockTime(); \
\r
215 /*-----------------------------------------------------------*/
\r
218 * Place the task represented by pxTCB into the appropriate ready list for
\r
219 * the task. It is inserted at the end of the list.
\r
221 #define prvAddTaskToReadyList( pxTCB ) \
\r
222 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
223 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
224 listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
225 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
226 /*-----------------------------------------------------------*/
\r
229 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
\r
230 * where NULL is used to indicate that the handle of the currently executing
\r
231 * task should be used in place of the parameter. This macro simply checks to
\r
232 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
234 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
\r
236 /* The item value of the event list item is normally used to hold the priority
\r
237 * of the task to which it belongs (coded to allow it to be held in reverse
\r
238 * priority order). However, it is occasionally borrowed for other purposes. It
\r
239 * is important its value is not updated due to a task priority change while it is
\r
240 * being used for another purpose. The following bit definition is used to inform
\r
241 * the scheduler that the value should not be changed - in which case it is the
\r
242 * responsibility of whichever module is using the value to ensure it gets set back
\r
243 * to its original value when it is released. */
\r
244 #if ( configUSE_16_BIT_TICKS == 1 )
\r
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
247 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
251 * Task control block. A task control block (TCB) is allocated for each task,
\r
252 * and stores task state information, including a pointer to the task's context
\r
253 * (the task's run time environment, including register values)
\r
255 typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
257 volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
259 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
260 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
263 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
264 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
265 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
266 StackType_t * pxStack; /*< Points to the start of the stack. */
\r
267 char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
269 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
\r
270 StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
\r
273 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
274 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
277 #if ( configUSE_TRACE_FACILITY == 1 )
\r
278 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
279 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
282 #if ( configUSE_MUTEXES == 1 )
\r
283 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
284 UBaseType_t uxMutexesHeld;
\r
287 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
288 TaskHookFunction_t pxTaskTag;
\r
291 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
292 void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
295 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
296 uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
299 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
300 /* Allocate a Newlib reent structure that is specific to this task.
\r
301 * Note Newlib support has been included by popular demand, but is not
\r
302 * used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
303 * responsible for resulting newlib operation. User must be familiar with
\r
304 * newlib and must provide system-wide implementations of the necessary
\r
305 * stubs. Be warned that (at the time of writing) the current newlib design
\r
306 * implements a system-wide malloc() that must be provided with locks.
\r
308 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
309 * for additional information. */
\r
310 struct _reent xNewLib_reent;
\r
313 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
314 volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
315 volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
\r
318 /* See the comments in FreeRTOS.h with the definition of
\r
319 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
320 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
321 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
324 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
325 uint8_t ucDelayAborted;
\r
328 #if ( configUSE_POSIX_ERRNO == 1 )
\r
333 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
334 * below to enable the use of older kernel aware debuggers. */
\r
335 typedef tskTCB TCB_t;
\r
337 /*lint -save -e956 A manual analysis and inspection has been used to determine
\r
338 * which static variables must be declared volatile. */
\r
339 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
341 /* Lists for ready and blocked tasks. --------------------
\r
342 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
\r
343 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
\r
344 * the static qualifier. */
\r
345 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
\r
346 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
347 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
348 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
349 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
350 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
352 #if ( INCLUDE_vTaskDelete == 1 )
\r
354 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
355 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
359 #if ( INCLUDE_vTaskSuspend == 1 )
\r
361 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
365 /* Global POSIX errno. Its value is changed upon context switching to match
\r
366 * the errno of the currently running task. */
\r
367 #if ( configUSE_POSIX_ERRNO == 1 )
\r
368 int FreeRTOS_errno = 0;
\r
371 /* Other file private variables. --------------------------------*/
\r
372 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
373 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
374 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
375 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
376 PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
\r
377 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
378 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
379 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
380 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
381 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
383 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
\r
384 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
\r
385 * to determine the number of priority lists to read back from the remote target. */
\r
386 const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
\r
388 /* Context switches are held pending while the scheduler is suspended. Also,
\r
389 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
390 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
391 * If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
392 * moves the task's event list item into the xPendingReadyList, ready for the
\r
393 * kernel to move the task from the pending ready list into the real ready list
\r
394 * when the scheduler is unsuspended. The pending ready list itself can only be
\r
395 * accessed from a critical section. */
\r
396 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
398 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
400 /* Do not move these variables to function scope as doing so prevents the
\r
401 * code working with debuggers that need to remove the static qualifier. */
\r
402 PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
403 PRIVILEGED_DATA static volatile uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
409 /*-----------------------------------------------------------*/
\r
411 /* File private functions. --------------------------------*/
\r
414 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
415 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
416 * is in any other state.
\r
418 #if ( INCLUDE_vTaskSuspend == 1 )
\r
420 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
422 #endif /* INCLUDE_vTaskSuspend */
\r
425 * Utility to ready all the lists used by the scheduler. This is called
\r
426 * automatically upon the creation of the first task.
\r
428 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
431 * The idle task, which as all tasks is implemented as a never ending loop.
\r
432 * The idle task is automatically created and added to the ready lists upon
\r
433 * creation of the first user task.
\r
435 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
436 * language extensions. The equivalent prototype for this function is:
\r
438 * void prvIdleTask( void *pvParameters );
\r
441 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
\r
444 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
445 * including the stack pointed to by the TCB.
\r
447 * This does not free memory allocated by the task itself (i.e. memory
\r
448 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
450 #if ( INCLUDE_vTaskDelete == 1 )
\r
452 static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
\r
457 * Used only by the idle task. This checks to see if anything has been placed
\r
458 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
459 * and its TCB deleted.
\r
461 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
464 * The currently executing task is entering the Blocked state. Add the task to
\r
465 * either the current or the overflow delayed task list.
\r
467 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
468 const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
471 * Fills an TaskStatus_t structure with information on each task that is
\r
472 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
473 * a suspended list, etc.).
\r
475 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
476 * NORMAL APPLICATION CODE.
\r
478 #if ( configUSE_TRACE_FACILITY == 1 )
\r
480 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
482 eTaskState eState ) PRIVILEGED_FUNCTION;
\r
487 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
488 * the task if it is found, or NULL if the task is not found.
\r
490 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
492 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
493 const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
498 * When a task is created, the stack of the task is filled with a known value.
\r
499 * This function determines the 'high water mark' of the task stack by
\r
500 * determining how much of the stack remains at the original preset value.
\r
502 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
504 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
509 * Return the amount of time, in ticks, that will pass before the kernel will
\r
510 * next move a task from the Blocked state to the Running state.
\r
512 * This conditional compilation should use inequality to 0, not equality to 1.
\r
513 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
514 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
515 * set to a value other than 1.
\r
517 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
519 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
524 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
525 * will exit the Blocked state.
\r
527 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
\r
529 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
532 * Helper function used to pad task names with spaces when printing out
\r
533 * human readable tables of task information.
\r
535 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
536 const char * pcTaskName ) PRIVILEGED_FUNCTION;
\r
541 * Called after a Task_t structure has been allocated either statically or
\r
542 * dynamically to fill in the structure's members.
\r
544 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
545 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
546 const uint32_t ulStackDepth,
\r
547 void * const pvParameters,
\r
548 UBaseType_t uxPriority,
\r
549 TaskHandle_t * const pxCreatedTask,
\r
551 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
\r
554 * Called after a new task has been created and initialised to place the task
\r
555 * under the control of the scheduler.
\r
557 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
\r
560 * freertos_tasks_c_additions_init() should only be called if the user definable
\r
561 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
\r
562 * called by the function.
\r
564 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
566 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
\r
570 /*-----------------------------------------------------------*/
\r
572 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
574 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
575 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
576 const uint32_t ulStackDepth,
\r
577 void * const pvParameters,
\r
578 UBaseType_t uxPriority,
\r
579 StackType_t * const puxStackBuffer,
\r
580 StaticTask_t * const pxTaskBuffer )
\r
583 TaskHandle_t xReturn;
\r
585 configASSERT( puxStackBuffer != NULL );
\r
586 configASSERT( pxTaskBuffer != NULL );
\r
588 #if ( configASSERT_DEFINED == 1 )
\r
590 /* Sanity check that the size of the structure used to declare a
\r
591 * variable of type StaticTask_t equals the size of the real task
\r
593 volatile size_t xSize = sizeof( StaticTask_t );
\r
594 configASSERT( xSize == sizeof( TCB_t ) );
\r
595 ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
\r
597 #endif /* configASSERT_DEFINED */
\r
599 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
601 /* The memory used for the task's TCB and stack are passed into this
\r
602 * function - use them. */
\r
603 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
604 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
606 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
608 /* Tasks can be created statically or dynamically, so note this
\r
609 * task was created statically in case the task is later deleted. */
\r
610 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
612 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
614 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
615 prvAddNewTaskToReadyList( pxNewTCB );
\r
625 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
626 /*-----------------------------------------------------------*/
\r
628 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
630 BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
\r
631 TaskHandle_t * pxCreatedTask )
\r
634 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
636 configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
\r
637 configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
\r
639 if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
\r
641 /* Allocate space for the TCB. Where the memory comes from depends
\r
642 * on the implementation of the port malloc function and whether or
\r
643 * not static allocation is being used. */
\r
644 pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
\r
646 /* Store the stack location in the TCB. */
\r
647 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
649 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
651 /* Tasks can be created statically or dynamically, so note this
\r
652 * task was created statically in case the task is later deleted. */
\r
653 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
655 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
657 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
658 pxTaskDefinition->pcName,
\r
659 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
660 pxTaskDefinition->pvParameters,
\r
661 pxTaskDefinition->uxPriority,
\r
662 pxCreatedTask, pxNewTCB,
\r
663 pxTaskDefinition->xRegions );
\r
665 prvAddNewTaskToReadyList( pxNewTCB );
\r
672 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
673 /*-----------------------------------------------------------*/
\r
675 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
677 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
\r
678 TaskHandle_t * pxCreatedTask )
\r
681 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
683 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
685 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
687 /* Allocate space for the TCB. Where the memory comes from depends
\r
688 * on the implementation of the port malloc function and whether or
\r
689 * not static allocation is being used. */
\r
690 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
692 if( pxNewTCB != NULL )
\r
694 /* Store the stack location in the TCB. */
\r
695 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
697 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
699 /* Tasks can be created statically or dynamically, so note
\r
700 * this task had a statically allocated stack in case it is
\r
701 * later deleted. The TCB was allocated dynamically. */
\r
702 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
704 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
706 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
707 pxTaskDefinition->pcName,
\r
708 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
709 pxTaskDefinition->pvParameters,
\r
710 pxTaskDefinition->uxPriority,
\r
711 pxCreatedTask, pxNewTCB,
\r
712 pxTaskDefinition->xRegions );
\r
714 prvAddNewTaskToReadyList( pxNewTCB );
\r
722 #endif /* portUSING_MPU_WRAPPERS */
\r
723 /*-----------------------------------------------------------*/
\r
725 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
727 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
728 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
729 const configSTACK_DEPTH_TYPE usStackDepth,
\r
730 void * const pvParameters,
\r
731 UBaseType_t uxPriority,
\r
732 TaskHandle_t * const pxCreatedTask )
\r
735 BaseType_t xReturn;
\r
737 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
738 * does not grow into the TCB. Likewise if the stack grows up then allocate
\r
739 * the TCB then the stack. */
\r
740 #if ( portSTACK_GROWTH > 0 )
\r
742 /* Allocate space for the TCB. Where the memory comes from depends on
\r
743 * the implementation of the port malloc function and whether or not static
\r
744 * allocation is being used. */
\r
745 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
747 if( pxNewTCB != NULL )
\r
749 /* Allocate space for the stack used by the task being created.
\r
750 * The base of the stack memory stored in the TCB so the task can
\r
751 * be deleted later if required. */
\r
752 pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
754 if( pxNewTCB->pxStack == NULL )
\r
756 /* Could not allocate the stack. Delete the allocated TCB. */
\r
757 vPortFree( pxNewTCB );
\r
762 #else /* portSTACK_GROWTH */
\r
764 StackType_t * pxStack;
\r
766 /* Allocate space for the stack used by the task being created. */
\r
767 pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
\r
769 if( pxStack != NULL )
\r
771 /* Allocate space for the TCB. */
\r
772 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
\r
774 if( pxNewTCB != NULL )
\r
776 /* Store the stack location in the TCB. */
\r
777 pxNewTCB->pxStack = pxStack;
\r
781 /* The stack cannot be used as the TCB was not created. Free
\r
783 vPortFreeStack( pxStack );
\r
791 #endif /* portSTACK_GROWTH */
\r
793 if( pxNewTCB != NULL )
\r
795 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
\r
797 /* Tasks can be created statically or dynamically, so note this
\r
798 * task was created dynamically in case it is later deleted. */
\r
799 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
801 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
\r
803 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
804 prvAddNewTaskToReadyList( pxNewTCB );
\r
809 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
815 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
816 /*-----------------------------------------------------------*/
\r
818 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
819 const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
820 const uint32_t ulStackDepth,
\r
821 void * const pvParameters,
\r
822 UBaseType_t uxPriority,
\r
823 TaskHandle_t * const pxCreatedTask,
\r
825 const MemoryRegion_t * const xRegions )
\r
827 StackType_t * pxTopOfStack;
\r
830 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
831 /* Should the task be created in privileged mode? */
\r
832 BaseType_t xRunPrivileged;
\r
834 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
836 xRunPrivileged = pdTRUE;
\r
840 xRunPrivileged = pdFALSE;
\r
842 uxPriority &= ~portPRIVILEGE_BIT;
\r
843 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
845 /* Avoid dependency on memset() if it is not required. */
\r
846 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
\r
848 /* Fill the stack with a known value to assist debugging. */
\r
849 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
851 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
\r
853 /* Calculate the top of stack address. This depends on whether the stack
\r
854 * grows from high memory to low (as per the 80x86) or vice versa.
\r
855 * portSTACK_GROWTH is used to make the result positive or negative as required
\r
857 #if ( portSTACK_GROWTH < 0 )
\r
859 pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
\r
860 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
\r
862 /* Check the alignment of the calculated top of stack is correct. */
\r
863 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
865 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
\r
867 /* Also record the stack's high address, which may assist
\r
869 pxNewTCB->pxEndOfStack = pxTopOfStack;
\r
871 #endif /* configRECORD_STACK_HIGH_ADDRESS */
\r
873 #else /* portSTACK_GROWTH */
\r
875 pxTopOfStack = pxNewTCB->pxStack;
\r
877 /* Check the alignment of the stack buffer is correct. */
\r
878 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
880 /* The other extreme of the stack space is required if stack checking is
\r
882 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
884 #endif /* portSTACK_GROWTH */
\r
886 /* Store the task name in the TCB. */
\r
887 if( pcName != NULL )
\r
889 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
891 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
893 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
894 * configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
895 * string is not accessible (extremely unlikely). */
\r
896 if( pcName[ x ] == ( char ) 0x00 )
\r
902 mtCOVERAGE_TEST_MARKER();
\r
906 /* Ensure the name string is terminated in the case that the string length
\r
907 * was greater or equal to configMAX_TASK_NAME_LEN. */
\r
908 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
912 /* The task has not been given a name, so just ensure there is a NULL
\r
913 * terminator when it is read out. */
\r
914 pxNewTCB->pcTaskName[ 0 ] = 0x00;
\r
917 /* This is used as an array index so must ensure it's not too large. */
\r
918 configASSERT( uxPriority < configMAX_PRIORITIES );
\r
919 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
921 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
925 mtCOVERAGE_TEST_MARKER();
\r
928 pxNewTCB->uxPriority = uxPriority;
\r
929 #if ( configUSE_MUTEXES == 1 )
\r
931 pxNewTCB->uxBasePriority = uxPriority;
\r
932 pxNewTCB->uxMutexesHeld = 0;
\r
934 #endif /* configUSE_MUTEXES */
\r
936 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
937 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
939 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
940 * back to the containing TCB from a generic item in a list. */
\r
941 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
943 /* Event lists are always in priority order. */
\r
944 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
945 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
947 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
949 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
951 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
953 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
955 pxNewTCB->pxTaskTag = NULL;
\r
957 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
959 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
961 pxNewTCB->ulRunTimeCounter = 0UL;
\r
963 #endif /* configGENERATE_RUN_TIME_STATS */
\r
965 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
967 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
971 /* Avoid compiler warning about unreferenced parameter. */
\r
976 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
978 memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
\r
982 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
984 memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
\r
985 memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
\r
989 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
991 /* Initialise this task's Newlib reent structure.
\r
992 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
993 * for additional information. */
\r
994 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
998 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
1000 pxNewTCB->ucDelayAborted = pdFALSE;
\r
1004 /* Initialize the TCB stack to look as if the task was already running,
\r
1005 * but had been interrupted by the scheduler. The return address is set
\r
1006 * to the start of the task function. Once the stack has been initialised
\r
1007 * the top of stack variable is updated. */
\r
1008 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
1010 /* If the port has capability to detect stack overflow,
\r
1011 * pass the stack end address to the stack initialization
\r
1012 * function as well. */
\r
1013 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1015 #if ( portSTACK_GROWTH < 0 )
\r
1017 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1019 #else /* portSTACK_GROWTH */
\r
1021 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1023 #endif /* portSTACK_GROWTH */
\r
1025 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1027 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
1029 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1031 #else /* portUSING_MPU_WRAPPERS */
\r
1033 /* If the port has capability to detect stack overflow,
\r
1034 * pass the stack end address to the stack initialization
\r
1035 * function as well. */
\r
1036 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
\r
1038 #if ( portSTACK_GROWTH < 0 )
\r
1040 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
\r
1042 #else /* portSTACK_GROWTH */
\r
1044 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
\r
1046 #endif /* portSTACK_GROWTH */
\r
1048 #else /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1050 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
1052 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
\r
1054 #endif /* portUSING_MPU_WRAPPERS */
\r
1056 if( pxCreatedTask != NULL )
\r
1058 /* Pass the handle out in an anonymous way. The handle can be used to
\r
1059 * change the created task's priority, delete the created task, etc.*/
\r
1060 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
1064 mtCOVERAGE_TEST_MARKER();
\r
1067 /*-----------------------------------------------------------*/
\r
1069 static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
\r
1071 /* Ensure interrupts don't access the task lists while the lists are being
\r
1073 taskENTER_CRITICAL();
\r
1075 uxCurrentNumberOfTasks++;
\r
1077 if( pxCurrentTCB == NULL )
\r
1079 /* There are no other tasks, or all the other tasks are in
\r
1080 * the suspended state - make this the current task. */
\r
1081 pxCurrentTCB = pxNewTCB;
\r
1083 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
1085 /* This is the first task to be created so do the preliminary
\r
1086 * initialisation required. We will not recover if this call
\r
1087 * fails, but we will report the failure. */
\r
1088 prvInitialiseTaskLists();
\r
1092 mtCOVERAGE_TEST_MARKER();
\r
1097 /* If the scheduler is not already running, make this task the
\r
1098 * current task if it is the highest priority task to be created
\r
1100 if( xSchedulerRunning == pdFALSE )
\r
1102 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
1104 pxCurrentTCB = pxNewTCB;
\r
1108 mtCOVERAGE_TEST_MARKER();
\r
1113 mtCOVERAGE_TEST_MARKER();
\r
1119 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1121 /* Add a counter into the TCB for tracing only. */
\r
1122 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1124 #endif /* configUSE_TRACE_FACILITY */
\r
1125 traceTASK_CREATE( pxNewTCB );
\r
1127 prvAddTaskToReadyList( pxNewTCB );
\r
1129 portSETUP_TCB( pxNewTCB );
\r
1131 taskEXIT_CRITICAL();
\r
1133 if( xSchedulerRunning != pdFALSE )
\r
1135 /* If the created task is of a higher priority than the current task
\r
1136 * then it should run now. */
\r
1137 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1139 taskYIELD_IF_USING_PREEMPTION();
\r
1143 mtCOVERAGE_TEST_MARKER();
\r
1148 mtCOVERAGE_TEST_MARKER();
\r
1151 /*-----------------------------------------------------------*/
\r
1153 #if ( INCLUDE_vTaskDelete == 1 )
\r
1155 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1159 taskENTER_CRITICAL();
\r
1161 /* If null is passed in here then it is the calling task that is
\r
1162 * being deleted. */
\r
1163 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1165 /* Remove task from the ready/delayed list. */
\r
1166 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1168 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1172 mtCOVERAGE_TEST_MARKER();
\r
1175 /* Is the task waiting on an event also? */
\r
1176 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1178 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1182 mtCOVERAGE_TEST_MARKER();
\r
1185 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1186 * detect that the task lists need re-generating. This is done before
\r
1187 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1191 if( pxTCB == pxCurrentTCB )
\r
1193 /* A task is deleting itself. This cannot complete within the
\r
1194 * task itself, as a context switch to another task is required.
\r
1195 * Place the task in the termination list. The idle task will
\r
1196 * check the termination list and free up any memory allocated by
\r
1197 * the scheduler for the TCB and stack of the deleted task. */
\r
1198 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1200 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1201 * there is a task that has been deleted and that it should therefore
\r
1202 * check the xTasksWaitingTermination list. */
\r
1203 ++uxDeletedTasksWaitingCleanUp;
\r
1205 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
\r
1206 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
\r
1207 traceTASK_DELETE( pxTCB );
\r
1209 /* The pre-delete hook is primarily for the Windows simulator,
\r
1210 * in which Windows specific clean up operations are performed,
\r
1211 * after which it is not possible to yield away from this task -
\r
1212 * hence xYieldPending is used to latch that a context switch is
\r
1214 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1218 --uxCurrentNumberOfTasks;
\r
1219 traceTASK_DELETE( pxTCB );
\r
1220 prvDeleteTCB( pxTCB );
\r
1222 /* Reset the next expected unblock time in case it referred to
\r
1223 * the task that has just been deleted. */
\r
1224 prvResetNextTaskUnblockTime();
\r
1227 taskEXIT_CRITICAL();
\r
1229 /* Force a reschedule if it is the currently running task that has just
\r
1230 * been deleted. */
\r
1231 if( xSchedulerRunning != pdFALSE )
\r
1233 if( pxTCB == pxCurrentTCB )
\r
1235 configASSERT( uxSchedulerSuspended == 0 );
\r
1236 portYIELD_WITHIN_API();
\r
1240 mtCOVERAGE_TEST_MARKER();
\r
1245 #endif /* INCLUDE_vTaskDelete */
\r
1246 /*-----------------------------------------------------------*/
\r
1248 #if ( INCLUDE_xTaskDelayUntil == 1 )
\r
1250 BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
\r
1251 const TickType_t xTimeIncrement )
\r
1253 TickType_t xTimeToWake;
\r
1254 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1256 configASSERT( pxPreviousWakeTime );
\r
1257 configASSERT( ( xTimeIncrement > 0U ) );
\r
1258 configASSERT( uxSchedulerSuspended == 0 );
\r
1260 vTaskSuspendAll();
\r
1262 /* Minor optimisation. The tick count cannot change in this
\r
1264 const TickType_t xConstTickCount = xTickCount;
\r
1266 /* Generate the tick time at which the task wants to wake. */
\r
1267 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1269 if( xConstTickCount < *pxPreviousWakeTime )
\r
1271 /* The tick count has overflowed since this function was
\r
1272 * lasted called. In this case the only time we should ever
\r
1273 * actually delay is if the wake time has also overflowed,
\r
1274 * and the wake time is greater than the tick time. When this
\r
1275 * is the case it is as if neither time had overflowed. */
\r
1276 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1278 xShouldDelay = pdTRUE;
\r
1282 mtCOVERAGE_TEST_MARKER();
\r
1287 /* The tick time has not overflowed. In this case we will
\r
1288 * delay if either the wake time has overflowed, and/or the
\r
1289 * tick time is less than the wake time. */
\r
1290 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1292 xShouldDelay = pdTRUE;
\r
1296 mtCOVERAGE_TEST_MARKER();
\r
1300 /* Update the wake time ready for the next call. */
\r
1301 *pxPreviousWakeTime = xTimeToWake;
\r
1303 if( xShouldDelay != pdFALSE )
\r
1305 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1307 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1308 * the time to wake, so subtract the current tick count. */
\r
1309 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1313 mtCOVERAGE_TEST_MARKER();
\r
1316 xAlreadyYielded = xTaskResumeAll();
\r
1318 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1319 * have put ourselves to sleep. */
\r
1320 if( xAlreadyYielded == pdFALSE )
\r
1322 portYIELD_WITHIN_API();
\r
1326 mtCOVERAGE_TEST_MARKER();
\r
1329 return xShouldDelay;
\r
1332 #endif /* INCLUDE_xTaskDelayUntil */
\r
1333 /*-----------------------------------------------------------*/
\r
1335 #if ( INCLUDE_vTaskDelay == 1 )
\r
1337 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1339 BaseType_t xAlreadyYielded = pdFALSE;
\r
1341 /* A delay time of zero just forces a reschedule. */
\r
1342 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1344 configASSERT( uxSchedulerSuspended == 0 );
\r
1345 vTaskSuspendAll();
\r
1347 traceTASK_DELAY();
\r
1349 /* A task that is removed from the event list while the
\r
1350 * scheduler is suspended will not get placed in the ready
\r
1351 * list or removed from the blocked list until the scheduler
\r
1354 * This task cannot be in an event list as it is the currently
\r
1355 * executing task. */
\r
1356 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1358 xAlreadyYielded = xTaskResumeAll();
\r
1362 mtCOVERAGE_TEST_MARKER();
\r
1365 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1366 * have put ourselves to sleep. */
\r
1367 if( xAlreadyYielded == pdFALSE )
\r
1369 portYIELD_WITHIN_API();
\r
1373 mtCOVERAGE_TEST_MARKER();
\r
1377 #endif /* INCLUDE_vTaskDelay */
\r
1378 /*-----------------------------------------------------------*/
\r
1380 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
\r
1382 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1384 eTaskState eReturn;
\r
1385 List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
\r
1386 const TCB_t * const pxTCB = xTask;
\r
1388 configASSERT( pxTCB );
\r
1390 if( pxTCB == pxCurrentTCB )
\r
1392 /* The task calling this function is querying its own state. */
\r
1393 eReturn = eRunning;
\r
1397 taskENTER_CRITICAL();
\r
1399 pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1400 pxDelayedList = pxDelayedTaskList;
\r
1401 pxOverflowedDelayedList = pxOverflowDelayedTaskList;
\r
1403 taskEXIT_CRITICAL();
\r
1405 if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
\r
1407 /* The task being queried is referenced from one of the Blocked
\r
1409 eReturn = eBlocked;
\r
1412 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1413 else if( pxStateList == &xSuspendedTaskList )
\r
1415 /* The task being queried is referenced from the suspended
\r
1416 * list. Is it genuinely suspended or is it blocked
\r
1417 * indefinitely? */
\r
1418 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1420 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1424 /* The task does not appear on the event list item of
\r
1425 * and of the RTOS objects, but could still be in the
\r
1426 * blocked state if it is waiting on its notification
\r
1427 * rather than waiting on an object. If not, is
\r
1429 eReturn = eSuspended;
\r
1431 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1433 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1435 eReturn = eBlocked;
\r
1440 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1442 eReturn = eSuspended;
\r
1444 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1448 eReturn = eBlocked;
\r
1451 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
\r
1453 #if ( INCLUDE_vTaskDelete == 1 )
\r
1454 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1456 /* The task being queried is referenced from the deleted
\r
1457 * tasks list, or it is not referenced from any lists at
\r
1459 eReturn = eDeleted;
\r
1463 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1465 /* If the task is not in any other state, it must be in the
\r
1466 * Ready (including pending ready) state. */
\r
1472 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1474 #endif /* INCLUDE_eTaskGetState */
\r
1475 /*-----------------------------------------------------------*/
\r
1477 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1479 UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
\r
1481 TCB_t const * pxTCB;
\r
1482 UBaseType_t uxReturn;
\r
1484 taskENTER_CRITICAL();
\r
1486 /* If null is passed in here then it is the priority of the task
\r
1487 * that called uxTaskPriorityGet() that is being queried. */
\r
1488 pxTCB = prvGetTCBFromHandle( xTask );
\r
1489 uxReturn = pxTCB->uxPriority;
\r
1491 taskEXIT_CRITICAL();
\r
1496 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1497 /*-----------------------------------------------------------*/
\r
1499 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1501 UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
\r
1503 TCB_t const * pxTCB;
\r
1504 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1506 /* RTOS ports that support interrupt nesting have the concept of a
\r
1507 * maximum system call (or maximum API call) interrupt priority.
\r
1508 * Interrupts that are above the maximum system call priority are keep
\r
1509 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1510 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1511 * is defined in FreeRTOSConfig.h then
\r
1512 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1513 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1514 * been assigned a priority above the configured maximum system call
\r
1515 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1516 * from interrupts that have been assigned a priority at or (logically)
\r
1517 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1518 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1519 * simple as possible. More information (albeit Cortex-M specific) is
\r
1520 * provided on the following link:
\r
1521 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1522 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1524 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1526 /* If null is passed in here then it is the priority of the calling
\r
1527 * task that is being queried. */
\r
1528 pxTCB = prvGetTCBFromHandle( xTask );
\r
1529 uxReturn = pxTCB->uxPriority;
\r
1531 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1536 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1537 /*-----------------------------------------------------------*/
\r
1539 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1541 void vTaskPrioritySet( TaskHandle_t xTask,
\r
1542 UBaseType_t uxNewPriority )
\r
1545 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1546 BaseType_t xYieldRequired = pdFALSE;
\r
1548 configASSERT( uxNewPriority < configMAX_PRIORITIES );
\r
1550 /* Ensure the new priority is valid. */
\r
1551 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1553 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1557 mtCOVERAGE_TEST_MARKER();
\r
1560 taskENTER_CRITICAL();
\r
1562 /* If null is passed in here then it is the priority of the calling
\r
1563 * task that is being changed. */
\r
1564 pxTCB = prvGetTCBFromHandle( xTask );
\r
1566 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1568 #if ( configUSE_MUTEXES == 1 )
\r
1570 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1574 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1578 if( uxCurrentBasePriority != uxNewPriority )
\r
1580 /* The priority change may have readied a task of higher
\r
1581 * priority than the calling task. */
\r
1582 if( uxNewPriority > uxCurrentBasePriority )
\r
1584 if( pxTCB != pxCurrentTCB )
\r
1586 /* The priority of a task other than the currently
\r
1587 * running task is being raised. Is the priority being
\r
1588 * raised above that of the running task? */
\r
1589 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1591 xYieldRequired = pdTRUE;
\r
1595 mtCOVERAGE_TEST_MARKER();
\r
1600 /* The priority of the running task is being raised,
\r
1601 * but the running task must already be the highest
\r
1602 * priority task able to run so no yield is required. */
\r
1605 else if( pxTCB == pxCurrentTCB )
\r
1607 /* Setting the priority of the running task down means
\r
1608 * there may now be another task of higher priority that
\r
1609 * is ready to execute. */
\r
1610 xYieldRequired = pdTRUE;
\r
1614 /* Setting the priority of any other task down does not
\r
1615 * require a yield as the running task must be above the
\r
1616 * new priority of the task being modified. */
\r
1619 /* Remember the ready list the task might be referenced from
\r
1620 * before its uxPriority member is changed so the
\r
1621 * taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1622 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1624 #if ( configUSE_MUTEXES == 1 )
\r
1626 /* Only change the priority being used if the task is not
\r
1627 * currently using an inherited priority. */
\r
1628 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1630 pxTCB->uxPriority = uxNewPriority;
\r
1634 mtCOVERAGE_TEST_MARKER();
\r
1637 /* The base priority gets set whatever. */
\r
1638 pxTCB->uxBasePriority = uxNewPriority;
\r
1640 #else /* if ( configUSE_MUTEXES == 1 ) */
\r
1642 pxTCB->uxPriority = uxNewPriority;
\r
1644 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1646 /* Only reset the event list item value if the value is not
\r
1647 * being used for anything else. */
\r
1648 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1650 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1654 mtCOVERAGE_TEST_MARKER();
\r
1657 /* If the task is in the blocked or suspended list we need do
\r
1658 * nothing more than change its priority variable. However, if
\r
1659 * the task is in a ready list it needs to be removed and placed
\r
1660 * in the list appropriate to its new priority. */
\r
1661 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1663 /* The task is currently in its ready list - remove before
\r
1664 * adding it to its new ready list. As we are in a critical
\r
1665 * section we can do this even if the scheduler is suspended. */
\r
1666 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1668 /* It is known that the task is in its ready list so
\r
1669 * there is no need to check again and the port level
\r
1670 * reset macro can be called directly. */
\r
1671 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1675 mtCOVERAGE_TEST_MARKER();
\r
1678 prvAddTaskToReadyList( pxTCB );
\r
1682 mtCOVERAGE_TEST_MARKER();
\r
1685 if( xYieldRequired != pdFALSE )
\r
1687 taskYIELD_IF_USING_PREEMPTION();
\r
1691 mtCOVERAGE_TEST_MARKER();
\r
1694 /* Remove compiler warning about unused variables when the port
\r
1695 * optimised task selection is not being used. */
\r
1696 ( void ) uxPriorityUsedOnEntry;
\r
1699 taskEXIT_CRITICAL();
\r
1702 #endif /* INCLUDE_vTaskPrioritySet */
\r
1703 /*-----------------------------------------------------------*/
\r
1705 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1707 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1711 taskENTER_CRITICAL();
\r
1713 /* If null is passed in here then it is the running task that is
\r
1714 * being suspended. */
\r
1715 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1717 traceTASK_SUSPEND( pxTCB );
\r
1719 /* Remove task from the ready/delayed list and place in the
\r
1720 * suspended list. */
\r
1721 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1723 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1727 mtCOVERAGE_TEST_MARKER();
\r
1730 /* Is the task waiting on an event also? */
\r
1731 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1733 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1737 mtCOVERAGE_TEST_MARKER();
\r
1740 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1742 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
1746 for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
\r
1748 if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
\r
1750 /* The task was blocked to wait for a notification, but is
\r
1751 * now suspended, so no notification was received. */
\r
1752 pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
\r
1756 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
\r
1758 taskEXIT_CRITICAL();
\r
1760 if( xSchedulerRunning != pdFALSE )
\r
1762 /* Reset the next expected unblock time in case it referred to the
\r
1763 * task that is now in the Suspended state. */
\r
1764 taskENTER_CRITICAL();
\r
1766 prvResetNextTaskUnblockTime();
\r
1768 taskEXIT_CRITICAL();
\r
1772 mtCOVERAGE_TEST_MARKER();
\r
1775 if( pxTCB == pxCurrentTCB )
\r
1777 if( xSchedulerRunning != pdFALSE )
\r
1779 /* The current task has just been suspended. */
\r
1780 configASSERT( uxSchedulerSuspended == 0 );
\r
1781 portYIELD_WITHIN_API();
\r
1785 /* The scheduler is not running, but the task that was pointed
\r
1786 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1787 * must be adjusted to point to a different task. */
\r
1788 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
\r
1790 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1791 * NULL so when the next task is created pxCurrentTCB will
\r
1792 * be set to point to it no matter what its relative priority
\r
1794 pxCurrentTCB = NULL;
\r
1798 vTaskSwitchContext();
\r
1804 mtCOVERAGE_TEST_MARKER();
\r
1808 #endif /* INCLUDE_vTaskSuspend */
\r
1809 /*-----------------------------------------------------------*/
\r
1811 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1813 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1815 BaseType_t xReturn = pdFALSE;
\r
1816 const TCB_t * const pxTCB = xTask;
\r
1818 /* Accesses xPendingReadyList so must be called from a critical
\r
1821 /* It does not make sense to check if the calling task is suspended. */
\r
1822 configASSERT( xTask );
\r
1824 /* Is the task being resumed actually in the suspended list? */
\r
1825 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1827 /* Has the task already been resumed from within an ISR? */
\r
1828 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1830 /* Is it in the suspended list because it is in the Suspended
\r
1831 * state, or because is is blocked with no timeout? */
\r
1832 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
\r
1838 mtCOVERAGE_TEST_MARKER();
\r
1843 mtCOVERAGE_TEST_MARKER();
\r
1848 mtCOVERAGE_TEST_MARKER();
\r
1852 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1854 #endif /* INCLUDE_vTaskSuspend */
\r
1855 /*-----------------------------------------------------------*/
\r
1857 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1859 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1861 TCB_t * const pxTCB = xTaskToResume;
\r
1863 /* It does not make sense to resume the calling task. */
\r
1864 configASSERT( xTaskToResume );
\r
1866 /* The parameter cannot be NULL as it is impossible to resume the
\r
1867 * currently executing task. */
\r
1868 if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
\r
1870 taskENTER_CRITICAL();
\r
1872 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1874 traceTASK_RESUME( pxTCB );
\r
1876 /* The ready list can be accessed even if the scheduler is
\r
1877 * suspended because this is inside a critical section. */
\r
1878 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1879 prvAddTaskToReadyList( pxTCB );
\r
1881 /* A higher priority task may have just been resumed. */
\r
1882 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1884 /* This yield may not cause the task just resumed to run,
\r
1885 * but will leave the lists in the correct state for the
\r
1887 taskYIELD_IF_USING_PREEMPTION();
\r
1891 mtCOVERAGE_TEST_MARKER();
\r
1896 mtCOVERAGE_TEST_MARKER();
\r
1899 taskEXIT_CRITICAL();
\r
1903 mtCOVERAGE_TEST_MARKER();
\r
1907 #endif /* INCLUDE_vTaskSuspend */
\r
1909 /*-----------------------------------------------------------*/
\r
1911 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1913 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1915 BaseType_t xYieldRequired = pdFALSE;
\r
1916 TCB_t * const pxTCB = xTaskToResume;
\r
1917 UBaseType_t uxSavedInterruptStatus;
\r
1919 configASSERT( xTaskToResume );
\r
1921 /* RTOS ports that support interrupt nesting have the concept of a
\r
1922 * maximum system call (or maximum API call) interrupt priority.
\r
1923 * Interrupts that are above the maximum system call priority are keep
\r
1924 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
1925 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1926 * is defined in FreeRTOSConfig.h then
\r
1927 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1928 * failure if a FreeRTOS API function is called from an interrupt that has
\r
1929 * been assigned a priority above the configured maximum system call
\r
1930 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
1931 * from interrupts that have been assigned a priority at or (logically)
\r
1932 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1933 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1934 * simple as possible. More information (albeit Cortex-M specific) is
\r
1935 * provided on the following link:
\r
1936 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1937 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1939 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1941 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1943 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1945 /* Check the ready lists can be accessed. */
\r
1946 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1948 /* Ready lists can be accessed so move the task from the
\r
1949 * suspended list to the ready list directly. */
\r
1950 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1952 xYieldRequired = pdTRUE;
\r
1954 /* Mark that a yield is pending in case the user is not
\r
1955 * using the return value to initiate a context switch
\r
1956 * from the ISR using portYIELD_FROM_ISR. */
\r
1957 xYieldPending = pdTRUE;
\r
1961 mtCOVERAGE_TEST_MARKER();
\r
1964 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1965 prvAddTaskToReadyList( pxTCB );
\r
1969 /* The delayed or ready lists cannot be accessed so the task
\r
1970 * is held in the pending ready list until the scheduler is
\r
1972 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1977 mtCOVERAGE_TEST_MARKER();
\r
1980 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1982 return xYieldRequired;
\r
1985 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1986 /*-----------------------------------------------------------*/
\r
1988 void vTaskStartScheduler( void )
\r
1990 BaseType_t xReturn;
\r
1992 /* Add the idle task at the lowest priority. */
\r
1993 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1995 StaticTask_t * pxIdleTaskTCBBuffer = NULL;
\r
1996 StackType_t * pxIdleTaskStackBuffer = NULL;
\r
1997 uint32_t ulIdleTaskStackSize;
\r
1999 /* The Idle task is created using user provided RAM - obtain the
\r
2000 * address of the RAM then create the idle task. */
\r
2001 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
2002 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
2003 configIDLE_TASK_NAME,
\r
2004 ulIdleTaskStackSize,
\r
2005 ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
\r
2006 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2007 pxIdleTaskStackBuffer,
\r
2008 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2010 if( xIdleTaskHandle != NULL )
\r
2019 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
\r
2021 /* The Idle task is being created using dynamically allocated RAM. */
\r
2022 xReturn = xTaskCreate( prvIdleTask,
\r
2023 configIDLE_TASK_NAME,
\r
2024 configMINIMAL_STACK_SIZE,
\r
2026 portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
\r
2027 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
2029 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
2031 #if ( configUSE_TIMERS == 1 )
\r
2033 if( xReturn == pdPASS )
\r
2035 xReturn = xTimerCreateTimerTask();
\r
2039 mtCOVERAGE_TEST_MARKER();
\r
2042 #endif /* configUSE_TIMERS */
\r
2044 if( xReturn == pdPASS )
\r
2046 /* freertos_tasks_c_additions_init() should only be called if the user
\r
2047 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
\r
2048 * the only macro called by the function. */
\r
2049 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
2051 freertos_tasks_c_additions_init();
\r
2055 /* Interrupts are turned off here, to ensure a tick does not occur
\r
2056 * before or during the call to xPortStartScheduler(). The stacks of
\r
2057 * the created tasks contain a status word with interrupts switched on
\r
2058 * so interrupts will automatically get re-enabled when the first task
\r
2059 * starts to run. */
\r
2060 portDISABLE_INTERRUPTS();
\r
2062 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2064 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2065 * structure specific to the task that will run first.
\r
2066 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
2067 * for additional information. */
\r
2068 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2070 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2072 xNextTaskUnblockTime = portMAX_DELAY;
\r
2073 xSchedulerRunning = pdTRUE;
\r
2074 xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
\r
2076 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
2077 * macro must be defined to configure the timer/counter used to generate
\r
2078 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
\r
2079 * is set to 0 and the following line fails to build then ensure you do not
\r
2080 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
\r
2081 * FreeRTOSConfig.h file. */
\r
2082 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
2084 traceTASK_SWITCHED_IN();
\r
2086 /* Setting up the timer tick is hardware specific and thus in the
\r
2087 * portable interface. */
\r
2088 if( xPortStartScheduler() != pdFALSE )
\r
2090 /* Should not reach here as if the scheduler is running the
\r
2091 * function will not return. */
\r
2095 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
2100 /* This line will only be reached if the kernel could not be started,
\r
2101 * because there was not enough FreeRTOS heap to create the idle task
\r
2102 * or the timer task. */
\r
2103 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
2106 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
2107 * meaning xIdleTaskHandle is not used anywhere else. */
\r
2108 ( void ) xIdleTaskHandle;
\r
2110 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
\r
2111 * from getting optimized out as it is no longer used by the kernel. */
\r
2112 ( void ) uxTopUsedPriority;
\r
2114 /*-----------------------------------------------------------*/
\r
2116 void vTaskEndScheduler( void )
\r
2118 /* Stop the scheduler interrupts and call the portable scheduler end
\r
2119 * routine so the original ISRs can be restored if necessary. The port
\r
2120 * layer must ensure interrupts enable bit is left in the correct state. */
\r
2121 portDISABLE_INTERRUPTS();
\r
2122 xSchedulerRunning = pdFALSE;
\r
2123 vPortEndScheduler();
\r
2125 /*----------------------------------------------------------*/
\r
2127 void vTaskSuspendAll( void )
\r
2129 /* A critical section is not required as the variable is of type
\r
2130 * BaseType_t. Please read Richard Barry's reply in the following link to a
\r
2131 * post in the FreeRTOS support forum before reporting this as a bug! -
\r
2132 * https://goo.gl/wu4acr */
\r
2134 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
\r
2135 * do not otherwise exhibit real time behaviour. */
\r
2136 portSOFTWARE_BARRIER();
\r
2138 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
\r
2139 * is used to allow calls to vTaskSuspendAll() to nest. */
\r
2140 ++uxSchedulerSuspended;
\r
2142 /* Enforces ordering for ports and optimised compilers that may otherwise place
\r
2143 * the above increment elsewhere. */
\r
2144 portMEMORY_BARRIER();
\r
2146 /*----------------------------------------------------------*/
\r
2148 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2150 static TickType_t prvGetExpectedIdleTime( void )
\r
2152 TickType_t xReturn;
\r
2153 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
2155 /* uxHigherPriorityReadyTasks takes care of the case where
\r
2156 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
2157 * task that are in the Ready state, even though the idle task is
\r
2159 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
2161 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
2163 uxHigherPriorityReadyTasks = pdTRUE;
\r
2168 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
2170 /* When port optimised task selection is used the uxTopReadyPriority
\r
2171 * variable is used as a bit map. If bits other than the least
\r
2172 * significant bit are set then there are tasks that have a priority
\r
2173 * above the idle priority that are in the Ready state. This takes
\r
2174 * care of the case where the co-operative scheduler is in use. */
\r
2175 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
2177 uxHigherPriorityReadyTasks = pdTRUE;
\r
2180 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
\r
2182 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
2186 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
2188 /* There are other idle priority tasks in the ready state. If
\r
2189 * time slicing is used then the very next tick interrupt must be
\r
2193 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2195 /* There are tasks in the Ready state that have a priority above the
\r
2196 * idle priority. This path can only be reached if
\r
2197 * configUSE_PREEMPTION is 0. */
\r
2202 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2208 #endif /* configUSE_TICKLESS_IDLE */
\r
2209 /*----------------------------------------------------------*/
\r
2211 BaseType_t xTaskResumeAll( void )
\r
2213 TCB_t * pxTCB = NULL;
\r
2214 BaseType_t xAlreadyYielded = pdFALSE;
\r
2216 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2217 * previous call to vTaskSuspendAll(). */
\r
2218 configASSERT( uxSchedulerSuspended );
\r
2220 /* It is possible that an ISR caused a task to be removed from an event
\r
2221 * list while the scheduler was suspended. If this was the case then the
\r
2222 * removed task will have been added to the xPendingReadyList. Once the
\r
2223 * scheduler has been resumed it is safe to move all the pending ready
\r
2224 * tasks from this list into their appropriate ready list. */
\r
2225 taskENTER_CRITICAL();
\r
2227 --uxSchedulerSuspended;
\r
2229 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2231 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2233 /* Move any readied tasks from the pending list into the
\r
2234 * appropriate ready list. */
\r
2235 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2237 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2238 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2239 portMEMORY_BARRIER();
\r
2240 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2241 prvAddTaskToReadyList( pxTCB );
\r
2243 /* If the moved task has a priority higher than or equal to
\r
2244 * the current task then a yield must be performed. */
\r
2245 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2247 xYieldPending = pdTRUE;
\r
2251 mtCOVERAGE_TEST_MARKER();
\r
2255 if( pxTCB != NULL )
\r
2257 /* A task was unblocked while the scheduler was suspended,
\r
2258 * which may have prevented the next unblock time from being
\r
2259 * re-calculated, in which case re-calculate it now. Mainly
\r
2260 * important for low power tickless implementations, where
\r
2261 * this can prevent an unnecessary exit from low power
\r
2263 prvResetNextTaskUnblockTime();
\r
2266 /* If any ticks occurred while the scheduler was suspended then
\r
2267 * they should be processed now. This ensures the tick count does
\r
2268 * not slip, and that any delayed tasks are resumed at the correct
\r
2271 TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
\r
2273 if( xPendedCounts > ( TickType_t ) 0U )
\r
2277 if( xTaskIncrementTick() != pdFALSE )
\r
2279 xYieldPending = pdTRUE;
\r
2283 mtCOVERAGE_TEST_MARKER();
\r
2287 } while( xPendedCounts > ( TickType_t ) 0U );
\r
2293 mtCOVERAGE_TEST_MARKER();
\r
2297 if( xYieldPending != pdFALSE )
\r
2299 #if ( configUSE_PREEMPTION != 0 )
\r
2301 xAlreadyYielded = pdTRUE;
\r
2304 taskYIELD_IF_USING_PREEMPTION();
\r
2308 mtCOVERAGE_TEST_MARKER();
\r
2314 mtCOVERAGE_TEST_MARKER();
\r
2317 taskEXIT_CRITICAL();
\r
2319 return xAlreadyYielded;
\r
2321 /*-----------------------------------------------------------*/
\r
2323 TickType_t xTaskGetTickCount( void )
\r
2325 TickType_t xTicks;
\r
2327 /* Critical section required if running on a 16 bit processor. */
\r
2328 portTICK_TYPE_ENTER_CRITICAL();
\r
2330 xTicks = xTickCount;
\r
2332 portTICK_TYPE_EXIT_CRITICAL();
\r
2336 /*-----------------------------------------------------------*/
\r
2338 TickType_t xTaskGetTickCountFromISR( void )
\r
2340 TickType_t xReturn;
\r
2341 UBaseType_t uxSavedInterruptStatus;
\r
2343 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2344 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
2345 * above the maximum system call priority are kept permanently enabled, even
\r
2346 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2347 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2348 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2349 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
2350 * assigned a priority above the configured maximum system call priority.
\r
2351 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2352 * that have been assigned a priority at or (logically) below the maximum
\r
2353 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2354 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2355 * More information (albeit Cortex-M specific) is provided on the following
\r
2356 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
2357 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2359 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2361 xReturn = xTickCount;
\r
2363 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2367 /*-----------------------------------------------------------*/
\r
2369 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2371 /* A critical section is not required because the variables are of type
\r
2373 return uxCurrentNumberOfTasks;
\r
2375 /*-----------------------------------------------------------*/
\r
2377 char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2381 /* If null is passed in here then the name of the calling task is being
\r
2383 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2384 configASSERT( pxTCB );
\r
2385 return &( pxTCB->pcTaskName[ 0 ] );
\r
2387 /*-----------------------------------------------------------*/
\r
2389 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2391 static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
\r
2392 const char pcNameToQuery[] )
\r
2394 TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
\r
2397 BaseType_t xBreakLoop;
\r
2399 /* This function is called with the scheduler suspended. */
\r
2401 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2403 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2407 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2409 /* Check each character in the name looking for a match or
\r
2411 xBreakLoop = pdFALSE;
\r
2413 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2415 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2417 if( cNextChar != pcNameToQuery[ x ] )
\r
2419 /* Characters didn't match. */
\r
2420 xBreakLoop = pdTRUE;
\r
2422 else if( cNextChar == ( char ) 0x00 )
\r
2424 /* Both strings terminated, a match must have been
\r
2426 pxReturn = pxNextTCB;
\r
2427 xBreakLoop = pdTRUE;
\r
2431 mtCOVERAGE_TEST_MARKER();
\r
2434 if( xBreakLoop != pdFALSE )
\r
2440 if( pxReturn != NULL )
\r
2442 /* The handle has been found. */
\r
2445 } while( pxNextTCB != pxFirstTCB );
\r
2449 mtCOVERAGE_TEST_MARKER();
\r
2455 #endif /* INCLUDE_xTaskGetHandle */
\r
2456 /*-----------------------------------------------------------*/
\r
2458 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2460 TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2462 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2465 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2466 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2468 vTaskSuspendAll();
\r
2470 /* Search the ready lists. */
\r
2474 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2476 if( pxTCB != NULL )
\r
2478 /* Found the handle. */
\r
2481 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2483 /* Search the delayed lists. */
\r
2484 if( pxTCB == NULL )
\r
2486 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2489 if( pxTCB == NULL )
\r
2491 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2494 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2496 if( pxTCB == NULL )
\r
2498 /* Search the suspended list. */
\r
2499 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2504 #if ( INCLUDE_vTaskDelete == 1 )
\r
2506 if( pxTCB == NULL )
\r
2508 /* Search the deleted list. */
\r
2509 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2514 ( void ) xTaskResumeAll();
\r
2519 #endif /* INCLUDE_xTaskGetHandle */
\r
2520 /*-----------------------------------------------------------*/
\r
2522 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2524 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
\r
2525 const UBaseType_t uxArraySize,
\r
2526 uint32_t * const pulTotalRunTime )
\r
2528 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2530 vTaskSuspendAll();
\r
2532 /* Is there a space in the array for each task in the system? */
\r
2533 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2535 /* Fill in an TaskStatus_t structure with information on each
\r
2536 * task in the Ready state. */
\r
2540 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2541 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2543 /* Fill in an TaskStatus_t structure with information on each
\r
2544 * task in the Blocked state. */
\r
2545 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2546 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2548 #if ( INCLUDE_vTaskDelete == 1 )
\r
2550 /* Fill in an TaskStatus_t structure with information on
\r
2551 * each task that has been deleted but not yet cleaned up. */
\r
2552 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2556 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2558 /* Fill in an TaskStatus_t structure with information on
\r
2559 * each task in the Suspended state. */
\r
2560 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2564 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2566 if( pulTotalRunTime != NULL )
\r
2568 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2569 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2571 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2575 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2577 if( pulTotalRunTime != NULL )
\r
2579 *pulTotalRunTime = 0;
\r
2582 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
\r
2586 mtCOVERAGE_TEST_MARKER();
\r
2589 ( void ) xTaskResumeAll();
\r
2594 #endif /* configUSE_TRACE_FACILITY */
\r
2595 /*----------------------------------------------------------*/
\r
2597 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2599 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2601 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2602 * started, then xIdleTaskHandle will be NULL. */
\r
2603 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2604 return xIdleTaskHandle;
\r
2607 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2608 /*----------------------------------------------------------*/
\r
2610 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2611 * This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2612 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2614 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2616 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2618 /* Correct the tick count value after a period during which the tick
\r
2619 * was suppressed. Note this does *not* call the tick hook function for
\r
2620 * each stepped tick. */
\r
2621 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2622 xTickCount += xTicksToJump;
\r
2623 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2626 #endif /* configUSE_TICKLESS_IDLE */
\r
2627 /*----------------------------------------------------------*/
\r
2629 BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
\r
2631 BaseType_t xYieldOccurred;
\r
2633 /* Must not be called with the scheduler suspended as the implementation
\r
2634 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
\r
2635 configASSERT( uxSchedulerSuspended == 0 );
\r
2637 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
\r
2638 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
\r
2639 vTaskSuspendAll();
\r
2640 xPendedTicks += xTicksToCatchUp;
\r
2641 xYieldOccurred = xTaskResumeAll();
\r
2643 return xYieldOccurred;
\r
2645 /*----------------------------------------------------------*/
\r
2647 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2649 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2651 TCB_t * pxTCB = xTask;
\r
2652 BaseType_t xReturn;
\r
2654 configASSERT( pxTCB );
\r
2656 vTaskSuspendAll();
\r
2658 /* A task can only be prematurely removed from the Blocked state if
\r
2659 * it is actually in the Blocked state. */
\r
2660 if( eTaskGetState( xTask ) == eBlocked )
\r
2664 /* Remove the reference to the task from the blocked list. An
\r
2665 * interrupt won't touch the xStateListItem because the
\r
2666 * scheduler is suspended. */
\r
2667 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2669 /* Is the task waiting on an event also? If so remove it from
\r
2670 * the event list too. Interrupts can touch the event list item,
\r
2671 * even though the scheduler is suspended, so a critical section
\r
2673 taskENTER_CRITICAL();
\r
2675 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2677 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2679 /* This lets the task know it was forcibly removed from the
\r
2680 * blocked state so it should not re-evaluate its block time and
\r
2681 * then block again. */
\r
2682 pxTCB->ucDelayAborted = pdTRUE;
\r
2686 mtCOVERAGE_TEST_MARKER();
\r
2689 taskEXIT_CRITICAL();
\r
2691 /* Place the unblocked task into the appropriate ready list. */
\r
2692 prvAddTaskToReadyList( pxTCB );
\r
2694 /* A task being unblocked cannot cause an immediate context
\r
2695 * switch if preemption is turned off. */
\r
2696 #if ( configUSE_PREEMPTION == 1 )
\r
2698 /* Preemption is on, but a context switch should only be
\r
2699 * performed if the unblocked task has a priority that is
\r
2700 * higher than the currently executing task. */
\r
2701 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2703 /* Pend the yield to be performed when the scheduler
\r
2704 * is unsuspended. */
\r
2705 xYieldPending = pdTRUE;
\r
2709 mtCOVERAGE_TEST_MARKER();
\r
2712 #endif /* configUSE_PREEMPTION */
\r
2719 ( void ) xTaskResumeAll();
\r
2724 #endif /* INCLUDE_xTaskAbortDelay */
\r
2725 /*----------------------------------------------------------*/
\r
2727 BaseType_t xTaskIncrementTick( void )
\r
2730 TickType_t xItemValue;
\r
2731 BaseType_t xSwitchRequired = pdFALSE;
\r
2733 /* Called by the portable layer each time a tick interrupt occurs.
\r
2734 * Increments the tick then checks to see if the new tick value will cause any
\r
2735 * tasks to be unblocked. */
\r
2736 traceTASK_INCREMENT_TICK( xTickCount );
\r
2738 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2740 /* Minor optimisation. The tick count cannot change in this
\r
2742 const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
\r
2744 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2745 * delayed lists if it wraps to 0. */
\r
2746 xTickCount = xConstTickCount;
\r
2748 if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
\r
2750 taskSWITCH_DELAYED_LISTS();
\r
2754 mtCOVERAGE_TEST_MARKER();
\r
2757 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2758 * the queue in the order of their wake time - meaning once one task
\r
2759 * has been found whose block time has not expired there is no need to
\r
2760 * look any further down the list. */
\r
2761 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2765 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2767 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2768 * to the maximum possible value so it is extremely
\r
2769 * unlikely that the
\r
2770 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2771 * next time through. */
\r
2772 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2777 /* The delayed list is not empty, get the value of the
\r
2778 * item at the head of the delayed list. This is the time
\r
2779 * at which the task at the head of the delayed list must
\r
2780 * be removed from the Blocked state. */
\r
2781 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
2782 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2784 if( xConstTickCount < xItemValue )
\r
2786 /* It is not time to unblock this item yet, but the
\r
2787 * item value is the time at which the task at the head
\r
2788 * of the blocked list must be removed from the Blocked
\r
2789 * state - so record the item value in
\r
2790 * xNextTaskUnblockTime. */
\r
2791 xNextTaskUnblockTime = xItemValue;
\r
2792 break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
\r
2796 mtCOVERAGE_TEST_MARKER();
\r
2799 /* It is time to remove the item from the Blocked state. */
\r
2800 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
2802 /* Is the task waiting on an event also? If so remove
\r
2803 * it from the event list. */
\r
2804 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2806 listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
\r
2810 mtCOVERAGE_TEST_MARKER();
\r
2813 /* Place the unblocked task into the appropriate ready
\r
2815 prvAddTaskToReadyList( pxTCB );
\r
2817 /* A task being unblocked cannot cause an immediate
\r
2818 * context switch if preemption is turned off. */
\r
2819 #if ( configUSE_PREEMPTION == 1 )
\r
2821 /* Preemption is on, but a context switch should
\r
2822 * only be performed if the unblocked task has a
\r
2823 * priority that is equal to or higher than the
\r
2824 * currently executing task. */
\r
2825 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2827 xSwitchRequired = pdTRUE;
\r
2831 mtCOVERAGE_TEST_MARKER();
\r
2834 #endif /* configUSE_PREEMPTION */
\r
2839 /* Tasks of equal priority to the currently running task will share
\r
2840 * processing time (time slice) if preemption is on, and the application
\r
2841 * writer has not explicitly turned time slicing off. */
\r
2842 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2844 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2846 xSwitchRequired = pdTRUE;
\r
2850 mtCOVERAGE_TEST_MARKER();
\r
2853 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2855 #if ( configUSE_TICK_HOOK == 1 )
\r
2857 /* Guard against the tick hook being called when the pended tick
\r
2858 * count is being unwound (when the scheduler is being unlocked). */
\r
2859 if( xPendedTicks == ( TickType_t ) 0 )
\r
2861 vApplicationTickHook();
\r
2865 mtCOVERAGE_TEST_MARKER();
\r
2868 #endif /* configUSE_TICK_HOOK */
\r
2870 #if ( configUSE_PREEMPTION == 1 )
\r
2872 if( xYieldPending != pdFALSE )
\r
2874 xSwitchRequired = pdTRUE;
\r
2878 mtCOVERAGE_TEST_MARKER();
\r
2881 #endif /* configUSE_PREEMPTION */
\r
2887 /* The tick hook gets called at regular intervals, even if the
\r
2888 * scheduler is locked. */
\r
2889 #if ( configUSE_TICK_HOOK == 1 )
\r
2891 vApplicationTickHook();
\r
2896 return xSwitchRequired;
\r
2898 /*-----------------------------------------------------------*/
\r
2900 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2902 void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
\r
2903 TaskHookFunction_t pxHookFunction )
\r
2907 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2909 if( xTask == NULL )
\r
2911 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2918 /* Save the hook function in the TCB. A critical section is required as
\r
2919 * the value can be accessed from an interrupt. */
\r
2920 taskENTER_CRITICAL();
\r
2922 xTCB->pxTaskTag = pxHookFunction;
\r
2924 taskEXIT_CRITICAL();
\r
2927 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2928 /*-----------------------------------------------------------*/
\r
2930 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2932 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2935 TaskHookFunction_t xReturn;
\r
2937 /* If xTask is NULL then set the calling task's hook. */
\r
2938 pxTCB = prvGetTCBFromHandle( xTask );
\r
2940 /* Save the hook function in the TCB. A critical section is required as
\r
2941 * the value can be accessed from an interrupt. */
\r
2942 taskENTER_CRITICAL();
\r
2944 xReturn = pxTCB->pxTaskTag;
\r
2946 taskEXIT_CRITICAL();
\r
2951 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2952 /*-----------------------------------------------------------*/
\r
2954 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2956 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
\r
2959 TaskHookFunction_t xReturn;
\r
2960 UBaseType_t uxSavedInterruptStatus;
\r
2962 /* If xTask is NULL then set the calling task's hook. */
\r
2963 pxTCB = prvGetTCBFromHandle( xTask );
\r
2965 /* Save the hook function in the TCB. A critical section is required as
\r
2966 * the value can be accessed from an interrupt. */
\r
2967 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
2969 xReturn = pxTCB->pxTaskTag;
\r
2971 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2976 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2977 /*-----------------------------------------------------------*/
\r
2979 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2981 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
\r
2982 void * pvParameter )
\r
2985 BaseType_t xReturn;
\r
2987 /* If xTask is NULL then we are calling our own task hook. */
\r
2988 if( xTask == NULL )
\r
2990 xTCB = pxCurrentTCB;
\r
2997 if( xTCB->pxTaskTag != NULL )
\r
2999 xReturn = xTCB->pxTaskTag( pvParameter );
\r
3009 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
3010 /*-----------------------------------------------------------*/
\r
3012 void vTaskSwitchContext( void )
\r
3014 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
3016 /* The scheduler is currently suspended - do not allow a context
\r
3018 xYieldPending = pdTRUE;
\r
3022 xYieldPending = pdFALSE;
\r
3023 traceTASK_SWITCHED_OUT();
\r
3025 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3027 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
3028 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
3030 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
3033 /* Add the amount of time the task has been running to the
\r
3034 * accumulated time so far. The time the task started running was
\r
3035 * stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
3036 * protection here so count values are only valid until the timer
\r
3037 * overflows. The guard against negative values is to protect
\r
3038 * against suspect run time stat counter implementations - which
\r
3039 * are provided by the application, not the kernel. */
\r
3040 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
3042 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
3046 mtCOVERAGE_TEST_MARKER();
\r
3049 ulTaskSwitchedInTime = ulTotalRunTime;
\r
3051 #endif /* configGENERATE_RUN_TIME_STATS */
\r
3053 /* Check for stack overflow, if configured. */
\r
3054 taskCHECK_FOR_STACK_OVERFLOW();
\r
3056 /* Before the currently running task is switched out, save its errno. */
\r
3057 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3059 pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
\r
3063 /* Select a new task to run using either the generic C or port
\r
3064 * optimised asm code. */
\r
3065 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3066 traceTASK_SWITCHED_IN();
\r
3068 /* After the new task is switched in, update the global errno. */
\r
3069 #if ( configUSE_POSIX_ERRNO == 1 )
\r
3071 FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
\r
3075 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3077 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
3078 * structure specific to this task.
\r
3079 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3080 * for additional information. */
\r
3081 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
3083 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3086 /*-----------------------------------------------------------*/
\r
3088 void vTaskPlaceOnEventList( List_t * const pxEventList,
\r
3089 const TickType_t xTicksToWait )
\r
3091 configASSERT( pxEventList );
\r
3093 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
3094 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
3096 /* Place the event list item of the TCB in the appropriate event list.
\r
3097 * This is placed in the list in priority order so the highest priority task
\r
3098 * is the first to be woken by the event.
\r
3100 * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
\r
3101 * Normally, the xItemValue of a TCB's ListItem_t members is:
\r
3102 * xItemValue = ( configMAX_PRIORITIES - uxPriority )
\r
3103 * Therefore, the event list is sorted in descending priority order.
\r
3105 * The queue that contains the event list is locked, preventing
\r
3106 * simultaneous access from interrupts. */
\r
3107 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3109 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3111 /*-----------------------------------------------------------*/
\r
3113 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
\r
3114 const TickType_t xItemValue,
\r
3115 const TickType_t xTicksToWait )
\r
3117 configASSERT( pxEventList );
\r
3119 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3120 * the event groups implementation. */
\r
3121 configASSERT( uxSchedulerSuspended != 0 );
\r
3123 /* Store the item value in the event list item. It is safe to access the
\r
3124 * event list item here as interrupts won't access the event list item of a
\r
3125 * task that is not in the Blocked state. */
\r
3126 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3128 /* Place the event list item of the TCB at the end of the appropriate event
\r
3129 * list. It is safe to access the event list here because it is part of an
\r
3130 * event group implementation - and interrupts don't access event groups
\r
3131 * directly (instead they access them indirectly by pending function calls to
\r
3132 * the task level). */
\r
3133 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3135 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
3137 /*-----------------------------------------------------------*/
\r
3139 #if ( configUSE_TIMERS == 1 )
\r
3141 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
\r
3142 TickType_t xTicksToWait,
\r
3143 const BaseType_t xWaitIndefinitely )
\r
3145 configASSERT( pxEventList );
\r
3147 /* This function should not be called by application code hence the
\r
3148 * 'Restricted' in its name. It is not part of the public API. It is
\r
3149 * designed for use by kernel code, and has special calling requirements -
\r
3150 * it should be called with the scheduler suspended. */
\r
3153 /* Place the event list item of the TCB in the appropriate event list.
\r
3154 * In this case it is assume that this is the only task that is going to
\r
3155 * be waiting on this event list, so the faster vListInsertEnd() function
\r
3156 * can be used in place of vListInsert. */
\r
3157 listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
3159 /* If the task should block indefinitely then set the block time to a
\r
3160 * value that will be recognised as an indefinite delay inside the
\r
3161 * prvAddCurrentTaskToDelayedList() function. */
\r
3162 if( xWaitIndefinitely != pdFALSE )
\r
3164 xTicksToWait = portMAX_DELAY;
\r
3167 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
3168 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
3171 #endif /* configUSE_TIMERS */
\r
3172 /*-----------------------------------------------------------*/
\r
3174 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
3176 TCB_t * pxUnblockedTCB;
\r
3177 BaseType_t xReturn;
\r
3179 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
3180 * called from a critical section within an ISR. */
\r
3182 /* The event list is sorted in priority order, so the first in the list can
\r
3183 * be removed as it is known to be the highest priority. Remove the TCB from
\r
3184 * the delayed list, and add it to the ready list.
\r
3186 * If an event is for a queue that is locked then this function will never
\r
3187 * get called - the lock count on the queue will get modified instead. This
\r
3188 * means exclusive access to the event list is guaranteed here.
\r
3190 * This function assumes that a check has already been made to ensure that
\r
3191 * pxEventList is not empty. */
\r
3192 pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3193 configASSERT( pxUnblockedTCB );
\r
3194 listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
\r
3196 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3198 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3199 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3201 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3203 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3204 * might be set to the blocked task's time out time. If the task is
\r
3205 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3206 * normally left unchanged, because it is automatically reset to a new
\r
3207 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3208 * tickless idling is used it might be more important to enter sleep mode
\r
3209 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3210 * ensure it is updated at the earliest possible time. */
\r
3211 prvResetNextTaskUnblockTime();
\r
3217 /* The delayed and ready lists cannot be accessed, so hold this task
\r
3218 * pending until the scheduler is resumed. */
\r
3219 listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
3222 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3224 /* Return true if the task removed from the event list has a higher
\r
3225 * priority than the calling task. This allows the calling task to know if
\r
3226 * it should force a context switch now. */
\r
3229 /* Mark that a yield is pending in case the user is not using the
\r
3230 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
3231 xYieldPending = pdTRUE;
\r
3235 xReturn = pdFALSE;
\r
3240 /*-----------------------------------------------------------*/
\r
3242 void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
\r
3243 const TickType_t xItemValue )
\r
3245 TCB_t * pxUnblockedTCB;
\r
3247 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
3248 * the event flags implementation. */
\r
3249 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
3251 /* Store the new item value in the event list. */
\r
3252 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
3254 /* Remove the event list form the event flag. Interrupts do not access
\r
3256 pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3257 configASSERT( pxUnblockedTCB );
\r
3258 listREMOVE_ITEM( pxEventListItem );
\r
3260 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3262 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
3263 * might be set to the blocked task's time out time. If the task is
\r
3264 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
3265 * normally left unchanged, because it is automatically reset to a new
\r
3266 * value when the tick count equals xNextTaskUnblockTime. However if
\r
3267 * tickless idling is used it might be more important to enter sleep mode
\r
3268 * at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
3269 * ensure it is updated at the earliest possible time. */
\r
3270 prvResetNextTaskUnblockTime();
\r
3274 /* Remove the task from the delayed list and add it to the ready list. The
\r
3275 * scheduler is suspended so interrupts will not be accessing the ready
\r
3277 listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
\r
3278 prvAddTaskToReadyList( pxUnblockedTCB );
\r
3280 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
3282 /* The unblocked task has a priority above that of the calling task, so
\r
3283 * a context switch is required. This function is called with the
\r
3284 * scheduler suspended so xYieldPending is set so the context switch
\r
3285 * occurs immediately that the scheduler is resumed (unsuspended). */
\r
3286 xYieldPending = pdTRUE;
\r
3289 /*-----------------------------------------------------------*/
\r
3291 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3293 configASSERT( pxTimeOut );
\r
3294 taskENTER_CRITICAL();
\r
3296 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3297 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3299 taskEXIT_CRITICAL();
\r
3301 /*-----------------------------------------------------------*/
\r
3303 void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3305 /* For internal use only as it does not use a critical section. */
\r
3306 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3307 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3309 /*-----------------------------------------------------------*/
\r
3311 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
\r
3312 TickType_t * const pxTicksToWait )
\r
3314 BaseType_t xReturn;
\r
3316 configASSERT( pxTimeOut );
\r
3317 configASSERT( pxTicksToWait );
\r
3319 taskENTER_CRITICAL();
\r
3321 /* Minor optimisation. The tick count cannot change in this block. */
\r
3322 const TickType_t xConstTickCount = xTickCount;
\r
3323 const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
\r
3325 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
3326 if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
\r
3328 /* The delay was aborted, which is not the same as a time out,
\r
3329 * but has the same result. */
\r
3330 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3336 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3337 if( *pxTicksToWait == portMAX_DELAY )
\r
3339 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3340 * specified is the maximum block time then the task should block
\r
3341 * indefinitely, and therefore never time out. */
\r
3342 xReturn = pdFALSE;
\r
3347 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3349 /* The tick count is greater than the time at which
\r
3350 * vTaskSetTimeout() was called, but has also overflowed since
\r
3351 * vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3352 * around and gone past again. This passed since vTaskSetTimeout()
\r
3355 *pxTicksToWait = ( TickType_t ) 0;
\r
3357 else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3359 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3360 *pxTicksToWait -= xElapsedTime;
\r
3361 vTaskInternalSetTimeOutState( pxTimeOut );
\r
3362 xReturn = pdFALSE;
\r
3366 *pxTicksToWait = ( TickType_t ) 0;
\r
3370 taskEXIT_CRITICAL();
\r
3374 /*-----------------------------------------------------------*/
\r
3376 void vTaskMissedYield( void )
\r
3378 xYieldPending = pdTRUE;
\r
3380 /*-----------------------------------------------------------*/
\r
3382 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3384 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3386 UBaseType_t uxReturn;
\r
3387 TCB_t const * pxTCB;
\r
3389 if( xTask != NULL )
\r
3392 uxReturn = pxTCB->uxTaskNumber;
\r
3402 #endif /* configUSE_TRACE_FACILITY */
\r
3403 /*-----------------------------------------------------------*/
\r
3405 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3407 void vTaskSetTaskNumber( TaskHandle_t xTask,
\r
3408 const UBaseType_t uxHandle )
\r
3412 if( xTask != NULL )
\r
3415 pxTCB->uxTaskNumber = uxHandle;
\r
3419 #endif /* configUSE_TRACE_FACILITY */
\r
3422 * -----------------------------------------------------------
\r
3424 * ----------------------------------------------------------
\r
3426 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3427 * language extensions. The equivalent prototype for this function is:
\r
3429 * void prvIdleTask( void *pvParameters );
\r
3432 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3434 /* Stop warnings. */
\r
3435 ( void ) pvParameters;
\r
3437 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3438 * SCHEDULER IS STARTED. **/
\r
3440 /* In case a task that has a secure context deletes itself, in which case
\r
3441 * the idle task is responsible for deleting the task's secure context, if
\r
3443 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
\r
3447 /* See if any tasks have deleted themselves - if so then the idle task
\r
3448 * is responsible for freeing the deleted task's TCB and stack. */
\r
3449 prvCheckTasksWaitingTermination();
\r
3451 #if ( configUSE_PREEMPTION == 0 )
\r
3453 /* If we are not using preemption we keep forcing a task switch to
\r
3454 * see if any other task has become available. If we are using
\r
3455 * preemption we don't need to do this as any task becoming available
\r
3456 * will automatically get the processor anyway. */
\r
3459 #endif /* configUSE_PREEMPTION */
\r
3461 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3463 /* When using preemption tasks of equal priority will be
\r
3464 * timesliced. If a task that is sharing the idle priority is ready
\r
3465 * to run then the idle task should yield before the end of the
\r
3468 * A critical region is not required here as we are just reading from
\r
3469 * the list, and an occasional incorrect value will not matter. If
\r
3470 * the ready list at the idle priority contains more than one task
\r
3471 * then a task other than the idle task is ready to execute. */
\r
3472 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3478 mtCOVERAGE_TEST_MARKER();
\r
3481 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3483 #if ( configUSE_IDLE_HOOK == 1 )
\r
3485 extern void vApplicationIdleHook( void );
\r
3487 /* Call the user defined function from within the idle task. This
\r
3488 * allows the application designer to add background functionality
\r
3489 * without the overhead of a separate task.
\r
3490 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3491 * CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3492 vApplicationIdleHook();
\r
3494 #endif /* configUSE_IDLE_HOOK */
\r
3496 /* This conditional compilation should use inequality to 0, not equality
\r
3497 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3498 * user defined low power mode implementations require
\r
3499 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3500 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3502 TickType_t xExpectedIdleTime;
\r
3504 /* It is not desirable to suspend then resume the scheduler on
\r
3505 * each iteration of the idle task. Therefore, a preliminary
\r
3506 * test of the expected idle time is performed without the
\r
3507 * scheduler suspended. The result here is not necessarily
\r
3509 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3511 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3513 vTaskSuspendAll();
\r
3515 /* Now the scheduler is suspended, the expected idle
\r
3516 * time can be sampled again, and this time its value can
\r
3518 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3519 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3521 /* Define the following macro to set xExpectedIdleTime to 0
\r
3522 * if the application does not want
\r
3523 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
\r
3524 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
\r
3526 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3528 traceLOW_POWER_IDLE_BEGIN();
\r
3529 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3530 traceLOW_POWER_IDLE_END();
\r
3534 mtCOVERAGE_TEST_MARKER();
\r
3537 ( void ) xTaskResumeAll();
\r
3541 mtCOVERAGE_TEST_MARKER();
\r
3544 #endif /* configUSE_TICKLESS_IDLE */
\r
3547 /*-----------------------------------------------------------*/
\r
3549 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3551 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3553 /* The idle task exists in addition to the application tasks. */
\r
3554 const UBaseType_t uxNonApplicationTasks = 1;
\r
3555 eSleepModeStatus eReturn = eStandardSleep;
\r
3557 /* This function must be called from a critical section. */
\r
3559 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3561 /* A task was made ready while the scheduler was suspended. */
\r
3562 eReturn = eAbortSleep;
\r
3564 else if( xYieldPending != pdFALSE )
\r
3566 /* A yield was pended while the scheduler was suspended. */
\r
3567 eReturn = eAbortSleep;
\r
3569 else if( xPendedTicks != 0 )
\r
3571 /* A tick interrupt has already occurred but was held pending
\r
3572 * because the scheduler is suspended. */
\r
3573 eReturn = eAbortSleep;
\r
3577 /* If all the tasks are in the suspended list (which might mean they
\r
3578 * have an infinite block time rather than actually being suspended)
\r
3579 * then it is safe to turn all clocks off and just wait for external
\r
3581 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3583 eReturn = eNoTasksWaitingTimeout;
\r
3587 mtCOVERAGE_TEST_MARKER();
\r
3594 #endif /* configUSE_TICKLESS_IDLE */
\r
3595 /*-----------------------------------------------------------*/
\r
3597 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3599 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
\r
3600 BaseType_t xIndex,
\r
3605 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3607 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3608 configASSERT( pxTCB != NULL );
\r
3609 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3613 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3614 /*-----------------------------------------------------------*/
\r
3616 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3618 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
\r
3619 BaseType_t xIndex )
\r
3621 void * pvReturn = NULL;
\r
3624 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3626 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3627 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3637 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3638 /*-----------------------------------------------------------*/
\r
3640 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3642 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
\r
3643 const MemoryRegion_t * const xRegions )
\r
3647 /* If null is passed in here then we are modifying the MPU settings of
\r
3648 * the calling task. */
\r
3649 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3651 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3654 #endif /* portUSING_MPU_WRAPPERS */
\r
3655 /*-----------------------------------------------------------*/
\r
3657 static void prvInitialiseTaskLists( void )
\r
3659 UBaseType_t uxPriority;
\r
3661 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3663 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3666 vListInitialise( &xDelayedTaskList1 );
\r
3667 vListInitialise( &xDelayedTaskList2 );
\r
3668 vListInitialise( &xPendingReadyList );
\r
3670 #if ( INCLUDE_vTaskDelete == 1 )
\r
3672 vListInitialise( &xTasksWaitingTermination );
\r
3674 #endif /* INCLUDE_vTaskDelete */
\r
3676 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3678 vListInitialise( &xSuspendedTaskList );
\r
3680 #endif /* INCLUDE_vTaskSuspend */
\r
3682 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3684 pxDelayedTaskList = &xDelayedTaskList1;
\r
3685 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3687 /*-----------------------------------------------------------*/
\r
3689 static void prvCheckTasksWaitingTermination( void )
\r
3691 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3693 #if ( INCLUDE_vTaskDelete == 1 )
\r
3697 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
\r
3698 * being called too often in the idle task. */
\r
3699 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3701 taskENTER_CRITICAL();
\r
3703 pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3704 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3705 --uxCurrentNumberOfTasks;
\r
3706 --uxDeletedTasksWaitingCleanUp;
\r
3708 taskEXIT_CRITICAL();
\r
3710 prvDeleteTCB( pxTCB );
\r
3713 #endif /* INCLUDE_vTaskDelete */
\r
3715 /*-----------------------------------------------------------*/
\r
3717 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3719 void vTaskGetInfo( TaskHandle_t xTask,
\r
3720 TaskStatus_t * pxTaskStatus,
\r
3721 BaseType_t xGetFreeStackSpace,
\r
3722 eTaskState eState )
\r
3726 /* xTask is NULL then get the state of the calling task. */
\r
3727 pxTCB = prvGetTCBFromHandle( xTask );
\r
3729 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3730 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
\r
3731 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3732 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3733 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3735 #if ( configUSE_MUTEXES == 1 )
\r
3737 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3741 pxTaskStatus->uxBasePriority = 0;
\r
3745 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3747 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3751 pxTaskStatus->ulRunTimeCounter = 0;
\r
3755 /* Obtaining the task state is a little fiddly, so is only done if the
\r
3756 * value of eState passed into this function is eInvalid - otherwise the
\r
3757 * state is just set to whatever is passed in. */
\r
3758 if( eState != eInvalid )
\r
3760 if( pxTCB == pxCurrentTCB )
\r
3762 pxTaskStatus->eCurrentState = eRunning;
\r
3766 pxTaskStatus->eCurrentState = eState;
\r
3768 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3770 /* If the task is in the suspended list then there is a
\r
3771 * chance it is actually just blocked indefinitely - so really
\r
3772 * it should be reported as being in the Blocked state. */
\r
3773 if( eState == eSuspended )
\r
3775 vTaskSuspendAll();
\r
3777 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3779 pxTaskStatus->eCurrentState = eBlocked;
\r
3782 ( void ) xTaskResumeAll();
\r
3785 #endif /* INCLUDE_vTaskSuspend */
\r
3790 pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
\r
3793 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3794 * parameter is provided to allow it to be skipped. */
\r
3795 if( xGetFreeStackSpace != pdFALSE )
\r
3797 #if ( portSTACK_GROWTH > 0 )
\r
3799 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3803 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3809 pxTaskStatus->usStackHighWaterMark = 0;
\r
3813 #endif /* configUSE_TRACE_FACILITY */
\r
3814 /*-----------------------------------------------------------*/
\r
3816 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3818 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
\r
3820 eTaskState eState )
\r
3822 configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
\r
3823 UBaseType_t uxTask = 0;
\r
3825 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3827 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3829 /* Populate an TaskStatus_t structure within the
\r
3830 * pxTaskStatusArray array for each task that is referenced from
\r
3831 * pxList. See the definition of TaskStatus_t in task.h for the
\r
3832 * meaning of each TaskStatus_t structure member. */
\r
3835 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
\r
3836 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3838 } while( pxNextTCB != pxFirstTCB );
\r
3842 mtCOVERAGE_TEST_MARKER();
\r
3848 #endif /* configUSE_TRACE_FACILITY */
\r
3849 /*-----------------------------------------------------------*/
\r
3851 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
\r
3853 static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3855 uint32_t ulCount = 0U;
\r
3857 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3859 pucStackByte -= portSTACK_GROWTH;
\r
3863 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3865 return ( configSTACK_DEPTH_TYPE ) ulCount;
\r
3868 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
\r
3869 /*-----------------------------------------------------------*/
\r
3871 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
\r
3873 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
\r
3874 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
\r
3875 * user to determine the return type. It gets around the problem of the value
\r
3876 * overflowing on 8-bit types without breaking backward compatibility for
\r
3877 * applications that expect an 8-bit return type. */
\r
3878 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
\r
3881 uint8_t * pucEndOfStack;
\r
3882 configSTACK_DEPTH_TYPE uxReturn;
\r
3884 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
\r
3885 * the same except for their return type. Using configSTACK_DEPTH_TYPE
\r
3886 * allows the user to determine the return type. It gets around the
\r
3887 * problem of the value overflowing on 8-bit types without breaking
\r
3888 * backward compatibility for applications that expect an 8-bit return
\r
3891 pxTCB = prvGetTCBFromHandle( xTask );
\r
3893 #if portSTACK_GROWTH < 0
\r
3895 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3899 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3903 uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3908 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
\r
3909 /*-----------------------------------------------------------*/
\r
3911 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3913 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3916 uint8_t * pucEndOfStack;
\r
3917 UBaseType_t uxReturn;
\r
3919 pxTCB = prvGetTCBFromHandle( xTask );
\r
3921 #if portSTACK_GROWTH < 0
\r
3923 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3927 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3931 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3936 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3937 /*-----------------------------------------------------------*/
\r
3939 #if ( INCLUDE_vTaskDelete == 1 )
\r
3941 static void prvDeleteTCB( TCB_t * pxTCB )
\r
3943 /* This call is required specifically for the TriCore port. It must be
\r
3944 * above the vPortFree() calls. The call is also used by ports/demos that
\r
3945 * want to allocate and clean RAM statically. */
\r
3946 portCLEAN_UP_TCB( pxTCB );
\r
3948 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3949 * to the task to free any memory allocated at the application level.
\r
3950 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
\r
3951 * for additional information. */
\r
3952 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3954 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3956 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3958 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3960 /* The task can only have been allocated dynamically - free both
\r
3961 * the stack and TCB. */
\r
3962 vPortFreeStack( pxTCB->pxStack );
\r
3963 vPortFree( pxTCB );
\r
3965 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
\r
3967 /* The task could have been allocated statically or dynamically, so
\r
3968 * check what was statically allocated before trying to free the
\r
3970 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3972 /* Both the stack and TCB were allocated dynamically, so both
\r
3973 * must be freed. */
\r
3974 vPortFreeStack( pxTCB->pxStack );
\r
3975 vPortFree( pxTCB );
\r
3977 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3979 /* Only the stack was statically allocated, so the TCB is the
\r
3980 * only memory that must be freed. */
\r
3981 vPortFree( pxTCB );
\r
3985 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3986 * nothing needs to be freed. */
\r
3987 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
\r
3988 mtCOVERAGE_TEST_MARKER();
\r
3991 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3994 #endif /* INCLUDE_vTaskDelete */
\r
3995 /*-----------------------------------------------------------*/
\r
3997 static void prvResetNextTaskUnblockTime( void )
\r
3999 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
4001 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
4002 * the maximum possible value so it is extremely unlikely that the
\r
4003 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
4004 * there is an item in the delayed list. */
\r
4005 xNextTaskUnblockTime = portMAX_DELAY;
\r
4009 /* The new current delayed list is not empty, get the value of
\r
4010 * the item at the head of the delayed list. This is the time at
\r
4011 * which the task at the head of the delayed list should be removed
\r
4012 * from the Blocked state. */
\r
4013 xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
4016 /*-----------------------------------------------------------*/
\r
4018 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
4020 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
4022 TaskHandle_t xReturn;
\r
4024 /* A critical section is not required as this is not called from
\r
4025 * an interrupt and the current TCB will always be the same for any
\r
4026 * individual execution thread. */
\r
4027 xReturn = pxCurrentTCB;
\r
4032 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
4033 /*-----------------------------------------------------------*/
\r
4035 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
4037 BaseType_t xTaskGetSchedulerState( void )
\r
4039 BaseType_t xReturn;
\r
4041 if( xSchedulerRunning == pdFALSE )
\r
4043 xReturn = taskSCHEDULER_NOT_STARTED;
\r
4047 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4049 xReturn = taskSCHEDULER_RUNNING;
\r
4053 xReturn = taskSCHEDULER_SUSPENDED;
\r
4060 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
4061 /*-----------------------------------------------------------*/
\r
4063 #if ( configUSE_MUTEXES == 1 )
\r
4065 BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
4067 TCB_t * const pxMutexHolderTCB = pxMutexHolder;
\r
4068 BaseType_t xReturn = pdFALSE;
\r
4070 /* If the mutex was given back by an interrupt while the queue was
\r
4071 * locked then the mutex holder might now be NULL. _RB_ Is this still
\r
4072 * needed as interrupts can no longer use mutexes? */
\r
4073 if( pxMutexHolder != NULL )
\r
4075 /* If the holder of the mutex has a priority below the priority of
\r
4076 * the task attempting to obtain the mutex then it will temporarily
\r
4077 * inherit the priority of the task attempting to obtain the mutex. */
\r
4078 if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
4080 /* Adjust the mutex holder state to account for its new
\r
4081 * priority. Only reset the event list item value if the value is
\r
4082 * not being used for anything else. */
\r
4083 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4085 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4089 mtCOVERAGE_TEST_MARKER();
\r
4092 /* If the task being modified is in the ready state it will need
\r
4093 * to be moved into a new list. */
\r
4094 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
\r
4096 if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4098 /* It is known that the task is in its ready list so
\r
4099 * there is no need to check again and the port level
\r
4100 * reset macro can be called directly. */
\r
4101 portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
\r
4105 mtCOVERAGE_TEST_MARKER();
\r
4108 /* Inherit the priority before being moved into the new list. */
\r
4109 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4110 prvAddTaskToReadyList( pxMutexHolderTCB );
\r
4114 /* Just inherit the priority. */
\r
4115 pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
4118 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
\r
4120 /* Inheritance occurred. */
\r
4125 if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
\r
4127 /* The base priority of the mutex holder is lower than the
\r
4128 * priority of the task attempting to take the mutex, but the
\r
4129 * current priority of the mutex holder is not lower than the
\r
4130 * priority of the task attempting to take the mutex.
\r
4131 * Therefore the mutex holder must have already inherited a
\r
4132 * priority, but inheritance would have occurred if that had
\r
4133 * not been the case. */
\r
4138 mtCOVERAGE_TEST_MARKER();
\r
4144 mtCOVERAGE_TEST_MARKER();
\r
4150 #endif /* configUSE_MUTEXES */
\r
4151 /*-----------------------------------------------------------*/
\r
4153 #if ( configUSE_MUTEXES == 1 )
\r
4155 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
4157 TCB_t * const pxTCB = pxMutexHolder;
\r
4158 BaseType_t xReturn = pdFALSE;
\r
4160 if( pxMutexHolder != NULL )
\r
4162 /* A task can only have an inherited priority if it holds the mutex.
\r
4163 * If the mutex is held by a task then it cannot be given from an
\r
4164 * interrupt, and if a mutex is given by the holding task then it must
\r
4165 * be the running state task. */
\r
4166 configASSERT( pxTCB == pxCurrentTCB );
\r
4167 configASSERT( pxTCB->uxMutexesHeld );
\r
4168 ( pxTCB->uxMutexesHeld )--;
\r
4170 /* Has the holder of the mutex inherited the priority of another
\r
4172 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
4174 /* Only disinherit if no other mutexes are held. */
\r
4175 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
4177 /* A task can only have an inherited priority if it holds
\r
4178 * the mutex. If the mutex is held by a task then it cannot be
\r
4179 * given from an interrupt, and if a mutex is given by the
\r
4180 * holding task then it must be the running state task. Remove
\r
4181 * the holding task from the ready list. */
\r
4182 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4184 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4188 mtCOVERAGE_TEST_MARKER();
\r
4191 /* Disinherit the priority before adding the task into the
\r
4192 * new ready list. */
\r
4193 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
4194 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
4196 /* Reset the event list item value. It cannot be in use for
\r
4197 * any other purpose if this task is running, and it must be
\r
4198 * running to give back the mutex. */
\r
4199 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4200 prvAddTaskToReadyList( pxTCB );
\r
4202 /* Return true to indicate that a context switch is required.
\r
4203 * This is only actually required in the corner case whereby
\r
4204 * multiple mutexes were held and the mutexes were given back
\r
4205 * in an order different to that in which they were taken.
\r
4206 * If a context switch did not occur when the first mutex was
\r
4207 * returned, even if a task was waiting on it, then a context
\r
4208 * switch should occur when the last mutex is returned whether
\r
4209 * a task is waiting on it or not. */
\r
4214 mtCOVERAGE_TEST_MARKER();
\r
4219 mtCOVERAGE_TEST_MARKER();
\r
4224 mtCOVERAGE_TEST_MARKER();
\r
4230 #endif /* configUSE_MUTEXES */
\r
4231 /*-----------------------------------------------------------*/
\r
4233 #if ( configUSE_MUTEXES == 1 )
\r
4235 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
\r
4236 UBaseType_t uxHighestPriorityWaitingTask )
\r
4238 TCB_t * const pxTCB = pxMutexHolder;
\r
4239 UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
\r
4240 const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
\r
4242 if( pxMutexHolder != NULL )
\r
4244 /* If pxMutexHolder is not NULL then the holder must hold at least
\r
4246 configASSERT( pxTCB->uxMutexesHeld );
\r
4248 /* Determine the priority to which the priority of the task that
\r
4249 * holds the mutex should be set. This will be the greater of the
\r
4250 * holding task's base priority and the priority of the highest
\r
4251 * priority task that is waiting to obtain the mutex. */
\r
4252 if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
\r
4254 uxPriorityToUse = uxHighestPriorityWaitingTask;
\r
4258 uxPriorityToUse = pxTCB->uxBasePriority;
\r
4261 /* Does the priority need to change? */
\r
4262 if( pxTCB->uxPriority != uxPriorityToUse )
\r
4264 /* Only disinherit if no other mutexes are held. This is a
\r
4265 * simplification in the priority inheritance implementation. If
\r
4266 * the task that holds the mutex is also holding other mutexes then
\r
4267 * the other mutexes may have caused the priority inheritance. */
\r
4268 if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
\r
4270 /* If a task has timed out because it already holds the
\r
4271 * mutex it was trying to obtain then it cannot of inherited
\r
4272 * its own priority. */
\r
4273 configASSERT( pxTCB != pxCurrentTCB );
\r
4275 /* Disinherit the priority, remembering the previous
\r
4276 * priority to facilitate determining the subject task's
\r
4278 traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
\r
4279 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
4280 pxTCB->uxPriority = uxPriorityToUse;
\r
4282 /* Only reset the event list item value if the value is not
\r
4283 * being used for anything else. */
\r
4284 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
4286 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4290 mtCOVERAGE_TEST_MARKER();
\r
4293 /* If the running task is not the task that holds the mutex
\r
4294 * then the task that holds the mutex could be in either the
\r
4295 * Ready, Blocked or Suspended states. Only remove the task
\r
4296 * from its current state list if it is in the Ready state as
\r
4297 * the task's priority is going to change and there is one
\r
4298 * Ready list per priority. */
\r
4299 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
4301 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4303 /* It is known that the task is in its ready list so
\r
4304 * there is no need to check again and the port level
\r
4305 * reset macro can be called directly. */
\r
4306 portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
\r
4310 mtCOVERAGE_TEST_MARKER();
\r
4313 prvAddTaskToReadyList( pxTCB );
\r
4317 mtCOVERAGE_TEST_MARKER();
\r
4322 mtCOVERAGE_TEST_MARKER();
\r
4327 mtCOVERAGE_TEST_MARKER();
\r
4332 mtCOVERAGE_TEST_MARKER();
\r
4336 #endif /* configUSE_MUTEXES */
\r
4337 /*-----------------------------------------------------------*/
\r
4339 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4341 void vTaskEnterCritical( void )
\r
4343 portDISABLE_INTERRUPTS();
\r
4345 if( xSchedulerRunning != pdFALSE )
\r
4347 ( pxCurrentTCB->uxCriticalNesting )++;
\r
4349 /* This is not the interrupt safe version of the enter critical
\r
4350 * function so assert() if it is being called from an interrupt
\r
4351 * context. Only API functions that end in "FromISR" can be used in an
\r
4352 * interrupt. Only assert if the critical nesting count is 1 to
\r
4353 * protect against recursive calls if the assert function also uses a
\r
4354 * critical section. */
\r
4355 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
4357 portASSERT_IF_IN_ISR();
\r
4362 mtCOVERAGE_TEST_MARKER();
\r
4366 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4367 /*-----------------------------------------------------------*/
\r
4369 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
4371 void vTaskExitCritical( void )
\r
4373 if( xSchedulerRunning != pdFALSE )
\r
4375 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
4377 ( pxCurrentTCB->uxCriticalNesting )--;
\r
4379 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
4381 portENABLE_INTERRUPTS();
\r
4385 mtCOVERAGE_TEST_MARKER();
\r
4390 mtCOVERAGE_TEST_MARKER();
\r
4395 mtCOVERAGE_TEST_MARKER();
\r
4399 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
4400 /*-----------------------------------------------------------*/
\r
4402 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4404 static char * prvWriteNameToBuffer( char * pcBuffer,
\r
4405 const char * pcTaskName )
\r
4409 /* Start by copying the entire string. */
\r
4410 strcpy( pcBuffer, pcTaskName );
\r
4412 /* Pad the end of the string with spaces to ensure columns line up when
\r
4414 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
4416 pcBuffer[ x ] = ' ';
\r
4420 pcBuffer[ x ] = ( char ) 0x00;
\r
4422 /* Return the new end of string. */
\r
4423 return &( pcBuffer[ x ] );
\r
4426 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
4427 /*-----------------------------------------------------------*/
\r
4429 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4431 void vTaskList( char * pcWriteBuffer )
\r
4433 TaskStatus_t * pxTaskStatusArray;
\r
4434 UBaseType_t uxArraySize, x;
\r
4440 * This function is provided for convenience only, and is used by many
\r
4441 * of the demo applications. Do not consider it to be part of the
\r
4444 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
4445 * uxTaskGetSystemState() output into a human readable table that
\r
4446 * displays task: names, states, priority, stack usage and task number.
\r
4447 * Stack usage specified as the number of unused StackType_t words stack can hold
\r
4448 * on top of stack - not the number of bytes.
\r
4450 * vTaskList() has a dependency on the sprintf() C library function that
\r
4451 * might bloat the code size, use a lot of stack, and provide different
\r
4452 * results on different platforms. An alternative, tiny, third party,
\r
4453 * and limited functionality implementation of sprintf() is provided in
\r
4454 * many of the FreeRTOS/Demo sub-directories in a file called
\r
4455 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
4456 * snprintf() implementation!).
\r
4458 * It is recommended that production systems call uxTaskGetSystemState()
\r
4459 * directly to get access to raw stats data, rather than indirectly
\r
4460 * through a call to vTaskList().
\r
4464 /* Make sure the write buffer does not contain a string. */
\r
4465 *pcWriteBuffer = ( char ) 0x00;
\r
4467 /* Take a snapshot of the number of tasks in case it changes while this
\r
4468 * function is executing. */
\r
4469 uxArraySize = uxCurrentNumberOfTasks;
\r
4471 /* Allocate an array index for each task. NOTE! if
\r
4472 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4473 * equate to NULL. */
\r
4474 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4476 if( pxTaskStatusArray != NULL )
\r
4478 /* Generate the (binary) data. */
\r
4479 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
4481 /* Create a human readable table from the binary data. */
\r
4482 for( x = 0; x < uxArraySize; x++ )
\r
4484 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
4487 cStatus = tskRUNNING_CHAR;
\r
4491 cStatus = tskREADY_CHAR;
\r
4495 cStatus = tskBLOCKED_CHAR;
\r
4499 cStatus = tskSUSPENDED_CHAR;
\r
4503 cStatus = tskDELETED_CHAR;
\r
4506 case eInvalid: /* Fall through. */
\r
4507 default: /* Should not get here, but it is included
\r
4508 * to prevent static checking errors. */
\r
4509 cStatus = ( char ) 0x00;
\r
4513 /* Write the task name to the string, padding with spaces so it
\r
4514 * can be printed in tabular form more easily. */
\r
4515 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4517 /* Write the rest of the string. */
\r
4518 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4519 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4522 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4523 * is 0 then vPortFree() will be #defined to nothing. */
\r
4524 vPortFree( pxTaskStatusArray );
\r
4528 mtCOVERAGE_TEST_MARKER();
\r
4532 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
4533 /*----------------------------------------------------------*/
\r
4535 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
4537 void vTaskGetRunTimeStats( char * pcWriteBuffer )
\r
4539 TaskStatus_t * pxTaskStatusArray;
\r
4540 UBaseType_t uxArraySize, x;
\r
4541 uint32_t ulTotalTime, ulStatsAsPercentage;
\r
4543 #if ( configUSE_TRACE_FACILITY != 1 )
\r
4545 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4552 * This function is provided for convenience only, and is used by many
\r
4553 * of the demo applications. Do not consider it to be part of the
\r
4556 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4557 * of the uxTaskGetSystemState() output into a human readable table that
\r
4558 * displays the amount of time each task has spent in the Running state
\r
4559 * in both absolute and percentage terms.
\r
4561 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4562 * function that might bloat the code size, use a lot of stack, and
\r
4563 * provide different results on different platforms. An alternative,
\r
4564 * tiny, third party, and limited functionality implementation of
\r
4565 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4566 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4567 * a full snprintf() implementation!).
\r
4569 * It is recommended that production systems call uxTaskGetSystemState()
\r
4570 * directly to get access to raw stats data, rather than indirectly
\r
4571 * through a call to vTaskGetRunTimeStats().
\r
4574 /* Make sure the write buffer does not contain a string. */
\r
4575 *pcWriteBuffer = ( char ) 0x00;
\r
4577 /* Take a snapshot of the number of tasks in case it changes while this
\r
4578 * function is executing. */
\r
4579 uxArraySize = uxCurrentNumberOfTasks;
\r
4581 /* Allocate an array index for each task. NOTE! If
\r
4582 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4583 * equate to NULL. */
\r
4584 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
\r
4586 if( pxTaskStatusArray != NULL )
\r
4588 /* Generate the (binary) data. */
\r
4589 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4591 /* For percentage calculations. */
\r
4592 ulTotalTime /= 100UL;
\r
4594 /* Avoid divide by zero errors. */
\r
4595 if( ulTotalTime > 0UL )
\r
4597 /* Create a human readable table from the binary data. */
\r
4598 for( x = 0; x < uxArraySize; x++ )
\r
4600 /* What percentage of the total run time has the task used?
\r
4601 * This will always be rounded down to the nearest integer.
\r
4602 * ulTotalRunTimeDiv100 has already been divided by 100. */
\r
4603 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4605 /* Write the task name to the string, padding with
\r
4606 * spaces so it can be printed in tabular form more
\r
4608 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4610 if( ulStatsAsPercentage > 0UL )
\r
4612 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4614 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4618 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4619 * printf() library can be used. */
\r
4620 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4626 /* If the percentage is zero here then the task has
\r
4627 * consumed less than 1% of the total run time. */
\r
4628 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4630 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4634 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4635 * printf() library can be used. */
\r
4636 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
\r
4641 pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
\r
4646 mtCOVERAGE_TEST_MARKER();
\r
4649 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4650 * is 0 then vPortFree() will be #defined to nothing. */
\r
4651 vPortFree( pxTaskStatusArray );
\r
4655 mtCOVERAGE_TEST_MARKER();
\r
4659 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
\r
4660 /*-----------------------------------------------------------*/
\r
4662 TickType_t uxTaskResetEventItemValue( void )
\r
4664 TickType_t uxReturn;
\r
4666 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4668 /* Reset the event list item to its normal value - so it can be used with
\r
4669 * queues and semaphores. */
\r
4670 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4674 /*-----------------------------------------------------------*/
\r
4676 #if ( configUSE_MUTEXES == 1 )
\r
4678 TaskHandle_t pvTaskIncrementMutexHeldCount( void )
\r
4680 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4681 * then pxCurrentTCB will be NULL. */
\r
4682 if( pxCurrentTCB != NULL )
\r
4684 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4687 return pxCurrentTCB;
\r
4690 #endif /* configUSE_MUTEXES */
\r
4691 /*-----------------------------------------------------------*/
\r
4693 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4695 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
\r
4696 BaseType_t xClearCountOnExit,
\r
4697 TickType_t xTicksToWait )
\r
4699 uint32_t ulReturn;
\r
4701 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4703 taskENTER_CRITICAL();
\r
4705 /* Only block if the notification count is not already non-zero. */
\r
4706 if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
\r
4708 /* Mark this task as waiting for a notification. */
\r
4709 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4711 if( xTicksToWait > ( TickType_t ) 0 )
\r
4713 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4714 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
\r
4716 /* All ports are written to allow a yield in a critical
\r
4717 * section (some will yield immediately, others wait until the
\r
4718 * critical section exits) - but it is not something that
\r
4719 * application code should ever do. */
\r
4720 portYIELD_WITHIN_API();
\r
4724 mtCOVERAGE_TEST_MARKER();
\r
4729 mtCOVERAGE_TEST_MARKER();
\r
4732 taskEXIT_CRITICAL();
\r
4734 taskENTER_CRITICAL();
\r
4736 traceTASK_NOTIFY_TAKE( uxIndexToWait );
\r
4737 ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4739 if( ulReturn != 0UL )
\r
4741 if( xClearCountOnExit != pdFALSE )
\r
4743 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
\r
4747 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
\r
4752 mtCOVERAGE_TEST_MARKER();
\r
4755 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4757 taskEXIT_CRITICAL();
\r
4762 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4763 /*-----------------------------------------------------------*/
\r
4765 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4767 BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
\r
4768 uint32_t ulBitsToClearOnEntry,
\r
4769 uint32_t ulBitsToClearOnExit,
\r
4770 uint32_t * pulNotificationValue,
\r
4771 TickType_t xTicksToWait )
\r
4773 BaseType_t xReturn;
\r
4775 configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4777 taskENTER_CRITICAL();
\r
4779 /* Only block if a notification is not already pending. */
\r
4780 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4782 /* Clear bits in the task's notification value as bits may get
\r
4783 * set by the notifying task or interrupt. This can be used to
\r
4784 * clear the value to zero. */
\r
4785 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
\r
4787 /* Mark this task as waiting for a notification. */
\r
4788 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
\r
4790 if( xTicksToWait > ( TickType_t ) 0 )
\r
4792 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4793 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
\r
4795 /* All ports are written to allow a yield in a critical
\r
4796 * section (some will yield immediately, others wait until the
\r
4797 * critical section exits) - but it is not something that
\r
4798 * application code should ever do. */
\r
4799 portYIELD_WITHIN_API();
\r
4803 mtCOVERAGE_TEST_MARKER();
\r
4808 mtCOVERAGE_TEST_MARKER();
\r
4811 taskEXIT_CRITICAL();
\r
4813 taskENTER_CRITICAL();
\r
4815 traceTASK_NOTIFY_WAIT( uxIndexToWait );
\r
4817 if( pulNotificationValue != NULL )
\r
4819 /* Output the current notification value, which may or may not
\r
4820 * have changed. */
\r
4821 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
\r
4824 /* If ucNotifyValue is set then either the task never entered the
\r
4825 * blocked state (because a notification was already pending) or the
\r
4826 * task unblocked because of a notification. Otherwise the task
\r
4827 * unblocked because of a timeout. */
\r
4828 if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
\r
4830 /* A notification was not received. */
\r
4831 xReturn = pdFALSE;
\r
4835 /* A notification was already pending or a notification was
\r
4836 * received while the task was waiting. */
\r
4837 pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
\r
4841 pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
\r
4843 taskEXIT_CRITICAL();
\r
4848 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4849 /*-----------------------------------------------------------*/
\r
4851 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4853 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
\r
4854 UBaseType_t uxIndexToNotify,
\r
4856 eNotifyAction eAction,
\r
4857 uint32_t * pulPreviousNotificationValue )
\r
4860 BaseType_t xReturn = pdPASS;
\r
4861 uint8_t ucOriginalNotifyState;
\r
4863 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4864 configASSERT( xTaskToNotify );
\r
4865 pxTCB = xTaskToNotify;
\r
4867 taskENTER_CRITICAL();
\r
4869 if( pulPreviousNotificationValue != NULL )
\r
4871 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
4874 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
4876 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
4881 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
4885 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
4888 case eSetValueWithOverwrite:
\r
4889 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4892 case eSetValueWithoutOverwrite:
\r
4894 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4896 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
4900 /* The value could not be written to the task. */
\r
4908 /* The task is being notified without its notify value being
\r
4914 /* Should not get here if all enums are handled.
\r
4915 * Artificially force an assert by testing a value the
\r
4916 * compiler can't assume is const. */
\r
4917 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
4922 traceTASK_NOTIFY( uxIndexToNotify );
\r
4924 /* If the task is in the blocked state specifically to wait for a
\r
4925 * notification then unblock it now. */
\r
4926 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4928 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
4929 prvAddTaskToReadyList( pxTCB );
\r
4931 /* The task should not have been on an event list. */
\r
4932 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4934 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
4936 /* If a task is blocked waiting for a notification then
\r
4937 * xNextTaskUnblockTime might be set to the blocked task's time
\r
4938 * out time. If the task is unblocked for a reason other than
\r
4939 * a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4940 * because it will automatically get reset to a new value when
\r
4941 * the tick count equals xNextTaskUnblockTime. However if
\r
4942 * tickless idling is used it might be more important to enter
\r
4943 * sleep mode at the earliest possible time - so reset
\r
4944 * xNextTaskUnblockTime here to ensure it is updated at the
\r
4945 * earliest possible time. */
\r
4946 prvResetNextTaskUnblockTime();
\r
4950 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4952 /* The notified task has a priority above the currently
\r
4953 * executing task so a yield is required. */
\r
4954 taskYIELD_IF_USING_PREEMPTION();
\r
4958 mtCOVERAGE_TEST_MARKER();
\r
4963 mtCOVERAGE_TEST_MARKER();
\r
4966 taskEXIT_CRITICAL();
\r
4971 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4972 /*-----------------------------------------------------------*/
\r
4974 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4976 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
\r
4977 UBaseType_t uxIndexToNotify,
\r
4979 eNotifyAction eAction,
\r
4980 uint32_t * pulPreviousNotificationValue,
\r
4981 BaseType_t * pxHigherPriorityTaskWoken )
\r
4984 uint8_t ucOriginalNotifyState;
\r
4985 BaseType_t xReturn = pdPASS;
\r
4986 UBaseType_t uxSavedInterruptStatus;
\r
4988 configASSERT( xTaskToNotify );
\r
4989 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
4991 /* RTOS ports that support interrupt nesting have the concept of a
\r
4992 * maximum system call (or maximum API call) interrupt priority.
\r
4993 * Interrupts that are above the maximum system call priority are keep
\r
4994 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
4995 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4996 * is defined in FreeRTOSConfig.h then
\r
4997 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4998 * failure if a FreeRTOS API function is called from an interrupt that has
\r
4999 * been assigned a priority above the configured maximum system call
\r
5000 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5001 * from interrupts that have been assigned a priority at or (logically)
\r
5002 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5003 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5004 * simple as possible. More information (albeit Cortex-M specific) is
\r
5005 * provided on the following link:
\r
5006 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5007 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5009 pxTCB = xTaskToNotify;
\r
5011 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5013 if( pulPreviousNotificationValue != NULL )
\r
5015 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
\r
5018 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5019 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5024 pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
\r
5028 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5031 case eSetValueWithOverwrite:
\r
5032 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5035 case eSetValueWithoutOverwrite:
\r
5037 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
5039 pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
\r
5043 /* The value could not be written to the task. */
\r
5051 /* The task is being notified without its notify value being
\r
5057 /* Should not get here if all enums are handled.
\r
5058 * Artificially force an assert by testing a value the
\r
5059 * compiler can't assume is const. */
\r
5060 configASSERT( xTickCount == ( TickType_t ) 0 );
\r
5064 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
\r
5066 /* If the task is in the blocked state specifically to wait for a
\r
5067 * notification then unblock it now. */
\r
5068 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5070 /* The task should not have been on an event list. */
\r
5071 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5073 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5075 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5076 prvAddTaskToReadyList( pxTCB );
\r
5080 /* The delayed and ready lists cannot be accessed, so hold
\r
5081 * this task pending until the scheduler is resumed. */
\r
5082 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5085 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5087 /* The notified task has a priority above the currently
\r
5088 * executing task so a yield is required. */
\r
5089 if( pxHigherPriorityTaskWoken != NULL )
\r
5091 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5094 /* Mark that a yield is pending in case the user is not
\r
5095 * using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
5096 * safe FreeRTOS function. */
\r
5097 xYieldPending = pdTRUE;
\r
5101 mtCOVERAGE_TEST_MARKER();
\r
5105 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5110 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5111 /*-----------------------------------------------------------*/
\r
5113 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5115 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
\r
5116 UBaseType_t uxIndexToNotify,
\r
5117 BaseType_t * pxHigherPriorityTaskWoken )
\r
5120 uint8_t ucOriginalNotifyState;
\r
5121 UBaseType_t uxSavedInterruptStatus;
\r
5123 configASSERT( xTaskToNotify );
\r
5124 configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5126 /* RTOS ports that support interrupt nesting have the concept of a
\r
5127 * maximum system call (or maximum API call) interrupt priority.
\r
5128 * Interrupts that are above the maximum system call priority are keep
\r
5129 * permanently enabled, even when the RTOS kernel is in a critical section,
\r
5130 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
5131 * is defined in FreeRTOSConfig.h then
\r
5132 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
5133 * failure if a FreeRTOS API function is called from an interrupt that has
\r
5134 * been assigned a priority above the configured maximum system call
\r
5135 * priority. Only FreeRTOS functions that end in FromISR can be called
\r
5136 * from interrupts that have been assigned a priority at or (logically)
\r
5137 * below the maximum system call interrupt priority. FreeRTOS maintains a
\r
5138 * separate interrupt safe API to ensure interrupt entry is as fast and as
\r
5139 * simple as possible. More information (albeit Cortex-M specific) is
\r
5140 * provided on the following link:
\r
5141 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
5142 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
5144 pxTCB = xTaskToNotify;
\r
5146 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
5148 ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
\r
5149 pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
\r
5151 /* 'Giving' is equivalent to incrementing a count in a counting
\r
5153 ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
\r
5155 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
\r
5157 /* If the task is in the blocked state specifically to wait for a
\r
5158 * notification then unblock it now. */
\r
5159 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
5161 /* The task should not have been on an event list. */
\r
5162 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
5164 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
5166 listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
\r
5167 prvAddTaskToReadyList( pxTCB );
\r
5171 /* The delayed and ready lists cannot be accessed, so hold
\r
5172 * this task pending until the scheduler is resumed. */
\r
5173 listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
5176 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
5178 /* The notified task has a priority above the currently
\r
5179 * executing task so a yield is required. */
\r
5180 if( pxHigherPriorityTaskWoken != NULL )
\r
5182 *pxHigherPriorityTaskWoken = pdTRUE;
\r
5185 /* Mark that a yield is pending in case the user is not
\r
5186 * using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
5187 * safe FreeRTOS function. */
\r
5188 xYieldPending = pdTRUE;
\r
5192 mtCOVERAGE_TEST_MARKER();
\r
5196 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
5199 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5200 /*-----------------------------------------------------------*/
\r
5202 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5204 BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
\r
5205 UBaseType_t uxIndexToClear )
\r
5208 BaseType_t xReturn;
\r
5210 configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
\r
5212 /* If null is passed in here then it is the calling task that is having
\r
5213 * its notification state cleared. */
\r
5214 pxTCB = prvGetTCBFromHandle( xTask );
\r
5216 taskENTER_CRITICAL();
\r
5218 if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
\r
5220 pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
\r
5228 taskEXIT_CRITICAL();
\r
5233 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5234 /*-----------------------------------------------------------*/
\r
5236 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
5238 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
\r
5239 UBaseType_t uxIndexToClear,
\r
5240 uint32_t ulBitsToClear )
\r
5243 uint32_t ulReturn;
\r
5245 /* If null is passed in here then it is the calling task that is having
\r
5246 * its notification state cleared. */
\r
5247 pxTCB = prvGetTCBFromHandle( xTask );
\r
5249 taskENTER_CRITICAL();
\r
5251 /* Return the notification as it was before the bits were cleared,
\r
5252 * then clear the bit mask. */
\r
5253 ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
\r
5254 pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
\r
5256 taskEXIT_CRITICAL();
\r
5261 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
5262 /*-----------------------------------------------------------*/
\r
5264 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
\r
5266 uint32_t ulTaskGetIdleRunTimeCounter( void )
\r
5268 return xIdleTaskHandle->ulRunTimeCounter;
\r
5272 /*-----------------------------------------------------------*/
\r
5274 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
\r
5275 const BaseType_t xCanBlockIndefinitely )
\r
5277 TickType_t xTimeToWake;
\r
5278 const TickType_t xConstTickCount = xTickCount;
\r
5280 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
5282 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
5283 * reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
5284 * when the task leaves the Blocked state. */
\r
5285 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
5289 /* Remove the task from the ready list before adding it to the blocked list
\r
5290 * as the same list item is used for both lists. */
\r
5291 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
5293 /* The current task must be in a ready list, so there is no need to
\r
5294 * check, and the port reset macro can be called directly. */
\r
5295 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
\r
5299 mtCOVERAGE_TEST_MARKER();
\r
5302 #if ( INCLUDE_vTaskSuspend == 1 )
\r
5304 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
5306 /* Add the task to the suspended task list instead of a delayed task
\r
5307 * list to ensure it is not woken by a timing event. It will block
\r
5308 * indefinitely. */
\r
5309 listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5313 /* Calculate the time at which the task should be woken if the event
\r
5314 * does not occur. This may overflow but this doesn't matter, the
\r
5315 * kernel will manage it correctly. */
\r
5316 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5318 /* The list item will be inserted in wake time order. */
\r
5319 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5321 if( xTimeToWake < xConstTickCount )
\r
5323 /* Wake time has overflowed. Place this item in the overflow
\r
5325 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5329 /* The wake time has not overflowed, so the current block list
\r
5331 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5333 /* If the task entering the blocked state was placed at the
\r
5334 * head of the list of blocked tasks then xNextTaskUnblockTime
\r
5335 * needs to be updated too. */
\r
5336 if( xTimeToWake < xNextTaskUnblockTime )
\r
5338 xNextTaskUnblockTime = xTimeToWake;
\r
5342 mtCOVERAGE_TEST_MARKER();
\r
5347 #else /* INCLUDE_vTaskSuspend */
\r
5349 /* Calculate the time at which the task should be woken if the event
\r
5350 * does not occur. This may overflow but this doesn't matter, the kernel
\r
5351 * will manage it correctly. */
\r
5352 xTimeToWake = xConstTickCount + xTicksToWait;
\r
5354 /* The list item will be inserted in wake time order. */
\r
5355 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
5357 if( xTimeToWake < xConstTickCount )
\r
5359 /* Wake time has overflowed. Place this item in the overflow list. */
\r
5360 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5364 /* The wake time has not overflowed, so the current block list is used. */
\r
5365 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
5367 /* If the task entering the blocked state was placed at the head of the
\r
5368 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
5370 if( xTimeToWake < xNextTaskUnblockTime )
\r
5372 xNextTaskUnblockTime = xTimeToWake;
\r
5376 mtCOVERAGE_TEST_MARKER();
\r
5380 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
5381 ( void ) xCanBlockIndefinitely;
\r
5383 #endif /* INCLUDE_vTaskSuspend */
\r
5386 /* Code below here allows additional code to be inserted into this source file,
\r
5387 * especially where access to file scope functions and data is needed (for example
\r
5388 * when performing module tests). */
\r
5390 #ifdef FREERTOS_MODULE_TEST
\r
5391 #include "tasks_test_access_functions.h"
\r
5395 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
\r
5397 #include "freertos_tasks_c_additions.h"
\r
5399 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
\r
5400 static void freertos_tasks_c_additions_init( void )
\r
5402 FREERTOS_TASKS_C_ADDITIONS_INIT();
\r
5406 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
\r