2 * FreeRTOS Kernel V10.4.5
\r
3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
\r
5 * SPDX-License-Identifier: MIT
\r
7 * Permission is hereby granted, free of charge, to any person obtaining a copy of
\r
8 * this software and associated documentation files (the "Software"), to deal in
\r
9 * the Software without restriction, including without limitation the rights to
\r
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
\r
11 * the Software, and to permit persons to whom the Software is furnished to do so,
\r
12 * subject to the following conditions:
\r
14 * The above copyright notice and this permission notice shall be included in all
\r
15 * copies or substantial portions of the Software.
\r
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
\r
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
\r
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
\r
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
\r
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
\r
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\r
24 * https://www.FreeRTOS.org
\r
25 * https://github.com/FreeRTOS
\r
32 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
33 * all the API functions to use the MPU wrappers. That should only be done when
\r
34 * task.h is included from an application file. */
\r
35 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
37 #include "FreeRTOS.h"
\r
41 #if ( configUSE_CO_ROUTINES == 1 )
\r
42 #include "croutine.h"
\r
45 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
\r
46 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
\r
47 * for the header files above, but not in this file, in order to generate the
\r
48 * correct privileged Vs unprivileged linkage and placement. */
\r
49 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
\r
52 /* Constants used with the cRxLock and cTxLock structure members. */
\r
53 #define queueUNLOCKED ( ( int8_t ) -1 )
\r
54 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
\r
55 #define queueINT8_MAX ( ( int8_t ) 127 )
\r
57 /* When the Queue_t structure is used to represent a base queue its pcHead and
\r
58 * pcTail members are used as pointers into the queue storage area. When the
\r
59 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
\r
60 * not necessary, and the pcHead pointer is set to NULL to indicate that the
\r
61 * structure instead holds a pointer to the mutex holder (if any). Map alternative
\r
62 * names to the pcHead and structure member to ensure the readability of the code
\r
63 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
\r
64 * a union as their usage is mutually exclusive dependent on what the queue is
\r
65 * being used for. */
\r
66 #define uxQueueType pcHead
\r
67 #define queueQUEUE_IS_MUTEX NULL
\r
69 typedef struct QueuePointers
\r
71 int8_t * pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
\r
72 int8_t * pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
\r
75 typedef struct SemaphoreData
\r
77 TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex. */
\r
78 UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
\r
81 /* Semaphores do not actually store or copy data, so have an item size of
\r
83 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
\r
84 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
\r
86 #if ( configUSE_PREEMPTION == 0 )
\r
88 /* If the cooperative scheduler is being used then a yield should not be
\r
89 * performed just because a higher priority task has been woken. */
\r
90 #define queueYIELD_IF_USING_PREEMPTION()
\r
92 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
96 * Definition of the queue used by the scheduler.
\r
97 * Items are queued by copy, not reference. See the following link for the
\r
98 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
\r
100 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
\r
102 int8_t * pcHead; /*< Points to the beginning of the queue storage area. */
\r
103 int8_t * pcWriteTo; /*< Points to the free next place in the storage area. */
\r
107 QueuePointers_t xQueue; /*< Data required exclusively when this structure is used as a queue. */
\r
108 SemaphoreData_t xSemaphore; /*< Data required exclusively when this structure is used as a semaphore. */
\r
111 List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
\r
112 List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
\r
114 volatile UBaseType_t uxMessagesWaiting; /*< The number of items currently in the queue. */
\r
115 UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
\r
116 UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
\r
118 volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
119 volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
\r
121 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
122 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
\r
125 #if ( configUSE_QUEUE_SETS == 1 )
\r
126 struct QueueDefinition * pxQueueSetContainer;
\r
129 #if ( configUSE_TRACE_FACILITY == 1 )
\r
130 UBaseType_t uxQueueNumber;
\r
131 uint8_t ucQueueType;
\r
135 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
\r
136 * name below to enable the use of older kernel aware debuggers. */
\r
137 typedef xQUEUE Queue_t;
\r
139 /*-----------------------------------------------------------*/
\r
142 * The queue registry is just a means for kernel aware debuggers to locate
\r
143 * queue structures. It has no other purpose so is an optional component.
\r
145 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
147 /* The type stored within the queue registry array. This allows a name
\r
148 * to be assigned to each queue making kernel aware debugging a little
\r
149 * more user friendly. */
\r
150 typedef struct QUEUE_REGISTRY_ITEM
\r
152 const char * pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
153 QueueHandle_t xHandle;
\r
154 } xQueueRegistryItem;
\r
156 /* The old xQueueRegistryItem name is maintained above then typedefed to the
\r
157 * new xQueueRegistryItem name below to enable the use of older kernel aware
\r
159 typedef xQueueRegistryItem QueueRegistryItem_t;
\r
161 /* The queue registry is simply an array of QueueRegistryItem_t structures.
\r
162 * The pcQueueName member of a structure being NULL is indicative of the
\r
163 * array position being vacant. */
\r
164 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
\r
166 #endif /* configQUEUE_REGISTRY_SIZE */
\r
169 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
\r
170 * prevent an ISR from adding or removing items to the queue, but does prevent
\r
171 * an ISR from removing tasks from the queue event lists. If an ISR finds a
\r
172 * queue is locked it will instead increment the appropriate queue lock count
\r
173 * to indicate that a task may require unblocking. When the queue in unlocked
\r
174 * these lock counts are inspected, and the appropriate action taken.
\r
176 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
179 * Uses a critical section to determine if there is any data in a queue.
\r
181 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
\r
183 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
186 * Uses a critical section to determine if there is any space in a queue.
\r
188 * @return pdTRUE if there is no space, otherwise pdFALSE;
\r
190 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
\r
193 * Copies an item into the queue, either at the front of the queue or the
\r
194 * back of the queue.
\r
196 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
197 const void * pvItemToQueue,
\r
198 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
\r
201 * Copies an item out of a queue.
\r
203 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
204 void * const pvBuffer ) PRIVILEGED_FUNCTION;
\r
206 #if ( configUSE_QUEUE_SETS == 1 )
\r
209 * Checks to see if a queue is a member of a queue set, and if so, notifies
\r
210 * the queue set that the queue contains data.
\r
212 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
216 * Called after a Queue_t structure has been allocated either statically or
\r
217 * dynamically to fill in the structure's members.
\r
219 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
220 const UBaseType_t uxItemSize,
\r
221 uint8_t * pucQueueStorage,
\r
222 const uint8_t ucQueueType,
\r
223 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
226 * Mutexes are a special type of queue. When a mutex is created, first the
\r
227 * queue is created, then prvInitialiseMutex() is called to configure the queue
\r
230 #if ( configUSE_MUTEXES == 1 )
\r
231 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
\r
234 #if ( configUSE_MUTEXES == 1 )
\r
237 * If a task waiting for a mutex causes the mutex holder to inherit a
\r
238 * priority, but the waiting task times out, then the holder should
\r
239 * disinherit the priority - but only down to the highest priority of any
\r
240 * other tasks that are waiting for the same mutex. This function returns
\r
243 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
\r
245 /*-----------------------------------------------------------*/
\r
248 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
\r
249 * accessing the queue event lists.
\r
251 #define prvLockQueue( pxQueue ) \
\r
252 taskENTER_CRITICAL(); \
\r
254 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
\r
256 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
\r
258 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
\r
260 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
\r
263 taskEXIT_CRITICAL()
\r
264 /*-----------------------------------------------------------*/
\r
266 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
\r
267 BaseType_t xNewQueue )
\r
269 BaseType_t xReturn = pdPASS;
\r
270 Queue_t * const pxQueue = xQueue;
\r
272 configASSERT( pxQueue );
\r
274 if( ( pxQueue != NULL ) &&
\r
275 ( pxQueue->uxLength >= 1U ) &&
\r
276 /* Check for multiplication overflow. */
\r
277 ( ( SIZE_MAX / pxQueue->uxLength ) >= pxQueue->uxItemSize ) )
\r
279 taskENTER_CRITICAL();
\r
281 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
282 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
\r
283 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
284 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
285 pxQueue->cRxLock = queueUNLOCKED;
\r
286 pxQueue->cTxLock = queueUNLOCKED;
\r
288 if( xNewQueue == pdFALSE )
\r
290 /* If there are tasks blocked waiting to read from the queue, then
\r
291 * the tasks will remain blocked as after this function exits the queue
\r
292 * will still be empty. If there are tasks blocked waiting to write to
\r
293 * the queue, then one should be unblocked as after this function exits
\r
294 * it will be possible to write to it. */
\r
295 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
297 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
299 queueYIELD_IF_USING_PREEMPTION();
\r
303 mtCOVERAGE_TEST_MARKER();
\r
308 mtCOVERAGE_TEST_MARKER();
\r
313 /* Ensure the event queues start in the correct state. */
\r
314 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
\r
315 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
\r
318 taskEXIT_CRITICAL();
\r
325 configASSERT( xReturn != pdFAIL );
\r
327 /* A value is returned for calling semantic consistency with previous
\r
331 /*-----------------------------------------------------------*/
\r
333 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
335 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
\r
336 const UBaseType_t uxItemSize,
\r
337 uint8_t * pucQueueStorage,
\r
338 StaticQueue_t * pxStaticQueue,
\r
339 const uint8_t ucQueueType )
\r
341 Queue_t * pxNewQueue = NULL;
\r
343 /* The StaticQueue_t structure and the queue storage area must be
\r
345 configASSERT( pxStaticQueue );
\r
347 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
\r
348 ( pxStaticQueue != NULL ) &&
\r
350 /* A queue storage area should be provided if the item size is not 0, and
\r
351 * should not be provided if the item size is 0. */
\r
352 ( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) ) &&
\r
353 ( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) ) )
\r
355 #if ( configASSERT_DEFINED == 1 )
\r
357 /* Sanity check that the size of the structure used to declare a
\r
358 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
\r
359 * the real queue and semaphore structures. */
\r
360 volatile size_t xSize = sizeof( StaticQueue_t );
\r
362 /* This assertion cannot be branch covered in unit tests */
\r
363 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
\r
364 ( void ) xSize; /* Keeps lint quiet when configASSERT() is not defined. */
\r
366 #endif /* configASSERT_DEFINED */
\r
368 /* The address of a statically allocated queue was passed in, use it.
\r
369 * The address of a statically allocated storage area was also passed in
\r
370 * but is already set. */
\r
371 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
373 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
375 /* Queues can be allocated wither statically or dynamically, so
\r
376 * note this queue was allocated statically in case the queue is
\r
377 * later deleted. */
\r
378 pxNewQueue->ucStaticallyAllocated = pdTRUE;
\r
380 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
382 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
386 configASSERT( pxNewQueue );
\r
387 mtCOVERAGE_TEST_MARKER();
\r
393 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
394 /*-----------------------------------------------------------*/
\r
396 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
398 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
\r
399 const UBaseType_t uxItemSize,
\r
400 const uint8_t ucQueueType )
\r
402 Queue_t * pxNewQueue = NULL;
\r
403 size_t xQueueSizeInBytes;
\r
404 uint8_t * pucQueueStorage;
\r
406 if( ( uxQueueLength > ( UBaseType_t ) 0 ) &&
\r
407 /* Check for multiplication overflow. */
\r
408 ( ( SIZE_MAX / uxQueueLength ) >= uxItemSize ) &&
\r
409 /* Check for addition overflow. */
\r
410 ( ( SIZE_MAX - sizeof( Queue_t ) ) >= ( uxQueueLength * uxItemSize ) ) )
\r
412 /* Allocate enough space to hold the maximum number of items that
\r
413 * can be in the queue at any time. It is valid for uxItemSize to be
\r
414 * zero in the case the queue is used as a semaphore. */
\r
415 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
417 /* Allocate the queue and storage area. Justification for MISRA
\r
418 * deviation as follows: pvPortMalloc() always ensures returned memory
\r
419 * blocks are aligned per the requirements of the MCU stack. In this case
\r
420 * pvPortMalloc() must return a pointer that is guaranteed to meet the
\r
421 * alignment requirements of the Queue_t structure - which in this case
\r
422 * is an int8_t *. Therefore, whenever the stack alignment requirements
\r
423 * are greater than or equal to the pointer to char requirements the cast
\r
424 * is safe. In other cases alignment requirements are not strict (one or
\r
426 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); /*lint !e9087 !e9079 see comment above. */
\r
428 if( pxNewQueue != NULL )
\r
430 /* Jump past the queue structure to find the location of the queue
\r
432 pucQueueStorage = ( uint8_t * ) pxNewQueue;
\r
433 pucQueueStorage += sizeof( Queue_t ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
\r
435 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
437 /* Queues can be created either statically or dynamically, so
\r
438 * note this task was created dynamically in case it is later
\r
440 pxNewQueue->ucStaticallyAllocated = pdFALSE;
\r
442 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
444 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
\r
448 traceQUEUE_CREATE_FAILED( ucQueueType );
\r
449 mtCOVERAGE_TEST_MARKER();
\r
454 configASSERT( pxNewQueue );
\r
455 mtCOVERAGE_TEST_MARKER();
\r
461 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
462 /*-----------------------------------------------------------*/
\r
464 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
\r
465 const UBaseType_t uxItemSize,
\r
466 uint8_t * pucQueueStorage,
\r
467 const uint8_t ucQueueType,
\r
468 Queue_t * pxNewQueue )
\r
470 /* Remove compiler warnings about unused parameters should
\r
471 * configUSE_TRACE_FACILITY not be set to 1. */
\r
472 ( void ) ucQueueType;
\r
474 if( uxItemSize == ( UBaseType_t ) 0 )
\r
476 /* No RAM was allocated for the queue storage area, but PC head cannot
\r
477 * be set to NULL because NULL is used as a key to say the queue is used as
\r
478 * a mutex. Therefore just set pcHead to point to the queue as a benign
\r
479 * value that is known to be within the memory map. */
\r
480 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
\r
484 /* Set the head to the start of the queue storage area. */
\r
485 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
\r
488 /* Initialise the queue members as described where the queue type is
\r
490 pxNewQueue->uxLength = uxQueueLength;
\r
491 pxNewQueue->uxItemSize = uxItemSize;
\r
492 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
\r
494 #if ( configUSE_TRACE_FACILITY == 1 )
\r
496 pxNewQueue->ucQueueType = ucQueueType;
\r
498 #endif /* configUSE_TRACE_FACILITY */
\r
500 #if ( configUSE_QUEUE_SETS == 1 )
\r
502 pxNewQueue->pxQueueSetContainer = NULL;
\r
504 #endif /* configUSE_QUEUE_SETS */
\r
506 traceQUEUE_CREATE( pxNewQueue );
\r
508 /*-----------------------------------------------------------*/
\r
510 #if ( configUSE_MUTEXES == 1 )
\r
512 static void prvInitialiseMutex( Queue_t * pxNewQueue )
\r
514 if( pxNewQueue != NULL )
\r
516 /* The queue create function will set all the queue structure members
\r
517 * correctly for a generic queue, but this function is creating a
\r
518 * mutex. Overwrite those members that need to be set differently -
\r
519 * in particular the information required for priority inheritance. */
\r
520 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
\r
521 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
\r
523 /* In case this is a recursive mutex. */
\r
524 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
\r
526 traceCREATE_MUTEX( pxNewQueue );
\r
528 /* Start with the semaphore in the expected state. */
\r
529 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
\r
533 traceCREATE_MUTEX_FAILED();
\r
537 #endif /* configUSE_MUTEXES */
\r
538 /*-----------------------------------------------------------*/
\r
540 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
542 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
\r
544 QueueHandle_t xNewQueue;
\r
545 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
547 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
\r
548 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
553 #endif /* configUSE_MUTEXES */
\r
554 /*-----------------------------------------------------------*/
\r
556 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
558 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
\r
559 StaticQueue_t * pxStaticQueue )
\r
561 QueueHandle_t xNewQueue;
\r
562 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
\r
564 /* Prevent compiler warnings about unused parameters if
\r
565 * configUSE_TRACE_FACILITY does not equal 1. */
\r
566 ( void ) ucQueueType;
\r
568 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
\r
569 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
\r
574 #endif /* configUSE_MUTEXES */
\r
575 /*-----------------------------------------------------------*/
\r
577 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
579 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
\r
581 TaskHandle_t pxReturn;
\r
582 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
\r
584 configASSERT( xSemaphore );
\r
586 /* This function is called by xSemaphoreGetMutexHolder(), and should not
\r
587 * be called directly. Note: This is a good way of determining if the
\r
588 * calling task is the mutex holder, but not a good way of determining the
\r
589 * identity of the mutex holder, as the holder may change between the
\r
590 * following critical section exiting and the function returning. */
\r
591 taskENTER_CRITICAL();
\r
593 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
\r
595 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
\r
602 taskEXIT_CRITICAL();
\r
605 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
607 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
608 /*-----------------------------------------------------------*/
\r
610 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
\r
612 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
\r
614 TaskHandle_t pxReturn;
\r
616 configASSERT( xSemaphore );
\r
618 /* Mutexes cannot be used in interrupt service routines, so the mutex
\r
619 * holder should not change in an ISR, and therefore a critical section is
\r
620 * not required here. */
\r
621 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
\r
623 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
\r
631 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
\r
633 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
\r
634 /*-----------------------------------------------------------*/
\r
636 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
638 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
\r
640 BaseType_t xReturn;
\r
641 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
643 configASSERT( pxMutex );
\r
645 /* If this is the task that holds the mutex then xMutexHolder will not
\r
646 * change outside of this task. If this task does not hold the mutex then
\r
647 * pxMutexHolder can never coincidentally equal the tasks handle, and as
\r
648 * this is the only condition we are interested in it does not matter if
\r
649 * pxMutexHolder is accessed simultaneously by another task. Therefore no
\r
650 * mutual exclusion is required to test the pxMutexHolder variable. */
\r
651 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
653 traceGIVE_MUTEX_RECURSIVE( pxMutex );
\r
655 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
\r
656 * the task handle, therefore no underflow check is required. Also,
\r
657 * uxRecursiveCallCount is only modified by the mutex holder, and as
\r
658 * there can only be one, no mutual exclusion is required to modify the
\r
659 * uxRecursiveCallCount member. */
\r
660 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
\r
662 /* Has the recursive call count unwound to 0? */
\r
663 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
\r
665 /* Return the mutex. This will automatically unblock any other
\r
666 * task that might be waiting to access the mutex. */
\r
667 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
\r
671 mtCOVERAGE_TEST_MARKER();
\r
678 /* The mutex cannot be given because the calling task is not the
\r
682 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
688 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
689 /*-----------------------------------------------------------*/
\r
691 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
\r
693 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
\r
694 TickType_t xTicksToWait )
\r
696 BaseType_t xReturn;
\r
697 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
\r
699 configASSERT( pxMutex );
\r
701 /* Comments regarding mutual exclusion as per those within
\r
702 * xQueueGiveMutexRecursive(). */
\r
704 traceTAKE_MUTEX_RECURSIVE( pxMutex );
\r
706 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
\r
708 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
713 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
\r
715 /* pdPASS will only be returned if the mutex was successfully
\r
716 * obtained. The calling task may have entered the Blocked state
\r
717 * before reaching here. */
\r
718 if( xReturn != pdFAIL )
\r
720 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
\r
724 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
\r
731 #endif /* configUSE_RECURSIVE_MUTEXES */
\r
732 /*-----------------------------------------------------------*/
\r
734 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
736 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
\r
737 const UBaseType_t uxInitialCount,
\r
738 StaticQueue_t * pxStaticQueue )
\r
740 QueueHandle_t xHandle = NULL;
\r
742 if( ( uxMaxCount != 0 ) &&
\r
743 ( uxInitialCount <= uxMaxCount ) )
\r
745 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
747 if( xHandle != NULL )
\r
749 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
751 traceCREATE_COUNTING_SEMAPHORE();
\r
755 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
760 configASSERT( xHandle );
\r
761 mtCOVERAGE_TEST_MARKER();
\r
767 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
768 /*-----------------------------------------------------------*/
\r
770 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
772 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
\r
773 const UBaseType_t uxInitialCount )
\r
775 QueueHandle_t xHandle = NULL;
\r
777 if( ( uxMaxCount != 0 ) &&
\r
778 ( uxInitialCount <= uxMaxCount ) )
\r
780 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
\r
782 if( xHandle != NULL )
\r
784 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
\r
786 traceCREATE_COUNTING_SEMAPHORE();
\r
790 traceCREATE_COUNTING_SEMAPHORE_FAILED();
\r
795 configASSERT( xHandle );
\r
796 mtCOVERAGE_TEST_MARKER();
\r
802 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
\r
803 /*-----------------------------------------------------------*/
\r
805 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
\r
806 const void * const pvItemToQueue,
\r
807 TickType_t xTicksToWait,
\r
808 const BaseType_t xCopyPosition )
\r
810 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
\r
811 TimeOut_t xTimeOut;
\r
812 Queue_t * const pxQueue = xQueue;
\r
814 configASSERT( pxQueue );
\r
815 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
816 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
817 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
819 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
823 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
824 * allow return statements within the function itself. This is done in the
\r
825 * interest of execution time efficiency. */
\r
828 taskENTER_CRITICAL();
\r
830 /* Is there room on the queue now? The running task must be the
\r
831 * highest priority task wanting to access the queue. If the head item
\r
832 * in the queue is to be overwritten then it does not matter if the
\r
833 * queue is full. */
\r
834 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
836 traceQUEUE_SEND( pxQueue );
\r
838 #if ( configUSE_QUEUE_SETS == 1 )
\r
840 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
842 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
844 if( pxQueue->pxQueueSetContainer != NULL )
\r
846 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
848 /* Do not notify the queue set as an existing item
\r
849 * was overwritten in the queue so the number of items
\r
850 * in the queue has not changed. */
\r
851 mtCOVERAGE_TEST_MARKER();
\r
853 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
855 /* The queue is a member of a queue set, and posting
\r
856 * to the queue set caused a higher priority task to
\r
857 * unblock. A context switch is required. */
\r
858 queueYIELD_IF_USING_PREEMPTION();
\r
862 mtCOVERAGE_TEST_MARKER();
\r
867 /* If there was a task waiting for data to arrive on the
\r
868 * queue then unblock it now. */
\r
869 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
871 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
873 /* The unblocked task has a priority higher than
\r
874 * our own so yield immediately. Yes it is ok to
\r
875 * do this from within the critical section - the
\r
876 * kernel takes care of that. */
\r
877 queueYIELD_IF_USING_PREEMPTION();
\r
881 mtCOVERAGE_TEST_MARKER();
\r
884 else if( xYieldRequired != pdFALSE )
\r
886 /* This path is a special case that will only get
\r
887 * executed if the task was holding multiple mutexes
\r
888 * and the mutexes were given back in an order that is
\r
889 * different to that in which they were taken. */
\r
890 queueYIELD_IF_USING_PREEMPTION();
\r
894 mtCOVERAGE_TEST_MARKER();
\r
898 #else /* configUSE_QUEUE_SETS */
\r
900 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
902 /* If there was a task waiting for data to arrive on the
\r
903 * queue then unblock it now. */
\r
904 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
906 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
908 /* The unblocked task has a priority higher than
\r
909 * our own so yield immediately. Yes it is ok to do
\r
910 * this from within the critical section - the kernel
\r
911 * takes care of that. */
\r
912 queueYIELD_IF_USING_PREEMPTION();
\r
916 mtCOVERAGE_TEST_MARKER();
\r
919 else if( xYieldRequired != pdFALSE )
\r
921 /* This path is a special case that will only get
\r
922 * executed if the task was holding multiple mutexes and
\r
923 * the mutexes were given back in an order that is
\r
924 * different to that in which they were taken. */
\r
925 queueYIELD_IF_USING_PREEMPTION();
\r
929 mtCOVERAGE_TEST_MARKER();
\r
932 #endif /* configUSE_QUEUE_SETS */
\r
934 taskEXIT_CRITICAL();
\r
939 if( xTicksToWait == ( TickType_t ) 0 )
\r
941 /* The queue was full and no block time is specified (or
\r
942 * the block time has expired) so leave now. */
\r
943 taskEXIT_CRITICAL();
\r
945 /* Return to the original privilege level before exiting
\r
947 traceQUEUE_SEND_FAILED( pxQueue );
\r
948 return errQUEUE_FULL;
\r
950 else if( xEntryTimeSet == pdFALSE )
\r
952 /* The queue was full and a block time was specified so
\r
953 * configure the timeout structure. */
\r
954 vTaskInternalSetTimeOutState( &xTimeOut );
\r
955 xEntryTimeSet = pdTRUE;
\r
959 /* Entry time was already set. */
\r
960 mtCOVERAGE_TEST_MARKER();
\r
964 taskEXIT_CRITICAL();
\r
966 /* Interrupts and other tasks can send to and receive from the queue
\r
967 * now the critical section has been exited. */
\r
970 prvLockQueue( pxQueue );
\r
972 /* Update the timeout state to see if it has expired yet. */
\r
973 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
975 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
977 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
\r
978 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
\r
980 /* Unlocking the queue means queue events can effect the
\r
981 * event list. It is possible that interrupts occurring now
\r
982 * remove this task from the event list again - but as the
\r
983 * scheduler is suspended the task will go onto the pending
\r
984 * ready list instead of the actual ready list. */
\r
985 prvUnlockQueue( pxQueue );
\r
987 /* Resuming the scheduler will move tasks from the pending
\r
988 * ready list into the ready list - so it is feasible that this
\r
989 * task is already in the ready list before it yields - in which
\r
990 * case the yield will not cause a context switch unless there
\r
991 * is also a higher priority task in the pending ready list. */
\r
992 if( xTaskResumeAll() == pdFALSE )
\r
994 portYIELD_WITHIN_API();
\r
1000 prvUnlockQueue( pxQueue );
\r
1001 ( void ) xTaskResumeAll();
\r
1006 /* The timeout has expired. */
\r
1007 prvUnlockQueue( pxQueue );
\r
1008 ( void ) xTaskResumeAll();
\r
1010 traceQUEUE_SEND_FAILED( pxQueue );
\r
1011 return errQUEUE_FULL;
\r
1013 } /*lint -restore */
\r
1015 /*-----------------------------------------------------------*/
\r
1017 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
\r
1018 const void * const pvItemToQueue,
\r
1019 BaseType_t * const pxHigherPriorityTaskWoken,
\r
1020 const BaseType_t xCopyPosition )
\r
1022 BaseType_t xReturn;
\r
1023 UBaseType_t uxSavedInterruptStatus;
\r
1024 Queue_t * const pxQueue = xQueue;
\r
1026 configASSERT( pxQueue );
\r
1027 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1028 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
\r
1030 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1031 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1032 * above the maximum system call priority are kept permanently enabled, even
\r
1033 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1034 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1035 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1036 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1037 * assigned a priority above the configured maximum system call priority.
\r
1038 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1039 * that have been assigned a priority at or (logically) below the maximum
\r
1040 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1041 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1042 * More information (albeit Cortex-M specific) is provided on the following
\r
1043 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1044 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1046 /* Similar to xQueueGenericSend, except without blocking if there is no room
\r
1047 * in the queue. Also don't directly wake a task that was blocked on a queue
\r
1048 * read, instead return a flag to say whether a context switch is required or
\r
1049 * not (i.e. has a task with a higher priority than us been woken by this
\r
1051 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1053 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
\r
1055 const int8_t cTxLock = pxQueue->cTxLock;
\r
1056 const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1058 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1060 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
\r
1061 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
\r
1062 * in a task disinheriting a priority and prvCopyDataToQueue() can be
\r
1063 * called here even though the disinherit function does not check if
\r
1064 * the scheduler is suspended before accessing the ready lists. */
\r
1065 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
\r
1067 /* The event list is not altered if the queue is locked. This will
\r
1068 * be done when the queue is unlocked later. */
\r
1069 if( cTxLock == queueUNLOCKED )
\r
1071 #if ( configUSE_QUEUE_SETS == 1 )
\r
1073 if( pxQueue->pxQueueSetContainer != NULL )
\r
1075 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
\r
1077 /* Do not notify the queue set as an existing item
\r
1078 * was overwritten in the queue so the number of items
\r
1079 * in the queue has not changed. */
\r
1080 mtCOVERAGE_TEST_MARKER();
\r
1082 else if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1084 /* The queue is a member of a queue set, and posting
\r
1085 * to the queue set caused a higher priority task to
\r
1086 * unblock. A context switch is required. */
\r
1087 if( pxHigherPriorityTaskWoken != NULL )
\r
1089 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1093 mtCOVERAGE_TEST_MARKER();
\r
1098 mtCOVERAGE_TEST_MARKER();
\r
1103 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1105 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1107 /* The task waiting has a higher priority so
\r
1108 * record that a context switch is required. */
\r
1109 if( pxHigherPriorityTaskWoken != NULL )
\r
1111 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1115 mtCOVERAGE_TEST_MARKER();
\r
1120 mtCOVERAGE_TEST_MARKER();
\r
1125 mtCOVERAGE_TEST_MARKER();
\r
1129 #else /* configUSE_QUEUE_SETS */
\r
1131 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1133 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1135 /* The task waiting has a higher priority so record that a
\r
1136 * context switch is required. */
\r
1137 if( pxHigherPriorityTaskWoken != NULL )
\r
1139 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1143 mtCOVERAGE_TEST_MARKER();
\r
1148 mtCOVERAGE_TEST_MARKER();
\r
1153 mtCOVERAGE_TEST_MARKER();
\r
1156 /* Not used in this path. */
\r
1157 ( void ) uxPreviousMessagesWaiting;
\r
1159 #endif /* configUSE_QUEUE_SETS */
\r
1163 /* Increment the lock count so the task that unlocks the queue
\r
1164 * knows that data was posted while it was locked. */
\r
1165 configASSERT( cTxLock != queueINT8_MAX );
\r
1167 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1174 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1175 xReturn = errQUEUE_FULL;
\r
1178 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1182 /*-----------------------------------------------------------*/
\r
1184 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
\r
1185 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1187 BaseType_t xReturn;
\r
1188 UBaseType_t uxSavedInterruptStatus;
\r
1189 Queue_t * const pxQueue = xQueue;
\r
1191 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
\r
1192 * item size is 0. Don't directly wake a task that was blocked on a queue
\r
1193 * read, instead return a flag to say whether a context switch is required or
\r
1194 * not (i.e. has a task with a higher priority than us been woken by this
\r
1197 configASSERT( pxQueue );
\r
1199 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
\r
1200 * if the item size is not 0. */
\r
1201 configASSERT( pxQueue->uxItemSize == 0 );
\r
1203 /* Normally a mutex would not be given from an interrupt, especially if
\r
1204 * there is a mutex holder, as priority inheritance makes no sense for an
\r
1205 * interrupts, only tasks. */
\r
1206 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
\r
1208 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1209 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1210 * above the maximum system call priority are kept permanently enabled, even
\r
1211 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1212 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1213 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1214 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1215 * assigned a priority above the configured maximum system call priority.
\r
1216 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1217 * that have been assigned a priority at or (logically) below the maximum
\r
1218 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1219 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1220 * More information (albeit Cortex-M specific) is provided on the following
\r
1221 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1222 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1224 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1226 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1228 /* When the queue is used to implement a semaphore no data is ever
\r
1229 * moved through the queue but it is still valid to see if the queue 'has
\r
1231 if( uxMessagesWaiting < pxQueue->uxLength )
\r
1233 const int8_t cTxLock = pxQueue->cTxLock;
\r
1235 traceQUEUE_SEND_FROM_ISR( pxQueue );
\r
1237 /* A task can only have an inherited priority if it is a mutex
\r
1238 * holder - and if there is a mutex holder then the mutex cannot be
\r
1239 * given from an ISR. As this is the ISR version of the function it
\r
1240 * can be assumed there is no mutex holder and no need to determine if
\r
1241 * priority disinheritance is needed. Simply increase the count of
\r
1242 * messages (semaphores) available. */
\r
1243 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
1245 /* The event list is not altered if the queue is locked. This will
\r
1246 * be done when the queue is unlocked later. */
\r
1247 if( cTxLock == queueUNLOCKED )
\r
1249 #if ( configUSE_QUEUE_SETS == 1 )
\r
1251 if( pxQueue->pxQueueSetContainer != NULL )
\r
1253 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
1255 /* The semaphore is a member of a queue set, and
\r
1256 * posting to the queue set caused a higher priority
\r
1257 * task to unblock. A context switch is required. */
\r
1258 if( pxHigherPriorityTaskWoken != NULL )
\r
1260 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1264 mtCOVERAGE_TEST_MARKER();
\r
1269 mtCOVERAGE_TEST_MARKER();
\r
1274 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1276 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1278 /* The task waiting has a higher priority so
\r
1279 * record that a context switch is required. */
\r
1280 if( pxHigherPriorityTaskWoken != NULL )
\r
1282 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1286 mtCOVERAGE_TEST_MARKER();
\r
1291 mtCOVERAGE_TEST_MARKER();
\r
1296 mtCOVERAGE_TEST_MARKER();
\r
1300 #else /* configUSE_QUEUE_SETS */
\r
1302 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1304 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1306 /* The task waiting has a higher priority so record that a
\r
1307 * context switch is required. */
\r
1308 if( pxHigherPriorityTaskWoken != NULL )
\r
1310 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1314 mtCOVERAGE_TEST_MARKER();
\r
1319 mtCOVERAGE_TEST_MARKER();
\r
1324 mtCOVERAGE_TEST_MARKER();
\r
1327 #endif /* configUSE_QUEUE_SETS */
\r
1331 /* Increment the lock count so the task that unlocks the queue
\r
1332 * knows that data was posted while it was locked. */
\r
1333 configASSERT( cTxLock != queueINT8_MAX );
\r
1335 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
1342 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
\r
1343 xReturn = errQUEUE_FULL;
\r
1346 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1350 /*-----------------------------------------------------------*/
\r
1352 BaseType_t xQueueReceive( QueueHandle_t xQueue,
\r
1353 void * const pvBuffer,
\r
1354 TickType_t xTicksToWait )
\r
1356 BaseType_t xEntryTimeSet = pdFALSE;
\r
1357 TimeOut_t xTimeOut;
\r
1358 Queue_t * const pxQueue = xQueue;
\r
1360 /* Check the pointer is not NULL. */
\r
1361 configASSERT( ( pxQueue ) );
\r
1363 /* The buffer into which data is received can only be NULL if the data size
\r
1364 * is zero (so no data is copied into the buffer). */
\r
1365 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1367 /* Cannot block if the scheduler is suspended. */
\r
1368 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1370 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1374 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1375 * allow return statements within the function itself. This is done in the
\r
1376 * interest of execution time efficiency. */
\r
1379 taskENTER_CRITICAL();
\r
1381 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1383 /* Is there data in the queue now? To be running the calling task
\r
1384 * must be the highest priority task wanting to access the queue. */
\r
1385 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1387 /* Data available, remove one item. */
\r
1388 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1389 traceQUEUE_RECEIVE( pxQueue );
\r
1390 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1392 /* There is now space in the queue, were any tasks waiting to
\r
1393 * post to the queue? If so, unblock the highest priority waiting
\r
1395 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1397 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1399 queueYIELD_IF_USING_PREEMPTION();
\r
1403 mtCOVERAGE_TEST_MARKER();
\r
1408 mtCOVERAGE_TEST_MARKER();
\r
1411 taskEXIT_CRITICAL();
\r
1416 if( xTicksToWait == ( TickType_t ) 0 )
\r
1418 /* The queue was empty and no block time is specified (or
\r
1419 * the block time has expired) so leave now. */
\r
1420 taskEXIT_CRITICAL();
\r
1421 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1422 return errQUEUE_EMPTY;
\r
1424 else if( xEntryTimeSet == pdFALSE )
\r
1426 /* The queue was empty and a block time was specified so
\r
1427 * configure the timeout structure. */
\r
1428 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1429 xEntryTimeSet = pdTRUE;
\r
1433 /* Entry time was already set. */
\r
1434 mtCOVERAGE_TEST_MARKER();
\r
1438 taskEXIT_CRITICAL();
\r
1440 /* Interrupts and other tasks can send to and receive from the queue
\r
1441 * now the critical section has been exited. */
\r
1443 vTaskSuspendAll();
\r
1444 prvLockQueue( pxQueue );
\r
1446 /* Update the timeout state to see if it has expired yet. */
\r
1447 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1449 /* The timeout has not expired. If the queue is still empty place
\r
1450 * the task on the list of tasks waiting to receive from the queue. */
\r
1451 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1453 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1454 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1455 prvUnlockQueue( pxQueue );
\r
1457 if( xTaskResumeAll() == pdFALSE )
\r
1459 portYIELD_WITHIN_API();
\r
1463 mtCOVERAGE_TEST_MARKER();
\r
1468 /* The queue contains data again. Loop back to try and read the
\r
1470 prvUnlockQueue( pxQueue );
\r
1471 ( void ) xTaskResumeAll();
\r
1476 /* Timed out. If there is no data in the queue exit, otherwise loop
\r
1477 * back and attempt to read the data. */
\r
1478 prvUnlockQueue( pxQueue );
\r
1479 ( void ) xTaskResumeAll();
\r
1481 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1483 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1484 return errQUEUE_EMPTY;
\r
1488 mtCOVERAGE_TEST_MARKER();
\r
1491 } /*lint -restore */
\r
1493 /*-----------------------------------------------------------*/
\r
1495 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
\r
1496 TickType_t xTicksToWait )
\r
1498 BaseType_t xEntryTimeSet = pdFALSE;
\r
1499 TimeOut_t xTimeOut;
\r
1500 Queue_t * const pxQueue = xQueue;
\r
1502 #if ( configUSE_MUTEXES == 1 )
\r
1503 BaseType_t xInheritanceOccurred = pdFALSE;
\r
1506 /* Check the queue pointer is not NULL. */
\r
1507 configASSERT( ( pxQueue ) );
\r
1509 /* Check this really is a semaphore, in which case the item size will be
\r
1511 configASSERT( pxQueue->uxItemSize == 0 );
\r
1513 /* Cannot block if the scheduler is suspended. */
\r
1514 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1516 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1520 /*lint -save -e904 This function relaxes the coding standard somewhat to allow return
\r
1521 * statements within the function itself. This is done in the interest
\r
1522 * of execution time efficiency. */
\r
1525 taskENTER_CRITICAL();
\r
1527 /* Semaphores are queues with an item size of 0, and where the
\r
1528 * number of messages in the queue is the semaphore's count value. */
\r
1529 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
\r
1531 /* Is there data in the queue now? To be running the calling task
\r
1532 * must be the highest priority task wanting to access the queue. */
\r
1533 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
\r
1535 traceQUEUE_RECEIVE( pxQueue );
\r
1537 /* Semaphores are queues with a data size of zero and where the
\r
1538 * messages waiting is the semaphore's count. Reduce the count. */
\r
1539 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
\r
1541 #if ( configUSE_MUTEXES == 1 )
\r
1543 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1545 /* Record the information required to implement
\r
1546 * priority inheritance should it become necessary. */
\r
1547 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
\r
1551 mtCOVERAGE_TEST_MARKER();
\r
1554 #endif /* configUSE_MUTEXES */
\r
1556 /* Check to see if other tasks are blocked waiting to give the
\r
1557 * semaphore, and if so, unblock the highest priority such task. */
\r
1558 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1560 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1562 queueYIELD_IF_USING_PREEMPTION();
\r
1566 mtCOVERAGE_TEST_MARKER();
\r
1571 mtCOVERAGE_TEST_MARKER();
\r
1574 taskEXIT_CRITICAL();
\r
1579 if( xTicksToWait == ( TickType_t ) 0 )
\r
1581 /* For inheritance to have occurred there must have been an
\r
1582 * initial timeout, and an adjusted timeout cannot become 0, as
\r
1583 * if it were 0 the function would have exited. */
\r
1584 #if ( configUSE_MUTEXES == 1 )
\r
1586 configASSERT( xInheritanceOccurred == pdFALSE );
\r
1588 #endif /* configUSE_MUTEXES */
\r
1590 /* The semaphore count was 0 and no block time is specified
\r
1591 * (or the block time has expired) so exit now. */
\r
1592 taskEXIT_CRITICAL();
\r
1593 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1594 return errQUEUE_EMPTY;
\r
1596 else if( xEntryTimeSet == pdFALSE )
\r
1598 /* The semaphore count was 0 and a block time was specified
\r
1599 * so configure the timeout structure ready to block. */
\r
1600 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1601 xEntryTimeSet = pdTRUE;
\r
1605 /* Entry time was already set. */
\r
1606 mtCOVERAGE_TEST_MARKER();
\r
1610 taskEXIT_CRITICAL();
\r
1612 /* Interrupts and other tasks can give to and take from the semaphore
\r
1613 * now the critical section has been exited. */
\r
1615 vTaskSuspendAll();
\r
1616 prvLockQueue( pxQueue );
\r
1618 /* Update the timeout state to see if it has expired yet. */
\r
1619 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1621 /* A block time is specified and not expired. If the semaphore
\r
1622 * count is 0 then enter the Blocked state to wait for a semaphore to
\r
1623 * become available. As semaphores are implemented with queues the
\r
1624 * queue being empty is equivalent to the semaphore count being 0. */
\r
1625 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1627 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
\r
1629 #if ( configUSE_MUTEXES == 1 )
\r
1631 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
1633 taskENTER_CRITICAL();
\r
1635 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
1637 taskEXIT_CRITICAL();
\r
1641 mtCOVERAGE_TEST_MARKER();
\r
1644 #endif /* if ( configUSE_MUTEXES == 1 ) */
\r
1646 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1647 prvUnlockQueue( pxQueue );
\r
1649 if( xTaskResumeAll() == pdFALSE )
\r
1651 portYIELD_WITHIN_API();
\r
1655 mtCOVERAGE_TEST_MARKER();
\r
1660 /* There was no timeout and the semaphore count was not 0, so
\r
1661 * attempt to take the semaphore again. */
\r
1662 prvUnlockQueue( pxQueue );
\r
1663 ( void ) xTaskResumeAll();
\r
1669 prvUnlockQueue( pxQueue );
\r
1670 ( void ) xTaskResumeAll();
\r
1672 /* If the semaphore count is 0 exit now as the timeout has
\r
1673 * expired. Otherwise return to attempt to take the semaphore that is
\r
1674 * known to be available. As semaphores are implemented by queues the
\r
1675 * queue being empty is equivalent to the semaphore count being 0. */
\r
1676 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1678 #if ( configUSE_MUTEXES == 1 )
\r
1680 /* xInheritanceOccurred could only have be set if
\r
1681 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
\r
1682 * test the mutex type again to check it is actually a mutex. */
\r
1683 if( xInheritanceOccurred != pdFALSE )
\r
1685 taskENTER_CRITICAL();
\r
1687 UBaseType_t uxHighestWaitingPriority;
\r
1689 /* This task blocking on the mutex caused another
\r
1690 * task to inherit this task's priority. Now this task
\r
1691 * has timed out the priority should be disinherited
\r
1692 * again, but only as low as the next highest priority
\r
1693 * task that is waiting for the same mutex. */
\r
1694 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
\r
1695 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
\r
1697 taskEXIT_CRITICAL();
\r
1700 #endif /* configUSE_MUTEXES */
\r
1702 traceQUEUE_RECEIVE_FAILED( pxQueue );
\r
1703 return errQUEUE_EMPTY;
\r
1707 mtCOVERAGE_TEST_MARKER();
\r
1710 } /*lint -restore */
\r
1712 /*-----------------------------------------------------------*/
\r
1714 BaseType_t xQueuePeek( QueueHandle_t xQueue,
\r
1715 void * const pvBuffer,
\r
1716 TickType_t xTicksToWait )
\r
1718 BaseType_t xEntryTimeSet = pdFALSE;
\r
1719 TimeOut_t xTimeOut;
\r
1720 int8_t * pcOriginalReadPosition;
\r
1721 Queue_t * const pxQueue = xQueue;
\r
1723 /* Check the pointer is not NULL. */
\r
1724 configASSERT( ( pxQueue ) );
\r
1726 /* The buffer into which data is received can only be NULL if the data size
\r
1727 * is zero (so no data is copied into the buffer. */
\r
1728 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1730 /* Cannot block if the scheduler is suspended. */
\r
1731 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
1733 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
\r
1737 /*lint -save -e904 This function relaxes the coding standard somewhat to
\r
1738 * allow return statements within the function itself. This is done in the
\r
1739 * interest of execution time efficiency. */
\r
1742 taskENTER_CRITICAL();
\r
1744 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1746 /* Is there data in the queue now? To be running the calling task
\r
1747 * must be the highest priority task wanting to access the queue. */
\r
1748 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1750 /* Remember the read position so it can be reset after the data
\r
1751 * is read from the queue as this function is only peeking the
\r
1752 * data, not removing it. */
\r
1753 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1755 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1756 traceQUEUE_PEEK( pxQueue );
\r
1758 /* The data is not being removed, so reset the read pointer. */
\r
1759 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
1761 /* The data is being left in the queue, so see if there are
\r
1762 * any other tasks waiting for the data. */
\r
1763 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
1765 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
1767 /* The task waiting has a higher priority than this task. */
\r
1768 queueYIELD_IF_USING_PREEMPTION();
\r
1772 mtCOVERAGE_TEST_MARKER();
\r
1777 mtCOVERAGE_TEST_MARKER();
\r
1780 taskEXIT_CRITICAL();
\r
1785 if( xTicksToWait == ( TickType_t ) 0 )
\r
1787 /* The queue was empty and no block time is specified (or
\r
1788 * the block time has expired) so leave now. */
\r
1789 taskEXIT_CRITICAL();
\r
1790 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1791 return errQUEUE_EMPTY;
\r
1793 else if( xEntryTimeSet == pdFALSE )
\r
1795 /* The queue was empty and a block time was specified so
\r
1796 * configure the timeout structure ready to enter the blocked
\r
1798 vTaskInternalSetTimeOutState( &xTimeOut );
\r
1799 xEntryTimeSet = pdTRUE;
\r
1803 /* Entry time was already set. */
\r
1804 mtCOVERAGE_TEST_MARKER();
\r
1808 taskEXIT_CRITICAL();
\r
1810 /* Interrupts and other tasks can send to and receive from the queue
\r
1811 * now that the critical section has been exited. */
\r
1813 vTaskSuspendAll();
\r
1814 prvLockQueue( pxQueue );
\r
1816 /* Update the timeout state to see if it has expired yet. */
\r
1817 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
\r
1819 /* Timeout has not expired yet, check to see if there is data in the
\r
1820 * queue now, and if not enter the Blocked state to wait for data. */
\r
1821 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1823 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
\r
1824 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
\r
1825 prvUnlockQueue( pxQueue );
\r
1827 if( xTaskResumeAll() == pdFALSE )
\r
1829 portYIELD_WITHIN_API();
\r
1833 mtCOVERAGE_TEST_MARKER();
\r
1838 /* There is data in the queue now, so don't enter the blocked
\r
1839 * state, instead return to try and obtain the data. */
\r
1840 prvUnlockQueue( pxQueue );
\r
1841 ( void ) xTaskResumeAll();
\r
1846 /* The timeout has expired. If there is still no data in the queue
\r
1847 * exit, otherwise go back and try to read the data again. */
\r
1848 prvUnlockQueue( pxQueue );
\r
1849 ( void ) xTaskResumeAll();
\r
1851 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
\r
1853 traceQUEUE_PEEK_FAILED( pxQueue );
\r
1854 return errQUEUE_EMPTY;
\r
1858 mtCOVERAGE_TEST_MARKER();
\r
1861 } /*lint -restore */
\r
1863 /*-----------------------------------------------------------*/
\r
1865 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
\r
1866 void * const pvBuffer,
\r
1867 BaseType_t * const pxHigherPriorityTaskWoken )
\r
1869 BaseType_t xReturn;
\r
1870 UBaseType_t uxSavedInterruptStatus;
\r
1871 Queue_t * const pxQueue = xQueue;
\r
1873 configASSERT( pxQueue );
\r
1874 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1876 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1877 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1878 * above the maximum system call priority are kept permanently enabled, even
\r
1879 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1880 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1881 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1882 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1883 * assigned a priority above the configured maximum system call priority.
\r
1884 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1885 * that have been assigned a priority at or (logically) below the maximum
\r
1886 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1887 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1888 * More information (albeit Cortex-M specific) is provided on the following
\r
1889 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1890 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1892 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1894 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
1896 /* Cannot block in an ISR, so check there is data available. */
\r
1897 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1899 const int8_t cRxLock = pxQueue->cRxLock;
\r
1901 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
\r
1903 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1904 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
\r
1906 /* If the queue is locked the event list will not be modified.
\r
1907 * Instead update the lock count so the task that unlocks the queue
\r
1908 * will know that an ISR has removed data while the queue was
\r
1910 if( cRxLock == queueUNLOCKED )
\r
1912 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
1914 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
1916 /* The task waiting has a higher priority than us so
\r
1917 * force a context switch. */
\r
1918 if( pxHigherPriorityTaskWoken != NULL )
\r
1920 *pxHigherPriorityTaskWoken = pdTRUE;
\r
1924 mtCOVERAGE_TEST_MARKER();
\r
1929 mtCOVERAGE_TEST_MARKER();
\r
1934 mtCOVERAGE_TEST_MARKER();
\r
1939 /* Increment the lock count so the task that unlocks the queue
\r
1940 * knows that data was removed while it was locked. */
\r
1941 configASSERT( cRxLock != queueINT8_MAX );
\r
1943 pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
\r
1951 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
\r
1954 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1958 /*-----------------------------------------------------------*/
\r
1960 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
\r
1961 void * const pvBuffer )
\r
1963 BaseType_t xReturn;
\r
1964 UBaseType_t uxSavedInterruptStatus;
\r
1965 int8_t * pcOriginalReadPosition;
\r
1966 Queue_t * const pxQueue = xQueue;
\r
1968 configASSERT( pxQueue );
\r
1969 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
\r
1970 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
\r
1972 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
1973 * system call (or maximum API call) interrupt priority. Interrupts that are
\r
1974 * above the maximum system call priority are kept permanently enabled, even
\r
1975 * when the RTOS kernel is in a critical section, but cannot make any calls to
\r
1976 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
1977 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1978 * failure if a FreeRTOS API function is called from an interrupt that has been
\r
1979 * assigned a priority above the configured maximum system call priority.
\r
1980 * Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
1981 * that have been assigned a priority at or (logically) below the maximum
\r
1982 * system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
1983 * safe API to ensure interrupt entry is as fast and as simple as possible.
\r
1984 * More information (albeit Cortex-M specific) is provided on the following
\r
1985 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
\r
1986 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1988 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1990 /* Cannot block in an ISR, so check there is data available. */
\r
1991 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
1993 traceQUEUE_PEEK_FROM_ISR( pxQueue );
\r
1995 /* Remember the read position so it can be reset as nothing is
\r
1996 * actually being removed from the queue. */
\r
1997 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
\r
1998 prvCopyDataFromQueue( pxQueue, pvBuffer );
\r
1999 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
\r
2006 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
\r
2009 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2013 /*-----------------------------------------------------------*/
\r
2015 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
\r
2017 UBaseType_t uxReturn;
\r
2019 configASSERT( xQueue );
\r
2021 taskENTER_CRITICAL();
\r
2023 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
\r
2025 taskEXIT_CRITICAL();
\r
2028 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2029 /*-----------------------------------------------------------*/
\r
2031 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
\r
2033 UBaseType_t uxReturn;
\r
2034 Queue_t * const pxQueue = xQueue;
\r
2036 configASSERT( pxQueue );
\r
2038 taskENTER_CRITICAL();
\r
2040 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
\r
2042 taskEXIT_CRITICAL();
\r
2045 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2046 /*-----------------------------------------------------------*/
\r
2048 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
\r
2050 UBaseType_t uxReturn;
\r
2051 Queue_t * const pxQueue = xQueue;
\r
2053 configASSERT( pxQueue );
\r
2054 uxReturn = pxQueue->uxMessagesWaiting;
\r
2057 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
\r
2058 /*-----------------------------------------------------------*/
\r
2060 void vQueueDelete( QueueHandle_t xQueue )
\r
2062 Queue_t * const pxQueue = xQueue;
\r
2064 configASSERT( pxQueue );
\r
2065 traceQUEUE_DELETE( pxQueue );
\r
2067 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2069 vQueueUnregisterQueue( pxQueue );
\r
2073 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
\r
2075 /* The queue can only have been allocated dynamically - free it
\r
2077 vPortFree( pxQueue );
\r
2079 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
\r
2081 /* The queue could have been allocated statically or dynamically, so
\r
2082 * check before attempting to free the memory. */
\r
2083 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
\r
2085 vPortFree( pxQueue );
\r
2089 mtCOVERAGE_TEST_MARKER();
\r
2092 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
\r
2094 /* The queue must have been statically allocated, so is not going to be
\r
2095 * deleted. Avoid compiler warnings about the unused parameter. */
\r
2098 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
2100 /*-----------------------------------------------------------*/
\r
2102 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2104 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
\r
2106 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
\r
2109 #endif /* configUSE_TRACE_FACILITY */
\r
2110 /*-----------------------------------------------------------*/
\r
2112 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2114 void vQueueSetQueueNumber( QueueHandle_t xQueue,
\r
2115 UBaseType_t uxQueueNumber )
\r
2117 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
\r
2120 #endif /* configUSE_TRACE_FACILITY */
\r
2121 /*-----------------------------------------------------------*/
\r
2123 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2125 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
\r
2127 return ( ( Queue_t * ) xQueue )->ucQueueType;
\r
2130 #endif /* configUSE_TRACE_FACILITY */
\r
2131 /*-----------------------------------------------------------*/
\r
2133 #if ( configUSE_MUTEXES == 1 )
\r
2135 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
\r
2137 UBaseType_t uxHighestPriorityOfWaitingTasks;
\r
2139 /* If a task waiting for a mutex causes the mutex holder to inherit a
\r
2140 * priority, but the waiting task times out, then the holder should
\r
2141 * disinherit the priority - but only down to the highest priority of any
\r
2142 * other tasks that are waiting for the same mutex. For this purpose,
\r
2143 * return the priority of the highest priority task that is waiting for the
\r
2145 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
\r
2147 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) );
\r
2151 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
\r
2154 return uxHighestPriorityOfWaitingTasks;
\r
2157 #endif /* configUSE_MUTEXES */
\r
2158 /*-----------------------------------------------------------*/
\r
2160 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
\r
2161 const void * pvItemToQueue,
\r
2162 const BaseType_t xPosition )
\r
2164 BaseType_t xReturn = pdFALSE;
\r
2165 UBaseType_t uxMessagesWaiting;
\r
2167 /* This function is called from a critical section. */
\r
2169 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
\r
2171 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
\r
2173 #if ( configUSE_MUTEXES == 1 )
\r
2175 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
\r
2177 /* The mutex is no longer being held. */
\r
2178 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
\r
2179 pxQueue->u.xSemaphore.xMutexHolder = NULL;
\r
2183 mtCOVERAGE_TEST_MARKER();
\r
2186 #endif /* configUSE_MUTEXES */
\r
2188 else if( xPosition == queueSEND_TO_BACK )
\r
2190 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2191 pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2193 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2195 pxQueue->pcWriteTo = pxQueue->pcHead;
\r
2199 mtCOVERAGE_TEST_MARKER();
\r
2204 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
\r
2205 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
\r
2207 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
\r
2209 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
\r
2213 mtCOVERAGE_TEST_MARKER();
\r
2216 if( xPosition == queueOVERWRITE )
\r
2218 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2220 /* An item is not being added but overwritten, so subtract
\r
2221 * one from the recorded number of items in the queue so when
\r
2222 * one is added again below the number of recorded items remains
\r
2224 --uxMessagesWaiting;
\r
2228 mtCOVERAGE_TEST_MARKER();
\r
2233 mtCOVERAGE_TEST_MARKER();
\r
2237 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
\r
2241 /*-----------------------------------------------------------*/
\r
2243 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
\r
2244 void * const pvBuffer )
\r
2246 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
\r
2248 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
\r
2250 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
\r
2252 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2256 mtCOVERAGE_TEST_MARKER();
\r
2259 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
\r
2262 /*-----------------------------------------------------------*/
\r
2264 static void prvUnlockQueue( Queue_t * const pxQueue )
\r
2266 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
\r
2268 /* The lock counts contains the number of extra data items placed or
\r
2269 * removed from the queue while the queue was locked. When a queue is
\r
2270 * locked items can be added or removed, but the event lists cannot be
\r
2272 taskENTER_CRITICAL();
\r
2274 int8_t cTxLock = pxQueue->cTxLock;
\r
2276 /* See if data was added to the queue while it was locked. */
\r
2277 while( cTxLock > queueLOCKED_UNMODIFIED )
\r
2279 /* Data was posted while the queue was locked. Are any tasks
\r
2280 * blocked waiting for data to become available? */
\r
2281 #if ( configUSE_QUEUE_SETS == 1 )
\r
2283 if( pxQueue->pxQueueSetContainer != NULL )
\r
2285 if( prvNotifyQueueSetContainer( pxQueue ) != pdFALSE )
\r
2287 /* The queue is a member of a queue set, and posting to
\r
2288 * the queue set caused a higher priority task to unblock.
\r
2289 * A context switch is required. */
\r
2290 vTaskMissedYield();
\r
2294 mtCOVERAGE_TEST_MARKER();
\r
2299 /* Tasks that are removed from the event list will get
\r
2300 * added to the pending ready list as the scheduler is still
\r
2302 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2304 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2306 /* The task waiting has a higher priority so record that a
\r
2307 * context switch is required. */
\r
2308 vTaskMissedYield();
\r
2312 mtCOVERAGE_TEST_MARKER();
\r
2321 #else /* configUSE_QUEUE_SETS */
\r
2323 /* Tasks that are removed from the event list will get added to
\r
2324 * the pending ready list as the scheduler is still suspended. */
\r
2325 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2327 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2329 /* The task waiting has a higher priority so record that
\r
2330 * a context switch is required. */
\r
2331 vTaskMissedYield();
\r
2335 mtCOVERAGE_TEST_MARKER();
\r
2343 #endif /* configUSE_QUEUE_SETS */
\r
2348 pxQueue->cTxLock = queueUNLOCKED;
\r
2350 taskEXIT_CRITICAL();
\r
2352 /* Do the same for the Rx lock. */
\r
2353 taskENTER_CRITICAL();
\r
2355 int8_t cRxLock = pxQueue->cRxLock;
\r
2357 while( cRxLock > queueLOCKED_UNMODIFIED )
\r
2359 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2361 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2363 vTaskMissedYield();
\r
2367 mtCOVERAGE_TEST_MARKER();
\r
2378 pxQueue->cRxLock = queueUNLOCKED;
\r
2380 taskEXIT_CRITICAL();
\r
2382 /*-----------------------------------------------------------*/
\r
2384 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
\r
2386 BaseType_t xReturn;
\r
2388 taskENTER_CRITICAL();
\r
2390 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2396 xReturn = pdFALSE;
\r
2399 taskEXIT_CRITICAL();
\r
2403 /*-----------------------------------------------------------*/
\r
2405 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
\r
2407 BaseType_t xReturn;
\r
2408 Queue_t * const pxQueue = xQueue;
\r
2410 configASSERT( pxQueue );
\r
2412 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2418 xReturn = pdFALSE;
\r
2422 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2423 /*-----------------------------------------------------------*/
\r
2425 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
\r
2427 BaseType_t xReturn;
\r
2429 taskENTER_CRITICAL();
\r
2431 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2437 xReturn = pdFALSE;
\r
2440 taskEXIT_CRITICAL();
\r
2444 /*-----------------------------------------------------------*/
\r
2446 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
\r
2448 BaseType_t xReturn;
\r
2449 Queue_t * const pxQueue = xQueue;
\r
2451 configASSERT( pxQueue );
\r
2453 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
\r
2459 xReturn = pdFALSE;
\r
2463 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2464 /*-----------------------------------------------------------*/
\r
2466 #if ( configUSE_CO_ROUTINES == 1 )
\r
2468 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
\r
2469 const void * pvItemToQueue,
\r
2470 TickType_t xTicksToWait )
\r
2472 BaseType_t xReturn;
\r
2473 Queue_t * const pxQueue = xQueue;
\r
2475 /* If the queue is already full we may have to block. A critical section
\r
2476 * is required to prevent an interrupt removing something from the queue
\r
2477 * between the check to see if the queue is full and blocking on the queue. */
\r
2478 portDISABLE_INTERRUPTS();
\r
2480 if( prvIsQueueFull( pxQueue ) != pdFALSE )
\r
2482 /* The queue is full - do we want to block or just leave without
\r
2484 if( xTicksToWait > ( TickType_t ) 0 )
\r
2486 /* As this is called from a coroutine we cannot block directly, but
\r
2487 * return indicating that we need to block. */
\r
2488 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
\r
2489 portENABLE_INTERRUPTS();
\r
2490 return errQUEUE_BLOCKED;
\r
2494 portENABLE_INTERRUPTS();
\r
2495 return errQUEUE_FULL;
\r
2499 portENABLE_INTERRUPTS();
\r
2501 portDISABLE_INTERRUPTS();
\r
2503 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2505 /* There is room in the queue, copy the data into the queue. */
\r
2506 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2509 /* Were any co-routines waiting for data to become available? */
\r
2510 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2512 /* In this instance the co-routine could be placed directly
\r
2513 * into the ready list as we are within a critical section.
\r
2514 * Instead the same pending ready list mechanism is used as if
\r
2515 * the event were caused from within an interrupt. */
\r
2516 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2518 /* The co-routine waiting has a higher priority so record
\r
2519 * that a yield might be appropriate. */
\r
2520 xReturn = errQUEUE_YIELD;
\r
2524 mtCOVERAGE_TEST_MARKER();
\r
2529 mtCOVERAGE_TEST_MARKER();
\r
2534 xReturn = errQUEUE_FULL;
\r
2537 portENABLE_INTERRUPTS();
\r
2542 #endif /* configUSE_CO_ROUTINES */
\r
2543 /*-----------------------------------------------------------*/
\r
2545 #if ( configUSE_CO_ROUTINES == 1 )
\r
2547 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
\r
2549 TickType_t xTicksToWait )
\r
2551 BaseType_t xReturn;
\r
2552 Queue_t * const pxQueue = xQueue;
\r
2554 /* If the queue is already empty we may have to block. A critical section
\r
2555 * is required to prevent an interrupt adding something to the queue
\r
2556 * between the check to see if the queue is empty and blocking on the queue. */
\r
2557 portDISABLE_INTERRUPTS();
\r
2559 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
\r
2561 /* There are no messages in the queue, do we want to block or just
\r
2562 * leave with nothing? */
\r
2563 if( xTicksToWait > ( TickType_t ) 0 )
\r
2565 /* As this is a co-routine we cannot block directly, but return
\r
2566 * indicating that we need to block. */
\r
2567 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
\r
2568 portENABLE_INTERRUPTS();
\r
2569 return errQUEUE_BLOCKED;
\r
2573 portENABLE_INTERRUPTS();
\r
2574 return errQUEUE_FULL;
\r
2579 mtCOVERAGE_TEST_MARKER();
\r
2582 portENABLE_INTERRUPTS();
\r
2584 portDISABLE_INTERRUPTS();
\r
2586 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2588 /* Data is available from the queue. */
\r
2589 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2591 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2593 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2597 mtCOVERAGE_TEST_MARKER();
\r
2600 --( pxQueue->uxMessagesWaiting );
\r
2601 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2605 /* Were any co-routines waiting for space to become available? */
\r
2606 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2608 /* In this instance the co-routine could be placed directly
\r
2609 * into the ready list as we are within a critical section.
\r
2610 * Instead the same pending ready list mechanism is used as if
\r
2611 * the event were caused from within an interrupt. */
\r
2612 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2614 xReturn = errQUEUE_YIELD;
\r
2618 mtCOVERAGE_TEST_MARKER();
\r
2623 mtCOVERAGE_TEST_MARKER();
\r
2631 portENABLE_INTERRUPTS();
\r
2636 #endif /* configUSE_CO_ROUTINES */
\r
2637 /*-----------------------------------------------------------*/
\r
2639 #if ( configUSE_CO_ROUTINES == 1 )
\r
2641 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
\r
2642 const void * pvItemToQueue,
\r
2643 BaseType_t xCoRoutinePreviouslyWoken )
\r
2645 Queue_t * const pxQueue = xQueue;
\r
2647 /* Cannot block within an ISR so if there is no space on the queue then
\r
2648 * exit without doing anything. */
\r
2649 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
\r
2651 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
\r
2653 /* We only want to wake one co-routine per ISR, so check that a
\r
2654 * co-routine has not already been woken. */
\r
2655 if( xCoRoutinePreviouslyWoken == pdFALSE )
\r
2657 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
\r
2659 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
\r
2665 mtCOVERAGE_TEST_MARKER();
\r
2670 mtCOVERAGE_TEST_MARKER();
\r
2675 mtCOVERAGE_TEST_MARKER();
\r
2680 mtCOVERAGE_TEST_MARKER();
\r
2683 return xCoRoutinePreviouslyWoken;
\r
2686 #endif /* configUSE_CO_ROUTINES */
\r
2687 /*-----------------------------------------------------------*/
\r
2689 #if ( configUSE_CO_ROUTINES == 1 )
\r
2691 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
\r
2693 BaseType_t * pxCoRoutineWoken )
\r
2695 BaseType_t xReturn;
\r
2696 Queue_t * const pxQueue = xQueue;
\r
2698 /* We cannot block from an ISR, so check there is data available. If
\r
2699 * not then just leave without doing anything. */
\r
2700 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
\r
2702 /* Copy the data from the queue. */
\r
2703 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
\r
2705 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
\r
2707 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
\r
2711 mtCOVERAGE_TEST_MARKER();
\r
2714 --( pxQueue->uxMessagesWaiting );
\r
2715 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
\r
2717 if( ( *pxCoRoutineWoken ) == pdFALSE )
\r
2719 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
\r
2721 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
\r
2723 *pxCoRoutineWoken = pdTRUE;
\r
2727 mtCOVERAGE_TEST_MARKER();
\r
2732 mtCOVERAGE_TEST_MARKER();
\r
2737 mtCOVERAGE_TEST_MARKER();
\r
2750 #endif /* configUSE_CO_ROUTINES */
\r
2751 /*-----------------------------------------------------------*/
\r
2753 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2755 void vQueueAddToRegistry( QueueHandle_t xQueue,
\r
2756 const char * pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2760 configASSERT( xQueue );
\r
2762 QueueRegistryItem_t * pxEntryToWrite = NULL;
\r
2764 if( pcQueueName != NULL )
\r
2766 /* See if there is an empty space in the registry. A NULL name denotes
\r
2768 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2770 /* Replace an existing entry if the queue is already in the registry. */
\r
2771 if( xQueue == xQueueRegistry[ ux ].xHandle )
\r
2773 pxEntryToWrite = &( xQueueRegistry[ ux ] );
\r
2776 /* Otherwise, store in the next empty location */
\r
2777 else if( ( pxEntryToWrite == NULL ) && ( xQueueRegistry[ ux ].pcQueueName == NULL ) )
\r
2779 pxEntryToWrite = &( xQueueRegistry[ ux ] );
\r
2783 mtCOVERAGE_TEST_MARKER();
\r
2788 if( pxEntryToWrite != NULL )
\r
2790 /* Store the information on this queue. */
\r
2791 pxEntryToWrite->pcQueueName = pcQueueName;
\r
2792 pxEntryToWrite->xHandle = xQueue;
\r
2794 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
\r
2798 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2799 /*-----------------------------------------------------------*/
\r
2801 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2803 const char * pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2806 const char * pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2808 configASSERT( xQueue );
\r
2810 /* Note there is nothing here to protect against another task adding or
\r
2811 * removing entries from the registry while it is being searched. */
\r
2813 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2815 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2817 pcReturn = xQueueRegistry[ ux ].pcQueueName;
\r
2822 mtCOVERAGE_TEST_MARKER();
\r
2827 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
\r
2829 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2830 /*-----------------------------------------------------------*/
\r
2832 #if ( configQUEUE_REGISTRY_SIZE > 0 )
\r
2834 void vQueueUnregisterQueue( QueueHandle_t xQueue )
\r
2838 configASSERT( xQueue );
\r
2840 /* See if the handle of the queue being unregistered in actually in the
\r
2842 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
\r
2844 if( xQueueRegistry[ ux ].xHandle == xQueue )
\r
2846 /* Set the name to NULL to show that this slot if free again. */
\r
2847 xQueueRegistry[ ux ].pcQueueName = NULL;
\r
2849 /* Set the handle to NULL to ensure the same queue handle cannot
\r
2850 * appear in the registry twice if it is added, removed, then
\r
2852 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
\r
2857 mtCOVERAGE_TEST_MARKER();
\r
2860 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
\r
2862 #endif /* configQUEUE_REGISTRY_SIZE */
\r
2863 /*-----------------------------------------------------------*/
\r
2865 #if ( configUSE_TIMERS == 1 )
\r
2867 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
\r
2868 TickType_t xTicksToWait,
\r
2869 const BaseType_t xWaitIndefinitely )
\r
2871 Queue_t * const pxQueue = xQueue;
\r
2873 /* This function should not be called by application code hence the
\r
2874 * 'Restricted' in its name. It is not part of the public API. It is
\r
2875 * designed for use by kernel code, and has special calling requirements.
\r
2876 * It can result in vListInsert() being called on a list that can only
\r
2877 * possibly ever have one item in it, so the list will be fast, but even
\r
2878 * so it should be called with the scheduler locked and not from a critical
\r
2881 /* Only do anything if there are no messages in the queue. This function
\r
2882 * will not actually cause the task to block, just place it on a blocked
\r
2883 * list. It will not block until the scheduler is unlocked - at which
\r
2884 * time a yield will be performed. If an item is added to the queue while
\r
2885 * the queue is locked, and the calling task blocks on the queue, then the
\r
2886 * calling task will be immediately unblocked when the queue is unlocked. */
\r
2887 prvLockQueue( pxQueue );
\r
2889 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
\r
2891 /* There is nothing in the queue, block for the specified period. */
\r
2892 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
\r
2896 mtCOVERAGE_TEST_MARKER();
\r
2899 prvUnlockQueue( pxQueue );
\r
2902 #endif /* configUSE_TIMERS */
\r
2903 /*-----------------------------------------------------------*/
\r
2905 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
\r
2907 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
\r
2909 QueueSetHandle_t pxQueue;
\r
2911 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
\r
2916 #endif /* configUSE_QUEUE_SETS */
\r
2917 /*-----------------------------------------------------------*/
\r
2919 #if ( configUSE_QUEUE_SETS == 1 )
\r
2921 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2922 QueueSetHandle_t xQueueSet )
\r
2924 BaseType_t xReturn;
\r
2926 taskENTER_CRITICAL();
\r
2928 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
\r
2930 /* Cannot add a queue/semaphore to more than one queue set. */
\r
2933 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2935 /* Cannot add a queue/semaphore to a queue set if there are already
\r
2936 * items in the queue/semaphore. */
\r
2941 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
\r
2945 taskEXIT_CRITICAL();
\r
2950 #endif /* configUSE_QUEUE_SETS */
\r
2951 /*-----------------------------------------------------------*/
\r
2953 #if ( configUSE_QUEUE_SETS == 1 )
\r
2955 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
\r
2956 QueueSetHandle_t xQueueSet )
\r
2958 BaseType_t xReturn;
\r
2959 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
\r
2961 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
\r
2963 /* The queue was not a member of the set. */
\r
2966 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
\r
2968 /* It is dangerous to remove a queue from a set when the queue is
\r
2969 * not empty because the queue set will still hold pending events for
\r
2975 taskENTER_CRITICAL();
\r
2977 /* The queue is no longer contained in the set. */
\r
2978 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
\r
2980 taskEXIT_CRITICAL();
\r
2985 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
\r
2987 #endif /* configUSE_QUEUE_SETS */
\r
2988 /*-----------------------------------------------------------*/
\r
2990 #if ( configUSE_QUEUE_SETS == 1 )
\r
2992 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
\r
2993 TickType_t const xTicksToWait )
\r
2995 QueueSetMemberHandle_t xReturn = NULL;
\r
2997 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
3001 #endif /* configUSE_QUEUE_SETS */
\r
3002 /*-----------------------------------------------------------*/
\r
3004 #if ( configUSE_QUEUE_SETS == 1 )
\r
3006 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
\r
3008 QueueSetMemberHandle_t xReturn = NULL;
\r
3010 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
\r
3014 #endif /* configUSE_QUEUE_SETS */
\r
3015 /*-----------------------------------------------------------*/
\r
3017 #if ( configUSE_QUEUE_SETS == 1 )
\r
3019 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue )
\r
3021 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
\r
3022 BaseType_t xReturn = pdFALSE;
\r
3024 /* This function must be called form a critical section. */
\r
3026 /* The following line is not reachable in unit tests because every call
\r
3027 * to prvNotifyQueueSetContainer is preceded by a check that
\r
3028 * pxQueueSetContainer != NULL */
\r
3029 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
\r
3030 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
\r
3032 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
\r
3034 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
\r
3036 traceQUEUE_SET_SEND( pxQueueSetContainer );
\r
3038 /* The data copied is the handle of the queue that contains data. */
\r
3039 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK );
\r
3041 if( cTxLock == queueUNLOCKED )
\r
3043 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
\r
3045 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
\r
3047 /* The task waiting has a higher priority. */
\r
3052 mtCOVERAGE_TEST_MARKER();
\r
3057 mtCOVERAGE_TEST_MARKER();
\r
3062 configASSERT( cTxLock != queueINT8_MAX );
\r
3064 pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
\r
3069 mtCOVERAGE_TEST_MARKER();
\r
3075 #endif /* configUSE_QUEUE_SETS */
\r